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ABSTRACT

High-fidelity scientific simulations are now producing unprecedented amounts of
data, creating a storage and analysis bottleneck. A single simulation can gen-
erate tremendous data volumes, often forcing researchers to discard valuable in-
formation. A prime example of this is plasma turbulence described by the Gy-
rokinetic equations: nonlinear, multiscale, and 5D in phase space. They rep-
resent one of the most computationally demanding frontiers of modern science,
with runs taking weeks and resulting in tens of terabytes of data dumps. The in-
creasing storage demands underscore the importance of compression, however,
compressed snapshots might not preserve essential physical characteristics after
reconstruction. To assess whether such characteristics are captured, we propose a
spatiotemporal evaluation pipeline which accounts for structural phenomena and
multi-scale transient fluctuations. Indeed, we find that various compression tech-
niques lack preservation of temporal turbulence characteristics. Therefore, we ex-
plore Physics-Informed Neural Compression (PINC), which incorporates physics-
informed losses tailored to gyrokinetics and enables extreme compressions of over
100,000×. This direction provides a viable and scalable solution to the prohibitive
storage demands of gyrokinetics, enabling post-hoc analyses that were previously
infeasible.

1 INTRODUCTION

Scientific computing is on the cusp of entering an era of high-fidelity simulations across various
domains, such as plasma physics (Fedeli et al., 2022; Chang et al., 2024; Dominski et al., 2024;
Kelling et al., 2025), weather and climate modelling (Govett et al., 2024; Bodnar et al., 2024),
astrophysics (Grete et al., 2025), and beyond. This progress is driven by advancements in High-
Performance Computing (HPC): hardware accelerators, exascale computing systems, and scalable
numerical solvers are pushing the horizon of what can be computed. These developments allow
practitioners to move beyond reduced numerical approaches and attempt high-fidelity simulations,
which are essential to accurately capture the underlying physics of complex systems. A striking
instance of such simulations is gyrokinetics (Frieman & Chen, 1982; Krommes, 2012; Peeters et al.,
2009), a five-dimensional (5D) nonlinear system that simulates turbulence in magnetised plasmas,
such as those found in magnetically-confined nuclear fusion devices.

Gyrokinetic simulations generate massive data volumes that create a severe storage and analysis
bottleneck. This arises from their 5D nature, combined with the high-resolution needed to model
plasma turbulence. The gyrokinetic equations express the time evolution of particles in a plasma via
a 5D distribution function f ∈ Cv∥×µ×s×x×y , with spatial coordinates x, y, s and velocity-space
coordinates v∥, µ. A single run can produce tens of terabytes of data with snapshots saved at many
time steps. In practice, researchers only store diagnostics, making comprehensive post-hoc analysis
impossible. Compression offers a remedy by reducing the cost of storing full 5D fields. However,
no evaluation framework currently exists to assess whether compressed snapshots preserve transient
turbulence dynamics, an essential requirement for post-hoc analysis.

As a solution, we introduce an evaluation framework for transient turbulence characteristics in com-
pressed snapshots of gyrokinetic simulations. To this end, we disentangle transient fluctuations,
which capture energy transfer across time, from spatial quantities, which describe the properties of
a single snapshot. We find that various compression techniques fail to preserve transient turbulence
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properties. To this end, we explore PINC for turbulent gyrokinetic data. We consider two paradigms:
autoencoders (e.g., VQ-VAE (van den Oord et al., 2017)) generalizing on unseen samples, and neural
implicit fields (or representations) (Mildenhall et al., 2020; Park et al., 2019), which typically encode
individual snapshots into network parameters. Unlike conventional compression, PINC enforces the
preservation of key physical quantities, ensuring that downstream scientific analyses remain valid
even at extreme compression rates of over 70,000×.

We demonstrate that PINC achieves extreme storage reduction while preserving transient turbulence
and steady-state spatial characteristics. Both autoencoders and neural fields attain field reconstruc-
tion errors comparable to or better than conventional approaches at the same compression rate, while
significantly improving physics preservation. A predictable rate-distortion scaling is also observed
between compression rate, signal reconstruction and physics fidelity, allowing this trade-off to be es-
timated a priori. Lastly, we showcase some additional weight space experiments, further pushing the
compression levels. Our framework enables detailed analysis of gyrokinetic simulations at scales
previously impractical. In summary, we make the following contributions: 1 we present a spa-
tiotemporal evaluation pipeline to assess physics preservation. It accounts for both spatial structural
information and temporal dynamics, together capturing multi-scale transient fluctuations prevalent
in turbulent dynamics, and 2 we introduce a novel physics-informed training curricula for neu-
ral compression, PINC in short, equipping different techniques with gyrokinetics-specific physical
losses, capturing both essential integrals and turbulence characteristics.

2 RELATED WORK

Compression of spatiotemporal data is not a novel topic, and fields such as numerics and HPC
conducted a great deal of research in this direction (Diffenderfer et al., 2019; Lakshminarasimhan
et al., 2011; Lindstrom, 2014; Ballester-Ripoll et al., 2019; Momenifar et al., 2022). Related re-
search exists in the domain of computational plasma physics (Anirudh et al., 2023), in particular
for Particle-In-Cell (PIC) simulations (Birdsall & Langdon, 2005; Tskhakaya, 2008). The most rel-
evant works include ISABELA (Lakshminarasimhan et al., 2011), an advanced spline method that
promises almost lossless compression of spatiotemporal data of up to 7×; and VAPOR (Choi et al.,
2021), a deep learning method based on autoencoders [QH9G] that compresses 2D PIC velocity
space slices, supervised with mass, energy and momentum conservation losses. Concurrent work
Kelling et al. (2025) proposes streaming pipelines for petascale PIC simulations, learning from data
in-transit without intermediate storage. While PIC resolves the full 6D plasma kinetics, gyrokinetics
reduces the problem to 5D by averaging over fast gyromotion, enabling turbulent simulations too
complex for PIC. Beyond compression methods, a closely related line of work is super-resolution
(SR), which seeks to reconstruct high-resolution fields from coarsened inputs (Fukami et al., 2023;
Yang et al., 2025; Page, 2025). We address the complementary challenge of compactly storing full
snapshots.

Implicit Neural Fields encode information in a compact feature space, enabling scalable, grid-
agnostic representation of high-resolution data. They represent continuous signals as coordinate-
based learnable functions (Mildenhall et al., 2020; Park et al., 2019; Dupont et al., 2022a; Mescheder
et al., 2019). In general, neural fields map input coordinates to the respective values of a field, i.e.
fθ : Rd → Rn (Xie et al., 2021). They are usually implemented as MLPs with special activation
functions (Sitzmann et al., 2020; Saragadam et al., 2023; Elfwing et al., 2017). In physics, neural
fields have been applied to time-varying volumetric data compression (Han et al., 2024) and spatio-
temporal dynamics forecasting using implicit frameworks (Serrano et al., 2023), among others.

Physics-Informed Neural Networks (PINNs) combine neural networks with physical constraints
originating from mathematical formulations (Karniadakis et al., 2021). This is typically done by in-
cluding additional loss terms (Raissi et al., 2019; Cai et al., 2021), ensuring that the laws of physics
are obeyed. Physical constraints such as boundary conditions and conservation laws (Baez et al.,
2024) are respected in the learned solutions, and more generally that neural network outputs re-
main consistent with the underlying differential equations. They have been especially effective in
solving forward and inverse partial differential equation problems (Raissi et al., 2019). [Dmk1,
kwUE, WgAS] Inversly to the typcal local, residual PINN losses, in our case they are global non-
linear integrals which depend on the Fourier mode structure. Sitting at the intersection of PINNs
and neural compression, Cranganore et al. (2025) combine neural fields with Sobolev training (Son
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et al., 2021; Czarnecki et al., 2017) to achieve impressive compression, tensor derivative accuracy
and high-fidelity reconstruction on storage intensive general relativity data. [Dmk1, kwUE, WgAS]
Another notable mention is Momenifar et al. (2022), which uses a physics-informed VQ-VAE to
capture velocity gradients and statistical properties in isoentropic flows. Our work systematically
evaluates whether compressed representations accurately preserve plasma turbulence-specific quan-
tities, motivating the need for physics-informed loss terms.

3 METHODS

3.1 EVALUATING PLASMA TURBULENCE

We assess whether compressed representations faithfully capture gyrokinetic turbulence through two
complementary groups of metrics, focusing on: (1) spatial information, evaluated using non-linear
field integrals and turbulence spectra, which measure how well the compressed representations pre-
serve spatial mode structures and energy distributions. (2) Temporal consistency, via optical-flow
distance and a novel Dynamic Mode Decomposition (DMD) error. These quantify the fidelity of the
reconstructed sequence.

Integrals. In gyrokinetics, (scalar) heat flux Q ∈ R and real-space electrostatic potential ϕ ∈
Cx×s×y are two core quantities. They describe essential spatial and physical attributes of the density
f . Q and ϕ are integrals of the distribution function f and are formulated as

ϕ = A

∫
J0f dv∥dµ, Q =

∫
B

∫
v2ϕf dv∥dµ dxdyds, (1)

where A,B ∈ Rx×s×y encompass geometric and physical parameters, v ∈ Rv∥×µ is the particle
energy, and J0 denotes the zeroth-order Bessel function. The electrostatic potential ϕ is obtained by
integrating in the velocity-space from f , while the heat flux Q depends on both f and ϕ. Intuitively,
ϕ represents the spatial variation of the electric field, while Q measures the energy flow carried by
particles along the field lines.

