

000 001 PHYSICS-PRESERVING COMPRESSION OF HIGH- 002 DIMENSIONAL PLASMA TURBULENCE SIMULATIONS 003 004

005 **Anonymous authors**
006 Paper under double-blind review

007 008 ABSTRACT 009

011 High-fidelity scientific simulations are now producing unprecedented amounts of
012 data, creating a storage and analysis bottleneck. A single simulation can gen-
013 erate tremendous data volumes, often forcing researchers to discard valuable in-
014 formation. A prime example of this is plasma turbulence described by the Gy-
015 rokinetic equations: nonlinear, multiscale, and 5D in phase space. They rep-
016 resent one of the most computationally demanding frontiers of modern science,
017 with runs taking weeks and resulting in tens of terabytes of data dumps. The in-
018 creasing storage demands underscore the importance of compression, however,
019 compressed snapshots might not preserve essential physical characteristics after
020 reconstruction. To assess whether such characteristics are captured, we propose a
021 **spatiotemporal evaluation pipeline** which accounts for structural phenomena and
022 multi-scale transient fluctuations. Indeed, we find that various compression tech-
023 niques lack preservation of temporal turbulence characteristics. Therefore, we ex-
024 plore Physics-Informed Neural Compression (PINC), which incorporates physics-
025 informed losses tailored to gyrokinetics and enables extreme compressions of **over**
026 **100,000**. This direction provides a viable and scalable solution to the prohibitive
027 storage demands of gyrokinetics, enabling post-hoc analyses that were previously
028 infeasible.

029 1 INTRODUCTION 030

031 Scientific computing is on the cusp of entering an era of high-fidelity simulations across various
032 domains, such as plasma physics (Fedeli et al., 2022; Chang et al., 2024; Dominski et al., 2024;
033 Kelling et al., 2025), weather and climate modelling (Govett et al., 2024; Bodnar et al., 2024),
034 astrophysics (Grete et al., 2025), and beyond. This progress is driven by advancements in High-
035 Performance Computing (HPC): hardware accelerators, exascale computing systems, and scalable
036 numerical solvers are pushing the horizon of what can be computed. These developments allow
037 practitioners to move beyond reduced numerical approaches and attempt high-fidelity simulations,
038 which are essential to accurately capture the underlying physics of complex systems. A striking
039 instance of such simulations is gyrokinetics (Frieman & Chen, 1982; Krommes, 2012; Peeters et al.,
040 2009), a five-dimensional (5D) nonlinear system that simulates turbulence in magnetised plasmas,
041 such as those found in magnetically-confined nuclear fusion devices.

042 Gyrokinetic simulations generate massive data volumes that create a severe storage and analysis
043 bottleneck. This arises from their 5D nature, combined with the high-resolution needed to model
044 plasma turbulence. The gyrokinetic equations express the time evolution of particles in a plasma via
045 a 5D distribution function $f \in \mathbb{C}^{v_{\parallel} \times \mu \times s \times x \times y}$, with spatial coordinates x, y, s and velocity-space
046 coordinates v_{\parallel}, μ . A single run can produce tens of terabytes of data with snapshots saved at many
047 time steps. In practice, researchers only store diagnostics, making comprehensive post-hoc analysis
048 impossible. Compression offers a remedy by reducing the cost of storing full 5D fields. However,
049 no evaluation framework currently exists to assess whether compressed snapshots preserve transient
050 turbulence dynamics, an essential requirement for post-hoc analysis.

051 As a solution, we introduce an evaluation framework for transient turbulence characteristics in
052 compressed snapshots of gyrokinetic simulations. To this end, we disentangle *transient fluctuations*,
053 which capture energy transfer across time, from *spatial* quantities, which describe the properties of
a single snapshot. We find that various compression techniques fail to preserve transient turbulence

054 properties. To this end, we explore PINC for turbulent gyrokinetic data. We consider two paradigms:
 055 autoencoders (e.g., VQ-VAE (van den Oord et al., 2017)) generalizing on unseen samples, and neural
 056 implicit fields (or representations) (Mildenhall et al., 2020; Park et al., 2019), which typically encode
 057 individual snapshots into network parameters. Unlike conventional compression, PINC enforces the
 058 preservation of key physical quantities, ensuring that downstream scientific analyses remain valid
 059 even at extreme compression rates of over 70,000 \times .

060 We demonstrate that PINC achieves extreme storage reduction while preserving transient turbulence
 061 and steady-state spatial characteristics. Both autoencoders and neural fields attain field reconstruc-
 062 tion errors comparable to or better than conventional approaches at the same compression rate, while
 063 significantly improving physics preservation. A predictable rate-distortion scaling is also observed
 064 between compression rate, signal reconstruction and physics fidelity, allowing this trade-off to be es-
 065 timated a priori. Lastly, we showcase some additional weight space experiments, further pushing the
 066 compression levels. Our framework enables detailed analysis of gyrokinetic simulations at scales
 067 previously impractical. In summary, we make the following contributions: ① we present a **spa-**
 068 **tiotemporal evaluation pipeline** to assess physics preservation. It accounts for both spatial structural
 069 information and temporal dynamics, together capturing multi-scale transient fluctuations prevalent
 070 in turbulent dynamics, and ② we introduce a novel physics-informed training curricula for neu-
 071 ral compression, PINC in short, equipping different techniques with *gyrokinetics-specific* physical
 072 losses, capturing both essential integrals and turbulence characteristics.

074 2 RELATED WORK

076 **Compression** of spatiotemporal data is not a novel topic, and fields such as numerics and HPC
 077 conducted a great deal of research in this direction (Diffenderfer et al., 2019; Lakshminarasimhan
 078 et al., 2011; Lindstrom, 2014; Ballester-Ripoll et al., 2019; Momenifar et al., 2022). Related re-
 079 search exists in the domain of computational plasma physics (Anirudh et al., 2023), in particular
 080 for Particle-In-Cell (PIC) simulations (Birdsall & Langdon, 2005; Tskhakaya, 2008). The most rel-
 081 evant works include ISABELA (Lakshminarasimhan et al., 2011), an advanced spline method that
 082 promises almost lossless compression of spatiotemporal data of up to 7 \times ; and VAPOR (Choi et al.,
 083 2021), a deep learning method based on autoencoders **[QH9G]** that compresses 2D PIC velocity
 084 space slices, supervised with mass, energy and momentum conservation losses. Concurrent work
 085 Kelling et al. (2025) proposes streaming pipelines for petascale PIC simulations, learning from data
 086 *in-transit* without intermediate storage. While PIC resolves the full 6D plasma kinetics, gyrokinetics
 087 reduces the problem to 5D by averaging over fast gyromotion, enabling turbulent simulations too
 088 complex for PIC. Beyond compression methods, a closely related line of work is super-resolution
 089 (SR), which seeks to reconstruct high-resolution fields from coarsened inputs (Fukami et al., 2023;
 090 Yang et al., 2025; Page, 2025). We address the complementary challenge of compactly storing full
 091 snapshots.

092 **Implicit Neural Fields** encode information in a compact feature space, enabling scalable, grid-
 093 agnostic representation of high-resolution data. They represent continuous signals as coordinate-
 094 based learnable functions (Mildenhall et al., 2020; Park et al., 2019; Dupont et al., 2022a; Mescheder
 095 et al., 2019). In general, neural fields map input coordinates to the respective values of a field, i.e.
 $f_\theta : \mathbb{R}^d \rightarrow \mathbb{R}^n$ (Xie et al., 2021). They are usually implemented as MLPs with special activation
 096 functions (Sitzmann et al., 2020; Saragadam et al., 2023; Elfwing et al., 2017). In physics, neural
 097 fields have been applied to time-varying volumetric data compression (Han et al., 2024) and spatio-
 098 temporal dynamics forecasting using implicit frameworks (Serrano et al., 2023), among others.

099 **Physics-Informed Neural Networks** (PINNs) combine neural networks with physical constraints
 100 originating from mathematical formulations (Karniadakis et al., 2021). This is typically done by in-
 101 cluding additional loss terms (Raissi et al., 2019; Cai et al., 2021), ensuring that the laws of physics
 102 are obeyed. Physical constraints such as boundary conditions and conservation laws (Baez et al.,
 103 2024) are respected in the learned solutions, and more generally that neural network outputs re-
 104 main consistent with the underlying differential equations. They have been especially effective in
 105 solving forward and inverse partial differential equation problems (Raissi et al., 2019). **[Dmk1,**
 106 **kwUE, WgAS]** Inversly to the typcal local, residual PINN losses, in our case they are global non-
 107 linear integrals which depend on the Fourier mode structure. Sitting at the intersection of PINNs
 and neural compression, Cranganore et al. (2025) combine neural fields with Sobolev training (Son

108 et al., 2021; Czarnecki et al., 2017) to achieve impressive compression, tensor derivative accuracy
 109 and high-fidelity reconstruction on storage intensive general relativity data. **[Dmk1, kwUE, WgAS]**
 110 Another notable mention is Momenifar et al. (2022), which uses a physics-informed VQ-VAE to
 111 capture velocity gradients and statistical properties in isoentropic flows. Our work systematically
 112 evaluates whether compressed representations accurately preserve plasma turbulence-specific quan-
 113 tities, motivating the need for physics-informed loss terms.

114 3 METHODS

115 3.1 EVALUATING PLASMA TURBULENCE

119 We assess whether compressed representations faithfully capture gyrokinetic turbulence through two
 120 complementary groups of metrics, focusing on: (1) spatial information, evaluated using non-linear
 121 field integrals and turbulence spectra, which measure how well the compressed representations pre-
 122 serve spatial mode structures and energy distributions. (2) Temporal consistency, via optical-flow
 123 distance and a novel Dynamic Mode Decomposition (DMD) error. These quantify the fidelity of the
 124 reconstructed sequence.

125 **Integrals.** In gyrokinetics, (scalar) heat flux $Q \in \mathbb{R}$ and real-space electrostatic potential $\phi \in$
 126 $\mathbb{C}^{x \times s \times y}$ are two core quantities. They describe essential spatial and physical attributes of the density
 127 f . Q and ϕ are integrals of the distribution function f and are formulated as

$$129 \quad \phi = \mathbf{A} \int \mathbf{J}_0 f \, dv_{\parallel} d\mu, \quad Q = \int \mathbf{B} \int \mathbf{v}^2 \phi f \, dv_{\parallel} d\mu \, dx dy ds, \quad (1)$$

132 where $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{x \times s \times y}$ encompass geometric and physical parameters, $\mathbf{v} \in \mathbb{R}^{v_{\parallel} \times \mu}$ is the particle
 133 energy, and \mathbf{J}_0 denotes the zeroth-order Bessel function. The electrostatic potential ϕ is obtained by
 134 integrating in the velocity-space from f , while the heat flux Q depends on both f and ϕ . Intuitively,
 135 ϕ represents the spatial variation of the electric field, while Q measures the energy flow carried by
 136 particles along the field lines.

137 **Wavespace distribution (diagnostics).** Going further, some derived quantities are used by re-
 138 searchers to determine the properties of a simulation and for *diagnosing* the soundness of a given
 139 configuration; they measure how energy and electrostatic fluctuations are distributed across modes
 140 in wavenumber space, and provide a basis for identifying patterns and behaviors that define turbulent
 141 transport in the plasma. In particular, $k_y^{\text{spec}} \in \mathbb{C}^{k_y}$ describes the perpendicular scales of turbulence
 142 along y , and $Q^{\text{spec}} \in \mathbb{C}^{k_y}$ links turbulent structures to heat transport. They are expressed as convo-
 143 lutions of ϕ and Q ,

$$145 \quad k_y^{\text{spec}}(y) = \sum_{s,x} |\hat{\phi}(x,s,y)|^2, \quad Q^{\text{spec}}(y) = \sum_{v_{\parallel},\mu,s,x} Q(v_{\parallel},\mu,s,x,y), \quad (2)$$

148 where $\hat{\phi}$ is the Fourier space electrostatic potential, and Q is the flux field (also in Fourier space)
 149 before applying the outermost integral, which aggregates it to Q . Diagnostics are used to character-
 150 ize turbulence, and can be analyzed both in a time-averaged or transient manner. Time dependency
 151 is used to observe how the energy cascade shifts in the energy to lower modes and vice versa, while
 152 statistically-steady forms (time-averaged, \bar{k}_y^{spec} and \bar{Q}^{spec}) define dominant modes. Namely, \bar{k}_y^{spec} is
 153 the mean turbulent spectrum, and \bar{Q}^{spec} quantifies the heat flux contribution to turbulent transport.
 154 They are both used by researchers to detect whether turbulence develops and at which scale.

