
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PHYSICS-PRESERVING COMPRESSION OF HIGH-
DIMENSIONAL PLASMA TURBULENCE SIMULATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

High-fidelity scientific simulations are now producing unprecedented amounts of
data, creating a storage and analysis bottleneck. A single simulation can generate
tremendous data volumes, often forcing researchers to discard valuable informa-
tion. A prime example of this is plasma turbulence described by the Gyrokinetic
equations: nonlinear, multiscale, and 5D in phase space. They represent one of
the most computationally demanding frontiers of modern science, with runs tak-
ing weeks and resulting in tens of terabytes of data dumps. The increasing storage
demands underscore the importance of compression, however, compressed snap-
shots might not preserve essential physical characteristics after reconstruction. To
assess whether such characteristics are captured, we propose a unified evaluation
pipeline which accounts for spatial phenomena and multi-scale transient fluctua-
tions. Indeed, we find that various compression techniques lack preservation of
temporal turbulence characteristics. Therefore, we explore Physics-Inspired Neu-
ral Compression (PINC), which incorporates physics-informed losses tailored to
gyrokinetics and enables extreme compressions of up to 70,000×. This direc-
tion provides a viable and scalable solution to the prohibitive storage demands of
gyrokinetics, enabling post-hoc analyses that were previously infeasible.

1 INTRODUCTION

Scientific computing is on the cusp of entering an era of high-fidelity simulations across various
domains, such as plasma physics (Fedeli et al., 2022; Chang et al., 2024; Dominski et al., 2024;
Kelling et al., 2025), weather and climate modelling (Govett et al., 2024; Bodnar et al., 2024),
astrophysics (Grete et al., 2025), and beyond. This progress is driven by advancements in High-
Performance Computing (HPC): hardware accelerators, exascale computing systems, and scalable
numerical solvers are pushing the horizon of what can be computed. These developments allow
practitioners to move beyond reduced numerical approaches and attempt high-fidelity simulations,
which are essential to accurately capture the underlying physics of complex systems. A striking
instance of such simulations is gyrokinetics (Frieman & Chen, 1982; Krommes, 2012; Peeters et al.,
2009), a five-dimensional (5D) nonlinear system that simulates turbulence in magnetised plasmas,
such as those found in magnetically-confined nuclear fusion devices.

Gyrokinetic simulations generate massive data volumes that create a severe storage and analysis
bottleneck. This arises from their 5D nature, combined with the high-resolution needed to model
plasma turbulence. The gyrokinetic equations express the time evolution of particles in a plasma via
a 5D distribution function f ∈ Cv∥×µ×s×x×y , with spatial coordinates x, y, s and velocity-space
coordinates v∥, µ. A single run can produce tens of terabytes of data with snapshots saved at many
time steps. In practice, researchers only store diagnostics, making comprehensive post-hoc analysis
impossible. Compression offers a remedy by reducing the cost of storing full 5D fields. However,
no unified evaluation framework currently exists to assess whether compressed snapshots preserve
transient turbulence dynamics, an essential requirement for post-hoc analysis.

As a solution, we introduce an evaluation framework for transient turbulence characteristics in com-
pressed snapshots of gyrokinetic simulations. To this end, we disentangle transient fluctuations,
which capture energy transfer across time, from spatial quantities, which describe the properties of
a single snapshot. We find that various compression techniques fail to preserve transient turbulence
properties. To this end, we explore PINC for turbulent gyrokinetic data. We consider two paradigms:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

autoencoders (e.g., VQ-VAE (van den Oord et al., 2017)) generalizing on unseen samples, and neural
implicit fields (or representations) (Mildenhall et al., 2020; Park et al., 2019), which typically encode
individual snapshots into network parameters. Unlike conventional compression, PINC enforces the
preservation of key physical quantities, ensuring that downstream scientific analyses remain valid
even at extreme compression rates of over 70,000×.

We demonstrate that PINC achieves extreme storage reduction while preserving transient turbulence
and steady-state spatial characteristics. Both autoencoders and neural fields attain field reconstruc-
tion errors comparable to or better than conventional approaches at the same compression rate, while
significantly improving physics preservation. A predictable rate-distortion scaling is also observed
between compression rate, signal reconstruction and physics fidelity, allowing this trade-off to be
estimated a priori. Lastly, we showcase some additional weight space experiments, further push-
ing the compression levels. Our framework enables detailed analysis of gyrokinetic simulations at
scales previously impractical. In summary, we make the following contributions:

• To assess physics preservation, we present an evaluation pipeline which accounts for spatial
phenomena and multi-scale transient fluctuations prevalent in turbulent dynamics.

• We introduce a novel physics-inspired training curricula for neural compression, PINC in
short. It equips different methods with physical losses designed for gyrokinetics, capturing
both spatial integrals and turbulence characteristics.

2 RELATED WORK

Compression of spatiotemporal data is not a novel topic, and fields such as numerics and HPC
conducted a great deal of research in this direction (Diffenderfer et al., 2019; Lakshminarasimhan
et al., 2011; Lindstrom, 2014; Ballester-Ripoll et al., 2019; Momenifar et al., 2022). Related re-
search exists in the domain of computational plasma physics (Anirudh et al., 2023), in particular
for Particle-In-Cell (PIC) simulations (Birdsall & Langdon, 2005; Tskhakaya, 2008). The most
relevant works include ISABELA (Lakshminarasimhan et al., 2011), an advanced spline method
that promises almost lossless compression of spatiotemporal data of up to 7×; and VAPOR (Choi
et al., 2021), a deep learning method based on autoencoders. Concurrent work Kelling et al. (2025)
proposes streaming pipelines for petascale PIC simulations, learning from data in-transit without
intermediate storage. While PIC resolves the full 6D plasma kinetics, gyrokinetics reduces the
problem to 5D by averaging over fast gyromotion, enabling turbulent simulations too complex for
PIC. Beyond compression methods, a closely related line of work is super-resolution (SR), which
seeks to reconstruct high-resolution fields from coarsened inputs (Fukami et al., 2023; Yang et al.,
2025; Page, 2025). We address the complementary challenge of compactly storing full snapshots.

Implicit Neural Fields encode information in a compact feature space, enabling scalable, grid-
agnostic representation of high-resolution data. They represent continuous signals as coordinate-
based learnable functions (Mildenhall et al., 2020; Park et al., 2019; Dupont et al., 2022a; Mescheder
et al., 2019). In general, neural fields map input coordinates to the respective values of a field, i.e.
fθ : Rd → Rn (Xie et al., 2021). They are usually implemented as MLPs with special activation
functions (Sitzmann et al., 2020; Saragadam et al., 2023; Elfwing et al., 2017). In physics, neural
fields have been applied to time-varying volumetric data compression (Han et al., 2024) and spatio-
temporal dynamics forecasting using implicit frameworks (Serrano et al., 2023), among others.

Physics-Informed Neural Networks (PINNs) combine neural networks with physical constraints
originating from mathematical formulations (Karniadakis et al., 2021). This is typically done by in-
cluding additional loss terms (Raissi et al., 2019; Cai et al., 2021), ensuring that the laws of physics
are obeyed. Physical constraints such as boundary conditions and conservation laws (Baez et al.,
2024) are respected in the learned solutions, and more generally that neural network outputs remain
consistent with the underlying differential equations. They have been especially effective in solv-
ing forward and inverse partial differential equation problems (Raissi et al., 2019). Sitting at the
intersection of PINNs and neural compression, Cranganore et al. (2025) combine neural fields with
Sobolev training (Son et al., 2021; Czarnecki et al., 2017) to achieve impressive compression, tensor
derivative accuracy and high-fidelity reconstruction on storage intensive general relativity data. Our
work evaluates whether compressed representations accurately preserve physics constraints, moti-
vating the need for physics-informed loss terms.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

🔥

Evaluate (time)

Train
(field & integral)

🔥 🔥 🔥

Evaluate (space)

Figure 1: Sketch of the training and evaluation for Physics-Inspired Neural Compression (PINC)
models. Training is done at individual time snapshots for scalability, while evaluation considers
turbulence characteristics, taking both spatial and temporal information into account.

3 METHODS

3.1 EVALUATING PLASMA TURBULENCE

We assess whether compressed representations capture gyrokinetic turbulence using spatial and tem-
poral measures, including potential and flux field integrals and diagnostics.

Integrals. In gyrokinetics, (scalar) heat flux Q ∈ R and real-space electrostatic potential ϕ ∈
Rx×s×y are two core quantities. They describe essential spatial and physical attributes of the density
f . Q and ϕ are integrals of the distribution function f and are formulated as

ϕ = A

∫
J0f dv∥dµ, Q =

∫
B

∫
v2ϕf dv∥dµ dxdyds, (1)

where A,B ∈ Rx×s×y encompass geometric and physical parameters, v ∈ Rv∥×µ is the particle
energy, and J0 denotes the zeroth-order Bessel function. The electrostatic potential ϕ is obtained
by integrating in the velocity-space from f , while the heat flux Q depends on both f and ϕ.

Wavespace distribution (diagnostics). Going further, some derived quantities are used by re-
searchers to determinine the properties of a simulation and for diagnosing the soundness of a given
configuration; they measure how energy and electrostatic fluctuations are distributed across modes
in wavenumber space, and provide a basis for identifying patterns and behaviors that define turbulent
transport in the plasma. In particular, kspec

y ∈ Rky describes the perpendicular scales of turbulence
along y, and Qspec ∈ Rky links turbulent structures to heat transport. They are expressed as convo-
lutions of ϕ and Q,

kspec
y (y) =

∑
s,x

|ϕ̂(x, s, y)|2 , Qspec(y) =
∑

v∥,µ,s,x

Q(v∥, µ, s, x, y) , (2)

where ϕ̂ is the Fourier space electrostatic potential, and Q is the flux field (also in Fourier space)
before applying the outermost integral, which aggregates it to Q. Diagnostics are used to character-
ize turbulence, and can be analyzed both in a time-averaged or transient manner. Time dependency
is used to observe how the energy cascade shifts in the energy to lower modes and vice versa, while
statistically-steady forms (time-averaged, kspec

y and Qspec) define dominant modes. Namely, kspec
y is

the mean turbulent spectrum, and Qspec quantifies the heat flux contribution to turbulent transport.
They are both used by researchers to detect whether turbulence develops and at which scale.

3.2 NEURAL COMPRESSION

We identify two dominant approaches to learned compression, depending on a few key features. The
first approach are autoencoders, with explicit latent space compression at the bottleneck between an

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

encoder and a decoder. Parameters θ are shared across snapshots and time, and a single model Γθ

is trained once on a dataset, and compression is applied to unseen samples. VQ-VAE (van den
Oord et al., 2017) exemplifies autoencoders designed for compression. In contrast, neural implicit
representations overfit an independent set of parameters at each datapoint, for instance across time
[Γθt](0...T). Encoding is implicit in weight-space and reconstruction happens by querying the neural
field. Figure 1 outlines PINC training and evaluation for a trajectory. The complex Mean Squared
Error (cMSE) on the density f is used as reconstruction loss in training

Lrecon =
∑

v∥,µ,x,s,y

∥∥ℜ(f pred − fGT)2 + ℑ(f pred − fGT)2
∥∥2 . (3)

5D autoencoders. Due to the high-dimensional nature of the data, we leverage nD swin layers
(Galletti et al., 2025), based on Shifted Window Attention (Liu et al., 2021), which promise scaling
to higher dimensions. They work by first partitioning the domain in non-overlapping windows,
then performing attention only locally within the window. An autoencoder Γθ : C(v∥,µ,s,x,y) ×
R4 → Cv∥,µ,s,x,y , with Γθ(f , c) = D ◦ E(f , c), encodes the 5D density field f and conditioning
c containing four gyrokinetic parameters (R/LT , R/Ln, q, and ŝ) into a compact latent space,
then decodes it to reconstruct f . Following hierarchical vision transformers (Liu et al., 2021),
the encoder E tiles f into patches and applies interleaved Swin and downsampling layers. At the
bottleneck, channels are downprojected to control the compression rate. The decoder D mirrors this,
with upsampling to restore the original resolution. We apply both regular Autoencoders (AE) and
Vector-Quantized Variational Autoencoders (VQ-VAEs) (van den Oord et al., 2017).