Wavespace distribution (diagnostics). Going further, some derived quantities are used by re-
searchers to determinine the properties of a simulation and for diagnosing the soundness of a given
configuration; they measure how energy and electrostatic fluctuations are distributed across modes
in wavenumber space, and provide a basis for identifying patterns and behaviors that define turbulent
transport in the plasma. In particular, kspec

y ∈ Cky describes the perpendicular scales of turbulence
along y, and Qspec ∈ Cky links turbulent structures to heat transport. They are expressed as convo-
lutions of ϕ and Q,

kspec
y (y) =

∑
s,x

|ϕ̂(x, s, y)|2 , Qspec(y) =
∑

v∥,µ,s,x

Q(v∥, µ, s, x, y) , (2)

where ϕ̂ is the Fourier space electrostatic potential, and Q is the flux field (also in Fourier space)
before applying the outermost integral, which aggregates it to Q. Diagnostics are used to character-
ize turbulence, and can be analyzed both in a time-averaged or transient manner. Time dependency
is used to observe how the energy cascade shifts in the energy to lower modes and vice versa, while
statistically-steady forms (time-averaged, kspec

y and Qspec) define dominant modes. Namely, kspec
y is

the mean turbulent spectrum, and Qspec quantifies the heat flux contribution to turbulent transport.
They are both used by researchers to detect whether turbulence develops and at which scale.

[kwUE, QH9G] Time dynamics. Turbulence is inherently a spatiotemporal phenomena, and a

purely spatial evaluation is insufficient to assess reliable reconstruction. To that end, we include
metrics from two different perspectives to quantify temporal consistency. First, the fidelity at which
the onset of turbulence is reproduced can be assessed in the transitional phase, between the linear
and the statistically-steady state of a simulation. We quantitatively evaluate the time-accumulated
optimal transport of the wavespace distributions kspec

y and Qspec (Equation (2)) through Wasserstein
distance (WD). It captures how well the bi-directional energy cascade is captured by the compressed
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🔥

Evaluate (time)

Train
(field & integral)

🔥 🔥 🔥

Evaluate (space)

Figure 1: Sketch of the training and evaluation for Physics-Informed Neural Compression (PINC)
models. Training is done at individual time snapshots for scalability, while evaluation considers
turbulence characteristics, taking both spatial and temporal information into account.

snapshots. Given two sequences of diagnostic pairs kspec
y , Qspec and predicted k̂spec

y , Q̂spec of N
subsequent timesteps in the transition phase,

ECky
=

N∑
i=1

WD(kspec
y,i , k̂

spec
y,i ), ECQ =

N∑
i=1

WD(Qspec
i , Q̂spec

i ). (3)

Second, to check the dynamic consistency of the decompressed sequence we employ the EndPoint
Error (EPE) of the optical flow field (Baker et al., 2011), commonly used in video modeling (Argaw
& Kweon, 2022; Ma et al., 2024). Given two sequences of x1 and x2 of N frames and their i-th
flow vectors F(i)

1 and F
(i)
2 , the EndPoint Error is

EPE(x1, x2) =
1

N

N∑
i=1

∥F(i)
1 − F

(i)
2 ∥22. (4)

Additional definitions and information can be found in Appendix C.2.

3.2 NEURAL COMPRESSION

We identify two dominant approaches to learned compression, depending on a few key aspects.
The first approach are autoencoders, with explicit latent space compression at the bottleneck be-
tween an encoder and a decoder. Parameters θ are shared across snapshots and time, and a single
model Γθ is trained on a dataset. Compression is applied to unseen samples. VQ-VAE (van den
Oord et al., 2017) exemplifies autoencoders designed for compression. In contrast, neural implicit
representations overfit an independent set of parameters at each datapoint, for instance across time
[Γθt ](0...T ). Encoding is implicit in weight-space and reconstruction happens by querying the neural
field. Figure 1 outlines PINC training and evaluation for a trajectory. The complex Mean Squared
Error (cMSE) on the density f is used as reconstruction loss in training

Lrecon =
∑

v∥,µ,x,s,y

∥∥ℜ(fpred − fGT)
2 + ℑ(fpred − fGT)

2
∥∥2 . (5)

5D autoencoders. Due to the high-dimensional nature of the data, we leverage nD swin layers
(Galletti et al., 2025; Paischer et al., 2025a), based on Shifted Window Attention (Liu et al., 2021),
which promise scaling to higher dimensions. They work by first partitioning the domain in non-
overlapping windows, then performing attention only locally within the window. An autoencoder
Γθ : C(v∥,µ,s,x,y) ×R4 → Cv∥,µ,s,x,y , with Γθ(f , c) = D ◦ E(f , c), encodes the 5D density field f
and conditioning c containing four gyrokinetic parameters (R/LT , R/Ln, q, and ŝ) into a compact
latent space, then decodes it to reconstruct f . Following hierarchical vision transformers (Liu et al.,
2021), the encoder E tiles f into patches and applies interleaved Swin and downsampling layers. At
the bottleneck, channels are downprojected to control the compression rate. The decoder D mirrors
this, with upsampling to restore the original resolution. We apply both regular Autoencoders (AE)
and Vector-Quantized Variational Autoencoders (VQ-VAEs) (van den Oord et al., 2017). [kwUE]
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Autoencoders are monolithic models that compress in an explicit latent space, enabling cheap com-
pression and decompression. However, they usually require expensive offline training and a diverse
dataset to generalize across different simulations.

Neural implicit fields. The distribution function f is indexed by a five-tuple of coordinates
(v∥, µ, s, x, y). Specifically, we train a separate (discrete) coordinate-based Neural Field Γθt,c :

N5 → C to fit each f c
t at time t of a trajectory configured by c. Indices are encoded with a learnable

embedding hashmap (Müller et al., 2022), then passed to an MLP using SiLU (Elfwing et al., 2017),
sine (Sitzmann et al., 2020) or Gabor (Saragadam et al., 2023) activations. Fitting a Γθt,c takes ∼1-2
minutes (NVIDIA H100), and since independent networks are used per snapshot training is highly
parallelizable or can be performed in a staggered, pipelined fashion for data streams. [kwUE] Neu-
ral fields are micromodels: individual samples are implicitly encoded into network weights, offering
resolution invariance and low training requirements. Conversely, encoding is relatively costly.

3.3 PHYSICS-INFORMED NEURAL COMPRESSION (PINC)

Training on Lrecon alone cannot ensure conservation of physical quantities or turbulent characteris-
tics. Further, due to the limited representation power, lossy compression inevitably discards useful
information if left unconstrained. We supervise on the physical quantities listed in Section 3.1 by
penalizing (absolute) deviations from the ground truth. Integral and wavespace losses are defined as

LQ = |Qpred −QGT|, Lϕ = L1(ϕpred,ϕGT),

Lky = L1(kspec
y, pred, k

spec
y, GT), LQspec = L1(Qspec

pred, Q
spec
GT ).

(6)

In addition, we introduce a first-order constraint to capture the turbulent energy cascade. In the case
of simulations with a single energy injection scale, the spectra must be monotonically decreasing
after the dominant mode, indexed by the peak wavenumber kpeak. This specific monotonicity loss
can be written as the log-transformed isotonic loss, penalizing negative slopes.

Liso(k) =
1

N − kpeak

N−1∑
kpeak

∣∣∣ log spec(k)− log spec(k)sorted
∣∣∣. (7)

Combining all terms yields the final physics-informed loss:

LPINC = LQ + Lϕ︸ ︷︷ ︸
Lint

+ Lkspec
y

+ LQspec︸ ︷︷ ︸
Ldiag

+ Liso(k
spec
y, pred) + Liso(Q

spec
pred )︸ ︷︷ ︸

Lgrad

. (8)

[Dmk1, kwUE, WgAS] Importantly, our training supervises the model on nonlinear integrals of the
distribution function, rather than directly on PDE residuals (Karniadakis et al., 2021) or derivatives
(Son et al., 2021). This way PINC implicitly directs the network to the physically relevant modes.
In turn, as the Q and ϕ integrals depend on the full spectral structure of f , many of the losses
in Equation (8) are global quantities, rather than the local pointwise supervision typical in neural
fields and PINNs. LPINC can be included in training, but with two caveats: (i) loss terms depend
on f ’s mode composition, and (ii) global loss terms cannot be computed on coordinate-level. We
address (i) by applying LPINC after f ’s have converged, to ensure that structure is present. (ii) is
problematic only for local or sparse methods. The following sections details the tricks req to enable
PINC training on neural fields and autoencoders.

PINC-neural fields. Neural fields fit LPINC continuing optimization after the initial epochs where f
is fit. Multi-objective optimizers offer a more principled training stabilization alternative to sched-
ulers or manual learning rate tweaking. Conflict-Free Inverse Gradients (Liu et al., 2024, ConFIG)
and Augmented Lagrangian Multipliers (Basir & Senocak, 2023) are commonly employed in PINNs
and tasks with many competing losses (Berzins et al., 2025). We focus on ConFIG due to its ease of
integration and promising results. Finally, even though neural fields are normally trained on small
sparse coordinate batches, LPINC gradients can only be computed on the entire grid.