156 **[kwUE, QH9G] Time dynamics.** Turbulence is inherently a spatiotemporal phenomena, and a
 157 purely spatial evaluation is insufficient to assess reliable reconstruction. To that end, we include
 158 metrics from two different perspectives to quantify temporal consistency. First, the fidelity at which
 159 the onset of turbulence is reproduced can be assessed in the transitional phase, between the linear
 160 and the statistically-steady state of a simulation. We quantitatively evaluate the time-accumulated
 161 optimal transport of the wavespace distributions k_y^{spec} and Q^{spec} (Equation (2)) through Wasserstein
 distance (WD). It captures how well the bi-directional energy cascade is captured by the compressed

Figure 1: Sketch of the training and evaluation for Physics-Informed Neural Compression (PINC) models. Training is done at individual time snapshots for scalability, while evaluation considers turbulence characteristics, taking both spatial and temporal information into account.

snapshots. Given two sequences of diagnostic pairs $k_y^{\text{spec}}, Q^{\text{spec}}$ and predicted $\hat{k}_y^{\text{spec}}, \hat{Q}^{\text{spec}}$ of N subsequent timesteps in the transition phase,

$$\text{EC}_{k_y} = \sum_{i=1}^N \text{WD}(k_y^{\text{spec}}, \hat{k}_y^{\text{spec}}), \quad \text{EC}_Q = \sum_{i=1}^N \text{WD}(Q_i^{\text{spec}}, \hat{Q}_i^{\text{spec}}). \quad (3)$$

Second, to check the dynamic consistency of the decompressed sequence we employ the *EndPoint Error* (EPE) of the optical flow field (Baker et al., 2011), commonly used in video modeling (Argaw & Kweon, 2022; Ma et al., 2024). Given two sequences of x_1 and x_2 of N frames and their i -th flow vectors $\mathbf{F}_1^{(i)}$ and $\mathbf{F}_2^{(i)}$, the EndPoint Error is

$$\text{EPE}(x_1, x_2) = \frac{1}{N} \sum_{i=1}^N \|\mathbf{F}_1^{(i)} - \mathbf{F}_2^{(i)}\|_2^2. \quad (4)$$

Additional definitions and information can be found in Appendix C.2.

3.2 NEURAL COMPRESSION

We identify two dominant approaches to learned compression, depending on a few key aspects. The first approach are autoencoders, with explicit latent space compression at the bottleneck between an encoder and a decoder. Parameters θ are shared across snapshots and time, and a single model Γ_θ is trained on a dataset. Compression is applied to unseen samples. VQ-VAE (van den Oord et al., 2017) exemplifies autoencoders designed for compression. In contrast, neural implicit representations overfit an independent set of parameters at each datapoint, for instance across time $[\Gamma_{\theta_t}]_{(0 \dots T)}$. Encoding is implicit in weight-space and reconstruction happens by querying the neural field. Figure 1 outlines PINC training and evaluation for a trajectory. The complex Mean Squared Error (cMSE) on the density \mathbf{f} is used as reconstruction loss in training

$$\mathcal{L}_{\text{recon}} = \sum_{v_{\parallel}, \mu, x, y} \|\Re(\mathbf{f}_{\text{pred}} - \mathbf{f}_{\text{GT}})^2 + \Im(\mathbf{f}_{\text{pred}} - \mathbf{f}_{\text{GT}})^2\|^2. \quad (5)$$

5D autoencoders. Due to the high-dimensional nature of the data, we leverage nD swin layers (Galletti et al., 2025; Paischer et al., 2025a), based on Shifted Window Attention (Liu et al., 2021), which promise scaling to higher dimensions. They work by first partitioning the domain in non-overlapping *windows*, then performing attention only locally within the window. An autoencoder $\Gamma_\theta : \mathbb{C}^{(v_{\parallel}, \mu, s, x, y)} \times \mathbb{R}^4 \rightarrow \mathbb{C}^{v_{\parallel}, \mu, s, x, y}$, with $\Gamma_\theta(\mathbf{f}, \mathbf{c}) = \mathcal{D} \circ \mathcal{E}(\mathbf{f}, \mathbf{c})$, encodes the 5D density field \mathbf{f} and conditioning \mathbf{c} containing four gyrokinetic parameters (R/L_T , R/L_n , q , and \hat{s}) into a compact latent space, then decodes it to reconstruct \mathbf{f} . Following hierarchical vision transformers (Liu et al., 2021), the encoder \mathcal{E} tiles \mathbf{f} into patches and applies interleaved Swin and downsampling layers. At the bottleneck, channels are downprojected to control the compression rate. The decoder \mathcal{D} mirrors this, with upsampling to restore the original resolution. We apply both regular Autoencoders (AE) and Vector-Quantized Variational Autoencoders (VQ-VAEs) (van den Oord et al., 2017). [kwUE]

216 Autoencoders are *monolithic models* that compress in an explicit latent space, enabling cheap compression and decompression. However, they usually require expensive offline training and a diverse dataset to generalize across different simulations.
 217
 218
 219

220 **Neural implicit fields.** The distribution function f is indexed by a five-tuple of coordinates
 221 $(v_{\parallel}, \mu, s, x, y)$. Specifically, we train a separate (discrete) coordinate-based Neural Field $\Gamma_{\theta_{t,c}} : \mathbb{N}^5 \rightarrow \mathbb{C}$ to fit each f_t^c at time t of a trajectory configured by c . Indices are encoded with a learnable
 222 embedding hashmap (Müller et al., 2022), then passed to an MLP using SiLU (Elfwing et al., 2017),
 223 sine (Sitzmann et al., 2020) or Gabor (Saragadam et al., 2023) activations. Fitting a $\Gamma_{\theta_{t,c}}$ takes ~ 1 -2
 224 minutes (NVIDIA H100), and since independent networks are used per snapshot training is highly
 225 parallelizable or can be performed in a staggered, pipelined fashion for data streams. **[kwUE]** Neu-
 226 ral fields are *micromodels*: individual samples are implicitly encoded into network weights, offering
 227 resolution invariance and low training requirements. Conversely, encoding is relatively costly.
 228

229 3.3 PHYSICS-INFORMED NEURAL COMPRESSION (PINC)

230 Training on $\mathcal{L}_{\text{recon}}$ alone cannot ensure conservation of physical quantities or turbulent characteris-
 231 tics. Further, due to the limited representation power, lossy compression inevitably discards useful
 232 information if left unconstrained. We supervise on the physical quantities listed in Section 3.1 by
 233 penalizing (absolute) deviations from the ground truth. Integral and wavespace losses are defined as
 234

$$\begin{aligned} \mathcal{L}_Q &= |Q_{\text{pred}} - Q_{\text{GT}}|, & \mathcal{L}_{\phi} &= \text{L1}(\phi_{\text{pred}}, \phi_{\text{GT}}), \\ \mathcal{L}_{k_y} &= \text{L1}(k_{y, \text{pred}}^{\text{spec}}, k_{y, \text{GT}}^{\text{spec}}), & \mathcal{L}_{Q^{\text{spec}}} &= \text{L1}(Q_{\text{pred}}^{\text{spec}}, Q_{\text{GT}}^{\text{spec}}). \end{aligned} \quad (6)$$

235 In addition, we introduce a first-order constraint to capture the turbulent energy cascade. In the case
 236 of simulations with a single energy injection scale, the spectra must be monotonically decreasing
 237 after the dominant mode, indexed by the peak wavenumber k_{peak} . This specific monotonicity loss
 238 can be written as the log-transformed isotonic loss, penalizing negative slopes.
 239

$$\mathcal{L}_{\text{iso}}(k) = \frac{1}{N - k_{\text{peak}}} \sum_{k_{\text{peak}}}^{N-1} \left| \log \text{spec}(k) - \log \text{spec}(k)^{\text{sorted}} \right|. \quad (7)$$

240 Combining all terms yields the final physics-informed loss:
 241

$$\mathcal{L}_{\text{PINC}} = \underbrace{\mathcal{L}_Q + \mathcal{L}_{\phi}}_{\mathcal{L}_{\text{int}}} + \underbrace{\mathcal{L}_{k_y^{\text{spec}}} + \mathcal{L}_{Q^{\text{spec}}}}_{\mathcal{L}_{\text{diag}}} + \underbrace{\mathcal{L}_{\text{iso}}(k_{y, \text{pred}}^{\text{spec}}) + \mathcal{L}_{\text{iso}}(Q_{\text{pred}}^{\text{spec}})}_{\mathcal{L}_{\text{grad}}}. \quad (8)$$

242 **[Dmk1, kwUE, WgAS]** Importantly, our training supervises the model on *nonlinear integrals* of the
 243 distribution function, rather than directly on PDE residuals (Karniadakis et al., 2021) or derivatives
 244 (Son et al., 2021). This way PINC implicitly directs the network to the physically relevant modes.
 245 In turn, as the Q and ϕ integrals depend on the full spectral structure of f , many of the losses
 246 in Equation (8) are *global* quantities, rather than the local pointwise supervision typical in neural
 247 fields and PINNs. $\mathcal{L}_{\text{PINC}}$ can be included in training, but with two caveats: (i) loss terms depend
 248 on f 's mode composition, and (ii) global loss terms cannot be computed on coordinate-level. We
 249 address (i) by applying $\mathcal{L}_{\text{PINC}}$ after f 's have converged, to ensure that structure is present. (ii) is
 250 problematic only for local or sparse methods. The following sections details the tricks req to enable
 251 PINC training on neural fields and autoencoders.
 252

253 **PINC-neural fields.** Neural fields fit $\mathcal{L}_{\text{PINC}}$ continuing optimization after the initial epochs where f
 254 is fit. Multi-objective optimizers offer a more principled training stabilization alternative to sched-
 255 ulers or manual learning rate tweaking. Conflict-Free Inverse Gradients (Liu et al., 2024, ConFIG)
 256 and Augmented Lagrangian Multipliers (Basir & Senocak, 2023) are commonly employed in PINNs
 257 and tasks with many competing losses (Berzins et al., 2025). We focus on ConFIG due to its ease of
 258 integration and promising results. Finally, even though neural fields are normally trained on small
 259 sparse coordinate batches, $\mathcal{L}_{\text{PINC}}$ gradients can only be computed on the entire grid.
 260

261 **PINC-autoencoders.** Training autoencoders with physics constraints across heterogeneous sam-
 262 ples tends to result in training instabilities; therefore, we employ parameter-efficient fine-tuning to
 263 ensure stability. Specifically, we pre-train the autoencoder on $\mathcal{L}_{\text{recon}}$, and finetune it on $\mathcal{L}_{\text{PINC}}$ using
 264 Explained Variance Adaptation (Paischer et al., 2025b, EVA), an improved variant of LoRA-style
 265 adapters (Hu et al., 2022). For more training details we refer to Appendix C.5.
 266

270 **4 RESULTS**

271
 272 The neural fields are simple MLPs with SiLU activations (Elfwing et al., 2017), 64 latent dimension,
 273 5 layers and skip connections. The input matrix locations are encoded with a (discrete) learnable
 274 embedding hashmap. Neural fields are fit using AdamW (Loshchilov & Hutter, 2019) with learning
 275 rate decaying between $[5e-3, 1e-12]$ (details in Appendix C.6). Results suggest that neural fields
 276 trained with ConFIG are less accurate on physical losses, but lead to a marginally better reconstruc-
 277 tion error (Appendix Table 4). For simplicity, all neural fields reported are trained with AdamW and
 278 no loss balancing, unless specified otherwise. Grid searches and ablations are in Appendix C.6.

279 As for standard autoencoders and VQ-VAEs, swin tokens are 1024-dimensional, bottleneck dimen-
 280 sion is 32, and the codebook dimension of the VQ-VAE is 128, totaling at ~ 152 M parameters. Both
 281 are trained and fine-tuned on 6,890 f time snapshots, amounting to around 500GB of data (details
 282 in Appendix B). Compression/reconstruction is subsequently expected to happen *out of distribution*,
 283 to unseen trajectories. Pre-training takes ~ 60 hours (200 epochs, 4 \times NVIDIA H100) for standard
 284 AE and VQ-VAE. Fine-tuning with EVA weights takes ~ 28 hours on one NVIDIA H100 for 120
 285 epochs, adapting $\sim 4\%$ (6M) of the total parameters. Optimized using Muon (Jordan et al., 2024)
 286 with cosine scheduling of the learning rate between $[2e-4, 4e-6]$ (details in Appendix C.5).

287 We compare with traditional compression based on different techniques: ZFP (Lindstrom, 2014), a
 288 very popular compression method for scientific data relying on block-quantization, Wavelet-based
 289 compression, spatial PCA and JPEG2000 adapted for the 5D data. Baselines are tuned to achieve
 290 compression rates (CRs) of around $1,000\times$ (99.9% size reduction), comparable with neural fields
 291 and vanilla autoencoders. For reference, *off-the-shelf* traditional techniques such as `gzip` achieve
 292 a lossless compression ratio of $\sim 1.1\times$ (8% reduction). Information on baselines can be found in
 293 Appendix C.3. General and more detailed information about runtime can be found in the Appendix,
 294 Table 10. For all visualizations, aspect ratio is set to 2 and does not represent the physical one.

295
 296 **4.1 COMPRESSION**

297 We evaluate all methods on traditional compression metrics, integral, and turbulence errors. To
 298 measure spatial f reconstruction quality after compression, Peak Signal-to-Noise-Ratio (PSNR) is
 299 reported (defined in Appendix C.1). To evaluate temporal compression, we report the EndPoint
 300 Error (EPE) (Equation (4)) for turbulent snapshots of f . Integral errors are reported as mean
 301 absolute error of flux Q and potential ϕ after integration of f according to Equation (1). For steady-
 302 state turbulence evaluation we normalize the *time-averaged*, $\overline{k_y^{\text{spec}}}$ and $\overline{Q^{\text{spec}}}$ spectra and employ
 303 Wasserstein Distance (WD), which is commonly used as a geometry-aware distance metric and can
 304 efficiently be computed for 1D spectra. We report additional metrics for spatial evaluation in Table 9.
 305 **[kwUE, QH9G]** Furthermore, we provide additional evaluation for transient dynamics in Paragraph
 306 4.2 (Figure 5).

307
 308
 309 Table 1: Comparison between neural fields, PINC and traditional methods on compression and
 310 physical metrics. Evaluation on 60 total f_t^c s (10 turbulent trajectories, 6 timesteps), sampled in the
 311 statistically steady phase. Errors in data space. Best result in bold, second best underlined.