Neural implicit fields. The distribution function f is indexed by a five-tuple of coordinates
(v∥, µ, s, x, y). Specifically, we train a separate coordinate-based Neural Field (NF) Γθt,c : R5 → C
to fit each f c

t at time t of a trajectory configured by c. Indices are encoded with a learnable em-
bedding hashmap (Müller et al., 2022), then passed to an MLP using SiLU (Elfwing et al., 2017),
sine (Sitzmann et al., 2020) or Gabor (Saragadam et al., 2023) activations. Fitting a Γθt,c takes ∼1-
2 minutes (NVIDIA H100), and since we use independent networks for each snapshot, training is
highly parallelizable or can be performed in a staggered, pipelined fashion for data streams.

3.3 PHYSICS-INSPIRED NEURAL COMPRESSION (PINC)

Training on Lrecon alone cannot ensure conservation of physical quantities or turbulent characteris-
tics. Further, due to the limited representation power, lossy compression inevitably discards useful
information if left unconstrained. We supervise on the physical quantities listed in Section 3.1 by
penalizing (absolute) deviations from the ground truth. Integral and wavespace losses are defined as

LQ = |Qpred −QGT|, Lϕ = L1(ϕpred,ϕGT),

Lky
= L1(kspec, pred

y , kspec, GT
y), LQspec = L1(Qspec,pred, Qspec,GT).

(4)

In addition, we introduce a first-order constraint to capture the turbulent energy cascade. In the case
of simulations with a single energy injection scale, the spectra must be monotonically decreasing
after the dominant mode, indexed by the peak wavenumber kpeak. This specific monotonicity loss
can be written as the log-transformed isotonic loss, penalizing negative slopes.

Liso(k) =
1

N − kpeak

N−1∑
kpeak

∣∣∣ log spec(k)− log spec(k)sorted
∣∣∣. (5)

Combining all terms yields the final physics-inspired loss:

LPINC = LQ + Lϕ︸ ︷︷ ︸
Lint

+ Lkspec
y

+ LQspec︸ ︷︷ ︸
Ldiag

+ Liso(k
spec,pred
y) + Liso(Q

spec,pred)︸ ︷︷ ︸
Lgrad

. (6)

As the Q and ϕ integrals require information on the spectral structure of f , in general spanning the
entire phase space, many losses from Equation (6) rely on global quantities. LPINC can be included
in training, but with two caveats: (i) loss terms depend on f ’s mode composition, and (ii) global
loss terms cannot be computed on coordinate-level. We address (i) by applying LPINC after f ’s have
converged, to ensure that structure is present. (ii) is problematic only for local or sparse methods.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

PINC-neural fields. Neural fields fit LPINC continuing optimization after the initial epochs where f
is fit. Multi-objective optimizers offer a more principled training stabilization alternative to sched-
ulers or manual learning rate tweaking. Conflict-Free Inverse Gradients (Liu et al., 2024, ConFIG)
and Augmented Lagrangian Multipliers (Basir & Senocak, 2023) are commonly employed in PINNs
(Berzins et al., 2025), but we focus on ConFIG due to its ease of integration and promising results.
Finally, neural fields are normally trained on small sparse coordinate batches. However, to train on
LPINC gradients must be evaluated on the entire grid.

PINC-autoencoders. Training autoencoders with physics constraints across heterogeneous sam-
ples tends to result in training instabilities; therefore, we employ parameter-efficient fine-tuning to
ensure stability. Specifically, we pre-train the autoencoder on Lrecon, and finetune it on LPINC using
Explained Variance Adaptation (Paischer et al., 2025, EVA), an improved variant of LoRA-style
adapters (Hu et al., 2022). For more training details we refer to Appendix C.3.

4 RESULTS

The neural fields are simple MLPs with SiLU activations (Elfwing et al., 2017), 64 latent dimension,
5 layers and skip connections. The input matrix locations are encoded with a (discrete) learnable
embedding hashmap. Neural fields are fit using AdamW (Loshchilov & Hutter, 2019) with learning
rate decaying between [5e− 3, 1e− 12] (details in Appendix C.4). Results suggest that neural fields
trained with ConFIG are less accurate on physical losses, but lead to a marginally better reconstruc-
tion error (Appendix Table 4). For simplicity, all neural fields reported are trained with AdamW and
no loss balancing, unless specified otherwise. Grid searches and ablations are in Appendix C.4.

As for standard autoencoders and VQ-VAEs, swin tokens are 1024-dimensional, bottleneck dimen-
sion is 32, and the codebook dimension of the VQ-VAE is 128, totaling at ∼152M parameters. Both
are trained and fine-tuned on 6,890 f time snapshots, amounting to around 500GB of data (details
in Appendix B). Compression/reconstruction is subsequently expected to happen out of distribution,
to unseen trajectories. Pre-training takes ∼60 hours (200 epochs, 4× NVIDIA H100) for standard
AE and VQ-VAE. Fine-tuning with EVA weights takes ∼28 hours on one NVIDIA H100 for 120
epochs, adapting ∼4% (6M) of the total parameters. Optimized using Muon (Jordan et al., 2024)
with cosine scheduling of the learning rate between [2e− 4, 4e− 6] (details in Appendix C.3).

We compare with traditional compression based on different techniques: ZFP (Lindstrom, 2014), a
very popular compression method for scientific data relying on block-quantization, Wavelet-based
compression, spatial PCA and JPEG2000 adapted for the 5D data. Baselines are tuned to achieve
compression rates (CRs) of around 1,000× (99.9% size reduction), comparable with neural fields
and vanilla autoencoders. For reference, off-the-shelf traditional techniques such as gzip achieve
a lossless compression ratio of ∼1.1x (8% reduction). Information on baselines can be found in
Appendix C.2. General and more detailed information about runtime can be found in the Appendix,
Table 10. For all visualizations, aspect ratio is set to 2 and does not represent the physical one.

Table 1: Comparison between neural fields, PINC and traditional methods on compression metrics
and physical. Evaluation on 60 total f c

t s (10 turbulent trajectories, 6 random times), sampled in the
statistically steady phase. Errors in data space. Best result in bold, second best underlined.

Compression f Integrals Q,ϕ Turbulence Qspec, kspec
y

CR L1 ↓ PSNR ↑ BBP ↓ L1(Q) ↓ PSNR(ϕ) ↑ WD(kspec
y) ↓ WD(Qspec) ↓

ZFP 991× 0.65 28.66 0.204 87.32 -16.13 0.0228 0.0889
Wavelet 1149× 0.45 32.65 0.209 86.92 -13.42 0.0228 0.0108
PCA 1020× 0.47 31.96 0.188 61.56 -10.79 0.0228 0.0171
JPEG2000 1000× 0.46 34.15 0.192 86.10 -20.63 0.0231 0.0433

NF 1163× 0.29 37.21 0.165 45.72 4.63 0.0172 0.0165
PINC-NF 1163× 0.32 36.29 0.165 9.75 14.53 0.0057 0.0170
PINC-AE (EVA) 1208× 0.89 29.35 0.159 60.58 -1.61 0.0174 0.0361
PINC-VQ-VAE (EVA) 77368× 0.52 32.23 0.002 26.87 9.64 0.0137 0.0105

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

101 102 103 104 105

CR (log)

30

40

50

60

P
S

N
R

 [d
B

]

NF

NF + ZFP

AE

VQ-VAE

ZFP

Wavelet

PCA

JPEG2000

(a) Performance rate scaling.

x/y

Ground Truth NF NF residual Wavelet WFT residual

v /

v /s

s/y

s/x

-3.0e+03

2.6e+03

-5.0e+04

1.4e+04

-2.2e+04

1.3e+04

-8.6e+03

8.7e+03

-4.2e+03

3.0e+03

(b) f along different axes.

Figure 2: (Left) Compression performance rate-distortion as Peak Signal to Noise Ratio (PSNR) on
Compression Rate (CR) on three randomly sampled timesteps from 10 trajectories (30 total sam-
ples). (Right) qualitative visualization as 2D projection of sampled 5D densities f with residuals.

4.1 COMPRESSION

We evaluate all methods on traditional compression metrics, integral, and turbulence errors. To mea-
sure f reconstruction quality after compression, L1 error, Peak Signal-to-Noise-Ratio (PSNR) and
Bits-per-Pixel (BPP) (defined in Appendix C.1) are reported. Integral errors are reported as mean
absolute error of flux Q and potential ϕ after integration of f according to Equation (1). For turbu-
lence evaluation we normalize the time-averaged, kspec

y and Qspec spectra and employ Wasserstein
Distance (WD), which is commonly used as a geometry-aware distance metric and can efficiently
be computed for 1D spectra. We report additional metrics in Table 9.

Table 1 quantitatively summarizes the results of our analysis. At equivalent compression rate (CR),
neural fields and autoencoders improve on traditional methods on compression, as well as integrated
quantities and turbulence metrics. However, especially integral metrics exhibit discrepancies from
the ground-truth. This motivates the need for PINC which imposes a soft-constraint on the optimiza-
tion procedure to preserve such quantities. This is verified by comparing NF to PINC-NF, which
reveals great improvements on integral errors at a modest reconstruction degradation. Furthermore,
WD decreases by an order of magnitude for kspec

y . Interestingly, we do not observe an improvement
on Qspec, possibly due to competing objectives. Qualitative examples of reconstructions for f and
ϕ are in Figure 2b and Figure 4, and extra projections are in Appendix at Figure 12 and 13.

Performance-Rate scaling. To assess how reconstruction quality scales across compression levels,
we train a series of neural fields and autoencoders with progressively larger parameter counts and
latent sizes. Training neural fields remains relatively inexpensive, whereas autoencoders become un-
feasible in terms of both GPU memory and runtime at lower CRs. Consequently, we train only six
autoencoders in total (three standard and three VQ-VAEs), all at comparatively high CRs (>1,000×).
Findings reported in Figure 2 suggest that both learned methods present a specific "window" of CRs
in which they significantly outperform traditional baselines (namely in the 500 − 10,000× range).
Moreover, neural fields also exhibit a favorable exponential decay (linearly in semilog-x), as op-
posed to super-exponential of others (polynomial in semilog-x). This is supported by neural field
compression on other modalities (Dupont et al., 2022b; Bauer et al., 2023). In terms of recon-
struction quality, at lower rates (< 200×) neural compression cannot reliably match wavelets or
JPEG2000, and at extreme CRs (> 40,000×) they are comparable.

4.2 PHYSICS AND TURBULENCE PRESERVATION

Physical losses ablations. We verify the impact of each loss term described in Equation (6) by train-
ing different models on each term in Section 3.1 and Section 3.3 separately, for both autoencoders
and neural fields. Table 3a collects the ablation findings. Training Lint and Ldiag have similar ef-
fects, both improve the integral as well as the diagnostics, with the integral being more informative.
The model still gets valuable information on Q and ϕ from the gradients through Ldiag. In contrast,
Lgrad alone has a destabilizing effect, and is only effective when combined with other losses as it

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Loss f LQ Lϕ Lkspec
y

LQspec

NF

Lrecon 38.89 48.59 4.45 3.71 1.52
+Lint 36.68 10.35 2.55 1.61 1.42
+Ldiag 38.76 41.39 2.25 1.67 1.32
+Lgrad 37.29 63.94 44.18 * 2.0
+LPINC 38.28 28.03 1.41 0.24 1.41

VQ-VAE
Lrecon 26.96 86.21 * * 91.68

+LPINC 27.73 85.06 103.50 * *
+ EVA +LPINC 32.21 27.73 40.81 284.96 59.84

(a) PINC losses ablation table.