PINC-autoencoders. Training autoencoders with physics constraints across heterogeneous sam-
ples tends to result in training instabilities; therefore, we employ parameter-efficient fine-tuning to
ensure stability. Specifically, we pre-train the autoencoder on Lrecon, and finetune it on LPINC using
Explained Variance Adaptation (Paischer et al., 2025b, EVA), an improved variant of LoRA-style
adapters (Hu et al., 2022). For more training details we refer to Appendix C.5.
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4 RESULTS

The neural fields are simple MLPs with SiLU activations (Elfwing et al., 2017), 64 latent dimension,
5 layers and skip connections. The input matrix locations are encoded with a (discrete) learnable
embedding hashmap. Neural fields are fit using AdamW (Loshchilov & Hutter, 2019) with learning
rate decaying between [5e− 3, 1e− 12] (details in Appendix C.6). Results suggest that neural fields
trained with ConFIG are less accurate on physical losses, but lead to a marginally better reconstruc-
tion error (Appendix Table 4). For simplicity, all neural fields reported are trained with AdamW and
no loss balancing, unless specified otherwise. Grid searches and ablations are in Appendix C.6.

As for standard autoencoders and VQ-VAEs, swin tokens are 1024-dimensional, bottleneck dimen-
sion is 32, and the codebook dimension of the VQ-VAE is 128, totaling at ∼152M parameters. Both
are trained and fine-tuned on 6,890 f time snapshots, amounting to around 500GB of data (details
in Appendix B). Compression/reconstruction is subsequently expected to happen out of distribution,
to unseen trajectories. Pre-training takes ∼60 hours (200 epochs, 4× NVIDIA H100) for standard
AE and VQ-VAE. Fine-tuning with EVA weights takes ∼28 hours on one NVIDIA H100 for 120
epochs, adapting ∼4% (6M) of the total parameters. Optimized using Muon (Jordan et al., 2024)
with cosine scheduling of the learning rate between [2e− 4, 4e− 6] (details in Appendix C.5).

We compare with traditional compression based on different techniques: ZFP (Lindstrom, 2014), a
very popular compression method for scientific data relying on block-quantization, Wavelet-based
compression, spatial PCA and JPEG2000 adapted for the 5D data. Baselines are tuned to achieve
compression rates (CRs) of around 1,000× (99.9% size reduction), comparable with neural fields
and vanilla autoencoders. For reference, off-the-shelf traditional techniques such as gzip achieve
a lossless compression ratio of ∼1.1x (8% reduction). Information on baselines can be found in
Appendix C.3. General and more detailed information about runtime can be found in the Appendix,
Table 10. For all visualizations, aspect ratio is set to 2 and does not represent the physical one.

4.1 COMPRESSION

We evaluate all methods on traditional compression metrics, integral, and turbulence errors. To
measure spatial f reconstruction quality after compression, Peak Signal-to-Noise-Ratio (PSNR) is
reported (defined in Appendix C.1). To evaluate temporal compression, we report the EndPoint
Error (EPE) (Equation (4)) for turbulent snapshots of f . Integral errors are reported as mean
absolute error of flux Q and potential ϕ after integration of f according to Equation (1). For steady-
state turbulence evaluation we normalize the time-averaged, kspec

y and Qspec spectra and employ
Wasserstein Distance (WD), which is commonly used as a geometry-aware distance metric and can
efficiently be computed for 1D spectra. We report additional metrics for spatial evaluation in Table 9.
[kwUE, QH9G] Furthermore, we provide additional evaluation for transient dynamics in Paragraph
4.2 (Figure 5).

Table 1: Comparison between neural fields, PINC and traditional methods on compression and
physical metrics. Evaluation on 60 total f c

t s (10 turbulent trajectories, 6 timesteps), sampled in the
statistically steady phase. Errors in data space. Best result in bold, second best underlined.

Compression f Integrals Q,ϕ Turbulence Qspec, kspec
y

CR L1 ↓ PSNR ↑ EPE ↓ L1(Q) ↓ PSNR(ϕ) ↑ WD(kspec
y ) ↓ WD(Qspec) ↓

ZFP 991× 0.65 28.66 0.25 87.32 -16.13 0.0228 0.0889
Wavelet 1149× 0.45 32.65 0.12 86.92 -13.42 0.0228 0.0108
PCA 1020× 0.47 31.96 0.15 61.56 -10.79 0.0228 0.0171
JPEG2000 1000× 0.46 34.15 0.12 86.10 -20.63 0.0231 0.0433

VAPOR 64× 0.81 30.45 0.14 64.96 -21.72 0.0231 0.0109

NF 1167× 0.30 36.87 0.07 54.04 0.78 0.0199 0.0181
PINC-NF 1167× 0.34 35.43 0.09 2.46 13.07 0.0062 0.0161
AE + EVA 716× 0.40 35.55 0.11 11.74 6.79 0.0176 0.0104
VQ-VAE + EVA 77368× 0.49 32.62 0.14 30.55 7.65 0.0166 0.0100
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Figure 2: Left: Compression performance rate-distortion as Peak Signal to Noise Ratio (PSNR) on
Compression Rate (CR) on 3 randomly sampled timesteps from 10 trajectories (30 total samples).
Right: qualitative visualization as 2D projection of sampled 5D densities f with residuals.

Table 1 quantitatively summarizes the results of our analysis. At equivalent compression rate (CR),
neural fields and autoencoders improve on traditional methods on compression, as well as integrated
quantities and turbulence metrics. However, especially integral metrics exhibit discrepancies from
the ground-truth. This motivates the need for PINC which imposes a soft-constraint on the optimiza-
tion procedure to preserve such quantities. This is verified by comparing NF to PINC-NF, which
reveals great improvements on integral errors at a modest reconstruction degradation. Furthermore,
WD decreases by an order of magnitude for kspec

y . Interestingly, we do not observe an improvement
on Qspec, possibly due to competing objectives. Qualitative examples of reconstructions for f and
ϕ are in Figure 2b and Figure 3, and extra projections are in Appendix at Figure 12 and 13.

Performance-rate scaling. To assess how reconstruction quality scales across compression levels,
we train a series of neural fields and autoencoders with progressively larger parameter counts and
latent sizes. Training neural fields remains relatively inexpensive, whereas autoencoders become un-
feasible in terms of both GPU memory and runtime at lower CRs. Consequently, we train only six
autoencoders in total (three standard and three VQ-VAEs), all at comparatively high CRs (>1,000×).
Findings reported in Figure 2 suggest that both learned methods present a specific "window" of CRs
in which they significantly outperform traditional baselines (namely in the 500 − 10,000× range).
Moreover, neural fields also exhibit a favorable exponential decay (linearly in semilog-x), as op-
posed to super-exponential of others (polynomial in semilog-x). This is supported by neural field
compression on other modalities (Dupont et al., 2022b; Bauer et al., 2023). In terms of recon-
struction quality, at lower rates (< 200×) neural compression cannot reliably match wavelets or
JPEG2000, and at extreme CRs (> 40,000×) they are comparable.

4.2 PHYSICS AND TURBULENCE PRESERVATION

Physical losses ablations. We verify the impact of each loss term described in Equation (8) by train-
ing different models on each term in Section 3.1 and Section 3.3 separately, for both autoencoders
and neural fields. Table 4a collects the ablation findings. Training Lint and Ldiag have similar ef-
fects, both improve the integral as well as the diagnostics, with the integral being more informative.
The model still gets valuable information on Q and ϕ from the gradients through Ldiag. In contrast,
Lgrad alone has a destabilizing effect, and is only effective when combined with other losses as it
is dependent on how accurately the diagnostics (and integrals) are captured. Finally, the composite
LPINC = Lint + Ldiag + Lgrad gathers benefits of each component.

Overall both classes of methods greatly improve performance on physical losses when trained on
LPINC, while slightly decreasing f PSNR. The degradation in reconstruction observed for neural
fields is connected to the interpretation of the physical loss scaling behaviors (Section 4.2): as min-
imizing LPINC shifts the modes to ones relevant for integrals and diagnostics, some of the dominant
ones of f become less represented and the decoded quality slightly degrades. While neural field
training is generally consistent, for autoencoders severe instabilities emerge when training jointly
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Model Loss f LQ Lϕ Lkspec
y

LQspec

NF

Lrecon 38.89 48.59 4.45 3.71 1.52
+Lint 36.68 10.35 2.55 1.61 1.42
+Ldiag 38.76 41.39 2.25 1.67 1.32
+Lgrad 37.29 63.94 44.18 * 2.0
+LPINC 38.28 28.03 1.41 0.24 1.41

VQ-VAE
Lrecon 26.96 86.21 * * 91.68

+LPINC 27.73 85.06 103.50 * *
+ EVA +LPINC 32.21 27.73 40.81 284.96 59.84

(a) PINC losses ablation table.

101

102

Q

NF

ZFP

Wavelet

PCA

JPEG2000

VQ-VAE

VQ-VAE + EVA

101 102 103 104 105

CR (log)

101

102

103

Q

(b) Physics performance rate scaling.

Figure 4: Left: ablations of the PINC losses (colored blocks) from Equation (8) for neural fields
and autoencoders. Both on 3 randomly sampled timesteps from 10 trajectories (30 total samples).
PSNR reported for f . * means > 100× larger than column average. Bold numbers are per model
class. Right: Physical losses scaling as LQ (top) and Lϕ (bottom) on Compression Rate (log-log).
∆L PINC improvement for VQ-VAE + EVA is reported with the downward arrow.

on Lrecon + LPINC. Our EVA finetuning procedure is consistently outperforming and more stable
than directly training on LPINC (bottom of Table 4a).