		Compression f			Integrals Q, ϕ		Turbulence $Q^{\text{spec}}, k_y^{\text{spec}}$	
	CR	L1 \downarrow	PSNR \uparrow	EPE \downarrow	L1(Q) \downarrow	PSNR(ϕ) \uparrow	WD($\overline{k_y^{\text{spec}}}$) \downarrow	WD($\overline{Q^{\text{spec}}}$) \downarrow
ZFP	$991\times$	0.65	28.66	0.25	87.32	-16.13	0.0228	0.0889
Wavelet	$1149\times$	0.45	32.65	0.12	86.92	-13.42	0.0228	0.0108
PCA	$1020\times$	0.47	31.96	0.15	61.56	-10.79	0.0228	0.0171
JPEG2000	$1000\times$	0.46	34.15	0.12	86.10	-20.63	0.0231	0.0433
VAPOR	$64\times$	0.81	30.45	0.14	64.96	-21.72	0.0231	0.0109
NF	$1167\times$	0.30	36.87	0.07	54.04	0.78	0.0199	0.0181
PINC-NF	$1167\times$	<u>0.34</u>	35.43	<u>0.09</u>	2.46	13.07	0.0062	0.0161
AE + EVA	$716\times$	0.40	<u>35.55</u>	0.11	<u>11.74</u>	6.79	<u>0.0176</u>	<u>0.0104</u>
VQ-VAE + EVA	$77368\times$	0.49	32.62	0.14	30.55	7.65	<u>0.0166</u>	0.0100

(a) Performance rate scaling.

(b) f along different axes.

Figure 2: **Left:** Compression performance rate-distortion as Peak Signal to Noise Ratio (PSNR) on Compression Rate (CR) on 3 randomly sampled timesteps from 10 trajectories (30 total samples). **Right:** qualitative visualization as 2D projection of sampled 5D densities f with residuals.

Table 1 quantitatively summarizes the results of our analysis. At equivalent compression rate (CR), neural fields and autoencoders improve on traditional methods on compression, as well as integrated quantities and turbulence metrics. However, especially integral metrics exhibit discrepancies from the ground-truth. This motivates the need for PINC which imposes a soft-constraint on the optimization procedure to preserve such quantities. This is verified by comparing NF to PINC-NF, which reveals great improvements on integral errors at a modest reconstruction degradation. Furthermore, WD decreases by an order of magnitude for \bar{k}_y^{spec} . Interestingly, we do not observe an improvement on \bar{Q}^{spec} , possibly due to competing objectives. Qualitative examples of reconstructions for f and ϕ are in Figure 2b and Figure 3, and extra projections are in Appendix at Figure 12 and 13.

Performance-rate scaling. To assess how reconstruction quality scales across compression levels, we train a series of neural fields and autoencoders with progressively larger parameter counts and latent sizes. Training neural fields remains relatively inexpensive, whereas autoencoders become unfeasible in terms of both GPU memory and runtime at lower CRs. Consequently, we train only six autoencoders in total (three standard and three VQ-VAEs), all at comparatively high CRs ($> 1,000\times$). Findings reported in Figure 2 suggest that both learned methods present a specific "window" of CRs in which they significantly outperform traditional baselines (namely in the $500 - 10,000\times$ range). Moreover, neural fields also exhibit a favorable exponential decay (linearly in semilog-x), as opposed to super-exponential of others (polynomial in semilog-x). This is supported by neural field compression on other modalities (Dupont et al., 2022b; Bauer et al., 2023). In terms of reconstruction quality, at lower rates ($< 200\times$) neural compression cannot reliably match wavelets or JPEG2000, and at extreme CRs ($> 40,000\times$) they are comparable.

4.2 PHYSICS AND TURBULENCE PRESERVATION

Physical losses ablations. We verify the impact of each loss term described in Equation (8) by training different models on each term in Section 3.1 and Section 3.3 separately, for both autoencoders and neural fields. Table 4a collects the ablation findings. Training \mathcal{L}_{int} and $\mathcal{L}_{\text{diag}}$ have similar effects, both improve the integral as well as the diagnostics, with the integral being more informative. The model still gets valuable information on Q and ϕ from the gradients through $\mathcal{L}_{\text{diag}}$. In contrast, $\mathcal{L}_{\text{grad}}$ alone has a destabilizing effect, and is only effective when combined with other losses as it is dependent on how accurately the diagnostics (and integrals) are captured. Finally, the composite $\mathcal{L}_{\text{PINC}} = \mathcal{L}_{\text{int}} + \mathcal{L}_{\text{diag}} + \mathcal{L}_{\text{grad}}$ gathers benefits of each component.

Overall both classes of methods greatly improve performance on physical losses when trained on $\mathcal{L}_{\text{PINC}}$, while slightly decreasing f PSNR. The degradation in reconstruction observed for neural fields is connected to the interpretation of the physical loss scaling behaviors (Section 4.2): as minimizing $\mathcal{L}_{\text{PINC}}$ shifts the modes to ones relevant for integrals and diagnostics, some of the dominant ones of f become less represented and the decoded quality slightly degrades. While neural field training is generally consistent, for autoencoders severe instabilities emerge when training jointly

Model	Loss	f	\mathcal{L}_Q	\mathcal{L}_ϕ	$\mathcal{L}_{k_y^{\text{spec}}}$	$\mathcal{L}_{Q^{\text{spec}}}$
NF	$\mathcal{L}_{\text{recon}}$	38.89	48.59	4.45	3.71	1.52
	$+\mathcal{L}_{\text{int}}$	36.68	10.35	2.55	1.61	1.42
	$+\mathcal{L}_{\text{diag}}$	38.76	41.39	2.25	1.67	1.32
	$+\mathcal{L}_{\text{grad}}$	37.29	63.94	44.18	*	2.0
	$+\mathcal{L}_{\text{PINC}}$	38.28	28.03	1.41	0.24	1.41
	$\mathcal{L}_{\text{recon}}$	26.96	86.21	*	*	91.68
VQ-VAE	$+\mathcal{L}_{\text{PINC}}$	27.73	85.06	103.50	*	*
	$+\text{EVA}$	32.21	27.73	40.81	284.96	59.84

(a) PINC losses ablation table.

(b) Physics performance rate scaling.

Figure 4: **Left:** ablations of the PINC losses (colored blocks) from Equation (8) for neural fields and autoencoders. Both on 3 randomly sampled timesteps from 10 trajectories (30 total samples). PSNR reported for f . * means $> 100\times$ larger than column average. Bold numbers are per model class. **Right:** Physical losses scaling as \mathcal{L}_Q (top) and \mathcal{L}_ϕ (bottom) on Compression Rate (log-log). $\Delta\mathcal{L}$ PINC improvement for VQ-VAE + EVA is reported with the downward arrow.

on $\mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{PINC}}$. Our EVA finetuning procedure is consistently outperforming and more stable than directly training on $\mathcal{L}_{\text{PINC}}$ (bottom of Table 4a).

Physical scaling. Similarly to Figure 2a for rate-distortion for the distribution function f , Figure 4b shows scaling for heat flux Q and electrostatic potential ϕ integral losses as CR is changed. Figure 3 shows projections of the 3D ϕ integral and residuals (CR = $\sim 1,000\times$). Traditional compression struggles to capture ϕ even at low CR, while models trained on Equation (8) as well as the reconstruction loss (Equation (5)) yield reasonable reconstruction. A possible interpretation is that, since modeling capacity is constrained by high compression, the available ‘‘entropy’’ gets allocated across modes, according to the encoding algorithm. In neural networks, the spectral bias (Rahaman et al., 2019) of MSE training (Equation (5)) implies that high-energy components have priority during training, while lower-energy modes converge slower. PINC appears to redistribute some of the energy to more physically relevant modes. For example, the heat flux integral masks low frequencies and rescales high frequencies, giving them more importance.

Figure 3: ϕ 3D projections.

Recovering turbulence. Figure 5 qualitatively shows how well different models capture the direct energy cascade phenomena across different simulations (energy shifting to lower modes over time), by visualizing the *per-timestep* spectra k_y^{spec} and Q^{spec} in a log-log plot. The Figure provides a qualitative comparison of turbulence recovery on the temporal axis, in contrast to the steady-state statistics reported in Table 1. **[kwUE, QH9G]** The time snapshots examined in Figure 5 (sampled between $[8.4, 24.4]R/V_r$ with a step size of $\Delta = 2.0R/V_r$) are sampled in the transitional phase where turbulence grows, at the so called *overshoot*. These timesteps are different to those in Table 1. On k_y^{spec} , traditional compression methods already achieve reasonable performance in most cases, but on Q^{spec} they produce severely nonphysical results (flat curves, negative numbers). Another observation is that, even though non-ML methods have fairly low Wasserstein distance in Table 1, this is not reflected at the overshoot. In contrast, neural fields and VQ-VAE can reproduce the overall profiles consistently, with VQ-VAE excelling at the flux spectra. However, both often fail to capture the higher-frequency magnitudes. The behaviors can be attributed to the spectral bias of neural networks (Rahaman et al., 2019; Teney et al., 2025), where low-frequency (high-energy) components are favored over high-frequencies. Appendix C.7 shows additional cascade plots for all methods and trajectories. **[kwUE, QH9G]** Figure 5b shows that neural compression can significantly outperform traditional methods both on the accumulated energy cascade errors (Equation (3)), as well as the endpoint error of the density function f optical flows (Equation (4)). Note that the EPE reported here differs from the one in Table 1 in that it is applied to the transitional phase instead

(a) Energy cascade in k_y^{spec} and Q^{spec} .

Model	EPE \downarrow	$\text{EC}_{k_y} \downarrow$	$\text{EC}_Q \downarrow$
ZFP	0.058 ± 0.03	0.031 ± 0.01	0.715 ± 1.30
Wavelet	0.033 ± 0.01	0.031 ± 0.01	0.061 ± 0.09
PCA	0.032 ± 0.02	0.032 ± 0.01	0.065 ± 0.07
JPEG2000	0.027 ± 0.01	0.032 ± 0.01	0.176 ± 0.21
NF	0.017 ± 0.01	0.030 ± 0.01	0.029 ± 0.02
PINC-NF	0.030 ± 0.02	0.011 ± 0.01	0.015 ± 0.00
PINC-AE	0.030 ± 0.02	0.028 ± 0.01	0.005 ± 0.00
PINC-VQ-VAE	0.036 ± 0.02	0.018 ± 0.01	0.008 ± 0.00

(b) [kwUE, QH9G] Temporal consistency metrics.

Figure 5: **[kwUE, QH9G] Left:** Energy cascade visualized as the transfer from higher to lower modes as turbulence develops. Plots in loglog scale. **Right:** Quantitative temporal consistency on optical flow endpoint error (EPE) and energy cascade optimal transport (EC). Evaluation on 270 total f_t^c 's (30 trajectories, 9 timesteps), sampled in the transitional phase where mode growth happens.

of the saturated, statistically steady one. Its purpose is to determine how well the energy cascade and mode growth is reconstructed.

4.3 REPRESENTATION SPACE EXPERIMENTS

Hybrid compression. Neural methods can further improve the compression rate if coupled with traditional techniques applied in weight space. Similarly to how data can be compressed into a low dimensional representation, network weights are redundant and also lie on a lower-dimensional manifold. This is related to pruning (LeCun et al., 1990; Han et al., 2015), network compression (Hershcovitch et al., 2024), and the lottery ticket hypothesis (Frankle & Carbin, 2019).

Improved compression can be achieved either with (lossless) entropy coding (Hershcovitch et al., 2024) or (lossy) quantization methods (Lindstrom, 2014). We apply both to neural fields and present findings in Table 2. ZipNN is lossless and does not induce any change in performance, while providing a modest improvement in CR. ZFP is lossy with a tolerance of 10^{-3} , leading to minor performance degradation and a $2.1 \times$ improved CR. Both results are averaged on 60 random samples from 10 trajectories. We also show NF + ZFP in Figure 2a. It closely follows the slope of NF, but is shifted to the right, achieving better CR. Notably, at the higher regimes they appear to converge, suggesting diminishing returns. **[WgAS]** As an utmost example, one can include entropy coding on the VQ-VAE indices, bringing the compression to $121492 \times$ (see Appendix C.5).

Latent (and weight space) interpolation. Representational consistency and compactness over different snapshots is a desired property of compression methods. It enables temporal coarsening (Ohana et al., 2024; Toshev et al., 2023) by interpolation in weight/latent space resulting in additional gains in CR as not every single snapshot needs to be compressed. To this end, we design an experiment to assess whether PINC models exhibit representational consistency across time. We encode two extremes f_a, f_b separated by ΔT and reconstruct intermediates f_t for $t = a, a + dT, \dots, b$ by linearly interpolating the representations (latents or weights) Z_{f_a} and Z_{f_b} .

For standard autoencoders, latent-space interpolation is a common practice (Berthelot* et al., 2019). In the case of VQ-VAEs, the latents are interpolated before quantization to produce more accurate reconstructions. It is not as straightforward for neural fields, as the parameters are not necessarily canonically ordered and exhibit various neuron symmetries (Hecht-Nielsen, 1990; Godfrey et al., 2022). To address this, we use a *meta neural field* trained on all extremes before finetuning it on each of them separately, ensuring shared initialization and improving alignment. This is similar to the initialization strategy used by Luigi et al. (2023) and Erkoç et al. (2023) to generate an aligned dataset of neural fields.

Table 2: Hybrid compression.