101

102

Q

NF

ZFP

Wavelet

PCA

JPEG2000

VQ-VAE

VQ-VAE + EVA

101 102 103 104 105

CR (log)

101

102

103

Q

(b) Physics performance rate scaling.

Figure 3: (Left) ablations of the PINC losses (colored blocks) from Equation (6) for neural fields and
autoencoders. Both on three randomly sampled timesteps from 10 trajectories (30 total samples).
PSNR reported for f . * means > 100× larger than column average. Bold numbers are per model
class. (Right) Physical losses scaling as LQ (top) and Lϕ (bottom) on Compression Rate (log-log).
∆L PINC improvement for VQ-VAE + EVA is reported with the downward arrow.

is dependent on how accurately the diagnostics (and integrals) are captured. Finally, the composite
LPINC = Lint + Ldiag + Lgrad gathers benefits of each component.

Overall both classes of methods greatly improve performance on physical losses when trained on
LPINC, while slightly decreasing f PSNR. The degradation in reconstruction observed for neural
fields is connected to the interpretation of the physical loss scaling behaviors (Section 4.2): as min-
imizing LPINC shifts the modes to ones relevant for integrals and diagnostics, some of the dominant
ones of f become less represented and the decoded quality slightly degrades. While neural field
training is generally consistent, for autoencoders severe instabilities emerge when training jointly
on Lrecon + LPINC. Our EVA finetuning procedure is consistently outperforming and more stable
than directly training on LPINC (bottom of Table 3a).

Physical scaling. Similarly to Figure 2a for rate-distortion for the distribution function
f , Figure 3b shows scaling for heat flux Q and electrostatic potential ϕ integral losses as
CR is changed. Figure 4 shows projections of the 3D ϕ integral and residuals (CR =∼
1,000×). Traditional compression struggles to capture ϕ even at low CR, while models trained
on Equation (6) as well as the reconstruction loss (Equation (3)) yield reasonable reconstruction.

Ground Truth NF NF residual Wavelet WFT residual

s/y

x/y

x/s

-2.2e+01

2.1e+01

-8.1e+00

9.6e+00

-1.6e+01

1.6e+01

Figure 4: ϕ 3D projections.

A possible interpretation is that, since modeling
capacity is constrained by high compression,
the available "entropy" gets allocated across
modes, according to the encoding algorithm.
In neural networks, the spectral bias (Rahaman
et al., 2019) of MSE training (Equation (3)) im-
plies that high-energy components have priority
during training, while lower-energy modes con-
verge slower. PINC appears to redistribute some of the energy to more physically relevant modes.
For example, the heat flux integral masks low frequencies and rescales high frequencies, giving them
more importance.

Recovering turbulence. Figure 5 shows how well different models capture the direct energy cas-
cade phenomena across different simulations (energy shifting to lower modes over time), by visu-
alizing the per-timestep spectras kspec

y and Qspec in a log-log plot. The Figure provides a qualitative
comparison of turbulence recovery on the temporal axis, in contrast to the steady-state statistics
reported in Table 1. The time snapshots examined in Figure 5 ([25.2, 49.2, 73.2]R/Vr) are sam-
pled in the transitional phase where turbulence grows, at the so called overshoot. These timesteps
are different to those in Table 1 (random in the saturated phase). On kspec

y , traditional compression
methods already achieve reasonable performance in most cases, but on Qspec they produce severely
nonphysical results (flat curves, negative numbers). Another observation is that, even though non-
ML methods have fairly low Wasserstein distance in Table 1, this is not reflected at the overshoot.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

100 101

10 2

100

100 101
10 2

10 1

100 N
F

100 101

10 2

100

100 101

10 2

100

V
Q
-V
A
E

100 101

10 2

100
|
(k

y
)|
2

100 101

10 2

100 Z
FP

100 101

ky

10 2

100

100 101

ky

10 2

100 P
C
A

t=8.4R/Vr t=16.4R/Vr t=24.4R/Vr

100 101

10 2

100

100 101

10 3

10 1

101

100 101

10 9

10 3Q
(k

y
)

100 101

ky

10 3

10 1

101

100 101

10 3

10 1

101

100 101

10 2

100

100 101

10 3

10 1

101

100 101

ky

10 3

10 1

101

Figure 5: Energy cascade visualized as the transfer from higher to lower modes as turbulence devel-
ops. The three time snapshots at [25.2, 49.2, 73.2]R/Vr are sampled in the transitional phase where
mode growth and energy cascade happens, before reaching the stable state. Pairs of columns are
two different trajectories for kspec

y (left) and Qspec (right), rows are compression methods. Lines of
varied colors are the spectras at specific times, and background lines are respective ground truth.

In contrast, neural fields and VQ-VAE can reproduce the overall profiles consistently, with VQ-VAE
excelling at the flux spectra. However, both often fail to capture the higher-frequency magnitudes.
The behaviors can be attributed to the spectral bias of neural networks (Rahaman et al., 2019; Teney
et al., 2025), where low-frequency (high-energy) components are favored over high-frequencies.
Appendix C.5 shows additional cascade plots for all methods and trajectories.

4.3 REPRESENTATION SPACE EXPERIMENTS

Hybrid compression. Neural methods can further improve the compression rate if coupled with
traditional techniques applied in weight space. Similarly to how data can be compressed into a
low dimensional representation, network weights are redundant and also lie on a lower-dimensional
manifold. This is related to pruning (LeCun et al., 1990; Han et al., 2015), network compression
(Hershcovitch et al., 2024), and the lottery ticket hypothesis (Frankle & Carbin, 2019).

Table 2: Hybrid compression.

Metric ZFP ZipNN

Extra CR 2.1× 1.2×
∆ PSNR (f) ↑ +2e-4% 0%
∆ L1 (Q) ↓ +8e-3% 0%
∆ L1 (ϕ) ↓ +9.5% 0%

Improved compression can be achieved either with (lossless) en-
tropy coding (Hershcovitch et al., 2024) or (lossy) quantization
methods (Lindstrom, 2014). We apply both to neural fields and
present findings in Table 2. ZipNN is lossless and does not induce
any change in performance, while providing a modest improve-
ment in CR. ZFP is lossy with a tolerance of 10−3, leading to
minor performance degradation and a 2.1× improved CR. Both
results are averaged on 60 random samples from 10 trajectories. We also show NF + ZFP in Fig-
ure 2a. It closely follows the slope of NF, but is shifted to the right, achieving better CR. Notably, at
the higher regimes they appear to converge, suggesting diminishing returns.

Latent (and weight space) interpolation. Representational consistency and compactness over
different snapshots is a desired property of compression methods. It enables temporal coarsening
(Ohana et al., 2024; Toshev et al., 2023) by interpolation in weight/latent space resulting in addi-
tional gains in CR as not every single snapshot needs to be compressed. To this end, we design an
experiment to assess whether PINC models exhibit representational consistency across time. We en-
code two extremes fa,fb separated by ∆T and reconstruct intermediates ft for t = a, a+dT, . . . , b
by linearly interpolating the representations (latents or weights) Zfa

and Zfb
.

For standard autoencoders, latent-space interpolation is a common practice (Berthelot* et al., 2019).
In the case of VQ-VAEs, the latents are interpolated before quantization to produce more accurate
reconstructions. It is not as straightforward for neural fields, as the parameters are not necessarily
canonically ordered and exhibit various neuron symmetries (Hecht-Nielsen, 1990; Godfrey et al.,
2022). To address this, we use a meta neural field trained on all extremes before finetuning it on
each of them separately, ensuring shared initialization and improving alignment. This is similar to
the initialization strategy used by Luigi et al. (2023) and Erkoç et al. (2023) to generate an aligned
dataset of neural fields.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model PSNR L1

Extremes 16.7 0.87
f (data) 19.6 0.73

NF (weights) 18.9 0.76
AE (latents) 18.5 0.99
VQ-VAE (latents) 20.5 0.69

(a) Interpolation inputs.

t = 40.4R/Vr t = 42.4R/Vr t = 44.4R/Vr t = 46.4R/Vr t = 48.4R/Vr

x/y

v /s

W
eight space

x/y

v /s

Data space

x/y

v /s

Ground truth

(b) Interpolated slice visualization over time.

Figure 6: (Left) time coarsening on the middle snapshot tm = tl +
∆T
2 , showing that representation

interpolation outperforms using extremes and is comparable to data space. Results are averaged on
50 (unseen) midpoints on 10 trajectories, with ∆T = 8R/Vr. (Right) Qualitative visualization of
5D f slices interpolated over time, between the two extremes at t = 40.4R/Vr and t = 48.4R/Vr.

Figure 6a provides compelling evidence that linearly interpolating in representation space improves
over simply taking the extremes, and approximates linear interpolation in data space. Figure 6b
illustrates intermediate reconstructions over time as progressive interpolation between Zfa

and Zfb
.

However, because the underlying simulations are highly nonlinear accurate linear interpolation is
unlikely, hence the low reported PSNR. Regardless, we reckon that these results shows that learned
representations are compact and self-consistent over time.

5 CONCLUSIONS

Our study provides compelling evidence that Physics-Inspired Neural Compression (PINC) im-
proves compression rate while maintaining underlying characteristics for gyrokinetic simulations
of plasma turbulence. This is achieved by constraining training to maintain integral quantities and
spectral shapes across key dimensions of the 5D fields. We anticipate that this approach can poten-
tially be extended to other scientific domains, enabling practitioners to store compressed simulations
that accurately capture specified physical phenomena across time and space, something previously
infeasible due to storage requirements. These tools could considerably improve data accessibility
and transfer, accelerating research across scientific communities.

Our work paves the way for fruitful future avenues. The compression methods presented in this
work could be combined with neural operators, nonlinearly evolving them in time. A major benefit
of this is a significant reduction in dataset size required to train a surrogate model. Orthogonally,
exploring physics-inspired "functasets" (Dupont et al., 2022a; Jo et al., 2025) could be a valuable
direction to further improve compression of neural fields for transient simulations and enable in-
transit processing of data. Related approaches in this regard include continual learning (Yan et al.,
2021; Woo et al., 2025), and in general ways to incorporate temporal dynamics into the training to
enable on-the-fly (in-situ) compression of simulation snapshots.

Limitations. First, we do not incorporate temporal information during PINC training, which we
expect to especially improve on temporal consistency.Due to the computational complexity of train-
ing all methods we leave this avenue to future work. Second, our current temporal evaluation of
turbulence is qualitative, while spatial evaluation is quantitative. Introducing a temporal metric that
captures the characteristics of turbulence requires in-depth investigation, therefore we believe it de-
serves its own line of research. Second, the computational requirements are substantial. This is
mirrored in the training times for autoencoders and neural fields (Table 10). Even for neural fields,
compression times are rather high and a modest GPU is required. Finally, the proposed physics-
informed losses are specific to gyrokinetics, limiting transferability to other scientific domains be-
yond plasma physics.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Training and experiment code is submitted as a zip file in the supplementary materials. It contains
autoencoders, neural fields and baseline implementation, as well as the configuration files used to
obtain the paper results. The readme briefly outlines the code structure and describes how to start
autoencoder/neural field training runs. Some further information on training is already present in
the Method and Results sections, as well as dedicated sections in the Appendix. Unfortunately, the
dataset is not easily distributable due to it’s size. It was generated with the GKW (Peeters et al., 2009)
flux tube gyrokinetic numerical solver, as detailed in Appendix B. A template for the configuration
file used by GKW to start a run is included in the supplementary materials (data_generation/
directory. Parameter ranges used to generate the dataset are included both in the supplementary as
well as in Appendix B for transparency.