Physical scaling. Similarly to Figure 2a for rate-distortion for the distribution function
f , Figure 4b shows scaling for heat flux Q and electrostatic potential ϕ integral losses as
CR is changed. Figure 3 shows projections of the 3D ϕ integral and residuals (CR =∼
1,000×). Traditional compression struggles to capture ϕ even at low CR, while models trained
on Equation (8) as well as the reconstruction loss (Equation (5)) yield reasonable reconstruction.

Ground Truth NF NF residual Wavelet WFT residual

s/y

x/y

x/s

-2.2e+01

2.1e+01

-8.1e+00

9.6e+00

-1.6e+01

1.6e+01

Figure 3: ϕ 3D projections.

A possible interpretation is that, since modeling
capacity is constrained by high compression, the
available “entropy” gets allocated across modes, ac-
cording to the encoding algorithm. In neural net-
works, the spectral bias (Rahaman et al., 2019)
of MSE training (Equation (5)) implies that high-
energy components have priority during training,
while lower-energy modes converge slower. PINC
appears to redistribute some of the energy to more physically relevant modes. For example, the heat
flux integral masks low frequencies and rescales high frequencies, giving them more importance.

Recovering turbulence. Figure 5 qualitatively shows how well different models capture the direct
energy cascade phenomena across different simulations (energy shifting to lower modes over time),
by visualizing the per-timestep spectras kspec

y and Qspec in a log-log plot. The Figure provides a
qualitative comparison of turbulence recovery on the temporal axis, in contrast to the steady-state
statistics reported in Table 1. [kwUE, QH9G] The time snapshots examined in Figure 5 (sam-
pled between [8.4, 24.4]R/Vr with a step size of ∆ = 2.0R/Vr) are sampled in the transitional
phase where turbulence grows, at the so called overshoot. These timesteps are different to those
in Table 1. On kspec

y , traditional compression methods already achieve reasonable performance in
most cases, but on Qspec they produce severely nonphysical results (flat curves, negative numbers).
Another observation is that, even though non-ML methods have fairly low Wasserstein distance in
Table 1, this is not reflected at the overshoot. In contrast, neural fields and VQ-VAE can reproduce
the overall profiles consistently, with VQ-VAE excelling at the flux spectra. However, both often
fail to capture the higher-frequency magnitudes. The behaviors can be attributed to the spectral bias
of neural networks (Rahaman et al., 2019; Teney et al., 2025), where low-frequency (high-energy)
components are favored over high-frequencies. Appendix C.7 shows additional cascade plots for
all methods and trajectories. [kwUE, QH9G] Figure 5b shows that neural compression can signifi-
cantly outperform traditional methods both on the accumulated energy cascade errors (Equation (3)),
as well as the endpoint error of the density function f optical flows (Equation (4)). Note that the
EPE reported here differs from the one in Table 1 in that it is applied to the transitional phase instead
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(a) Energy cascade in kspec
y and Qspec.

Model EPE ↓ ECky
↓ ECQ ↓

ZFP 0.058±0.03 0.031±0.01 0.715±1.30

Wavelet 0.033±0.01 0.031±0.01 0.061±0.09

PCA 0.032±0.02 0.032±0.01 0.065±0.07

JPEG2000 0.027±0.01 0.032±0.01 0.176±0.21

NF 0.017±0.01 0.030±0.01 0.029±0.02

PINC-NF 0.030±0.02 0.011±0.01 0.015±0.00

PINC-AE 0.030±0.02 0.028±0.01 0.005±0.00

PINC-VQ-VAE 0.036±0.02 0.018±0.01 0.008±0.00

(b) [kwUE, QH9G] Temporal consistency metrics.

Figure 5: [kwUE, QH9G] Left: Energy cascade visualized as the transfer from higher to lower
modes as turbulence develops. Plots in loglog scale. Right: Quantitative temporal consistency on
optical flow endpoint error (EPE) and energy cascade optimal transport (EC). Evaluation on 270 total
f c
t s (30 trajectories, 9 timesteps), sampled in the transitional phase where mode growth happens.

of the saturated, statistically steady one. Its purpose is to determine how well the energy cascade
and mode growth is reconstructed.

4.3 REPRESENTATION SPACE EXPERIMENTS

Hybrid compression. Neural methods can further improve the compression rate if coupled with
traditional techniques applied in weight space. Similarly to how data can be compressed into a
low dimensional representation, network weights are redundant and also lie on a lower-dimensional
manifold. This is related to pruning (LeCun et al., 1990; Han et al., 2015), network compression
(Hershcovitch et al., 2024), and the lottery ticket hypothesis (Frankle & Carbin, 2019).

Table 2: Hybrid compression.

Metric ZFP ZipNN

Extra CR 2.1× 1.2×
∆ PSNR (f ) ↑ +2e-4% 0%
∆ L1 (Q) ↓ +8e-3% 0%
∆ L1 (ϕ) ↓ +9.5% 0%

Improved compression can be achieved either with (lossless) en-
tropy coding (Hershcovitch et al., 2024) or (lossy) quantization
methods (Lindstrom, 2014). We apply both to neural fields and
present findings in Table 2. ZipNN is lossless and does not induce
any change in performance, while providing a modest improve-
ment in CR. ZFP is lossy with a tolerance of 10−3, leading to
minor performance degradation and a 2.1× improved CR. Both
results are averaged on 60 random samples from 10 trajectories. We also show NF + ZFP in Fig-
ure 2a. It closely follows the slope of NF, but is shifted to the right, achieving better CR. Notably,
at the higher regimes they appear to converge, suggesting diminishing returns. [WgAS] As an ut-
most example, one can include entropy coding on the VQ-VAE indices, bringing the compression
to 121492× (see Appendix C.5).

Latent (and weight space) interpolation. Representational consistency and compactness over dif-
ferent snapshots is a desired property of compression methods. It enables temporal coarsening
(Ohana et al., 2024; Toshev et al., 2023) by interpolation in weight/latent space resulting in addi-
tional gains in CR as not every single snapshot needs to be compressed. To this end, we design an
experiment to assess whether PINC models exhibit representational consistency across time. We en-
code two extremes fa,fb separated by ∆T and reconstruct intermediates ft for t = a, a+dT, . . . , b
by linearly interpolating the representations (latents or weights) Zfa

and Zfb
.

For standard autoencoders, latent-space interpolation is a common practice (Berthelot* et al., 2019).
In the case of VQ-VAEs, the latents are interpolated before quantization to produce more accurate
reconstructions. It is not as straightforward for neural fields, as the parameters are not necessarily
canonically ordered and exhibit various neuron symmetries (Hecht-Nielsen, 1990; Godfrey et al.,
2022). To address this, we use a meta neural field trained on all extremes before finetuning it on
each of them separately, ensuring shared initialization and improving alignment. This is similar to
the initialization strategy used by Luigi et al. (2023) and Erkoç et al. (2023) to generate an aligned
dataset of neural fields.
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Model PSNR L1

Extremes 16.7 0.87
f (data) 19.6 0.73

NF (weights) 18.9 0.76
AE (latents) 18.5 0.99
VQ-VAE (latents) 20.5 0.69

(a) Interpolation inputs.

t = 40.4R/Vr t = 42.4R/Vr t = 44.4R/Vr t = 46.4R/Vr t = 48.4R/Vr

x/y

v /s

W
eight space

x/y

v /s
Data space

x/y

v /s

Ground truth

(b) Interpolated slice visualization over time.

Figure 6: Left: time coarsening on the middle snapshot tm = tl +
∆T
2 , showing that representation

interpolation outperforms using extremes and is comparable to data space. Results are averaged on
50 (unseen) midpoints on 10 trajectories, with ∆T = 8R/Vr. Right: Qualitative visualization of
5D f slices interpolated over time, between the two extremes at t = 40.4R/Vr and t = 48.4R/Vr.

Figure 6a provides compelling evidence that linearly interpolating in representation space improves
over simply taking the extremes, and approximates linear interpolation in data space. Figure 6b
illustrates intermediate reconstructions over time as progressive interpolation between Zfa

and Zfb
.

However, because the underlying simulations are highly nonlinear accurate linear interpolation is
unlikely, hence the low reported PSNR. Regardless, we reckon that these results shows that learned
representations are compact and self-consistent over time.

5 CONCLUSIONS

Our study provides compelling evidence that Physics-Informed Neural Compression (PINC) im-
proves compression rate while maintaining underlying characteristics for gyrokinetic simulations
of plasma turbulence. This is achieved by constraining training to maintain integral quantities and
spectral shapes across key dimensions of the 5D fields. We anticipate that this approach can poten-
tially be extended to other scientific domains, enabling practitioners to store compressed simulations
that accurately capture specified physical phenomena across time and space, something previously
infeasible due to storage requirements. These tools could considerably improve data accessibility
and transfer, accelerating research across scientific communities.