Metric	ZFP	ZipNN
Extra CR	$2.1 \times$	$1.2 \times$
Δ PSNR (f) $\uparrow +2\text{e-}4\%$	0%	0%
Δ L1 (Q) $\downarrow +8\text{e-}3\%$	0%	0%
Δ L1 (ϕ) $\downarrow +9.5\%$	0%	0%

Model	PSNR	L1
Extremes	16.7	0.87
f (data)	19.6	0.73
NF (weights)	18.9	0.76
AE (latents)	18.5	0.99
VQ-VAE (latents)	20.5	0.69

(a) Interpolation inputs.

Figure 6: **Left:** time coarsening on the middle snapshot $t_m = t_l + \frac{\Delta T}{2}$, showing that representation interpolation outperforms using extremes and is comparable to data space. Results are averaged on 50 (unseen) midpoints on 10 trajectories, with $\Delta T = 8R/V_r$. **Right:** Qualitative visualization of 5D f slices interpolated over time, between the two extremes at $t = 40.4R/V_r$ and $t = 48.4R/V_r$.

Figure 6a provides compelling evidence that linearly interpolating in representation space improves over simply taking the extremes, and approximates linear interpolation in data space. Figure 6b illustrates intermediate reconstructions over time as progressive interpolation between Z_{f_a} and Z_{f_b} . However, because the underlying simulations are highly nonlinear accurate linear interpolation is unlikely, hence the low reported PSNR. Regardless, we reckon that these results shows that learned representations are compact and self-consistent over time.

5 CONCLUSIONS

Our study provides compelling evidence that Physics-Informed Neural Compression (PINC) improves compression rate while maintaining underlying characteristics for gyrokinetic simulations of plasma turbulence. This is achieved by constraining training to maintain integral quantities and spectral shapes across key dimensions of the 5D fields. We anticipate that this approach can potentially be extended to other scientific domains, enabling practitioners to store compressed simulations that accurately capture specified physical phenomena across time and space, something previously infeasible due to storage requirements. These tools could considerably improve data accessibility and transfer, accelerating research across scientific communities.

Our work paves the way for fruitful future avenues. The compression methods presented in this work could be combined with *neural operators*, nonlinearly evolving them in time. A major benefit of this is a significant reduction in dataset size required to train a surrogate model. Orthogonally, exploring physics inspired "functasets" (Dupont et al., 2022a; Jo et al., 2025) could be a valuable direction to further improve compression of neural fields for transient simulations and enable in-transit processing of data. Related approaches in this regard include continual learning (Yan et al., 2021; Woo et al., 2025), and in general ways to incorporate temporal dynamics into the training to enable on-the-fly (*in-situ*) compression of simulation snapshots.

Limitations. First, we do not incorporate temporal information during PINC training, which we expect to especially improve on temporal consistency. Due to the computational complexity of training neural fields and especially autoencoders, this avenue is left to future work. Second, the computational requirements are substantial, mirrored in the training times (Table 10). Even for neural fields, compression times are rather high and a modest GPU is required. Finally, the proposed physics-informed losses are specific to gyrokinetics, limiting transferability to other scientific areas beyond plasma physics. **[Dmk1, kwUE, QH9G]** Concurrent neural compression works, such as Momenifar et al. (2022) for fluid dynamics and Cranganore et al. (2025) for General Relativity, are also problem-specific. To our knowledge there is no general loss reformulation that is applicable to any problem, and we reserve extending PINC to other domains as future work. We postulate that the strategies and methodologies used for gyrokinetics-PINC, for example the stabilization with EVA finetuning used for the autoencoders, can be successfully extended to other sources. Moreover, with the right adjustments on the physics, the evaluation pipeline is applicable to any spatiotemporal system where compression over time is not possible or exceedingly costly.

540 REPRODUCIBILITY STATEMENT
541

542 Training and experiment code is submitted as a zip file in the supplementary materials. It contains
543 autoencoders, neural fields and baseline implementation, as well as the configuration files used to
544 obtain the paper results. The readme briefly outlines the code structure and describes how to start
545 autoencoder/neural field training runs. Some further information on training is already present in
546 the Method and Results sections, as well as dedicated sections in the Appendix. Unfortunately, the
547 dataset is not easily distributable due to its size. It was generated with the GKW (Peeters et al., 2009)
548 flux tube gyrokinetic numerical solver, as detailed in Appendix B. A template for the configuration
549 file used by GKW to start a run is included in the supplementary materials (data_generation/
550 directory). Parameter ranges used to generate the dataset are included both in the supplementary as
551 well as in Appendix B for transparency. **[QH9G]** We release a validation dataset along with neural
552 field weights and autoencoder checkpoints [at this link](#).
553

554 REFERENCES
555

556 Rushil Anirudh, Rick Archibald, M. Salman Asif, Markus M. Becker, Sadruddin Benkadda, Peer-
557 Timo Bremer, Rick H. S. Budé, C. S. Chang, Lei Chen, R. M. Churchill, Jonathan Citrin, Jim A.
558 Gaffney, Ana Gainaru, Walter Gekelman, Tom Gibbs, Satoshi Hamaguchi, Christian Hill, Kelli
559 Humbird, Sören Jalas, Satoru Kawaguchi, Gon-Ho Kim, Manuel Kirchen, Scott Klasky, John L.
560 Kline, Karl Krushelnick, Bogdan Kustowski, Giovanni Lapenta, Wenting Li, Tammy Ma, Nigel J.
561 Mason, Ali Mesbah, Craig Michoski, Todd Munson, Izumi Murakami, Habib N. Najm, K. Erik J.
562 Olofsson, Seolhye Park, J. Luc Peterson, Michael Probst, David Pugmire, Brian Sammuli, Kapil
563 Sawlani, Alexander Scheinker, David P. Schissel, Rob J. Shalloo, Jun Shinagawa, Jaegu Seong,
564 Brian K. Spears, Jonathan Tennyson, Jayaraman Thiagarajan, Catalin M. Ticoş, Jan Trieschmann,
565 Jan van Dijk, Brian Van Essen, Peter Ventzek, Haimin Wang, Jason T. L. Wang, Zhehui Wang,
566 Kristian Wende, Xueqiao Xu, Hiroshi Yamada, Tatsuya Yokoyama, and Xinhua Zhang. 2022
567 review of data-driven plasma science. *IEEE Transactions on Plasma Science*, 51(7):1750–1838,
July 2023. ISSN 1939-9375. doi: 10.1109/tps.2023.3268170.
568

569 Dawit Mureja Argaw and In-So Kweon. Long-term video frame interpolation via feature prop-
570 agation. *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
571 pp. 3533–3542, 2022. URL <https://api.semanticscholar.org/CorpusID:247778418>.
572

573 Anthony Baez, Wang Zhang, Ziwen Ma, Subhro Das, Lam M. Nguyen, and Luca Daniel. Guar-
574 anteeing conservation laws with projection in physics-informed neural networks, 2024.
575

576 Simon Baker, Daniel Scharstein, J. P. Lewis, Stefan Roth, Michael J. Black, and Richard Szeliski. A
577 database and evaluation methodology for optical flow. *Int. J. Comput. Vision*, 92(1):1–31, March
2011. ISSN 0920-5691. doi: 10.1007/s11263-010-0390-2. URL <https://doi.org/10.1007/s11263-010-0390-2>.
578

579 Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. Tthresh: Tensor compression for
580 multidimensional visual data. *IEEE Transaction on Visualization and Computer Graphics*, to
581 appear, 2019. arXiv:1806.05952.
582

583 Shamsulhaq Basir and Inanc Senocak. An adaptive augmented lagrangian method for training
584 physics and equality constrained artificial neural networks, 2023.
585

586 Matthias Bauer, Emilien Dupont, Andy Brock, Dan Rosenbaum, Jonathan Richard Schwarz, and
587 Hyunjik Kim. Spatial functa: Scaling functa to imagenet classification and generation. *arXiv*
588 *preprint* arXiv: 2302.03130, 2023.
589

590 David Berthelot*, Colin Raffel*, Aurko Roy, and Ian Goodfellow. Understanding and improv-
591 ing interpolation in autoencoders via an adversarial regularizer. In *International Conference on*
592 *Learning Representations*, 2019.
593

Arturs Berzins, Andreas Radler, Eric Volkmann, Sebastian Sanokowski, Sepp Hochreiter, and Jo-
hannes Brandstetter. Geometry-informed neural networks, 2025.
594

594 C. K. Birdsall and A. B. Langdon. *Plasma physics via computer simulation*. New York: Taylor and
 595 Francis, first edition, 2005.
 596

597 Cristian Bodnar, Wessel P. Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
 598 Garvan, Maik Riechert, Jonathan A. Weyn, Haiyu Dong, Anna Vaughan, Jayesh K. Gupta, Kit
 599 Thambiratnam, Alex Archibald, Elizabeth Heider, Max Welling, Richard E. Turner, and Paris
 600 Perdikaris. Aurora: A foundation model of the atmosphere. *CoRR*, abs/2405.13063, 2024. doi:
 601 10.48550/ARXIV.2405.13063.

602 Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
 603 informed neural networks (pinns) for fluid mechanics: A review, 2021.
 604

605 C.S. Chang, S. Ku, R. Hager, J. Choi, D. Pugmire, S. Klasky, A. Loarte, and R.A Pitts. Role of
 606 turbulent separatrix tangle in the improvement of the integrated pedestal and heat exhaust issue
 607 for stationary-operation tokamak fusion reactors. *Nuclear Fusion*, 64(5):056041, apr 2024. doi:
 608 10.1088/1741-4326/ad3b1e.

609 Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. GradNorm: Gradient
 610 normalization for adaptive loss balancing in deep multitask networks. In Jennifer Dy and Andreas
 611 Krause (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80
 612 of *Proceedings of Machine Learning Research*, pp. 794–803. PMLR, 10–15 Jul 2018.

613

614 Jong Choi, Michael Churchill, Qian Gong, Seung-Hoe Ku, Jaemoon Lee, Anand Rangarajan, Sanjay
 615 Ranka, Dave Pugmire, CS Chang, and Scott Klasky. Neural data compression for physics plasma
 616 simulation. In *Neural Compression: From Information Theory to Applications – Workshop @*
 617 *ICLR 2021*, 2021.

618

619 C. A. Christopoulos, T. Ebrahimi, and A. N. Skodras. Jpeg2000: the new still picture compression
 620 standard. In *Proceedings of the 2000 ACM Workshops on Multimedia, MULTIMEDIA '00*, pp.
 621 45–49, New York, NY, USA, 2000. Association for Computing Machinery. ISBN 1581133111.
 622 doi: 10.1145/357744.357757.

623

624 Sandeep Suresh Cranganore, Andrei Bodnar, Arturs Berzins, and Johannes Brandstetter. Einstein
 625 fields: A neural perspective to computational general relativity, 2025.

626

627 Wojciech Marian Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pas-
 628 canu. Sobolev training for neural networks. In *Proceedings of the 31st International Conference*
 629 *on Neural Information Processing Systems, NIPS'17*, pp. 4281–4290, Red Hook, NY, USA, 2017.
 Curran Associates Inc. ISBN 9781510860964.

630

631 James Diffenderfer, Alyson L Fox, Jeffrey A Hittinger, Geoffrey Sanders, and Peter G Lindstrom.
 632 Error analysis of zfp compression for floating-point data. *SIAM Journal on Scientific Computing*,
 633 41(3):A1867–A1898, 2019.

634

635 J. Dominski, C. S. Chang, R. Hager, S. Ku, E. S. Yoon, and V. Parail. Neoclassical transport of
 636 tungsten ion bundles in total-f neoclassical gyrokinetic simulations of a whole-volume jet-like
 637 plasma. *Physics of Plasmas*, 31(3):032303, 03 2024. ISSN 1070-664X. doi: 10.1063/5.0144509.

638

639 Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Rezende, and Dan Rosenbaum. From
 640 data to functa: Your data point is a function and you can treat it like one. *arXiv preprint*
arXiv:2201.12204, 2022a. Preprint.

641

642 Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Goliński, Yee Whye Teh, and Arnaud
 643 Doucet. Coin++: Neural compression across modalities, 2022b.

644

645 Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
 646 function approximation in reinforcement learning, 2017.

647

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generat-
 648 ing implicit neural fields with weight-space diffusion, 2023.

648 Luca Fedeli, Axel Huebl, France Boillod-Cerneux, Thomas Clark, Kevin Gott, Conrad Hillairet,
 649 Stephan Jaure, Adrien Leblanc, Rémi Lehe, Andrew Myers, Christelle Piechurski, Mitsuhsisa Sato,
 650 Neil Zaim, Weiqun Zhang, Jean-Luc Vay, and Henri Vincenti. Pushing the frontier in the design
 651 of laser-based electron accelerators with groundbreaking mesh-refined particle-in-cell simulations
 652 on exascale-class supercomputers. In SC22: International Conference for High Performance
 653 Computing, Networking, Storage and Analysis, pp. 1–12, 2022. doi: 10.1109/SC41404.2022.
 654 00008.

655 Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
 656 networks, 2019.

657 EA Frieman and Liu Chen. Nonlinear gyrokinetic equations for low-frequency electromagnetic
 658 waves in general plasma equilibria. The Physics of Fluids, 25(3):502–508, 1982.

660 Kai Fukami, Koji Fukagata, and Kunihiko Taira. Super-resolution analysis via machine learning:
 661 a survey for fluid flows. Theoretical and Computational Fluid Dynamics, 37(4):421–444, June
 662 2023. ISSN 1432-2250. doi: 10.1007/s00162-023-00663-0.