REFERENCES

Rushil Anirudh, Rick Archibald, M. Salman Asif, Markus M. Becker, Sadruddin Benkadda, Peer-
Timo Bremer, Rick H. S. Budé, C. S. Chang, Lei Chen, R. M. Churchill, Jonathan Citrin, Jim A.
Gaffney, Ana Gainaru, Walter Gekelman, Tom Gibbs, Satoshi Hamaguchi, Christian Hill, Kelli
Humbird, Sören Jalas, Satoru Kawaguchi, Gon-Ho Kim, Manuel Kirchen, Scott Klasky, John L.
Kline, Karl Krushelnick, Bogdan Kustowski, Giovanni Lapenta, Wenting Li, Tammy Ma, Nigel J.
Mason, Ali Mesbah, Craig Michoski, Todd Munson, Izumi Murakami, Habib N. Najm, K. Erik J.
Olofsson, Seolhye Park, J. Luc Peterson, Michael Probst, David Pugmire, Brian Sammuli, Kapil
Sawlani, Alexander Scheinker, David P. Schissel, Rob J. Shalloo, Jun Shinagawa, Jaegu Seong,
Brian K. Spears, Jonathan Tennyson, Jayaraman Thiagarajan, Catalin M. Ticoş, Jan Trieschmann,
Jan van Dijk, Brian Van Essen, Peter Ventzek, Haimin Wang, Jason T. L. Wang, Zhehui Wang,
Kristian Wende, Xueqiao Xu, Hiroshi Yamada, Tatsuya Yokoyama, and Xinhua Zhang. 2022
review of data-driven plasma science. IEEE Transactions on Plasma Science, 51(7):1750–1838,
July 2023. ISSN 1939-9375. doi: 10.1109/tps.2023.3268170.

Anthony Baez, Wang Zhang, Ziwen Ma, Subhro Das, Lam M. Nguyen, and Luca Daniel. Guaran-
teeing conservation laws with projection in physics-informed neural networks, 2024.

Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. Tthresh: Tensor compression for
multidimensional visual data. IEEE Transaction on Visualization and Computer Graphics, to
appear, 2019. arXiv:1806.05952.

Shamsulhaq Basir and Inanc Senocak. An adaptive augmented lagrangian method for training
physics and equality constrained artificial neural networks, 2023.

Matthias Bauer, Emilien Dupont, Andy Brock, Dan Rosenbaum, Jonathan Richard Schwarz, and
Hyunjik Kim. Spatial functa: Scaling functa to imagenet classification and generation. arXiv
preprint arXiv: 2302.03130, 2023.

David Berthelot*, Colin Raffel*, Aurko Roy, and Ian Goodfellow. Understanding and improv-
ing interpolation in autoencoders via an adversarial regularizer. In International Conference on
Learning Representations, 2019.

Arturs Berzins, Andreas Radler, Eric Volkmann, Sebastian Sanokowski, Sepp Hochreiter, and Jo-
hannes Brandstetter. Geometry-informed neural networks, 2025.

C. K. Birdsall and A. B. Langdon. Plasma physics via computer simulation. New York: Taylor and
Francis, first edition, 2005.

Cristian Bodnar, Wessel P. Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan A. Weyn, Haiyu Dong, Anna Vaughan, Jayesh K. Gupta, Kit
Thambiratnam, Alex Archibald, Elizabeth Heider, Max Welling, Richard E. Turner, and Paris
Perdikaris. Aurora: A foundation model of the atmosphere. CoRR, abs/2405.13063, 2024. doi:
10.48550/ARXIV.2405.13063.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-
informed neural networks (pinns) for fluid mechanics: A review, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

C.S. Chang, S. Ku, R. Hager, J. Choi, D. Pugmire, S. Klasky, A. Loarte, and R.A Pitts. Role of
turbulent separatrix tangle in the improvement of the integrated pedestal and heat exhaust issue
for stationary-operation tokamak fusion reactors. Nuclear Fusion, 64(5):056041, apr 2024. doi:
10.1088/1741-4326/ad3b1e.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. GradNorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In Jennifer Dy and Andreas
Krause (eds.), Proceedings of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp. 794–803. PMLR, 10–15 Jul 2018.

Jong Choi, Michael Churchill, Qian Gong, Seung-Hoe Ku, Jaemoon Lee, Anand Rangarajan, Sanjay
Ranka, Dave Pugmire, CS Chang, and Scott Klasky. Neural data compression for physics plasma
simulation. In Neural Compression: From Information Theory to Applications – Workshop @
ICLR 2021, 2021.

C. A. Christopoulos, T. Ebrahimi, and A. N. Skodras. Jpeg2000: the new still picture compression
standard. In Proceedings of the 2000 ACM Workshops on Multimedia, MULTIMEDIA ’00, pp.
45–49, New York, NY, USA, 2000. Association for Computing Machinery. ISBN 1581133111.
doi: 10.1145/357744.357757.

Sandeep Suresh Cranganore, Andrei Bodnar, Arturs Berzins, and Johannes Brandstetter. Einstein
fields: A neural perspective to computational general relativity, 2025.

Wojciech Marian Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan Pas-
canu. Sobolev training for neural networks. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, pp. 4281–4290, Red Hook, NY, USA, 2017.
Curran Associates Inc. ISBN 9781510860964.

James Diffenderfer, Alyson L Fox, Jeffrey A Hittinger, Geoffrey Sanders, and Peter G Lindstrom.
Error analysis of zfp compression for floating-point data. SIAM Journal on Scientific Computing,
41(3):A1867–A1898, 2019.

J. Dominski, C. S. Chang, R. Hager, S. Ku, E. S. Yoon, and V. Parail. Neoclassical transport of
tungsten ion bundles in total-f neoclassical gyrokinetic simulations of a whole-volume jet-like
plasma. Physics of Plasmas, 31(3):032303, 03 2024. ISSN 1070-664X. doi: 10.1063/5.0144509.

Emilien Dupont, Hyunjik Kim, S. M. Ali Eslami, Danilo Rezende, and Dan Rosenbaum. From
data to functa: Your data point is a function and you can treat it like one. arXiv preprint
arXiv:2201.12204, 2022a. Preprint.

Emilien Dupont, Hrushikesh Loya, Milad Alizadeh, Adam Goliński, Yee Whye Teh, and Arnaud
Doucet. Coin++: Neural compression across modalities, 2022b.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning, 2017.

Ziya Erkoç, Fangchang Ma, Qi Shan, Matthias Nießner, and Angela Dai. Hyperdiffusion: Generat-
ing implicit neural fields with weight-space diffusion, 2023.

Luca Fedeli, Axel Huebl, France Boillod-Cerneux, Thomas Clark, Kevin Gott, Conrad Hillairet,
Stephan Jaure, Adrien Leblanc, Rémi Lehe, Andrew Myers, Christelle Piechurski, Mitsuhisa Sato,
Neïl Zaim, Weiqun Zhang, Jean-Luc Vay, and Henri Vincenti. Pushing the frontier in the design
of laser-based electron accelerators with groundbreaking mesh-refined particle-in-cell simulations
on exascale-class supercomputers. In SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–12, 2022. doi: 10.1109/SC41404.2022.
00008.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks, 2019.

EA Frieman and Liu Chen. Nonlinear gyrokinetic equations for low-frequency electromagnetic
waves in general plasma equilibria. The Physics of Fluids, 25(3):502–508, 1982.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kai Fukami, Koji Fukagata, and Kunihiko Taira. Super-resolution analysis via machine learning:
a survey for fluid flows. Theoretical and Computational Fluid Dynamics, 37(4):421–444, June
2023. ISSN 1432-2250. doi: 10.1007/s00162-023-00663-0.

Kunihiko Fukushima. Visual feature extraction by a multilayered network of analog threshold
elements. IEEE Transactions on Systems Science and Cybernetics, 5(4):322–333, 1969. doi:
10.1109/TSSC.1969.300225.

Gianluca Galletti, Fabian Paischer, Paul Setinek, William Hornsby, Lorenzo Zanisi, Naomi Carey,
Stanislas Pamela, and Johannes Brandstetter. 5d neural surrogates for nonlinear gyrokinetic sim-
ulations of plasma turbulence, 2025.

Charles Godfrey, Davis Brown, Tegan Emerson, and Henry Kvinge. On the symmetries of deep
learning models and their internal representations. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 11893–11905. Curran Associates, Inc., 2022.

Mark Govett, Bubacar Bah, Peter Bauer, Dominique Berod, Veronique Bouchet, Susanna Corti,
Chris Davis, Yihong Duan, Tim Graham, Yuki Honda, Adrian Hines, Michel Jean, Junishi Ishida,
Bryan Lawrence, Jian Li, Juerg Luterbacher, Chiasi Muroi, Kris Rowe, Martin Schultz, Martin
Visbeck, and Keith Williams. Exascale computing and data handling: Challenges and opportu-
nities for weather and climate prediction. Bulletin of the American Meteorological Society, 105
(12):E2385 – E2404, 2024. doi: 10.1175/BAMS-D-23-0220.1.

Philipp Grete, Brian W. O’Shea, Forrest W. Glines, Deovrat Prasad, Benjamin D. Wibking, Martin
Fournier, Marcus Brüggen, and Mark Voit. The xmagnet exascale mhd simulations of smbh
feedback in galaxy groups and clusters: Overview and preliminary cluster results, 2025.

Jun Han, Hao Zheng, and Chongke Bi. Kd-inr: Time-varying volumetric data compression via
knowledge distillation-based implicit neural representation. IEEE Transactions on Visualization
and Computer Graphics, 30(10):6826–6838, October 2024. ISSN 1077-2626. doi: 10.1109/
TVCG.2023.3345373.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Robert Hecht-Nielsen. On the algebraic structure of feedforward network weight spaces. In Rolf
ECKMILLER (ed.), Advanced Neural Computers, pp. 129–135. North-Holland, Amsterdam,
1990. ISBN 978-0-444-88400-8. doi: https://doi.org/10.1016/B978-0-444-88400-8.50019-4.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

Moshik Hershcovitch, Andrew Wood, Leshem Choshen, Guy Girmonsky, Roy Leibovitz, Ilias En-
nmouri, Michal Malka, Peter Chin, Swaminathan Sundararaman, and Danny Harnik. Zipnn:
Lossless compression for ai models. arXiv preprint arXiv:2411.05239, 2024.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Minju Jo, Woojin Cho, Uvini Balasuriya Mudiyanselage, Seungjun Lee, Noseong Park, and Kookjin
Lee. Pdefuncta: Spectrally-aware neural representation for pde solution modeling, 2025.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021. ISSN 2522-
5820. doi: 10.1038/s42254-021-00314-5.

Jeffrey Kelling, Vicente Bolea, Michael Bussmann, Ankush Checkervarty, Alexander Debus, Jan
Ebert, Greg Eisenhauer, Vineeth Gutta, Stefan Kesselheim, Scott Klasky, Vedhas Pandit, Richard
Pausch, Norbert Podhorszki, Franz Poschel, David Rogers, Jeyhun Rustamov, Steve Schmerler,
Ulrich Schramm, Klaus Steiniger, Rene Widera, Anna Willmann, and Sunita Chandrasekaran.
The artificial scientist – in-transit machine learning of plasma simulations, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John A. Krommes. The gyrokinetic description of microturbulence in magnetized plasmas. Annual
Review of Fluid Mechanics, 44(Volume 44, 2012):175–201, 2012. ISSN 1545-4479. doi: https:
//doi.org/10.1146/annurev-fluid-120710-101223.

Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham, Rob Ross, and
Nagiza F. Samatova. Compressing the incompressible with isabela: In-situ reduction of spatio-
temporal data. In Emmanuel Jeannot, Raymond Namyst, and Jean Roman (eds.), Euro-Par 2011
Parallel Processing, pp. 366–379, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN
978-3-642-23400-2.

Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. Advances in neural
information processing systems, 2, 1990.

Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2674–2683, 2014.

Qiang Liu, Mengyu Chu, and Nils Thuerey. Config: Towards conflict-free training of
physics informed neural networks. In The Thirteenth International Conference on Learning
Representations, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In 2021 IEEE/CVF
International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October
10-17, 2021, pp. 9992–10002. IEEE, 2021. doi: 10.1109/ICCV48922.2021.00986.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Luca De Luigi, Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama Ramirez, Samuele Salti, and
Luigi Di Stefano. Deep learning on implicit neural representations of shapes, 2023.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space, 2019.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
In European Conference on Computer Vision (ECCV), pp. 405–421. Springer, 2020. doi:
10.1007/978-3-030-58452-8_24.