Our work paves the way for fruitful future avenues. The compression methods presented in this
work could be combined with neural operators, nonlinearly evolving them in time. A major benefit
of this is a significant reduction in dataset size required to train a surrogate model. Orthogonally,
exploring physics inspired "functasets" (Dupont et al., 2022a; Jo et al., 2025) could be a valuable
direction to further improve compression of neural fields for transient simulations and enable in-
transit processing of data. Related approaches in this regard include continual learning (Yan et al.,
2021; Woo et al., 2025), and in general ways to incorporate temporal dynamics into the training to
enable on-the-fly (in-situ) compression of simulation snapshots.

Limitations. First, we do not incorporate temporal information during PINC training, which we ex-
pect to especially improve on temporal consistency.Due to the computational complexity of training
neural fields and especially autoencoders, this avenue is left to future work. Second, the compu-
tational requirements are substantial, mirrored in the training times (Table 10). Even for neural
fields, compression times are rather high and a modest GPU is required. Finally, the proposed
physics-informed losses are specific to gyrokinetics, limiting transferability to other scientific areas
beyond plasma physics. [Dmk1, kwUE, QH9G] Concurrent neural compression works, such as
Momenifar et al. (2022) for fluid dynamics and Cranganore et al. (2025) for General Relativity, are
also problem-specific. To our knowledge there is no general loss reformulation that is applicable
to any problem, and we reserve extending PINC to other domains as future work. We postulate
that the strategies and methodologies used for gyrokinetics-PINC, for example the stabilization with
EVA finetuning used for the autoencoders, can be successfully extended to other sources. Moreover,
with the right adjustments on the physics, the evaluation pipeline is applicable to any spatiotemporal
system where compression over time is not possible or exceedingly costly.
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REPRODUCIBILITY STATEMENT

Training and experiment code is submitted as a zip file in the supplementary materials. It contains
autoencoders, neural fields and baseline implementation, as well as the configuration files used to
obtain the paper results. The readme briefly outlines the code structure and describes how to start
autoencoder/neural field training runs. Some further information on training is already present in
the Method and Results sections, as well as dedicated sections in the Appendix. Unfortunately, the
dataset is not easily distributable due to its size. It was generated with the GKW (Peeters et al., 2009)
flux tube gyrokinetic numerical solver, as detailed in Appendix B. A template for the configuration
file used by GKW to start a run is included in the supplementary materials (data_generation/
directory). Parameter ranges used to generate the dataset are included both in the supplementary as
well as in Appendix B for transparency. [QH9G] We release a validation dataset along with neural
field weights and autoencoder checkpoints at this link.
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LLM USAGE DISCLOSURE

In general, LLM tools were used to refine writing in multiple parts of the paper, such as introduction
and experiment section. This very paragraph is written by a human, polished by GPT-5. Some of the
literature cited in the related work and introduction sections was also fetched by GPT-5. DeepSeek-
R1 and GPT-5 were additionally make visualizations prettier, speed up the development of plotting
functions, and dump results neatly into tables. Beyond that, they were not used to a significant
degree in other parts of the code, as neither Copilot nor Cursor are used by the main author. AI
assistants were strictly editors and decorators – they were not involved in ideation, reordering ideas,
or at any higher or lower conceptual level. Rebuttal update: VAPOR was re-implemented with heavy
usage of Gemini 2.5 (pro).

A GYROKINETICS

Gyrokinetics (Frieman & Chen, 1982; Krommes, 2012; Peeters et al., 2009) is a reduced form of
Plasma kinetics that is computationally more efficient and can be use to locally simulate Plasma
behavior within a so-called flux tube in the torus. Local gyrokinetics is a theoretical framework to
study plasma behavior on perpendicular spatial scales comparable to the gyroradius, i.e., the radius
of circular motion exhibited by charged particles in a magnetic field, and frequencies much lower
than the particle cyclotron frequencies, i.e., the frequency at which charged particles spiral around
magnetic field lines due to the Lorentz force. Gyrokinetics models the time evolution of electrons
and ions via the distribution function f , which is based on 3D coordinates, their parallel and per-
pendicular velocities, together with the angle w.r.t. the field lines. However, the latter dimension is
averaged out by modelling only the so-called guiding center of a particle instead of its gyral move-
ment. Furthermore, instead of modelling the perpendicular velocity, usually only its magnitude is
considered, which is also referred to as the magnetic moment µ. Hence, the 5D gyrokinetic distribu-
tion function can be written as f = f(kx, ky, s, v∥, µ), where kx and ky are spectral coordinates, s
is the toroidal coordinate along the field line, and v∥ the parallel velocity component. The perturbed
time-evolution of f , for each species (ions and electrons), is governed by

∂f

∂t
+ (v∥b+ vD) · ∇f − µB

m

B · ∇B

B2

∂f

∂v∥︸ ︷︷ ︸
Linear

+ vχ · ∇f︸ ︷︷ ︸
Nonlinear

= S , (9)

where v∥b is the motion along magnetic field lines, b = B/B is the unit vector along the magnetic
field B with magnitude B1, vD the magnetic drift due to gradients and curvature in B, and vχ

describes drifts arising from the E × B force, a key driver of plasma dynamics. Finally, S is the
source term that represents the external supply of energy. The term vχ · ∇f models the nonlinear
interaction between the distribution function f and its velocity space integral ϕ, and it describes tur-
bulent advection. The resulting nonlinear coupling constitutes the computationally most expensive
term.

A.1 DERIVATION OF THE GYROKINETIC EQUATION

We begin with the Vlasov equation for the distribution function f(r,v, t):

∂f

∂t
+ v · ∇f +

q

m
(E + v ×B) · ∇vf = 0 (10)

The Vlasov equation describes the conservation of particles in phase space in the absence of col-
lisions. Here, r = (x, y, z) and v = (vx, vy, vz) correspond to coordinates in the spatial and the
velocity domain, respectively. Hence the Vlasov equation is a 7D (including time) PDE representing
the density of particles in phase space at position r, velocity v, and time. The term ∇vf describes
the response of the distribution function to accelerations of particles and q

m (E+ v ×B) denotes
the Lorentz force, which depends on particle charge q and mass m, as well as electric field E and
magnetic field B. Finally, the advection (or convection) term v∇f describes transport of the distri-
bution functon through space due to velocities.

1We adopt uppercase notation for vector fields E and B to adhere with literature.
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To derive the gyrokinetic equation, we transform from particle coordinates to guiding center coordi-
nates (R, v∥, µ, θ), where µ =

mv2
⊥

2B is the magnetic moment, θ the gyrophase, which describes the
position of a particle around its guiding center as it gyrates along a field line, and R is the coordinate
of the guiding center.

Assuming the time scale L at which the background field changes is much longer than the gyroperiod
with a small Larmor radius ρ ≪ L, we can gyroaverage to remove the dependency on the gyrophase
θ, yielding:

∂f

∂t
+ Ṙ · ∇f + v̇∥

∂f

∂v∥
= 0 (11)

A.1.1 LINEAR TERMS

The unperturbed (background) motion of the guiding center is governed by:

Ṙ = v∥b+ vD (12)

v̇∥ = − µ

m
b · ∇B (13)

Here, b = B/B is the unit vector along the magnetic field, and vD represents magnetic drifts.
Substituting into the kinetic equation yields

∂f

∂t
+ (v∥b+ vD) · ∇f − µ

m
b · ∇B

∂f

∂v∥
= 0 (14)

We can express the magnetic gradient term using:

b · ∇B =
B · ∇B

B
(15)

so that:
µ

m
b · ∇B =

µB

m

B · ∇B

B2
(16)

A.1.2 NONLINEAR TERM

Fluctuating electromagnetic potentials δϕ, δA induce E×B and magnetic flutter drifts. We define
the gyroaveraged generalized potential as

χ = ⟨ϕ−
v∥

c
A∥⟩, (17)

where A∥ is the parallel component of the vector potential, ⟨·⟩ denotes the gyroaverage, and c is the
speed of light, which is added to ensure correct units. ϕ is the electrostatic potential, the computation
of which involves an integral of f over the velocity space (see eq. 1.41 in the GKW manual 2 for a
complete description).

This gives rise to the drift

vχ =
c

B
b×∇χ, (18)

and yields the nonlinear advection term vχ · ∇f .

A.1.3 FINAL EQUATION

We arrive at the gyrokinetic equation in split form:

∂f

∂t
+ (v∥b+ vD) · ∇f − µB

m

B · ∇B

B2

∂f

∂v∥
+ vχ · ∇f = S (19)

2https://bitbucket.org/gkw/gkw/src/develop/doc/manual/
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Here, S represents external sources, collisions, or other drive terms. To enhance the tractability of
Equation (9), the distribution function f is usually split into equilibrium and perturbation terms

f = f0 + δf = f0 −
Zϕ

T
f0︸ ︷︷ ︸

Adiabatic

+
∂h

∂t︸︷︷︸
Kinetic

, (20)

where f0 is a background or equilibrium distribution function, T the particle temperature, Z the par-
ticle charge, ϕ the electrostatic potential, and δf the total perturbation to the distribution function,
which comprises of adiabatic and kinetic response. The adiabatic term describes rapid and passive
responses to the electrostatic potential that do not contribute to turbulent transport, while the ki-
netic term governs irreversible dynamics that facilitate turbulence. Numerical codes, such as GKW
(Peeters et al., 2009), rely on solving for δf instead of f . A common simplification is to assume that
electrons are adiabatic, which allows us to neglect the kinetic term in the respective δf . Hence, the
respective f for electrons (fe) does not need to be modelled, effectively halving the computational
cost.