663 Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold
 664 elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969. doi:
 665 10.1109/TSSC.1969.300225.

666 Gianluca Galletti, Fabian Paischer, Paul Setinek, William Hornsby, Lorenzo Zanisi, Naomi Carey,
 667 Stanislas Pamela, and Johannes Brandstetter. 5d neural surrogates for nonlinear gyrokinetic sim-
 668 ulations of plasma turbulence, 2025.

669 Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
 670 learning models and their internal representations. In S. Koyejo, S. Mohamed, A. Agarwal,
 671 D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
 672 volume 35, pp. 11893–11905. Curran Associates, Inc., 2022.

673 Mark Govett, Bubacar Bah, Peter Bauer, Dominique Berod, Veronique Bouchet, Susanna Corti,
 674 Chris Davis, Yihong Duan, Tim Graham, Yuki Honda, Adrian Hines, Michel Jean, Junishi Ishida,
 675 Bryan Lawrence, Jian Li, Juerg Luterbacher, Chiasi Muroi, Kris Rowe, Martin Schultz, Martin
 676 Visbeck, and Keith Williams. Exascale computing and data handling: Challenges and opportu-
 677 nities for weather and climate prediction. Bulletin of the American Meteorological Society, 105
 678 (12):E2385 – E2404, 2024. doi: 10.1175/BAMS-D-23-0220.1.

679 Philipp Grete, Brian W. O’Shea, Forrest W. Glines, Deovrat Prasad, Benjamin D. Wibking, Martin
 680 Fournier, Marcus Brüggen, and Mark Voit. The xmagnet exascale mhd simulations of smbh
 681 feedback in galaxy groups and clusters: Overview and preliminary cluster results, 2025.

682 Jun Han, Hao Zheng, and Chongke Bi. Kd-inr: Time-varying volumetric data compression via
 683 knowledge distillation-based implicit neural representation. IEEE Transactions on Visualization
 684 and Computer Graphics, 30(10):6826–6838, October 2024. ISSN 1077-2626. doi: 10.1109/
 685 TVCG.2023.3345373.

686 Song Han, Huiyi Mao, and William J Dally. Deep compression: Compressing deep neural networks
 687 with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

688 Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Rolf
 689 ECKMILLER (ed.), Advanced Neural Computers, pp. 129–135. North-Holland, Amsterdam,
 690 1990. ISBN 978-0-444-88400-8. doi: <https://doi.org/10.1016/B978-0-444-88400-8.50019-4>.

691 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

692 Moshik Hershcovitch, Andrew Wood, Leshem Choshen, Guy Girmonsky, Roy Leibovitz, Ilias En-
 693 nmouri, Michal Malka, Peter Chin, Swaminathan Sundararaman, and Danny Harnik. Zipnn:
 694 Lossless compression for ai models. arXiv preprint arXiv:2411.05239, 2024.

695 Berthold K.P. Horn and Brian G. Schunck. Determining optical flow. Artificial Intelligence,
 696 17(1):185–203, 1981. ISSN 0004-3702. doi: [https://doi.org/10.1016/0004-3702\(81\)90024-2](https://doi.org/10.1016/0004-3702(81)90024-2). URL <https://www.sciencedirect.com/science/article/pii/0004370281900242>.

702 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 703 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022.
 704

705 David A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings of
 706 the IRE, 40(9):1098–1101, 1952. doi: 10.1109/JRPROC.1952.273898.

707 Minju Jo, Woojin Cho, Uvini Balasuriya Mudiayanselage, Seungjun Lee, Noseong Park, and Kookjin
 708 Lee. Pdefuncta: Spectrally-aware neural representation for pde solution modeling, 2025.
 709

710 Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
 711 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.

712 George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
 713 Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021. ISSN 2522-
 714 5820. doi: 10.1038/s42254-021-00314-5.

715 Jeffrey Kelling, Vicente Bolea, Michael Bussmann, Ankush Checkervarty, Alexander Debus, Jan
 716 Ebert, Greg Eisenhauer, Vineeth Gutta, Stefan Kesselheim, Scott Klasky, Vedhas Pandit, Richard
 717 Pausch, Norbert Podhorszki, Franz Poschel, David Rogers, Jeyhun Rustamov, Steve Schmerler,
 718 Ulrich Schramm, Klaus Steiniger, Rene Widera, Anna Willmann, and Sunita Chandrasekaran.
 719 The artificial scientist – in-transit machine learning of plasma simulations, 2025.

720

721 John A. Krommes. The gyrokinetic description of microturbulence in magnetized plasmas. Annual
 722 Review of Fluid Mechanics, 44(Volume 44, 2012):175–201, 2012. ISSN 1545-4479. doi: <https://doi.org/10.1146/annurev-fluid-120710-101223>.

723

724 Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham, Rob Ross, and
 725 Nagiza F. Samatova. Compressing the incompressible with isabela: In-situ reduction of spatio-
 726 temporal data. In Emmanuel Jeannot, Raymond Namyst, and Jean Roman (eds.), Euro-Par 2011
 727 Parallel Processing, pp. 366–379, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN
 728 978-3-642-23400-2.

729

730 Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. Advances in neural
 731 information processing systems, 2, 1990.

732

733 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
 734 drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
 735 equations, 2021.

736

737 Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Transactions on Visualization
 738 and Computer Graphics, 20(12):2674–2683, 2014.

739

740 Qiang Liu, Mengyu Chu, and Nils Thuerey. Config: Towards conflict-free training of
 741 physics informed neural networks. In The Thirteenth International Conference on Learning
 742 Representations, 2024.

743

744 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 745 Swin transformer: Hierarchical vision transformer using shifted windows. In 2021 IEEE/CVF
 746 International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October
 747 10-17, 2021, pp. 9992–10002. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00986.

748

749 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

750

751 Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, and
 752 Luigi Di Stefano. Deep learning on implicit neural representations of shapes, 2023.

753

754 Jingwei Ma, Erika Lu, Roni Paiss, Shiran Zada, Aleksander Holynski, Tali Dekel, Brian Curless,
 755 Michael Rubinstein, and Forrester Cole. Vidpanos: Generative panoramic videos from casual
 756 panning videos. In SIGGRAPH Asia 2024 Conference Papers, December 2024.

757

758 Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
 759 Occupancy networks: Learning 3d reconstruction in function space, 2019.

756 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthy,
 757 and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
 758 In *European Conference on Computer Vision (ECCV)*, pp. 405–421. Springer, 2020. doi:
 759 10.1007/978-3-030-58452-8_24.

760 Mohammadreza Momenifar, Enmao Diao, Vahid Tarokh, and Andrew D. Bragg. A physics-
 761 informed vector quantized autoencoder for data compression of turbulent flow. In *2022 Data
 762 Compression Conference (DCC)*, pp. 01–10, 2022. doi: 10.1109/DCC52660.2022.00039.

763

764 Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash encoding. *ACM Trans. Graph.*, 41(4):102:1–102:15, July 2022.
 765 doi: 10.1145/3528223.3530127.

766

767 Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez, Mar-
 768 sha Berger, Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, et al. The well: a large-scale
 769 collection of diverse physics simulations for machine learning. *Advances in Neural Information
 770 Processing Systems*, 37:44989–45037, 2024.

771

772 Jacob Page. Super-resolution of turbulence with dynamics in the loss. *Journal of Fluid Mechanics*,
 773 1002:R3, 2025. doi: 10.1017/jfm.2024.1202.

774

775 Fabian Paischer, Gianluca Galletti, William Hornsby, Paul Setinek, Lorenzo Zanisi, Naomi Carey,
 776 Stanislas Pamela, and Johannes Brandstetter. In *Advances in Neural Information Processing
 777 Systems 38: Annual Conference on Neural Information Processing Systems 2025, NeurIPS 2025,
 778 San Diego, CA, USA, December 02 - 07, 2025*, 2025a.

779

780 Fabian Paischer, Lukas Hauzenberger, Thomas Schmied, Benedikt Alkin, Marc Peter Deisenroth,
 781 and Sepp Hochreiter. Parameter efficient fine-tuning via explained variance adaptation, 2025b.

782

783 Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
 784 DeepSDF: Learning continuous signed distance functions for shape representation, 2019.

785

786 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *2023 IEEE/CVF
 787 International Conference on Computer Vision (ICCV)*, pp. 4172–4182, 2023. doi: 10.1109/
 788 ICCV51070.2023.00387.

789

790 A.G. Peeters, Y. Camenen, F.J. Casson, W.A. Hornsby, A.P. Snodin, D. Strintzi, and G. Szepesi.
 791 The nonlinear gyro-kinetic flux tube code gkw. *Computer Physics Communications*, 180(12):
 792 2650–2672, 2009. ISSN 0010-4655. doi: <https://doi.org/10.1016/j.cpc.2009.07.001>. 40 YEARS
 793 OF CPC: A celebratory issue focused on quality software for high performance, grid and novel
 794 computing architectures.

795

796 Zihan Qiu, Zekun Wang, Bo Zheng, Zeyu Huang, Kaiyue Wen, Songlin Yang, Rui Men, Le Yu, Fei
 797 Huang, Suozhi Huang, Dayiheng Liu, Jingren Zhou, and Junyang Lin. Gated attention for large
 798 language models: Non-linearity, sparsity, and attention-sink-free, 2025.

799

800 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht,
 801 Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks, 2019.

802

803 Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks:
 804 A deep learning framework for solving forward and inverse problems involving nonlinear partial
 805 differential equations. *Journal of Computational Physics*, 378:686–707, 2019. doi: 10.1016/j.jcp.
 806 2018.10.045.

807

808 Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan,
 809 and Richard G. Baraniuk. Wire: Wavelet implicit neural representations. In *Proceedings of
 810 the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2023. arXiv
 811 preprint arXiv:2301.05187.

812

813 Louis Serrano, Lise Le Boudec, Armand Kassaï Koupaï, Thomas X. Wang, Yuan Yin, Jean-Noël
 814 Vittaut, and Patrick Gallinari. Operator learning with neural fields: Tackling pdes on general
 815 geometries. *CoRR*, abs/2306.07266, 2023. doi: 10.48550/ARXIV.2306.07266.

810 Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
 811 zstein. Implicit neural representations with periodic activation functions. In NeurIPS, 2020. arXiv
 812 preprint arXiv:2006.09661.

813

814 Hwijae Son, Jin Woo Jang, Woo Jin Han, and Hyung Ju Hwang. Sobolev training for physics
 815 informed neural networks, 2021.

816 Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
 817 hanced transformer with rotary position embedding, 2023.

818

819 Damien Teney, Armand Nicolicioiu, Valentin Hartmann, and Ehsan Abbasnejad. Neural redshift:
 820 Random networks are not random functions, 2025.

821

822 Artur P. Toshev, Gianluca Galletti, Fabian Fritz, Stefan Adami, and Nikolaus A. Adams. La-
 823 grangebench: A lagrangian fluid mechanics benchmarking suite, 2023.

824

825 David Tskhakaya. The Particle-in-Cell Method, pp. 161–189. Springer Berlin Heidelberg, Berlin,
 826 Heidelberg, 2008. ISBN 978-3-540-74686-7. doi: 10.1007/978-3-540-74686-7_6.

827

828 Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
 829 ing. In Advances in Neural Information Processing Systems (NeurIPS), volume 30, 2017.

830

831 Seungyoon Woo, Junhyeog Yun, and Gunhee Kim. Meta-continual learning of neural fields, 2025.

832

833 Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
 834 Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual comput-
 835 ing and beyond. CoRR, abs/2111.11426, 2021.

836

837 Zike Yan, Yuxin Tian, Xuesong Shi, Ping Guo, Peng Wang, and Hongbin Zha. Continual neural
 838 mapping: Learning an implicit scene representation from sequential observations, 2021.

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **LLM USAGE DISCLOSURE**
865

866 In general, LLM tools were used to refine writing in multiple parts of the paper, such as introduction
867 and experiment section. This very paragraph is written by a human, polished by GPT-5. Some of the
868 literature cited in the related work and introduction sections was also fetched by GPT-5. DeepSeek-
869 R1 and GPT-5 were additionally make visualizations prettier, speed up the development of plotting
870 functions, and dump results neatly into tables. Beyond that, they were not used to a significant
871 degree in other parts of the code, as neither Copilot nor Cursor are used by the main author. AI
872 assistants were strictly editors and decorators – they were **not** involved in ideation, reordering ideas,
873 or at any higher or lower conceptual level. **Rebuttal update:** VAPOR was re-implemented with heavy
874 usage of Gemini 2.5 (pro).