Mohammadreza Momenifar, Enmao Diao, Vahid Tarokh, and Andrew D. Bragg. A physics-
informed vector quantized autoencoder for data compression of turbulent flow. In 2022 Data
Compression Conference (DCC), pp. 01–10, 2022. doi: 10.1109/DCC52660.2022.00039.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Trans. Graph., 41(4):102:1–102:15, July 2022.
doi: 10.1145/3528223.3530127.

Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina Agocs, Miguel Beneitez, Mar-
sha Berger, Blakesly Burkhart, Stuart Dalziel, Drummond Fielding, et al. The well: a large-scale
collection of diverse physics simulations for machine learning. Advances in Neural Information
Processing Systems, 37:44989–45037, 2024.

Jacob Page. Super-resolution of turbulence with dynamics in the loss. Journal of Fluid Mechanics,
1002:R3, 2025. doi: 10.1017/jfm.2024.1202.

Fabian Paischer, Lukas Hauzenberger, Thomas Schmied, Benedikt Alkin, Marc Peter Deisenroth,
and Sepp Hochreiter. Parameter efficient fine-tuning via explained variance adaptation, 2025.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation, 2019.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In 2023 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 4172–4182, 2023. doi: 10.1109/
ICCV51070.2023.00387.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.G. Peeters, Y. Camenen, F.J. Casson, W.A. Hornsby, A.P. Snodin, D. Strintzi, and G. Szepesi.
The nonlinear gyro-kinetic flux tube code gkw. Computer Physics Communications, 180(12):
2650–2672, 2009. ISSN 0010-4655. doi: https://doi.org/10.1016/j.cpc.2009.07.001. 40 YEARS
OF CPC: A celebratory issue focused on quality software for high performance, grid and novel
computing architectures.

Zihan Qiu, Zekun Wang, Bo Zheng, Zeyu Huang, Kaiyue Wen, Songlin Yang, Rui Men, Le Yu, Fei
Huang, Suozhi Huang, Dayiheng Liu, Jingren Zhou, and Junyang Lin. Gated attention for large
language models: Non-linearity, sparsity, and attention-sink-free, 2025.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A. Hamprecht,
Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks, 2019.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019. doi: 10.1016/j.jcp.
2018.10.045.

Vishwanath Saragadam, Daniel LeJeune, Jasper Tan, Guha Balakrishnan, Ashok Veeraraghavan,
and Richard G. Baraniuk. Wire: Wavelet implicit neural representations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023. arXiv
preprint arXiv:2301.05187.

Louis Serrano, Lise Le Boudec, Armand Kassaï Koupaï, Thomas X. Wang, Yuan Yin, Jean-Noël
Vittaut, and Patrick Gallinari. Operator learning with neural fields: Tackling pdes on general
geometries. CoRR, abs/2306.07266, 2023. doi: 10.48550/ARXIV.2306.07266.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. In NeurIPS, 2020. arXiv
preprint arXiv:2006.09661.

Hwijae Son, Jin Woo Jang, Woo Jin Han, and Hyung Ju Hwang. Sobolev training for physics
informed neural networks, 2021.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding, 2023.

Damien Teney, Armand Nicolicioiu, Valentin Hartmann, and Ehsan Abbasnejad. Neural redshift:
Random networks are not random functions, 2025.

Artur P. Toshev, Gianluca Galletti, Fabian Fritz, Stefan Adami, and Nikolaus A. Adams. La-
grangebench: A lagrangian fluid mechanics benchmarking suite, 2023.

David Tskhakaya. The Particle-in-Cell Method, pp. 161–189. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008. ISBN 978-3-540-74686-7. doi: 10.1007/978-3-540-74686-7_6.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Advances in Neural Information Processing Systems (NeurIPS), volume 30, 2017.

Seungyoon Woo, Junhyeog Yun, and Gunhee Kim. Meta-continual learning of neural fields, 2025.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Federico
Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. Neural fields in visual comput-
ing and beyond. CoRR, abs/2111.11426, 2021.

Zike Yan, Yuxin Tian, Xuesong Shi, Ping Guo, Peng Wang, and Hongbin Zha. Continual neural
mapping: Learning an implicit scene representation from sequential observations, 2021.

Gengchao Yang, Renyu Luo, Qinghe Yao, Peiji Wang, and Jinxiu Zhang. Multiscale super-resolution
reconstruction of fluid flows with deep neural networks. arXiv preprint arXiv:2509.14721, 2025.
Preprint.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

LLM USAGE DISCLOSURE

In general, LLM tools were used to refine writing in multiple parts of the paper, such as introduction
and experiment section. This very paragraph is written by a human, polished by GPT-5. Some of the
literature cited in the related work and introduction sections was also fetched by GPT-5. DeepSeek-
R1 and GPT-5 were additionally make visualizations prettier, speed up the development of plotting
functions, and dump results neatly into tables. Beyond that, they were not used to a significant
degree in other parts of the code, as neither Copilot nor Cursor are used by the main author. AI
assistants were strictly editors and decorators – they were not involved in ideation, reordering ideas,
or at any higher or lower conceptual level.

A GYROKINETICS

Gyrokinetics (Frieman & Chen, 1982; Krommes, 2012; Peeters et al., 2009) is a reduced form of
Plasma kinetics that is computationally more efficient and can be use to locally simulate Plasma
behavior within a so-called flux tube in the torus. Local gyrokinetics is a theoretical framework to
study plasma behavior on perpendicular spatial scales comparable to the gyroradius, i.e., the radius
of circular motion exhibited by charged particles in a magnetic field, and frequencies much lower
than the particle cyclotron frequencies, i.e., the frequency at which charged particles spiral around
magnetic field lines due to the Lorentz force. Gyrokinetics models the time evolution of electrons
and ions via the distribution function f , which is based on 3D coordinates, their parallel and per-
pendicular velocities, together with the angle w.r.t. the field lines. However, the latter dimension is
averaged out by modelling only the so-called guiding center of a particle instead of its gyral move-
ment. Furthermore, instead of modelling the perpendicular velocity, usually only its magnitude is
considered, which is also referred to as the magnetic moment µ. Hence, the 5D gyrokinetic distribu-
tion function can be written as f = f(kx, ky, s, v∥, µ), where kx and ky are spectral coordinates, s
is the toroidal coordinate along the field line, and v∥ the parallel velocity component. The perturbed
time-evolution of f , for each species (ions and electrons), is governed by

∂f

∂t
+ (v∥b+ vD) · ∇f − µB

m

B · ∇B

B2

∂f

∂v∥︸ ︷︷ ︸
Linear

+ vχ · ∇f︸ ︷︷ ︸
Nonlinear

= S , (7)

where v∥b is the motion along magnetic field lines, b = B/B is the unit vector along the magnetic
field B with magnitude B1, vD the magnetic drift due to gradients and curvature in B, and vχ

describes drifts arising from the E × B force, a key driver of plasma dynamics. Finally, S is the
source term that represents the external supply of energy. The term vχ · ∇f models the nonlinear
interaction between the distribution function f and its velocity space integral ϕ, and it describes tur-
bulent advection. The resulting nonlinear coupling constitutes the computationally most expensive
term.

A.1 DERIVATION OF THE GYROKINETIC EQUATION

We begin with the Vlasov equation for the distribution function f(r,v, t):

∂f

∂t
+ v · ∇f +

q

m
(E + v ×B) · ∇vf = 0 (8)

The Vlasov equation describes the conservation of particles in phase space in the absence of col-
lisions. Here, r = (x, y, z) and v = (vx, vy, vz) correspond to coordinates in the spatial and the
velocity domain, respectively. Hence the Vlasov equation is a 7D (including time) PDE representing
the density of particles in phase space at position r, velocity v, and time. The term ∇vf describes
the response of the distribution function to accelerations of particles and q

m (E+ v ×B) denotes
the Lorentz force, which depends on particle charge q and mass m, as well as electric field E and
magnetic field B. Finally, the advection (or convection) term v∇f describes transport of the distri-
bution functon through space due to velocities.

1We adopt uppercase notation for vector fields E and B to adhere with literature.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

To derive the gyrokinetic equation, we transform from particle coordinates to guiding center coordi-
nates (R, v∥, µ, θ), where µ =

mv2
⊥

2B is the magnetic moment, θ the gyrophase, which describes the
position of a particle around its guiding center as it gyrates along a field line, and R is the coordinate
of the guiding center.

Assuming the time scale L at which the background field changes is much longer than the gyroperiod
with a small Larmor radius ρ ≪ L, we can gyroaverage to remove the dependency on the gyrophase
θ, yielding:

∂f

∂t
+ Ṙ · ∇f + v̇∥

∂f

∂v∥
= 0 (9)

A.1.1 LINEAR TERMS

The unperturbed (background) motion of the guiding center is governed by:

Ṙ = v∥b+ vD (10)

v̇∥ = − µ

m
b · ∇B (11)

Here, b = B/B is the unit vector along the magnetic field, and vD represents magnetic drifts.
Substituting into the kinetic equation yields

∂f

∂t
+ (v∥b+ vD) · ∇f − µ

m
b · ∇B

∂f

∂v∥
= 0 (12)

We can express the magnetic gradient term using:

b · ∇B =
B · ∇B

B
(13)

so that:
µ

m
b · ∇B =

µB

m

B · ∇B

B2
(14)

A.1.2 NONLINEAR TERM

Fluctuating electromagnetic potentials δϕ, δA induce E×B and magnetic flutter drifts. We define
the gyroaveraged generalized potential as

χ = ⟨ϕ−
v∥

c
A∥⟩, (15)

where A∥ is the parallel component of the vector potential, ⟨·⟩ denotes the gyroaverage, and c is the
speed of light, which is added to ensure correct units. ϕ is the electrostatic potential, the computation
of which involves an integral of f over the velocity space (see eq. 1.41 in the GKW manual 2 for a
complete description).

This gives rise to the drift

vχ =
c

B
b×∇χ, (16)

and yields the nonlinear advection term vχ · ∇f .

A.1.3 FINAL EQUATION

We arrive at the gyrokinetic equation in split form:

∂f

∂t
+ (v∥b+ vD) · ∇f − µB

m

B · ∇B

B2

∂f

∂v∥
+ vχ · ∇f = S (17)

2https://bitbucket.org/gkw/gkw/src/develop/doc/manual/

16

https://bitbucket.org/gkw/gkw/src/develop/doc/manual/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Here, S represents external sources, collisions, or other drive terms. To enhance the tractability of
Equation (7), the distribution function f is usually split into equilibrium and perturbation terms

f = f0 + δf = f0 −
Zϕ

T
f0︸ ︷︷ ︸

Adiabatic

+
∂h

∂t︸︷︷︸
Kinetic

, (18)

where f0 is a background or equilibrium distribution function, T the particle temperature, Z the par-
ticle charge, ϕ the electrostatic potential, and δf the total perturbation to the distribution function,
which comprises of adiabatic and kinetic response. The adiabatic term describes rapid and passive
responses to the electrostatic potential that do not contribute to turbulent transport, while the ki-
netic term governs irreversible dynamics that facilitate turbulence. Numerical codes, such as GKW
(Peeters et al., 2009), rely on solving for δf instead of f . A common simplification is to assume that
electrons are adiabatic, which allows us to neglect the kinetic term in the respective δf . Hence, the
respective f for electrons (fe) does not need to be modelled, effectively halving the computational
cost.

B DATASET

The simulations used for both the autoencoder training (26 trajectories) and the evaluation (10 tra-
jectories) are generated with the numerical code GKW (Peeters et al., 2009). They are sampled by
varying four parameters: R/Lt, R/Ln, ŝ, and q, which significantly affect emerging turbulence in
the Plasma.