B DATASET

The simulations used for both the autoencoder training (26 trajectories) and the evaluation (10 tra-
jectories) are generated with the numerical code GKW (Peeters et al., 2009). They are sampled by
varying four parameters: R/Lt, R/Ln, ŝ, and q, which significantly affect emerging turbulence in
the Plasma.

• R/Lt is the ion temperature gradient, which is the main driver of turbulence.
• R/Ln is the density gradient, whose effect is less pronounced. It can have a stabilizing

effect, but can sometimes also lead to increased turbulence.
• ŝ denotes magnetic shearing, hence it usually has a stabilizing effect as more magnetic

shearing results in better isolation of the Plasma.
• q denotes the so-called safety factor, which is the inverse of the rotational transform and

describes how often a particle takes a poloidal turn before taking a toroidal turn.

We specify the ranges for sampling the four parameters as R/LT ∈ [1, 12], R/Ln ∈ [1, 7], q ∈ [1, 9],
and ŝ ∈ [0.5, 5]. Additionally, we also vary the noise amplitude of the initial condition (within
[1e− 5, 1e− 3]).

To make storage more feasible, simulations are time-coarsened by saving snapshot every 60. Each
GKW run with the specified configurations takes around ∼6 hours (76 cores, Intel Ice Lake 4.1GHz
CPU) and ∼60GBs of storage.

C IMPLEMENTATION DETAILS

C.1 METRICS

We evaluate reconstruction with spatial and physical metrics. Since gyrokinetic data is complex-
valued, we can also apply complex-generalizations of common metrics.

Complex L1 Loss. Given two complex-valued fields z1, z2 ∈ CN , the complex L1 loss is:

cL1(z1, z2) = ⟨|ℜ(z1 − z2)|+ |ℑ(z1 − z2)|⟩ = ⟨|z1 − z2|1⟩
where ⟨·⟩ denotes the average over all dimensions and | · |1 is the L1 norm of the complex difference.

Wasserstein Distance. The Wasserstein distance measures the minimum cost of transforming one
probability distribution into another, where the cost is proportional to the distance the probability
mass must be moved. It provides a meaningful metric to compare distributions even when they
have non-overlapping support, making it particular useful in machine learning and optimal transport
problems. In our case, we normalize the spectra so that their total sum is one, ensuring they represent
comparable probability distributions.
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The Wasserstein distance between two probability distributions P and Q is defined as:

Wp(P,Q) =

(
inf

γ∈Γ(P,Q)

∫
∥x− y∥p dγ(x, y)

) 1
p

Peak Signal-to-Noise Ratio. Peak signal-to-noise ratio (PSNR) quantifies the ratio between the
maximum possible power of a signal and the power of noise corrupting its representation, typically
expressed in decibels (dB) due to the wide dynamic range of signals.

PSNR(x1, x2) = 10 · log10
(

max(x1)
2

MSE(x1, x2)

)
where MSE(x1, x2) is the mean squared error between the real-valued fields x1 and x2.

The PSNR for complex-valued fields we defined as:

cPSNR(z1, z2) = 10 · log10
(

max(|z1|)2

cMSE(z1, z2)

)

Bits Per Pixel (BPP). The BPP measures compression efficiency. Given a discrete representation of
a field z and its compressed encoding, the bits per pixel is defined as

BPP =
Total number of bits used to encode z

Number of spatial points in z
.

Lower BPP values indicate higher compression, while higher BPP generally corresponds to more
faithful reconstruction.

C.2 TEMPORAL METRICS

Optical Flow and End-Point Error (EPE). Optical flow estimates the apparent motion between

consecutive frames of a sequence by computing spatial gradients and temporal derivatives, here
implemented using a simplified Horn–Schunck finite differencing method (Horn & Schunck, 1981).
Since optical flow is typically implemented in 2D + time, we rearrange each f into a 2D array as
(v∥ · µ)× (s · y · x) For two consecutive frames x(t) and x(t+ 1), the averaged spatial gradients

xx =
1

2
(∂xx(t) + ∂xx(t+ 1)) , xy =

1

2
(∂yx(t) + ∂yx(t+ 1)) .

The optical flow field F, representing the motion gradient between frames,

F =

[
−xx · (x(t+ 1)− x(t))

x2
x + x2

y

, −xy · (x(t+ 1)− x(t))

x2
x + x2

y

]
,

Given two sequences of N frames x1 and x2, the EndPoint Error (EPE) (Baker et al., 2011) is the
mean squared difference of the flow vectors F(i)

1 and F
(i)
2 over time.

EPE(x1, x2) =
1

N

N∑
i=1

∥F(i)
1 − F

(i)
2 ∥22,

where N is the total number of spatial points across all frames.

C.3 TRADITIONAL COMPRESSION

In the following paragraphs we briefly describe how the traditional compressions were implemented.

ZFP Compression. ZFP Lindstrom (2014) is a compression library for numerical arrays designed
for fast random access. It partitions the data into small blocks (typically 4× 4× 4 elements for 3D
data) and transforms them into a decorrelated representation using an orthogonal block transform.
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The transformed coefficients are quantized according to a user-specified tolerance, then entropy-
coded to produce a compact bitstream. High-speed random access and both lossy and lossless are
possible, making ZFP a very common choice for scientific data storage.

We rearrange f into a 3D array as ((v∥×µ)×(s×y)×x) for ZFP block-based compression scheme
(up to 3D), and compress with ZFP with a specified absolute error tolerance. The compressed
representation is a compact byte representation. Reconstruction is performed by decompressing
with ZFP and reshaping the output back to the original tensor layout.

Wavelet Compression. Discrete wavelet transform (DWT) is applied using the level 1 Haar wavelet.
The multi-dimensional array is decomposed into wavelets (coefficient and slices). To achieve lossy
compression, coefficients are pruned based on a fixed threshold dependent on the desired compres-
sion ratio, effectively discarding small high-frequency components. Reconstruction is performed by
inverting the DWT.

Principal Component Analysis Compression. f is reshaped into a 2D array ((v∥ ·µ · s)× (x · y)),
by rearranging together the velocity space v∥, µ with the field line s and the spatial coordinates
x, y. PCA is applied on the flattened spatial components, retaining a fixed number of principal
components dependent on the desired compression ratio (N = 2 for 1, 000× from Table 1). The
compressed representation consists of the principal components, the mean vector, and the explained
variance. Reconstruction is achieved by projecting back to the original space, followed by reshaping
to the original dimensions.

JPEG2000 Compression. f is first reshaped into a 2D image-like representation of shape
((v∥ · µ · s) × (x · y)), by flattening the velocity space and spatial dimensions. Each channel is
independently normalized to the [0, 1] range and quantized to 16-bit unsigned integers. The im-
ages are then encoded using the JPEG2000 standard (Christopoulos et al., 2000) at a target quality
factor Q that determines the compression ratio. The compressed representation consists of the code-
stream size and channelwise normalization statistics (minimum and maximum). Reconstruction is
performed by decoding the JPEG2000 bitstream, rescaling back to floating-point values, and unflat-
tening back to the original tensor dimensions.

C.4 VAPOR

VAPOR (Choi et al., 2021) combines a VQ-VAE van den Oord et al. (2017) compressor and a
a Fourier Neural Operator (FNO) (Li et al., 2021) Refiner sequentially. The VQ-VAE provides
extreme compression by reducing the size of the original data, and the FNO Refiner then refines the
VQ-VAE’s coarse output to restore fidelity, achieving both high compression and high accuracy. We
utilize a VQ-VAE with Exponential Moving Average (EMA) updates to compress the data f . This
forms the first stage of the overall architecture. The FNO refiner stage uses a residual structure to
efficiently learn and apply the high-frequency corrections needed to match the ground-truth solution,
taking the VQ-VAE initial reconstruction as input.

Finally, a core component of Choi et al. (2021) is the specialized physics loss Lphysics, employed
to enforce conservation laws. This loss computes the MSE between the predicted and ground-truth
values of density, momentum, and energy:

Lphysics = MSE

 ∑
v∥, v⊥

fpred,
∑

v∥, v⊥

fgt

 + MSE

 ∑
v∥, v⊥

fpred v∥,
∑

v∥, v⊥

fgt v∥


+MSE

 ∑
v∥, v⊥

fpred
1
2msv

2
∥,

∑
v∥, v⊥

fgt
1
2msv

2
∥

 .

This loss is added to the standard reconstruction and VQ losses during training to obtain the final
VAPOR loss: L = Lrecon + LVQ + Lphysics.
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C.5 AUTOENCODERS

Architecture and Conditioning.
*simplified

W-MSA (layer l) SW-MSA (layer l+1)

Figure 7: 5D swin attention.