875 **A GYROKINETICS**
876

877 Gyrokinetics (Frieman & Chen, 1982; Krommes, 2012; Peeters et al., 2009) is a reduced form of
878 Plasma kinetics that is computationally more efficient and can be used to locally simulate Plasma
879 behavior within a so-called *flux tube* in the torus. Local gyrokinetics is a theoretical framework to
880 study plasma behavior on perpendicularly spatial scales comparable to the gyroradius, i.e., the radius
881 of circular motion exhibited by charged particles in a magnetic field, and frequencies much lower
882 than the particle cyclotron frequencies, i.e., the frequency at which charged particles spiral around
883 magnetic field lines due to the Lorentz force. Gyrokinetics models the time evolution of electrons
884 and ions via the distribution function f , which is based on 3D coordinates, their parallel and per-
885 pendicular velocities, together with the angle w.r.t. the field lines. However, the latter dimension is
886 averaged out by modelling only the so-called guiding center of a particle instead of its gyral move-
887 ment. Furthermore, instead of modelling the perpendicular velocity, usually only its magnitude is
888 considered, which is also referred to as the magnetic moment μ . Hence, the 5D gyrokinetic distribu-
889 tion function can be written as $f = f(k_x, k_y, s, v_{\parallel}, \mu)$, where k_x and k_y are spectral coordinates, s
890 is the toroidal coordinate along the field line, and v_{\parallel} the parallel velocity component. The perturbed
891 time-evolution of f , for each species (ions and electrons), is governed by

$$\underbrace{\frac{\partial f}{\partial t} + (v_{\parallel} b + v_D) \cdot \nabla f - \frac{\mu B}{m} \frac{\mathbf{B} \cdot \nabla B}{B^2} \frac{\partial f}{\partial v_{\parallel}}}_{\text{Linear}} + \underbrace{v_{\chi} \cdot \nabla f}_{\text{Nonlinear}} = S, \quad (9)$$

892 where $v_{\parallel} b$ is the motion along magnetic field lines, $b = \mathbf{B}/B$ is the unit vector along the magnetic
893 field \mathbf{B} with magnitude B^1 , v_D the magnetic drift due to gradients and curvature in \mathbf{B} , and v_{χ}
894 describes drifts arising from the $\mathbf{E} \times \mathbf{B}$ force, a key driver of plasma dynamics. Finally, S is the
895 source term that represents the external supply of energy. The term $v_{\chi} \cdot \nabla f$ models the nonlinear
896 interaction between the distribution function f and its velocity space integral ϕ , and it describes tur-
897 bulent advection. The resulting nonlinear coupling constitutes the computationally most expensive
898 term.

903 **A.1 DERIVATION OF THE GYROKINETIC EQUATION**
904

905 We begin with the Vlasov equation for the distribution function $f(\mathbf{r}, \mathbf{v}, t)$:

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{q}{m} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f = 0 \quad (10)$$

906 The Vlasov equation describes the conservation of particles in phase space in the absence of col-
907 lisions. Here, $\mathbf{r} = (x, y, z)$ and $\mathbf{v} = (v_x, v_y, v_z)$ correspond to coordinates in the spatial and the
908 velocity domain, respectively. Hence the Vlasov equation is a 7D (including time) PDE representing
909 the density of particles in phase space at position \mathbf{r} , velocity \mathbf{v} , and time. The term $\nabla_{\mathbf{v}} f$ describes
910 the response of the distribution function to accelerations of particles and $\frac{q}{m} (\mathbf{E} + \mathbf{v} \times \mathbf{B})$ denotes
911 the Lorentz force, which depends on particle charge q and mass m , as well as electric field \mathbf{E} and
912 magnetic field \mathbf{B} . Finally, the advection (or convection) term $\mathbf{v} \nabla f$ describes transport of the distri-
913 bution function through space due to velocities.

914 ¹We adopt uppercase notation for vector fields \mathbf{E} and \mathbf{B} to adhere with literature.

To derive the *gyrokinetic equation*, we transform from particle coordinates to guiding center coordinates $(\mathbf{R}, v_{\parallel}, \mu, \theta)$, where $\mu = \frac{mv_{\perp}^2}{2B}$ is the magnetic moment, θ the gyrophase, which describes the position of a particle around its guiding center as it gyrates along a field line, and \mathbf{R} is the coordinate of the guiding center.

Assuming the time scale L at which the background field changes is much longer than the gyroperiod with a small Larmor radius $\rho \ll L$, we can *gyroaverage* to remove the dependency on the gyrophase θ , yielding:

$$\frac{\partial \mathbf{f}}{\partial t} + \dot{\mathbf{R}} \cdot \nabla \mathbf{f} + \dot{v}_{\parallel} \frac{\partial \mathbf{f}}{\partial v_{\parallel}} = 0 \quad (11)$$

A.1.1 LINEAR TERMS

The unperturbed (background) motion of the guiding center is governed by:

$$\dot{\mathbf{R}} = v_{\parallel} \mathbf{b} + \mathbf{v}_D \quad (12)$$

$$\dot{v}_{\parallel} = -\frac{\mu}{m} \mathbf{b} \cdot \nabla \mathbf{B} \quad (13)$$

Here, $\mathbf{b} = \mathbf{B}/B$ is the unit vector along the magnetic field, and \mathbf{v}_D represents magnetic drifts. Substituting into the kinetic equation yields

$$\frac{\partial \mathbf{f}}{\partial t} + (v_{\parallel} \mathbf{b} + \mathbf{v}_D) \cdot \nabla \mathbf{f} - \frac{\mu}{m} \mathbf{b} \cdot \nabla \mathbf{B} \frac{\partial \mathbf{f}}{\partial v_{\parallel}} = 0 \quad (14)$$

We can express the magnetic gradient term using:

$$\mathbf{b} \cdot \nabla \mathbf{B} = \frac{\mathbf{B} \cdot \nabla B}{B} \quad (15)$$

so that:

$$\frac{\mu}{m} \mathbf{b} \cdot \nabla \mathbf{B} = \frac{\mu B}{m} \frac{\mathbf{B} \cdot \nabla B}{B^2} \quad (16)$$

A.1.2 NONLINEAR TERM

Fluctuating electromagnetic potentials $\delta\phi, \delta\mathbf{A}$ induce $\mathbf{E} \times \mathbf{B}$ and magnetic flutter drifts. We define the gyroaveraged generalized potential as

$$\chi = \langle \phi - \frac{v_{\parallel}}{c} A_{\parallel} \rangle, \quad (17)$$

where \mathbf{A}_{\parallel} is the parallel component of the vector potential, $\langle \cdot \rangle$ denotes the gyroaverage, and c is the speed of light, which is added to ensure correct units. ϕ is the electrostatic potential, the computation of which involves an integral of \mathbf{f} over the velocity space (see eq. 1.41 in the GKW manual² for a complete description).

This gives rise to the drift

$$\mathbf{v}_{\chi} = \frac{c}{B} \mathbf{b} \times \nabla \chi, \quad (18)$$

and yields the nonlinear advection term $\mathbf{v}_{\chi} \cdot \nabla \mathbf{f}$.

A.1.3 FINAL EQUATION

We arrive at the gyrokinetic equation in split form:

$$\frac{\partial \mathbf{f}}{\partial t} + (v_{\parallel} \mathbf{b} + \mathbf{v}_D) \cdot \nabla \mathbf{f} - \frac{\mu B}{m} \frac{\mathbf{B} \cdot \nabla B}{B^2} \frac{\partial \mathbf{f}}{\partial v_{\parallel}} + \mathbf{v}_{\chi} \cdot \nabla \mathbf{f} = S \quad (19)$$

²<https://bitbucket.org/gkw/gkw/src/develop/doc/manual/>

972 Here, S represents external sources, collisions, or other drive terms. To enhance the tractability of
 973 Equation (9), the distribution function f is usually split into equilibrium and perturbation terms
 974

$$975 \quad f = f_0 + \delta f = \underbrace{f_0 - \frac{Z\phi}{T} f_0}_{\text{Adiabatic}} + \underbrace{\frac{\partial h}{\partial t}}_{\text{Kinetic}}, \quad (20)$$

$$976$$

$$977$$

978 where f_0 is a background or equilibrium distribution function, T the particle temperature, Z the par-
 979 ticle charge, ϕ the electrostatic potential, and δf the total perturbation to the distribution function,
 980 which comprises of *adiabatic* and *kinetic* response. The adiabatic term describes rapid and passive
 981 responses to the electrostatic potential that do not contribute to turbulent transport, while the ki-
 982 netic term governs irreversible dynamics that facilitate turbulence. Numerical codes, such as GKW
 983 (Peeters et al., 2009), rely on solving for δf instead of f . A common simplification is to assume that
 984 electrons are adiabatic, which allows us to neglect the kinetic term in the respective δf . Hence, the
 985 respective f for electrons (f_e) does not need to be modelled, effectively halving the computational
 986 cost.

988 B DATASET

990 The simulations used for both the autoencoder training (26 trajectories) and the evaluation (10 tra-
 991 jectories) are generated with the numerical code GKW (Peeters et al., 2009). They are sampled by
 992 varying four parameters: R/L_t , R/L_n , \hat{s} , and q , which significantly affect emerging turbulence in
 993 the Plasma.

- 994 • R/L_t is the ion temperature gradient, which is the main driver of turbulence.
- 995 • R/L_n is the density gradient, whose effect is less pronounced. It can have a stabilizing
 996 effect, but can sometimes also lead to increased turbulence.
- 997 • \hat{s} denotes magnetic shearing, hence it usually has a stabilizing effect as more magnetic
 998 shearing results in better isolation of the Plasma.
- 999 • q denotes the so-called safety factor, which is the inverse of the rotational transform and
 1000 describes how often a particle takes a poloidal turn before taking a toroidal turn.

1002 We specify the ranges for sampling the four parameters as $R/L_t \in [1, 12]$, $R/L_n \in [1, 7]$, $q \in [1, 9]$,
 1003 and $\hat{s} \in [0.5, 5]$. Additionally, we also vary the noise amplitude of the initial condition (within
 1004 $[1e-5, 1e-3]$).

1006 To make storage more feasible, simulations are time-coarsened by saving snapshot every 60. Each
 1007 GKW run with the specified configurations takes around \sim 6 hours (76 cores, Intel Ice Lake 4.1GHz
 1008 CPU) and \sim 60GBs of storage.

1010 C IMPLEMENTATION DETAILS

1012 C.1 METRICS

1014 We evaluate reconstruction with spatial and physical metrics. Since gyrokinetic data is complex-
 1015 valued, we can also apply complex-generalizations of common metrics.

1016 **Complex L1 Loss.** Given two complex-valued fields $z_1, z_2 \in \mathbb{C}^N$, the complex L1 loss is:

$$1018 \quad \text{cL1}(z_1, z_2) = \langle |\Re(z_1 - z_2)| + |\Im(z_1 - z_2)| \rangle = \langle |z_1 - z_2|_1 \rangle$$

1019 where $\langle \cdot \rangle$ denotes the average over all dimensions and $|\cdot|_1$ is the L1 norm of the complex difference.

1021 **Wasserstein Distance.** The Wasserstein distance measures the minimum cost of transforming one
 1022 probability distribution into another, where the cost is proportional to the distance the probability
 1023 mass must be moved. It provides a meaningful metric to compare distributions even when they
 1024 have non-overlapping support, making it particularly useful in machine learning and optimal transport
 1025 problems. In our case, we normalize the spectra so that their total sum is one, ensuring they represent
 comparable probability distributions.

1026 The Wasserstein distance between two probability distributions P and Q is defined as:
 1027

$$1028 \quad 1029 \quad 1030 \quad W_p(P, Q) = \left(\inf_{\gamma \in \Gamma(P, Q)} \int \|x - y\|^p d\gamma(x, y) \right)^{\frac{1}{p}}$$

1031 **Peak Signal-to-Noise Ratio.** Peak signal-to-noise ratio (PSNR) quantifies the ratio between the
 1032 maximum possible power of a signal and the power of noise corrupting its representation, typically
 1033 expressed in decibels (dB) due to the wide dynamic range of signals.
 1034

$$1035 \quad 1036 \quad 1037 \quad \text{PSNR}(x_1, x_2) = 10 \cdot \log_{10} \left(\frac{\max(x_1)^2}{\text{MSE}(x_1, x_2)} \right)$$

1038 where $\text{MSE}(x_1, x_2)$ is the mean squared error between the real-valued fields x_1 and x_2 .
 1039

1040 The PSNR for complex-valued fields we defined as:
 1041

$$1042 \quad 1043 \quad \text{cPSNR}(z_1, z_2) = 10 \cdot \log_{10} \left(\frac{\max(|z_1|)^2}{\text{cMSE}(z_1, z_2)} \right)$$

1044 **Bits Per Pixel (BPP).** The BPP measures compression efficiency. Given a discrete representation of
 1045 a field z and its compressed encoding, the bits per pixel is defined as
 1046

$$1047 \quad 1048 \quad \text{BPP} = \frac{\text{Total number of bits used to encode } z}{\text{Number of spatial points in } z}.$$

1049 Lower BPP values indicate higher compression, while higher BPP generally corresponds to more
 1050 faithful reconstruction.
 1051

1052 C.2 TEMPORAL METRICS 1053

1054 **Optical Flow and End-Point Error (EPE).** Optical flow estimates the apparent motion between
 1055 consecutive frames of a sequence by computing spatial gradients and temporal derivatives, here
 1056 implemented using a simplified Horn–Schunck finite differencing method (Horn & Schunck, 1981).
 1057 Since optical flow is typically implemented in 2D + time, we rearrange each \mathbf{f} into a 2D array as
 1058 $(v_{\parallel} \cdot \mu) \times (s \cdot y \cdot x)$ For two consecutive frames $x(t)$ and $x(t+1)$, the averaged spatial gradients
 1059

$$1060 \quad 1061 \quad x_x = \frac{1}{2} (\partial_x x(t) + \partial_x x(t+1)), \quad x_y = \frac{1}{2} (\partial_y x(t) + \partial_y x(t+1)).$$

1062 The optical flow field \mathbf{F} , representing the motion gradient between frames,
 1063

$$1064 \quad 1065 \quad \mathbf{F} = \left[-\frac{x_x \cdot (x(t+1) - x(t))}{x_x^2 + x_y^2}, -\frac{x_y \cdot (x(t+1) - x(t))}{x_x^2 + x_y^2} \right],$$

1066 Given two sequences of N frames x_1 and x_2 , the EndPoint Error (EPE) (Baker et al., 2011) is the
 1067 mean squared difference of the flow vectors $\mathbf{F}_1^{(i)}$ and $\mathbf{F}_2^{(i)}$ over time.
 1068

$$1069 \quad 1070 \quad 1071 \quad 1072 \quad \text{EPE}(x_1, x_2) = \frac{1}{N} \sum_{i=1}^N \|\mathbf{F}_1^{(i)} - \mathbf{F}_2^{(i)}\|_2^2,$$

1073 where N is the total number of spatial points across all frames.
 1074

1075 C.3 TRADITIONAL COMPRESSION 1076

1077 In the following paragraphs we briefly describe how the traditional compressions were implemented.
 1078

1079 **ZFP Compression.** ZFP Lindstrom (2014) is a compression library for numerical arrays designed
 1080 for fast random access. It partitions the data into small blocks (typically $4 \times 4 \times 4$ elements for 3D
 1081 data) and transforms them into a decorrelated representation using an orthogonal block transform.
 1082

1080 The transformed coefficients are quantized according to a user-specified tolerance, then entropy-
 1081 coded to produce a compact bitstream. High-speed random access and both lossy and lossless are
 1082 possible, making ZFP a very common choice for scientific data storage.