• R/Lt is the ion temperature gradient, which is the main driver of turbulence.
• R/Ln is the density gradient, whose effect is less pronounced. It can have a stabilizing

effect, but can sometimes also lead to increased turbulence.
• ŝ denotes magnetic shearing, hence it usually has a stabilizing effect as more magnetic

shearing results in better isolation of the Plasma.
• q denotes the so-called safety factor, which is the inverse of the rotational transform and

describes how often a particle takes a poloidal turn before taking a toroidal turn.

We specify the ranges for sampling the four parameters as R/LT ∈ [1, 12], R/Ln ∈ [1, 7], q ∈ [1, 9],
and ŝ ∈ [0.5, 5]. Additionally, we also vary the noise amplitude of the initial condition (within
[1e− 5, 1e− 3]).

To make storage more feasible, simulations are time-coarsened by saving snapshot every 60. Each
GKW run with the specified configurations takes around ∼6 hours (76 cores, Intel Ice Lake 4.1GHz
CPU) and ∼60GBs of storage.

C IMPLEMENTATION DETAILS

C.1 METRICS

We evaluate reconstruction with spatial and physical metrics. Since gyrokinetic data is complex-
valued, we can also apply complex-generalizations of common metrics.

Complex L1 Loss. Given two complex-valued fields z1, z2 ∈ CN , the complex L1 loss is:

cL1(z1, z2) = ⟨|ℜ(z1 − z2)|+ |ℑ(z1 − z2)|⟩ = ⟨|z1 − z2|1⟩
where ⟨·⟩ denotes the average over all dimensions and | · |1 is the L1 norm of the complex difference.

Wasserstein Distance. The Wasserstein distance measures the minimum cost of transforming one
probability distribution into another, where the cost is proportional to the distance the probability
mass must be moved. It provides a meaningful metric to compare distributions even when they
have non-overlapping support, making it particular useful in machine learning and optimal transport
problems. In our case, we normalize the spectra so that their total sum is one, ensuring they represent
comparable probability distributions.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

The Wasserstein distance between two probability distributions P and Q is defined as:

Wp(P,Q) =

(
inf

γ∈Γ(P,Q)

∫
∥x− y∥p dγ(x, y)

) 1
p

Peak Signal-to-Noise Ratio. Peak signal-to-noise ratio (PSNR) quantifies the ratio between the
maximum possible power of a signal and the power of noise corrupting its representation, typically
expressed in decibels (dB) due to the wide dynamic range of signals.

PSNR(x1, x2) = 10 · log10
(

max(x1)
2

MSE(x1, x2)

)
where MSE(x1, x2) is the mean squared error between the real-valued fields x1 and x2.

The PSNR for complex-valued fields we defined as:

cPSNR(z1, z2) = 10 · log10
(

max(|z1|)2

cMSE(z1, z2)

)

Bits Per Pixel (BPP). The BPP measures compression efficiency. Given a discrete representation of
a field z and its compressed encoding, the bits per pixel is defined as

BPP =
Total number of bits used to encode z

Number of spatial points in z
.

Lower BPP values indicate higher compression, while higher BPP generally corresponds to more
faithful reconstruction.

C.2 TRADITIONAL COMPRESSION

In the following paragraphs we briefly describe how the traditional compressions were implemented.

ZFP Compression. ZFP Lindstrom (2014) is a compression library for numerical arrays designed
for fast random access. It partitions the data into small blocks (typically 4× 4× 4 elements for 3D
data) and transforms them into a decorrelated representation using an orthogonal block transform.
The transformed coefficients are quantized according to a user-specified tolerance, then entropy-
coded to produce a compact bitstream. High-speed random access and both lossy and lossless are
possible, making ZFP a very common choice for scientific data storage.

We rearrange f into a 3D array as ((v∥×µ)×(s×y)×x) for ZFP block-based compression scheme
(up to 3D), and compress with ZFP with a specified absolute error tolerance. The compressed
representation is a compact byte representation. Reconstruction is performed by decompressing
with ZFP and reshaping the output back to the original tensor layout.

Wavelet Compression. Discrete wavelet transform (DWT) is applied using the level 1 Haar wavelet.
The multi-dimensional array is decomposed into wavelets (coefficient and slices). To achieve lossy
compression, coefficients are pruned based on a fixed threshold dependent on the desired compres-
sion ratio, effectively discarding small high-frequency components. Reconstruction is performed by
inverting the DWT.

Principal Component Analysis Compression. f is reshaped into a 2D array ((v∥ ·µ · s)× (x · y)),
by rearranging together the velocity space v∥, µ with the field line s and the spatial coordinates
x, y. PCA is applied on the flattened spatial components, retaining a fixed number of principal
components dependent on the desired compression ratio (N = 2 for 1, 000× from Table 1). The
compressed representation consists of the principal components, the mean vector, and the explained
variance. Reconstruction is achieved by projecting back to the original space, followed by reshaping
to the original dimensions.

JPEG2000 Compression. f is first reshaped into a 2D image-like representation of shape
((v∥ · µ · s) × (x · y)), by flattening the velocity space and spatial dimensions. Each channel is

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

independently normalized to the [0, 1] range and quantized to 16-bit unsigned integers. The im-
ages are then encoded using the JPEG2000 standard (Christopoulos et al., 2000) at a target quality
factor Q that determines the compression ratio. The compressed representation consists of the code-
stream size and channelwise normalization statistics (minimum and maximum). Reconstruction is
performed by decoding the JPEG2000 bitstream, rescaling back to floating-point values, and unflat-
tening back to the original tensor dimensions.

C.3 AUTOENCODERS

Architecture and Conditioning.
*simplified

W-MSA (layer l) SW-MSA (layer l+1)

Figure 7: 5D swin attention.

The autoencoder and VQ-VAE baselines are built on
a 5D Swin Transformer architecture (Galletti et al.,
2025), which extends the shifted window attention
mechanism to handle high-dimensional scientific data.
Figure 7 illustrates the 5D windowed multi-head self-
attention (W-MSA) and shifted windowed multi-head
self-attention (SW-MSA) layers, where blocks of the
same color indicate the receptive field of local attention within each window. Our implementa-
tion incorporates several stability and performance enhancements: gated attention mechanisms (Qiu
et al., 2025) for improved training stability, combined positional encodings using both Relative Po-
sitional Bias (Liu et al., 2021) and Rotary Position Embedding (RoPE) (Su et al., 2023) to capture
spatial relationships across all five dimensions, and GELU activations (Hendrycks & Gimpel, 2023)
throughout the network. Each model uses four Swin blocks with 16 attention heads, followed by a
single downsampling level before the bottleneck. All models are conditioned on four key gyroki-
netic parameters: the ion temperature gradient (R/Lt), density gradient (R/Ln), magnetic shear (ŝ),
and safety factor (q). Conditioning is implemented via DiT-style modulation (Peebles & Xie, 2023),
where conditioning embeddings provide scale, shift, and gating parameters for each transformer
layer, enabling physics-aware feature adaptation.

Data Preprocessing. The 5D distribution function [v∥, µ, s, x, y] is represented as complex values
with real and imaginary components, initially providing two channels. We apply two key prepro-
cessing steps that affect the channel structure. First, we decomposes each field into zonal flow
(ky = 0 mode) and turbulent fluctuation components by computing the mean across the ky dimen-
sion and concatenating the zonal flow and turbulent fluctuation, doubling the channels to four. This
separation is essential as zonal flows exhibit fundamentally different physics from turbulent modes.
Second, we reshape the magnetic moment dimension µ, into the channel dimension, expanding from
four to 32 channels. This allows independent processing of each µ slice.

Compression Configurations. We evaluate multiple compression ratios by varying patch and win-
dow sizes. For autoencoders, three configurations achieve compression ratios of 302, 1208, and
2865 using patch sizes (2, 0, 2, 5, 2), (4, 0, 2, 5, 4), and (6, 0, 3, 5, 6) with corresponding window
sizes (8, 0, 4, 9, 8), (4, 0, 4, 9, 4), and (6, 0, 6, 9, 6). The zero in the second position corresponds to
the µ dimension, which is not spatially patched due to the decoupling preprocessing step. All vari-
ants use latent dimension 1024, and compress in a last linear projection to the bottleneck dimension
of 32.

VQ-VAE Variants. VQ-VAE uses the same spatial compression configurations but re-
places the continuous bottleneck with vector quantization using the implementation from
vector-quantize-pytorch3. The bottleneck projects to 128-dimensional embeddings,
which are quantized using a codebook of 8192 vectors (see Table 3 for complete hyperparameters).
The codebook uses exponential moving average updates with a decay rate of 0.99 and employs en-
tropy regularization to encourage codebook utilization. This yields much higher compression ratios
of 19342, 25789, and 77368 for the three spatial configurations, as quantized codes can be stored as
integers (int16 for codebook size of 8192) rather than float32 values.

3https://github.com/lucidrains/vector-quantize-pytorch

19

https://github.com/lucidrains/vector-quantize-pytorch

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In our main results, if not specified otherwise, we present the autoencoder with CR=1208 and VQ-
VAE with CR=77368.

Table 3: VQ-VAE vector quantization hyperparameters.

Parameter Value
Codebook size 8192
Embedding dimension 128
Commitment weight 0.3
Codebook type Euclidean
EMA decay 0.99
Entropy loss weight 0.01
Dead code threshold 2

Training Strategy. Training follows a two-stage approach to ensure stability. For all experiments
we use Muon optimizer (Jordan et al., 2024) with a cosine scheduler and a minimum learning rate of
4×10−6, and weight decay of 1×10−5. Stage 1 (200 epochs, batchsize=16, lr=2×10−4) trains the
base autoencoder using only Lrecon (cMSE). Stage 2.1 (100 epochs, batchsize=16, lr=2 × 10−4)
applies Explained Variance Adaptation (EVA) (Paischer et al., 2025), which injects LoRA (Hu
et al., 2022) weights (r = 64, α = 1, ρ = 2.0, τ = 0.99) into MLP layers while freezing the
Stage 1 trained backbone. The loss function switches to cL1 for reconstruction (Lrecon weighted
by 10.0) and introduces physics-informed losses: integral losses (LQ, Lϕ) using scale normaliza-
tion (scale is calculated over training dataset statistics), while spectral losses (Lky

, LQspec) employ
sum-normalization followed by log-space L1 loss. All physics-informed loss terms are weighted
equally at 1.0, with the VQ-VAE commitment loss also weighted by a factor of 10.0 to match
the reconstruction weight. Critically, monotonicity constraints (Liso) are disabled. Stage 2.2 (20
epochs, batchsize=16, lr=2×10−4) continues with identical settings but enables monotonicity losses
(Liso(k

spec,pred
y), Liso(Q

spec,pred)) to enforce physical constraints only after stable physics-informed
reconstruction is achieved.

Training Stabilization. End-to-end training of autoencoders with physics-informed neural com-
pression (PINC) losses proves highly unstable due to the conflicting optimization objectives and
varying loss magnitudes. The physics-informed terms (LQ, Lϕ, Lky

, LQspec) exhibit severe fluctua-
tions during early training when reconstruction quality is poor, causing certain loss components to
dominate the overall objective and destabilizing the learning process. This necessitates the staged
training approach, where reconstruction capability is first established before introducing physics
constraints.

Multi-objective Optimization Challenges. We investigated several multi-objective optimization
strategies to enable stable end-to-end training. Gradient normalization methods (Chen et al., 2018),
while theoretically appealing, proved computationally prohibitive for our large-scale models, con-
sistently causing out-of-memory errors during backpropagation. Conflict-Free Inverse Gradients
(ConFIG) Liu et al. (2024) attempts to resolve conflicting optimization objectives by computing
gradient directions that minimize conflicts between tasks through least-squares solutions. However,
ConFIG relies on computing stable gradient statistics over multiple training steps to determine op-
timal gradient directions. When physics-informed losses are computed on poorly reconstructed dis-
tribution functions, these losses exhibit extreme fluctuations that prevent ConFIG from establishing
stable gradient statistics. The method’s gradient balancing becomes ineffective when the underlying
loss landscape is highly unstable, as the computed conflict-free directions become unreliable due to
the volatile nature of the physics-informed terms during early training phases.