The autoencoder and VQ-VAE baselines are built on a
5D Swin Transformer architecture (Galletti et al., 2025;
Paischer et al., 2025a), which extends the shifted win-
dow attention mechanism to handle high-dimensional
scientific data. Figure 7 illustrates the 5D win-
dowed multi-head self-attention (W-MSA) and shifted
windowed multi-head self-attention (SW-MSA) layers,
where blocks of the same color indicate the receptive field of local attention within each window.
Our implementation incorporates several stability and performance enhancements: gated attention
mechanisms (Qiu et al., 2025) for improved training stability, combined positional encodings using
both Relative Positional Bias (Liu et al., 2021) and Rotary Position Embedding (RoPE) (Su et al.,
2023) to capture spatial relationships across all five dimensions, and GELU activations (Hendrycks
& Gimpel, 2023) throughout the network. Each model uses four Swin blocks with 16 attention
heads, followed by a single downsampling level before the bottleneck. All models are conditioned
on four key gyrokinetic parameters: the ion temperature gradient (R/Lt), density gradient (R/Ln),
magnetic shear (ŝ), and safety factor (q). Conditioning is implemented via DiT-style modulation
(Peebles & Xie, 2023), where conditioning embeddings provide scale, shift, and gating parameters
for each transformer layer, enabling physics-aware feature adaptation.

Data Preprocessing. The 5D distribution function [v∥, µ, s, x, y] is represented as complex values
with real and imaginary components, initially providing two channels. We apply two key prepro-
cessing steps that affect the channel structure. First, we decomposes each field into zonal flow
(ky = 0 mode) and turbulent fluctuation components by computing the mean across the ky dimen-
sion and concatenating the zonal flow and turbulent fluctuation, doubling the channels to four. This
separation is essential as zonal flows exhibit fundamentally different physics from turbulent modes.
Second, we reshape the magnetic moment dimension µ, into the channel dimension, expanding from
four to 32 channels. This allows independent processing of each µ slice.

Compression Configurations. We evaluate multiple compression ratios by varying patch and win-
dow sizes. For autoencoders, three configurations achieve compression ratios of 302, 1208, and
2865 using patch sizes (2, 0, 2, 5, 2), (4, 0, 2, 5, 4), and (6, 0, 3, 5, 6) with corresponding window
sizes (8, 0, 4, 9, 8), (4, 0, 4, 9, 4), and (6, 0, 6, 9, 6). The zero in the second position corresponds to
the µ dimension, which is not spatially patched due to the decoupling preprocessing step. All vari-
ants use latent dimension 1024, and compress in a last linear projection to the bottleneck dimension
of 32.

VQ-VAE Variants. VQ-VAE uses the same spatial compression configurations but re-
places the continuous bottleneck with vector quantization using the implementation from
vector-quantize-pytorch3. The bottleneck projects to 128-dimensional embeddings,
which are quantized using a codebook of 8192 vectors (see Table 3 for complete hyperparameters).
The codebook uses exponential moving average updates with a decay rate of 0.99 and employs en-
tropy regularization to encourage codebook utilization. This yields much higher compression ratios
of 19342, 25789, and 77368 for the three spatial configurations, as quantized codes can be stored as
integers (int16 for codebook size of 8192) rather than float32 values.

Training Strategy. Training follows a two-stage approach to ensure stability. For all experiments
we use Muon optimizer (Jordan et al., 2024) with a cosine scheduler and a minimum learning rate
of 4× 10−6, and weight decay of 1× 10−5. Stage 1 (200 epochs, batchsize=16, lr=2× 10−4) trains
the base autoencoder using only Lrecon (cMSE). Stage 2.1 (100 epochs, batchsize=16, lr=2× 10−4)
applies Explained Variance Adaptation (EVA) (Paischer et al., 2025b), which injects LoRA (Hu
et al., 2022) weights (r = 64, α = 1, ρ = 2.0, τ = 0.99) into MLP layers while freezing the
Stage 1 trained backbone. The loss function switches to cL1 for reconstruction (Lrecon weighted
by 10.0) and introduces physics-informed losses: integral losses (LQ, Lϕ) using scale normaliza-

3https://github.com/lucidrains/vector-quantize-pytorch
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Table 3: VQ-VAE vector quantization hyperparameters.

Parameter Value
Codebook size 8192
Embedding dimension 128
Commitment weight 0.3
Codebook type Euclidean
EMA decay 0.99
Entropy loss weight 0.01
Dead code threshold 2

tion (scale is calculated over training dataset statistics), while spectral losses (Lky
, LQspec ) employ

sum-normalization followed by log-space L1 loss. All physics-informed loss terms are weighted
equally at 1.0, with the VQ-VAE commitment loss also weighted by a factor of 10.0 to match
the reconstruction weight. Critically, monotonicity constraints (Liso) are disabled. Stage 2.2 (20
epochs, batchsize=16, lr=2×10−4) continues with identical settings but enables monotonicity losses
(Liso(k

spec,pred
y ), Liso(Q

spec,pred)) to enforce physical constraints only after stable physics-informed
reconstruction is achieved.

Training Stabilization. End-to-end training of autoencoders with physics-informed neural com-
pression (PINC) losses proves highly unstable due to the conflicting optimization objectives and
varying loss magnitudes. The physics-informed terms (LQ, Lϕ, Lky

, LQspec ) exhibit severe fluctua-
tions during early training when reconstruction quality is poor, causing certain loss components to
dominate the overall objective and destabilizing the learning process. This necessitates the staged
training approach, where reconstruction capability is first established before introducing physics
constraints.

Multi-objective Optimization Challenges. We investigated several multi-objective optimization
strategies to enable stable end-to-end training. Gradient normalization methods (Chen et al., 2018),
while theoretically appealing, proved computationally prohibitive for our large-scale models, con-
sistently causing out-of-memory errors during backpropagation. Conflict-Free Inverse Gradients
(ConFIG) Liu et al. (2024) attempts to resolve conflicting optimization objectives by computing
gradient directions that minimize conflicts between tasks through least-squares solutions. However,
ConFIG relies on computing stable gradient statistics over multiple training steps to determine op-
timal gradient directions. When physics-informed losses are computed on poorly reconstructed dis-
tribution functions, these losses exhibit extreme fluctuations that prevent ConFIG from establishing
stable gradient statistics. The method’s gradient balancing becomes ineffective when the underlying
loss landscape is highly unstable, as the computed conflict-free directions become unreliable due to
the volatile nature of the physics-informed terms during early training phases.

Hyperparameter Search Limitations. The computational cost of autoencoder training further
complicates optimization. Each full training run requires multiple days on high-end GPUs, making
systematic hyperparameter search for end-to-end training impractical. The search space includes
not only standard hyperparameters (learning rates, batch sizes, architectural choices) but also the
relative weighting of several distinct loss components, creating a prohibitively large optimization
landscape. This computational constraint reinforces the necessity of our staged approach, which
reduces the hyperparameter search to manageable subspaces for each training phase.

[WgAS] Codebook usage and Entropy Encoding. The VQ-VAE quantizes the continuous la-

tent space into discrete integer indices (‘codes‘) ranging from 0 to 8191 (codebook size). Each
code represents a learned pattern in the distribution function. Standard storage uses fixed-width
encoding log2(8192) = 13 bits per code. However, empirical analysis reveals non-uniform usage:
frequent codes dominate (common turbulent structures), while rare codes occur sporadically. This
imbalance enables lossless compression via variable-length entropy coding. Our VQ-VAE achieves
71.4% codebook utilization (5846/8192 entries). The sorted codebook frequencies follow Zipf’s
law, which suggest common flow patterns use frequent codes, while rare events retain dedicated
codes.s Further, we measure this redundancy using Shannon entropy −

∑
i pi log2(pi) where pi is
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the empirical probability of code i. Our dataset yields H ≈ 10.5 bits, indicating that optimal en-
coding requires only 10.5 bits per code on average, compared to the 13-bit fixed-width baseline. We
implement Huffman coding (Huffman, 1952), which constructs a binary tree from code frequencies:
frequent codes receive short bit sequences, rare codes longer sequences. The Huffman tree guaran-
tees lossless decoding via bit-by-bit traversal. On our test set, Huffman encoding achieves 1.56×
additional compression over fixed-width storage, reducing average code length from 13 to 10.7 bits
per code. Combined with VQ-VAE quantazation (77368×), the total pipelines achieves 121492×
compression, going from 723.5GB (uncompressed) to 5.96MB (VQ-VAE + Huffman), instead of
9.32MB (VQ-VAE).

C.6 NEURAL FIELDS

Neural fields are trained by representing the distribution function as a continuous signal, taking
coordinates as inputs. A dataset consists, for a given simulation, of the 5D density function f at a
specific timestep, and the 5D grid coordinates of each cell. Data normalization is applied both to the
field values and to the coordinates.

An MLP with SiLU activations (Elfwing et al., 2017), 64 hidden dimension, five layers with skip
connections and using a discrete hash to map matrix indices to learnable embeddings is optimized
using AdamW (Loshchilov & Hutter, 2019), with cosine annealing learning rate scheduling decay-
ing the learning rate from 5e − 3 to 1e − 12 and . Auxiliary optimizers can be used for additional
integral losses, also with their scheduler that decays learning rate from 1e−5 to 1e−12. The neural
field training loop iterates over batches of (2048) coordinates and field values. On a first pass of 20
epochs, the loss Lrecon from Equation (5) is fitted. Auxiliary integral losses are trained of such a
pretrained model for 100 more epochs, with the whole 5D field as batch.

ConFIG ablations. We ablate multi-objective balancing methods such as Conflict-Free Inverse Gra-
dients by Liu et al. (2024) to attempt to stabilize training on the PINC loss terms. Table 4 compares
AdamW training (as reported in Table 1) and neural fields complemented with momentum ConFIG
with ordered loss selector. Results are similar, with regular AdamW achieving better physical losses
and ConFIG being more stable overall.

Table 4: Ablations of NF trained with AdamW and Conflict-Free Inverse Gradients.