1083 We rearrange \mathbf{f} into a 3D array as $((v_{\parallel} \times \mu) \times (s \times y) \times x)$ for ZFP block-based compression scheme
 1084 (up to 3D), and compress with ZFP with a specified absolute error tolerance. The compressed
 1085 representation is a compact byte representation. Reconstruction is performed by decompressing
 1086 with ZFP and reshaping the output back to the original tensor layout.

1088 **Wavelet Compression.** Discrete wavelet transform (DWT) is applied using the level 1 Haar wavelet.
 1089 The multi-dimensional array is decomposed into wavelets (coefficient and slices). To achieve lossy
 1090 compression, coefficients are pruned based on a fixed threshold dependent on the desired compres-
 1091 sion ratio, effectively discarding small high-frequency components. Reconstruction is performed by
 1092 inverting the DWT.

1093 **Principal Component Analysis Compression.** \mathbf{f} is reshaped into a 2D array $((v_{\parallel} \cdot \mu \cdot s) \times (x \cdot y))$,
 1094 by rearranging together the velocity space v_{\parallel}, μ with the field line s and the spatial coordinates
 1095 x, y . PCA is applied on the flattened spatial components, retaining a fixed number of principal
 1096 components dependent on the desired compression ratio ($N = 2$ for $1,000 \times$ from Table 1). The
 1097 compressed representation consists of the principal components, the mean vector, and the explained
 1098 variance. Reconstruction is achieved by projecting back to the original space, followed by reshaping
 1099 to the original dimensions.

1100 **JPEG2000 Compression.** \mathbf{f} is first reshaped into a 2D image-like representation of shape
 1101 $((v_{\parallel} \cdot \mu \cdot s) \times (x \cdot y))$, by flattening the velocity space and spatial dimensions. Each channel is
 1102 independently normalized to the $[0, 1]$ range and quantized to 16-bit unsigned integers. The im-
 1103 ages are then encoded using the JPEG2000 standard (Christopoulos et al., 2000) at a target quality
 1104 factor Q that determines the compression ratio. The compressed representation consists of the code-
 1105 stream size and channelwise normalization statistics (minimum and maximum). Reconstruction is
 1106 performed by decoding the JPEG2000 bitstream, rescaling back to floating-point values, and unflat-
 1107 tening back to the original tensor dimensions.

1109

1110

1111

C.4 VAPOR

1113 VAPOR (Choi et al., 2021) combines a VQ-VAE van den Oord et al. (2017) compressor and a
 1114 a Fourier Neural Operator (FNO) (Li et al., 2021) Refiner sequentially. The VQ-VAE provides
 1115 extreme compression by reducing the size of the original data, and the FNO Refiner then refines the
 1116 VQ-VAE’s coarse output to restore fidelity, achieving both high compression and high accuracy. We
 1117 utilize a VQ-VAE with Exponential Moving Average (EMA) updates to compress the data \mathbf{f} . This
 1118 forms the first stage of the overall architecture. The FNO refiner stage uses a residual structure to
 1119 efficiently learn and apply the high-frequency corrections needed to match the ground-truth solution,
 1120 taking the VQ-VAE initial reconstruction as input.

1121 Finally, a core component of Choi et al. (2021) is the specialized physics loss $\mathcal{L}_{\text{physics}}$, employed
 1122 to enforce conservation laws. This loss computes the MSE between the predicted and ground-truth
 1123 values of density, momentum, and energy:

$$\begin{aligned} \mathcal{L}_{\text{physics}} &= \text{MSE} \left(\sum_{v_{\parallel}, v_{\perp}} \mathbf{f}_{\text{pred}}, \sum_{v_{\parallel}, v_{\perp}} \mathbf{f}_{\text{gt}} \right) + \text{MSE} \left(\sum_{v_{\parallel}, v_{\perp}} \mathbf{f}_{\text{pred}} v_{\parallel}, \sum_{v_{\parallel}, v_{\perp}} \mathbf{f}_{\text{gt}} v_{\parallel} \right) \\ &+ \text{MSE} \left(\sum_{v_{\parallel}, v_{\perp}} \mathbf{f}_{\text{pred}} \frac{1}{2} m_s v_{\parallel}^2, \sum_{v_{\parallel}, v_{\perp}} \mathbf{f}_{\text{gt}} \frac{1}{2} m_s v_{\parallel}^2 \right). \end{aligned}$$

1132 This loss is added to the standard reconstruction and VQ losses during training to obtain the final
 1133 VAPOR loss: $\mathcal{L} = \mathcal{L}_{\text{recon}} + \mathcal{L}_{\text{VQ}} + \mathcal{L}_{\text{physics}}$.

1134
1135

C.5 AUTOENCODERS

1136
1137

Architecture and Conditioning.

1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

The autoencoder and VQ-VAE baselines are built on a 5D Swin Transformer architecture (Galletti et al., 2025; Paischer et al., 2025a), which extends the shifted window attention mechanism to handle high-dimensional scientific data. Figure 7 illustrates the 5D windowed multi-head self-attention (W-MSA) and shifted windowed multi-head self-attention (SW-MSA) layers, where blocks of the same color indicate the receptive field of local attention within each window. Our implementation incorporates several stability and performance enhancements: gated attention mechanisms (Qiu et al., 2025) for improved training stability, combined positional encodings using both Relative Positional Bias (Liu et al., 2021) and Rotary Position Embedding (RoPE) (Su et al., 2023) to capture spatial relationships across all five dimensions, and GELU activations (Hendrycks & Gimpel, 2023) throughout the network. Each model uses four Swin blocks with 16 attention heads, followed by a single downsampling level before the bottleneck. All models are conditioned on four key gyrokinetic parameters: the ion temperature gradient (R/L_t), density gradient (R/L_n), magnetic shear (\hat{s}), and safety factor (q). Conditioning is implemented via DiT-style modulation (Peebles & Xie, 2023), where conditioning embeddings provide scale, shift, and gating parameters for each transformer layer, enabling physics-aware feature adaptation.

1155
1156
1157
1158
1159
1160
1161
1162

Data Preprocessing. The 5D distribution function $[v_{\parallel}, \mu, s, x, y]$ is represented as complex values with real and imaginary components, initially providing two channels. We apply two key preprocessing steps that affect the channel structure. First, we decomposes each field into zonal flow ($k_y = 0$ mode) and turbulent fluctuation components by computing the mean across the k_y dimension and concatenating the zonal flow and turbulent fluctuation, doubling the channels to four. This separation is essential as zonal flows exhibit fundamentally different physics from turbulent modes. Second, we reshape the magnetic moment dimension μ , into the channel dimension, expanding from four to 32 channels. This allows independent processing of each μ slice.

1163
1164
1165
1166
1167
1168
1169
1170

Compression Configurations. We evaluate multiple compression ratios by varying patch and window sizes. For autoencoders, three configurations achieve compression ratios of 302, 1208, and 2865 using patch sizes $(2, 0, 2, 5, 2)$, $(4, 0, 2, 5, 4)$, and $(6, 0, 3, 5, 6)$ with corresponding window sizes $(8, 0, 4, 9, 8)$, $(4, 0, 4, 9, 4)$, and $(6, 0, 6, 9, 6)$. The zero in the second position corresponds to the μ dimension, which is not spatially patched due to the decoupling preprocessing step. All variants use latent dimension 1024, and compress in a last linear projection to the bottleneck dimension of 32.

1171
1172
1173
1174
1175
1176
1177
1178

VQ-VAE Variants. VQ-VAE uses the same spatial compression configurations but replaces the continuous bottleneck with vector quantization using the implementation from `vector-quantize-pytorch`³. The bottleneck projects to 128-dimensional embeddings, which are quantized using a codebook of 8192 vectors (see Table 3 for complete hyperparameters). The codebook uses exponential moving average updates with a decay rate of 0.99 and employs entropy regularization to encourage codebook utilization. This yields much higher compression ratios of 19342, 25789, and 77368 for the three spatial configurations, as quantized codes can be stored as integers (int16 for codebook size of 8192) rather than float32 values.

1179
1180
1181
1182
1183
1184
1185
1186
1187

Training Strategy. Training follows a two-stage approach to ensure stability. For all experiments we use Muon optimizer (Jordan et al., 2024) with a cosine scheduler and a minimum learning rate of 4×10^{-6} , and weight decay of 1×10^{-5} . *Stage 1* (200 epochs, batchsize=16, lr= 2×10^{-4}) trains the base autoencoder using only $\mathcal{L}_{\text{recon}}$ (cMSE). *Stage 2.1* (100 epochs, batchsize=16, lr= 2×10^{-4}) applies Explained Variance Adaptation (EVA) (Paischer et al., 2025b), which injects LoRA (Hu et al., 2022) weights ($r = 64$, $\alpha = 1$, $\rho = 2.0$, $\tau = 0.99$) into MLP layers while freezing the Stage 1 trained backbone. The loss function switches to cL1 for reconstruction ($\mathcal{L}_{\text{recon}}$ weighted by 10.0) and introduces physics-informed losses: integral losses (\mathcal{L}_Q , \mathcal{L}_{ϕ}) using scale normalization.

Figure 7: 5D swin attention.

³<https://github.com/lucidrains/vector-quantize-pytorch>

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
Table 3: VQ-VAE vector quantization hyperparameters.

Parameter	Value
Codebook size	8192
Embedding dimension	128
Commitment weight	0.3
Codebook type	Euclidean
EMA decay	0.99
Entropy loss weight	0.01
Dead code threshold	2

tion (scale is calculated over training dataset statistics), while spectral losses (\mathcal{L}_{k_y} , $\mathcal{L}_{Q^{\text{spec}}}$) employ sum-normalization followed by log-space L1 loss. All physics-informed loss terms are weighted equally at 1.0, with the VQ-VAE commitment loss also weighted by a factor of 10.0 to match the reconstruction weight. Critically, monotonicity constraints (\mathcal{L}_{iso}) are disabled. *Stage 2.2* (20 epochs, batchsize=16, lr=2 \times 10⁻⁴) continues with identical settings but enables monotonicity losses ($\mathcal{L}_{\text{iso}}(k_y^{\text{spec,pred}})$, $\mathcal{L}_{\text{iso}}(Q^{\text{spec,pred}})$) to enforce physical constraints only after stable physics-informed reconstruction is achieved.

Training Stabilization. End-to-end training of autoencoders with physics-informed neural compression (PINC) losses proves highly unstable due to the conflicting optimization objectives and varying loss magnitudes. The physics-informed terms (\mathcal{L}_Q , \mathcal{L}_ϕ , \mathcal{L}_{k_y} , $\mathcal{L}_{Q^{\text{spec}}}$) exhibit severe fluctuations during early training when reconstruction quality is poor, causing certain loss components to dominate the overall objective and destabilizing the learning process. This necessitates the staged training approach, where reconstruction capability is first established before introducing physics constraints.

Multi-objective Optimization Challenges. We investigated several multi-objective optimization strategies to enable stable end-to-end training. Gradient normalization methods (Chen et al., 2018), while theoretically appealing, proved computationally prohibitive for our large-scale models, consistently causing out-of-memory errors during backpropagation. Conflict-Free Inverse Gradients (ConFIG) Liu et al. (2024) attempts to resolve conflicting optimization objectives by computing gradient directions that minimize conflicts between tasks through least-squares solutions. However, ConFIG relies on computing stable gradient statistics over multiple training steps to determine optimal gradient directions. When physics-informed losses are computed on poorly reconstructed distribution functions, these losses exhibit extreme fluctuations that prevent ConFIG from establishing stable gradient statistics. The method’s gradient balancing becomes ineffective when the underlying loss landscape is highly unstable, as the computed conflict-free directions become unreliable due to the volatile nature of the physics-informed terms during early training phases.

Hyperparameter Search Limitations. The computational cost of autoencoder training further complicates optimization. Each full training run requires multiple days on high-end GPUs, making systematic hyperparameter search for end-to-end training impractical. The search space includes not only standard hyperparameters (learning rates, batch sizes, architectural choices) but also the relative weighting of several distinct loss components, creating a prohibitively large optimization landscape. This computational constraint reinforces the necessity of our staged approach, which reduces the hyperparameter search to manageable subspaces for each training phase.