Hyperparameter Search Limitations. The computational cost of autoencoder training further
complicates optimization. Each full training run requires multiple days on high-end GPUs, making
systematic hyperparameter search for end-to-end training impractical. The search space includes
not only standard hyperparameters (learning rates, batch sizes, architectural choices) but also the
relative weighting of several distinct loss components, creating a prohibitively large optimization

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

landscape. This computational constraint reinforces the necessity of our staged approach, which
reduces the hyperparameter search to manageable subspaces for each training phase.

C.4 NEURAL FIELDS

Neural fields are trained by representing the distribution function as a continuous signal, taking
coordinates as inputs. A dataset consists, for a given simulation, of the 5D density function f at a
specific timestep, and the 5D grid coordinates of each cell. Data normalization is applied both to the
field values and to the coordinates.

An MLP with SiLU activations (Elfwing et al., 2017), 64 hidden dimension, five layers with skip
connections and using a discrete hash to map matrix indices to learnable embeddings is optimized
using AdamW (Loshchilov & Hutter, 2019), with cosine annealing learning rate scheduling decay-
ing the learning rate from 5e − 3 to 1e − 12 and . Auxiliary optimizers can be used for additional
integral losses, also with their scheduler that decays learning rate from 1e−5 to 1e−12. The neural
field training loop iterates over batches of (2048) coordinates and field values. On a first pass of 20
epochs, the loss Lrecon from Equation (3) is fitted. Auxiliary integral losses are trained of such a
pretrained model for 100 more epochs, with the whole 5D field as batch.

ConFIG ablations. We ablate multi-objective balancing methods such as Conflict-Free Inverse Gra-
dients by Liu et al. (2024) to attempt to stabilize training on the PINC loss terms. Table 4 compares
AdamW training (as reported in Table 1) and neural fields complemented with momentum ConFIG
with ordered loss selector. Results are similar, with regular AdamW achieving better physical losses
and ConFIG being more stable overall.

Table 4: Ablations of NF trained with AdamW and Conflict-Free Improved Gradients.

Compression f Integrals Q,ϕ Turbulence Qspec, kspec
y

CR L1 ↓ PSNR ↑ BBP ↓ L1(Q) ↓ PSNR(ϕ) ↓ WD(kspec
y) ↓ WD(Qspec) ↓

PINC-NF (AdamW) 1163× 0.32 36.29 0.165 9.75 14.53 0.0057 0.0170
PINC-NF (SGD+ConFIG) 1163× 0.29 37.18 0.165 44.23 6.35 0.0164 0.0163

Neural field ablations. A broad range of architectures was explored, starting from SIREN
(Sitzmann et al., 2020), WIRE Saragadam et al. (2023) and an MLP with different activations
(Fukushima, 1969; Hendrycks & Gimpel, 2023; Elfwing et al., 2017). Table 5 summarizes the
search space.

Table 5: Neural field search space summary. w0 values are only for SIREN and WIRE architectures.

Knob Range
Activations Sine, Gabor, ReLU, SiLU, GELU

Coordinate embedding Linear, SinCos, Discrete
winitial

0 0.1, 0.5, 1.0
whidden

0 0.5, 2.0, 10.0
Skip connections Yes, No

Learning rate 1e− 2, 5e− 3

An extensive grid search search was conducted evaluating every combination from Table 5 in the
∼ 1,000× compression regime, on 12 randomly sampled density fields f from four different tra-
jectories. For simplicity we use PSNR of f as the selection metric. All models are trained for 10
epochs using the AdamW optimizer Loshchilov & Hutter (2019) with a batch size of 2048. A total
of 12·36(SIREN)+12·18(WIRE)+12·18(MLP) = 864 neural fields were trained for this ablation.
The results from Tables 6, 7, and 8 suggest that MLP with SiLU activation, skip connections and
discrete index embedding is the most performant setup, as well as the fastest and easiest to tune.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 6: MLP grid search combinations.

Activation Embedding Skip Learning rate f PSNR

SiLU Discrete Yes 5e−3 40.53
GELU Discrete Yes 5e−3 40.12
SiLU Discrete No 5e−3 40.11
GELU Discrete No 5e−3 39.96
ReLU Discrete Yes 5e−3 39.24
ReLU Discrete No 5e−3 38.83
GELU Linear No 5e−3 37.06
SiLU SinCos No 5e−3 36.88
GELU SinCos No 5e−3 36.78
GELU Linear Yes 5e−3 36.7
SiLU Linear No 5e−3 36.47
GELU SinCos Yes 5e−3 36.44
SiLU Linear Yes 5e−3 36.09
SiLU SinCos Yes 5e−3 35.18
ReLU SinCos Yes 5e−3 35.1
ReLU SinCos No 5e−3 34.68
ReLU Linear No 5e−3 34.45
ReLU Linear Yes 5e−3 34.4

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 7: SIREN grid search combinations.

Embedding winitial
0 whidden

0 Skip Learning rate f PSNR

Discrete 0.1 0.5 Yes 5e−3 40.48
Discrete 0.5 0.5 Yes 5e−3 40.34
Discrete 0.5 0.5 No 5e−3 40.04
Discrete 0.1 0.5 No 5e−3 39.97
SinCos 0.5 2.0 Yes 5e−3 38.24
SinCos 0.1 2.0 Yes 5e−3 38.19
SinCos 0.5 0.5 No 5e−3 37.22
SinCos 0.1 0.5 No 5e−3 37.2
SinCos 0.1 0.5 Yes 5e−3 36.23
SinCos 0.5 0.5 Yes 5e−3 36.23
SinCos 0.1 2.0 No 5e−3 32.58
Discrete 0.1 2.0 No 5e−3 29.41
SinCos 0.1 5.0 Yes 5e−3 24.16
SinCos 0.1 5.0 No 5e−3 24.16
Discrete 0.1 5.0 No 5e−3 24.16
Discrete 0.1 2.0 Yes 5e−3 24.16
Discrete 0.5 2.0 Yes 5e−3 24.16
Discrete 0.1 5.0 Yes 5e−3 24.16
Discrete 1.0 0.5 Yes 5e−3 10.1
Discrete 1.0 0.5 No 5e−3 10.03
SinCos 1.0 2.0 Yes 5e−3 9.57
SinCos 1.0 0.5 No 5e−3 9.29
SinCos 1.0 0.5 Yes 5e−3 9.04
SinCos 1.0 2.0 No 5e−3 8.74
SinCos 0.5 2.0 No 5e−3 8.43
Discrete 1.0 2.0 No 5e−3 6.99
Discrete 0.5 2.0 No 5e−3 6.94
Discrete 1.0 2.0 Yes 5e−3 6.08
SinCos 1.0 5.0 Yes 5e−3 6.04
SinCos 0.5 5.0 Yes 5e−3 6.04
Discrete 0.5 5.0 No 5e−3 6.04
SinCos 1.0 5.0 No 5e−3 6.04
Discrete 1.0 5.0 No 5e−3 6.04
SinCos 0.5 5.0 No 5e−3 6.04
Discrete 1.0 5.0 Yes 5e−3 6.04
Discrete 0.5 5.0 Yes 5e−3 6.04

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 8: WIRE grid search combinations.

Embedding winitial
0 whidden

0 Learning rate f PSNR

Discrete 0.5 2.0 1e−2 29.33
Discrete 0.1 2.0 1e−2 27.96
Discrete 0.5 0.5 1e−2 27.9
Discrete 0.1 0.5 1e−2 27.83
Linear 0.1 2.0 1e−2 24.16
Linear 0.1 5.0 1e−2 24.16
Linear 0.1 0.5 1e−2 24.16
Linear 0.5 0.5 1e−2 24.16
Linear 0.5 2.0 1e−2 24.16
Linear 0.5 5.0 1e−2 24.16
Discrete 1.0 0.5 1e−2 7.65
Discrete 1.0 2.0 1e−2 7.34
Linear 1.0 0.5 1e−2 6.04
Linear 1.0 2.0 1e−2 6.04
Linear 1.0 5.0 1e−2 6.04
Discrete 0.1 5.0 1e−2 nan
Discrete 0.5 5.0 1e−2 nan
Discrete 1.0 5.0 1e−2 nan

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C.5 EXTRA RESULTS

Table 9: Missing metrics from Table 1. Evaluation on 60 total fs (10 different turbulent trajectories,
six random time snapshots), sampled in the statistically steady phase. Errors in data space. Best
result in bold, second best underlined.

Integrals ϕ Turbulence Qspec, kspec
y

L1(ϕ) ↓ PC(kspec
y) ↑ PC(Qspec) ↑ L1(kspec

y) ↑ L1(Qspec) ↑

ZFP 1025.50 0.8950 -0.1562 332832.3125 87.3532
Wavelet 642.32 0.8953 -0.9439 237414.7031 86.9227
PCA 379.48 0.8951 0.7033 68666.2891 61.5661
JPEG2000 1627.20 0.8939 -0.0161 801974.5000 86.1083

NF 79.88 0.9246 0.9727 2038.9197 45.7231
PINC-NF 18.10 0.9888 0.9660 56.6920 43.7608
PINC-AE + EVA 307.33 0.9520 0.5341 38401.5508 70.8733
PINC-VQ-VAE + EVA 39.55 0.9530 0.7334 251.5966 59.9805