Compression f Integrals Q,ϕ Turbulence Qspec, kspec
y

CR L1 ↓ PSNR ↑ BBP ↓ L1(Q) ↓ PSNR(ϕ) ↓ WD(kspec
y ) ↓ WD(Qspec) ↓

PINC-NF (AdamW) 1163× 0.32 36.29 0.165 9.75 14.53 0.0057 0.0170
PINC-NF (SGD+ConFIG) 1163× 0.29 37.18 0.165 44.23 6.35 0.0164 0.0163

Neural field ablations. A broad range of architectures was explored, starting from SIREN
(Sitzmann et al., 2020), WIRE Saragadam et al. (2023) and an MLP with different activations
(Fukushima, 1969; Hendrycks & Gimpel, 2023; Elfwing et al., 2017). Table 5 summarizes the
search space.

Table 5: Neural field search space summary. w0 values are only for SIREN and WIRE architectures.

Knob Range
Activations Sine, Gabor, ReLU, SiLU, GELU

Coordinate embedding Linear, SinCos, Discrete
winitial

0 0.1, 0.5, 1.0
whidden

0 0.5, 2.0, 10.0
Skip connections Yes, No

Learning rate 1e− 2, 5e− 3

An extensive grid search search was conducted evaluating every combination from Table 5 in the
∼ 1,000× compression regime, on 12 randomly sampled density fields f from four different tra-
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jectories. For simplicity we use PSNR of f as the selection metric. All models are trained for 10
epochs using the AdamW optimizer Loshchilov & Hutter (2019) with a batch size of 2048. A total
of 12·36(SIREN)+12·18(WIRE)+12·18(MLP) = 864 neural fields were trained for this ablation.
The results from Tables 6, 7, and 8 suggest that MLP with SiLU activation, skip connections and
discrete index embedding is the most performant setup, as well as the fastest and easiest to tune.

Table 6: MLP grid search combinations.

Activation Embedding Skip Learning rate f PSNR

SiLU Discrete Yes 5e−3 40.53
GELU Discrete Yes 5e−3 40.12
SiLU Discrete No 5e−3 40.11
GELU Discrete No 5e−3 39.96
ReLU Discrete Yes 5e−3 39.24
ReLU Discrete No 5e−3 38.83
GELU Linear No 5e−3 37.06
SiLU SinCos No 5e−3 36.88
GELU SinCos No 5e−3 36.78
GELU Linear Yes 5e−3 36.7
SiLU Linear No 5e−3 36.47
GELU SinCos Yes 5e−3 36.44
SiLU Linear Yes 5e−3 36.09
SiLU SinCos Yes 5e−3 35.18
ReLU SinCos Yes 5e−3 35.1
ReLU SinCos No 5e−3 34.68
ReLU Linear No 5e−3 34.45
ReLU Linear Yes 5e−3 34.4
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Table 7: SIREN grid search combinations.

Embedding winitial
0 whidden

0 Skip Learning rate f PSNR

Discrete 0.1 0.5 Yes 5e−3 40.48
Discrete 0.5 0.5 Yes 5e−3 40.34
Discrete 0.5 0.5 No 5e−3 40.04
Discrete 0.1 0.5 No 5e−3 39.97
SinCos 0.5 2.0 Yes 5e−3 38.24
SinCos 0.1 2.0 Yes 5e−3 38.19
SinCos 0.5 0.5 No 5e−3 37.22
SinCos 0.1 0.5 No 5e−3 37.2
SinCos 0.1 0.5 Yes 5e−3 36.23
SinCos 0.5 0.5 Yes 5e−3 36.23
SinCos 0.1 2.0 No 5e−3 32.58
Discrete 0.1 2.0 No 5e−3 29.41
SinCos 0.1 5.0 Yes 5e−3 24.16
SinCos 0.1 5.0 No 5e−3 24.16
Discrete 0.1 5.0 No 5e−3 24.16
Discrete 0.1 2.0 Yes 5e−3 24.16
Discrete 0.5 2.0 Yes 5e−3 24.16
Discrete 0.1 5.0 Yes 5e−3 24.16
Discrete 1.0 0.5 Yes 5e−3 10.1
Discrete 1.0 0.5 No 5e−3 10.03
SinCos 1.0 2.0 Yes 5e−3 9.57
SinCos 1.0 0.5 No 5e−3 9.29
SinCos 1.0 0.5 Yes 5e−3 9.04
SinCos 1.0 2.0 No 5e−3 8.74
SinCos 0.5 2.0 No 5e−3 8.43
Discrete 1.0 2.0 No 5e−3 6.99
Discrete 0.5 2.0 No 5e−3 6.94
Discrete 1.0 2.0 Yes 5e−3 6.08
SinCos 1.0 5.0 Yes 5e−3 6.04
SinCos 0.5 5.0 Yes 5e−3 6.04
Discrete 0.5 5.0 No 5e−3 6.04
SinCos 1.0 5.0 No 5e−3 6.04
Discrete 1.0 5.0 No 5e−3 6.04
SinCos 0.5 5.0 No 5e−3 6.04
Discrete 1.0 5.0 Yes 5e−3 6.04
Discrete 0.5 5.0 Yes 5e−3 6.04
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Table 8: WIRE grid search combinations.

Embedding winitial
0 whidden

0 Learning rate f PSNR

Discrete 0.5 2.0 1e−2 29.33
Discrete 0.1 2.0 1e−2 27.96
Discrete 0.5 0.5 1e−2 27.9
Discrete 0.1 0.5 1e−2 27.83
Linear 0.1 2.0 1e−2 24.16
Linear 0.1 5.0 1e−2 24.16
Linear 0.1 0.5 1e−2 24.16
Linear 0.5 0.5 1e−2 24.16
Linear 0.5 2.0 1e−2 24.16
Linear 0.5 5.0 1e−2 24.16
Discrete 1.0 0.5 1e−2 7.65
Discrete 1.0 2.0 1e−2 7.34
Linear 1.0 0.5 1e−2 6.04
Linear 1.0 2.0 1e−2 6.04
Linear 1.0 5.0 1e−2 6.04
Discrete 0.1 5.0 1e−2 nan
Discrete 0.5 5.0 1e−2 nan
Discrete 1.0 5.0 1e−2 nan
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C.7 EXTRA RESULTS

Table 9: Missing metrics from Table 1. Evaluation on 60 total fs (10 different turbulent trajectories,
six random time snapshots), sampled in the statistically steady phase. Errors in data space. Best
result in bold, second best underlined.

Integrals ϕ Turbulence Qspec, kspec
y

L1(ϕ) ↓ PC(kspec
y ) ↑ PC(Qspec) ↑ L1(kspec

y ) ↑ L1(Qspec) ↑

ZFP 1025.50 0.8950 -0.1562 332832.3125 87.3532
Wavelet 642.32 0.8953 -0.9439 237414.7031 86.9227
PCA 379.48 0.8951 0.7033 68666.2891 61.5661
JPEG2000 1627.20 0.8939 -0.0161 801974.5000 86.1083

NF 79.88 0.9246 0.9727 2038.9197 45.7231
PINC-NF 18.10 0.9888 0.9660 56.6920 43.7608
PINC-AE + EVA 307.33 0.9520 0.5341 38401.5508 70.8733
PINC-VQ-VAE + EVA 39.55 0.9530 0.7334 251.5966 59.9805
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Figure 8: Extra models for the energy cascade (left Figure 5). The three time snapshots at
[8.4, 16.4, 24.4]R/Vr are specifically sampled in the transitional phase where mode growth and
energy cascade happens, before reaching the statistically stable phase. Visualized as the energy
transfer from higher to lower modes as turbulence develops. Columns are different trajectories,
rows are compression methods, lines of varied colors are the kspec

y at specific timesteps, and trans-
parent lines are respective ground truth.

Table 10: Timing details for neural and traditional compression, in seconds. GPU: single NVIDIA
A40 (48GB), CPU: Intel Xeon Platinum 8168, 96 cores, 2.70GHz.

Model Offine compute Compress [s] Decompress [s] Device
NF - 96.3 0.260 GPU
AE ∼ 4× 60h +28h 0.377 0.023 GPU
VQ-VAE ∼ 4× 60h +28h 0.425 0.027 GPU
ZFP - 0.144 0.066 CPU
Wavelet - 1.30 0.804 CPU
PCA - 0.377 0.149 CPU
JPEG2000 - 4.17 0.261 CPU
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Figure 9: Extra models for the Q spectra (right Figure 5). The three time snapshots at
[8.4, 16.4, 24.4]R/Vr are specifically sampled in the transitional phase where mode growth and
energy cascade happens, before reaching the statistically stable phase. Visualized as the energy
transfer from higher to lower modes as turbulence develops. Columns are different trajectories,
rows are compression methods, lines of varied colors are the Qspec at specific timesteps, and trans-
parent lines are respective ground truth.
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Figure 10: Full PSNR scaling plot with missing curves from Figure 2a
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Figure 12: Extra reconstructions for the 5D density function f . CR =∼ 1,000×. Each row is a
different trajectory at timestep 176.4R/Vr. Columns match Figure 13.
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Figure 13: Extra reconstructions for the 3D electrostatic potential ϕ. CR =∼ 1,000×. Each row is
a different trajectory at timestep 176.4R/Vr. Columns match Figure 12.
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