[WgAS] Codebook usage and Entropy Encoding. The VQ-VAE quantizes the continuous latent space into discrete integer indices (‘codes’) ranging from 0 to 8191 (codebook size). Each code represents a learned pattern in the distribution function. Standard storage uses fixed-width encoding $\log_2(8192) = 13$ bits per code. However, empirical analysis reveals non-uniform usage: frequent codes dominate (common turbulent structures), while rare codes occur sporadically. This imbalance enables lossless compression via variable-length entropy coding. Our VQ-VAE achieves 71.4% codebook utilization (5846/8192 entries). The sorted codebook frequencies follow Zipf’s law, which suggest common flow patterns use frequent codes, while rare events retain dedicated codes. Further, we measure this redundancy using Shannon entropy $-\sum_i p_i \log_2(p_i)$ where p_i is

the empirical probability of code i . Our dataset yields $H \approx 10.5$ bits, indicating that optimal encoding requires only 10.5 bits per code on average, compared to the 13-bit fixed-width baseline. We implement Huffman coding (Huffman, 1952), which constructs a binary tree from code frequencies: frequent codes receive short bit sequences, rare codes longer sequences. The Huffman tree guarantees lossless decoding via bit-by-bit traversal. On our test set, Huffman encoding achieves $1.56 \times$ additional compression over fixed-width storage, reducing average code length from 13 to 10.7 bits per code. Combined with VQ-VAE quantazation (77368 \times), the total pipelines achieves 121492 \times compression, going from 723.5GB (uncompressed) to 5.96MB (VQ-VAE + Huffman), instead of 9.32MB (VQ-VAE).

C.6 NEURAL FIELDS

Neural fields are trained by representing the distribution function as a continuous signal, taking coordinates as inputs. A dataset consists, for a given simulation, of the 5D density function f at a specific timestep, and the 5D grid coordinates of each cell. Data normalization is applied both to the field values and to the coordinates.

An MLP with SiLU activations (Elfwing et al., 2017), 64 hidden dimension, five layers with skip connections and using a discrete hash to map matrix indices to learnable embeddings is optimized using AdamW (Loshchilov & Hutter, 2019), with cosine annealing learning rate scheduling decaying the learning rate from $5e-3$ to $1e-12$ and . Auxiliary optimizers can be used for additional integral losses, also with their scheduler that decays learning rate from $1e-5$ to $1e-12$. The neural field training loop iterates over batches of (2048) coordinates and field values. On a first pass of 20 epochs, the loss \mathcal{L}_{recon} from Equation (5) is fitted. Auxiliary integral losses are trained of such a pretrained model for 100 more epochs, with the whole 5D field as batch.

ConFIG ablations. We ablate multi-objective balancing methods such as Conflict-Free Inverse Gradients by Liu et al. (2024) to attempt to stabilize training on the PINC loss terms. Table 4 compares AdamW training (as reported in Table 1) and neural fields complemented with momentum ConFIG with ordered loss selector. Results are similar, with regular AdamW achieving better physical losses and ConFIG being more stable overall.

Table 4: Ablations of NF trained with AdamW and Conflict-Free Inverse Gradients.

	CR	Compression f			Integrals Q, ϕ		Turbulence $Q^{\text{spec}}, k_y^{\text{spec}}$	
		L1 \downarrow	PSNR \uparrow	BBP \downarrow	L1(Q) \downarrow	PSNR(ϕ) \downarrow	WD(k_y^{spec}) \downarrow	WD(Q^{spec}) \downarrow
PINC-NF (AdamW)	1163 \times	0.32	36.29	0.165	9.75	14.53	0.0057	0.0170
PINC-NF (SGD+ConFIG)	1163 \times	0.29	37.18	0.165	44.23	6.35	0.0164	0.0163

Neural field ablations. A broad range of architectures was explored, starting from SIREN (Sitzmann et al., 2020), WIRE Saragadam et al. (2023) and an MLP with different activations (Fukushima, 1969; Hendrycks & Gimpel, 2023; Elfwing et al., 2017). Table 5 summarizes the search space.

Table 5: Neural field search space summary. w_0 values are only for SIREN and WIRE architectures.

Knob	Range
Activations	Sine, Gabor, ReLU, SiLU, GELU
Coordinate embedding	Linear, SinCos, Discrete
w_0^{initial}	0.1, 0.5, 1.0
w_0^{hidden}	0.5, 2.0, 10.0
Skip connections	Yes, No
Learning rate	$1e-2, 5e-3$

An extensive grid search search was conducted evaluating every combination from Table 5 in the $\sim 1,000 \times$ compression regime, on 12 randomly sampled density fields f from four different tra-

1296 jectors. For simplicity we use PSNR of f as the selection metric. All models are trained for 10
 1297 epochs using the AdamW optimizer [Loshchilov & Hutter \(2019\)](#) with a batch size of 2048. A total
 1298 of $12 \cdot 36$ (SIREN) + $12 \cdot 18$ (WIRE) + $12 \cdot 18$ (MLP) = 864 neural fields were trained for this ablation.
 1299 The results from Tables 6, 7, and 8 suggest that MLP with SiLU activation, skip connections and
 1300 discrete index embedding is the most performant setup, as well as the fastest and easiest to tune.

Table 6: MLP grid search combinations.

Activation	Embedding	Skip	Learning rate	f PSNR
SiLU	Discrete	Yes	$5e-3$	40.53
GELU	Discrete	Yes	$5e-3$	40.12
SiLU	Discrete	No	$5e-3$	40.11
GELU	Discrete	No	$5e-3$	39.96
ReLU	Discrete	Yes	$5e-3$	39.24
ReLU	Discrete	No	$5e-3$	38.83
GELU	Linear	No	$5e-3$	37.06
SiLU	SinCos	No	$5e-3$	36.88
GELU	SinCos	No	$5e-3$	36.78
GELU	Linear	Yes	$5e-3$	36.7
SiLU	Linear	No	$5e-3$	36.47
GELU	SinCos	Yes	$5e-3$	36.44
SiLU	Linear	Yes	$5e-3$	36.09
SiLU	SinCos	Yes	$5e-3$	35.18
ReLU	SinCos	Yes	$5e-3$	35.1
ReLU	SinCos	No	$5e-3$	34.68
ReLU	Linear	No	$5e-3$	34.45
ReLU	Linear	Yes	$5e-3$	34.4

1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361

Table 7: SIREN grid search combinations.

Embedding	w_0^{initial}	w_0^{hidden}	Skip	Learning rate	f PSNR
Discrete	0.1	0.5	Yes	$5e-3$	40.48
Discrete	0.5	0.5	Yes	$5e-3$	40.34
Discrete	0.5	0.5	No	$5e-3$	40.04
Discrete	0.1	0.5	No	$5e-3$	39.97
SinCos	0.5	2.0	Yes	$5e-3$	38.24
SinCos	0.1	2.0	Yes	$5e-3$	38.19
SinCos	0.5	0.5	No	$5e-3$	37.22
SinCos	0.1	0.5	No	$5e-3$	37.2
SinCos	0.1	0.5	Yes	$5e-3$	36.23
SinCos	0.5	0.5	Yes	$5e-3$	36.23
SinCos	0.1	2.0	No	$5e-3$	32.58
Discrete	0.1	2.0	No	$5e-3$	29.41
SinCos	0.1	5.0	Yes	$5e-3$	24.16
SinCos	0.1	5.0	No	$5e-3$	24.16
Discrete	0.1	5.0	No	$5e-3$	24.16
Discrete	0.1	2.0	Yes	$5e-3$	24.16
Discrete	0.5	2.0	Yes	$5e-3$	24.16
Discrete	0.1	5.0	Yes	$5e-3$	24.16
Discrete	1.0	0.5	Yes	$5e-3$	10.1
Discrete	1.0	0.5	No	$5e-3$	10.03
SinCos	1.0	2.0	Yes	$5e-3$	9.57
SinCos	1.0	0.5	No	$5e-3$	9.29
SinCos	1.0	0.5	Yes	$5e-3$	9.04
SinCos	1.0	2.0	No	$5e-3$	8.74
SinCos	0.5	2.0	No	$5e-3$	8.43
Discrete	1.0	2.0	No	$5e-3$	6.99
Discrete	0.5	2.0	No	$5e-3$	6.94
Discrete	1.0	2.0	Yes	$5e-3$	6.08
SinCos	1.0	5.0	Yes	$5e-3$	6.04
SinCos	0.5	5.0	Yes	$5e-3$	6.04
Discrete	0.5	5.0	No	$5e-3$	6.04
SinCos	1.0	5.0	No	$5e-3$	6.04
Discrete	1.0	5.0	No	$5e-3$	6.04
SinCos	0.5	5.0	No	$5e-3$	6.04
Discrete	1.0	5.0	Yes	$5e-3$	6.04
Discrete	0.5	5.0	Yes	$5e-3$	6.04

1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420

1421
 1422

Table 8: WIRE grid search combinations.

Embedding	w_0^{initial}	w_0^{hidden}	Learning rate	f	PSNR
Discrete	0.5	2.0	$1e-2$	29.33	
Discrete	0.1	2.0	$1e-2$	27.96	
Discrete	0.5	0.5	$1e-2$	27.9	
Discrete	0.1	0.5	$1e-2$	27.83	
Linear	0.1	2.0	$1e-2$	24.16	
Linear	0.1	5.0	$1e-2$	24.16	
Linear	0.1	0.5	$1e-2$	24.16	
Linear	0.5	0.5	$1e-2$	24.16	
Linear	0.5	2.0	$1e-2$	24.16	
Linear	0.5	5.0	$1e-2$	24.16	
Discrete	1.0	0.5	$1e-2$	7.65	
Discrete	1.0	2.0	$1e-2$	7.34	
Linear	1.0	0.5	$1e-2$	6.04	
Linear	1.0	2.0	$1e-2$	6.04	
Linear	1.0	5.0	$1e-2$	6.04	
Discrete	0.1	5.0	$1e-2$	nan	
Discrete	0.5	5.0	$1e-2$	nan	
Discrete	1.0	5.0	$1e-2$	nan	

1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458
1459

C.7 EXTRA RESULTS

1460
1461
1462
1463Table 9: Missing metrics from Table 1. Evaluation on 60 total f s (10 different turbulent trajectories, six random time snapshots), sampled in the statistically steady phase. Errors in data space. Best result in bold, second best underlined.1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475

	Integrals ϕ		Turbulence $Q^{\text{spec}}, k_y^{\text{spec}}$		
	$L1(\phi) \downarrow$	$PC(\overline{k_y^{\text{spec}}}) \uparrow$	$PC(\overline{Q^{\text{spec}}}) \uparrow$	$L1(\overline{k_y^{\text{spec}}}) \uparrow$	$L1(\overline{Q^{\text{spec}}}) \uparrow$
ZFP	1025.50	0.8950	-0.1562	332832.3125	87.3532
Wavelet	642.32	0.8953	-0.9439	237414.7031	86.9227
PCA	379.48	0.8951	0.7033	68666.2891	61.5661
JPEG2000	1627.20	0.8939	-0.0161	801974.5000	86.1083
NF	79.88	0.9246	0.9727	2038.9197	<u>45.7231</u>
PINC-NF	18.10	0.9888	<u>0.9660</u>	56.6920	43.7608
PINC-AE + EVA	307.33	0.9520	0.5341	38401.5508	70.8733
PINC-VQ-VAE + EVA	<u>39.55</u>	<u>0.9530</u>	0.7334	<u>251.5966</u>	59.9805

1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491Figure 8: Extra models for the energy cascade (left Figure 5). The three time snapshots at $[8.4, 16.4, 24.4]R/V_r$ are specifically sampled in the transitional phase where mode growth and energy cascade happens, before reaching the statistically stable phase. Visualized as the energy transfer from higher to lower modes as turbulence develops. Columns are different trajectories, rows are compression methods, lines of varied colors are the k_y^{spec} at specific timesteps, and transparent lines are respective ground truth.1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Table 10: Timing details for neural and traditional compression, in seconds. GPU: single NVIDIA A40 (48GB), CPU: Intel Xeon Platinum 8168, 96 cores, 2.70GHz.

Model	Offline compute	Compress [s]	Decompress [s]	Device
NF	-	96.3	0.260	GPU
AE	$\sim 4 \times 60\text{h} + 28\text{h}$	0.377	0.023	GPU
VQ-VAE	$\sim 4 \times 60\text{h} + 28\text{h}$	0.425	0.027	GPU
ZFP	-	0.144	0.066	CPU
Wavelet	-	1.30	0.804	CPU
PCA	-	0.377	0.149	CPU
JPEG2000	-	4.17	0.261	CPU

Figure 9: Extra models for the Q spectra (right Figure 5). The three time snapshots at $[8.4, 16.4, 24.4]R/V_r$ are specifically sampled in the transitional phase where mode growth and energy cascade happens, before reaching the statistically stable phase. Visualized as the energy transfer from higher to lower modes as turbulence develops. Columns are different trajectories, rows are compression methods, lines of varied colors are the Q^{spec} at specific timesteps, and transparent lines are respective ground truth.

Figure 10: Full PSNR scaling plot with missing curves from Figure 2a

Figure 11: Full physics scaling plot with missing curves from Figure 4b

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

Figure 12: Extra reconstructions for the 5D density function f . CR = $\sim 1,000\times$. Each row is a different trajectory at timestep $176.4R/V_r$. Columns match Figure 13.

1665

1666

1667

1668

1669

1670

1671

1672

1673

Figure 13: Extra reconstructions for the 3D electrostatic potential ϕ . CR = $\sim 1,000 \times$. Each row is a different trajectory at timestep $176.4R/V_r$. Columns match Figure 12.