100 101

10 2

10 1

100

|
(k

y)|
2

100 101

10 2

10 1

100

100 10110 2

10 1

100

101

100 101

10 3

10 2

10 1

100

100 101

10 1

100

101

100 101

10 2

10 1

100

100 101

10 1

100

101

100 101

10 2

10 1

100

100 101
10 2

10 1

100

101

10 2

10 1

100 GT

100 101

10 2

10 1

100

101

|
(k

y)|
2

PC = 1.00
PC = 0.97
PC = 0.99

100 101

10 2

10 1

100

PC = 1.00
PC = 0.99
PC = 0.98

100 10110 2

10 1

100

101
PC = 0.99
PC = 0.99
PC = 0.99

100 101

10 3

10 2

10 1

100

101
PC = 1.00
PC = 0.98
PC = 1.00

100 101

10 1

100

101
PC = 0.99
PC = 1.00
PC = 0.98

100 101

10 2

10 1

100

PC = 1.00
PC = 0.97
PC = 0.98

100 101

10 1

100

101

PC = 0.97
PC = 1.00
PC = 1.00

100 101

10 2

10 1

100

PC = 1.00
PC = 0.95
PC = 0.99

100 101
10 2

10 1

100

101 PC = 0.99
PC = 0.98
PC = 0.99

10 2

10 1

100

101
PC = 1.00
PC = 0.99
PC = 0.98

NF

100 10110 3

10 2

10 1

100

|
(k

y)|
2

PC = 0.99
PC = 0.99
PC = 0.99

100 101

10 3

10 2

10 1

100
PC = 0.99
PC = 0.99
PC = 0.99

100 101
10 2

10 1

100

101 PC = 0.55
PC = 0.52
PC = 0.54

100 101

10 3

10 2

10 1

100

PC = 0.11
PC = 0.90
PC = 0.70

100 101

10 2

10 1

100

101 PC = 0.92
PC = 0.99
PC = 0.99

100 101

10 2

10 1

100

PC = 0.28
PC = 0.70
PC = 0.62

100 101

10 1

100

101 PC = 0.63
PC = 0.76
PC = 0.46

100 101

10 2

10 1

100

PC = 0.20
PC = 0.78
PC = 0.64

100 101
10 2

10 1

100

101 PC = 0.85
PC = 0.81
PC = 0.68

10 2

10 1

100

PC = 0.99
PC = 1.00
PC = 0.99

AE

100 101

10 3

10 2

10 1

100

|
(k

y)|
2

PC = 0.92
PC = 0.96
PC = 0.91

100 101

10 3

10 2

10 1

100
PC = 0.94
PC = 0.95
PC = 0.95

100 101

10 3

10 2

10 1

100

101 PC = 0.52
PC = 0.67
PC = 0.21

100 101

10 3

10 2

10 1

100

PC = 0.55
PC = 0.63
PC = 0.77

100 101

10 2

10 1

100

101 PC = 0.80
PC = 0.44
PC = 0.70

100 101

10 3

10 2

10 1

100

PC = 0.83
PC = 0.68
PC = 0.82

100 101
10 3

10 2

10 1

100

101 PC = 0.50
PC = 0.55
PC = 0.31

100 101

10 3

10 2

10 1

100

PC = 0.90
PC = 0.76
PC = 0.52

100 101
10 3

10 2

10 1

100

101 PC = 0.73
PC = 0.67
PC = 0.60

10 3

10 2

10 1

100

PC = 0.92
PC = 0.86
PC = 0.78 VQ-VAE

100 101

10 2

10 1

100

|
(k

y)|
2

PC = nan
PC = 0.58
PC = 0.93

100 101
10 5

10 4

10 3

10 2

10 1

100
PC = 0.35
PC = 0.49
PC = 0.62

100 10110 2

10 1

100

101 PC = 0.20
PC = 0.92
PC = 0.97

100 101

10 3

10 2

10 1

100

PC = nan
PC = 0.52
PC = 0.87

100 101

10 1

100

101
PC = 0.84
PC = 0.94
PC = 0.98

100 101
10 3

10 2

10 1

100

PC = 0.70
PC = 0.71
PC = 0.75

100 101

10 1

100

101 PC = 0.80
PC = 0.94
PC = 0.99

100 101
10 3

10 2

10 1

100

PC = nan
PC = 0.42
PC = 0.77

100 101
10 4

10 3

10 2

10 1

100

101 PC = 0.22
PC = 0.58
PC = 0.68

10 2

10 1

100

PC = 0.37
PC = 0.92
PC = 0.85 ZFP

100 101

10 2

10 1

100

|
(k

y)|
2

PC = 0.47
PC = 0.81
PC = 0.95

100 10110 3

10 2

10 1

100

PC = 0.84
PC = 0.91
PC = 0.92

100 101
10 2

10 1

100

101 PC = 0.82
PC = 0.93
PC = 0.98

100 101

10 3

10 2

10 1

100

PC = 0.94
PC = 0.90
PC = 0.98

100 10110 2

10 1

100

101 PC = 0.95
PC = 0.97
PC = 1.00

100 101

10 2

10 1

100

PC = 0.87
PC = 0.86
PC = 0.94

100 101

10 1

100

101 PC = 0.95
PC = 0.99
PC = 1.00

100 101

10 2

10 1

100

PC = 0.84
PC = 0.80
PC = 0.97

100 101

10 2

10 1

100

101 PC = 0.91
PC = 0.96
PC = 0.96

10 2

10 1

100

PC = 0.75
PC = 0.94
PC = 0.94 W

avelet

100 101

10 2

10 1

100

|
(k

y)|
2

PC = 0.80
PC = 0.63
PC = 0.84

100 101
10 3

10 2

10 1

100

PC = 0.98
PC = 0.89
PC = 0.79

100 101

10 2

10 1

100

101 PC = 0.97
PC = 0.89
PC = 0.93

100 101

10 3

10 2

10 1

100

PC = 1.00
PC = 0.90
PC = 0.97

100 101

10 2

10 1

100

101 PC = 0.89
PC = 0.89
PC = 0.81

100 101
10 3

10 2

10 1

100

PC = 0.93
PC = 0.95
PC = 0.91

100 101

10 2

10 1

100

101 PC = 0.78
PC = 0.93
PC = 0.67

100 101
10 3

10 2

10 1

100

PC = 0.98
PC = 0.61
PC = 0.90

100 101

10 2

10 1

100

101 PC = 0.92
PC = 0.92
PC = 0.96

10 2

10 1

100

PC = 0.96
PC = 0.92
PC = 0.93 PCA

100 101

ky

10 2

10 1

100

|
(k

y)|
2

PC = 0.76
PC = 0.75
PC = 0.93

100 101

ky

10 3

10 2

10 1

100

PC = 0.93
PC = 0.93
PC = 0.92

100 101

ky

10 2

10 1

100

101 PC = 0.90
PC = 0.94
PC = 0.97

100 101

ky

10 3

10 2

10 1

100

PC = 0.99
PC = 0.81
PC = 0.96

100 101

ky

10 2

10 1

100

101 PC = 0.93
PC = 0.92
PC = 0.98

100 101

ky

10 2

10 1

100

PC = 0.87
PC = 0.85
PC = 0.83

100 101

ky

10 2

10 1

100

101 PC = 0.96
PC = 0.96
PC = 0.97

100 101

ky

10 3

10 2

10 1

100

PC = 0.97
PC = 0.88
PC = 0.94

100 101

ky

10 2

10 1

100

101 PC = 0.91
PC = 0.93
PC = 0.94

100 101

ky

10 2

10 1

100

PC = 0.77
PC = 0.94
PC = 0.85

JPEG2000

t = 8.4R/Vr t = 16.4R/Vr t = 24.4R/Vr

Figure 8: Extra models for the energy cascade (left Figure 5). The three time snapshots at
[25.2, 49.2, 73.2]R/Vr are specifically sampled in the transitional phase where mode growth and
energy cascade happens, before reaching the statistically stable phase. Visualized as the energy
transfer from higher to lower modes as turbulence develops. Columns are different trajectories,
rows are compression methods, lines of varied colors are the kspec

y at specific timesteps, and trans-
parent lines are respective ground truth.

Table 10: Timing details for neural and traditional compression, in seconds. CPU: single NVIDIA
A40 (48GB), CPU: Intel Xeon Platinum 8168, 96 cores, 2.70GHz.

Model Offine compute Compress [s] Decompress [s]
NF - 96.3 0.260
AE ∼ 4× 60h +28h 0.377 0.023
VQ-VAE ∼ 4× 60h +28h 0.425 0.027
ZFP - 0.144 0.066
Wavelet - 1.30 0.804
PCA - 0.377 0.149
JPEG2000 - 4.17 0.261

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

100 101

10 2

10 1

100

101
Q

(k
y)

100 10110 3

10 2

10 1

100

101

100 101

10 2

10 1

100

101

100 101

10 3

10 2

10 1

100

101

100 101

10 2

10 1

100

101

100 10110 3

10 2

10 1

100

101

100 101

10 1

100

101

100 10110 4

10 3

10 2

10 1

100

101

100 101

10 1

100

101

10 2

10 1

100

101

GT

100 101

10 2

10 1

100

101

Q
(k

y)

PC = 0.99
PC = 0.95
PC = 0.95

100 101

10 3

10 2

10 1

100

101 PC = 1.00
PC = 0.91
PC = 0.89

100 101

10 3

10 2

10 1

100

101
PC = 0.97
PC = 0.88
PC = 0.91

100 101

10 3

10 2

10 1

100

101 PC = 1.00
PC = 0.61
PC = 0.94

100 101

10 2

10 1

100

101

PC = 0.97
PC = 0.89
PC = 0.97

100 101

10 4

10 3

10 2

10 1

100

101 PC = 1.00
PC = 0.88
PC = 0.97

100 101
10 3

10 2

10 1

100

101
PC = 0.75
PC = 0.87
PC = 0.98

100 10110 4

10 3

10 2

10 1

100

101 PC = 1.00
PC = 0.81
PC = 0.75

100 101
10 3

10 2

10 1

100

101
PC = 0.88
PC = 0.82
PC = 0.97

10 3

10 2

10 1

100

101
PC = 0.98
PC = 0.88
PC = 0.97

NF

100 101
10 3

10 2

10 1

100

101

Q
(k

y)

PC = 0.99
PC = 1.00
PC = 0.99

100 101

10 3

10 2

10 1

100

101 PC = 1.00
PC = 1.00
PC = 1.00

100 101
10 3

10 2

10 1

100

101 PC = 0.55
PC = 0.44
PC = 0.20

100 101

10 3

10 2

10 1

100

101 PC = 0.47
PC = 0.84
PC = 0.55

100 101
10 3

10 2

10 1

100

101
PC = 0.95
PC = 0.99
PC = 1.00

100 10110 3

10 2

10 1

100

101 PC = 0.48
PC = 0.52
PC = 0.77

100 101
10 2

10 1

100

101
PC = 0.50
PC = 0.38
PC = 0.20

100 10110 4

10 3

10 2

10 1

100

101 PC = 0.17
PC = 0.59
PC = 0.36

100 101

10 1

100

101
PC = 0.69
PC = 0.51
PC = 0.31

10 2

10 1

100

101
PC = 0.99
PC = 0.99
PC = 1.00

AE

100 101

10 3

10 2

10 1

100

101

Q
(k

y)

PC = 0.93
PC = 0.98
PC = 0.88

100 101
10 4

10 3

10 2

10 1

100

101 PC = 0.90
PC = 0.98
PC = 0.99

100 101

10 4

10 3

10 2

10 1

100

101
PC = 0.60
PC = 0.57
PC = 0.13

100 101

10 4

10 3

10 2

10 1

100

101 PC = 0.54
PC = 0.82
PC = 0.84

100 101

10 4

10 3

10 2

10 1

100

101
PC = 0.87
PC = 0.88
PC = 0.93

100 10110 3

10 2

10 1

100

101 PC = 0.95
PC = 0.81
PC = 0.92

100 101

10 2

10 1

100

101
PC = 0.46
PC = 0.55
PC = 0.40

100 10110 4

10 3

10 2

10 1

100

101 PC = 0.83
PC = 0.89
PC = 0.89

100 101

10 3

10 2

10 1

100

101 PC = 0.87
PC = 0.87
PC = 0.89

10 3

10 2

10 1

100

101
PC = 0.94
PC = 0.79
PC = 0.97 VQ-VAE

100 101

10 8

10 6

10 4

10 2

100

Q
(k

y)

PC = 0.36
PC = 0.51

PC = 0.17

100 101

10 6

10 4

10 2

100
PC = 0.33

PC = 0.01
PC = 0.62

100 101
10 4

10 3

10 2

10 1

100

101 PC = 0.00
PC = 0.39
PC = 0.71

100 101

10 12

10 9

10 6

10 3

100 PC = 0.37
PC = 0.03

PC = 0.64

100 101
10 3

10 2

10 1

100

101
PC = 0.43

PC = 0.60
PC = 0.91

100 101

10 4

10 3

10 2

10 1

100

101 PC = 0.19
PC = 0.61
PC = 0.06

100 101

10 5

10 3

10 1

101 PC = 0.26
PC = 0.35

PC = 0.70

100 101

10 13

10 10

10 7

10 4

10 1
PC = 0.13

PC = 0.07
PC = 0.72

100 101

10 8

10 5

10 2

101 PC = 0.23
PC = 0.08
PC = 0.75

10 4

10 3

10 2

10 1

100

101 PC = 0.62
PC = 0.39
PC = 0.05 ZFP

100 101

10 6

10 4

10 2

100

Q
(k

y)

PC = 0.45
PC = 0.79
PC = 0.79

100 101

10 4

10 3

10 2

10 1

100

101 PC = 0.83
PC = 0.87
PC = 0.91

100 101

10 4

10 3

10 2

10 1

100

101 PC = 0.66
PC = 0.46
PC = 0.67

100 101
10 4

10 3

10 2

10 1

100

101 PC = 0.14
PC = 0.48
PC = 0.78

100 101
10 4

10 3

10 2

10 1

100

101
PC = 0.70
PC = 0.63
PC = 0.95

100 101
10 4

10 3

10 2

10 1

100

101 PC = 0.93
PC = 0.50
PC = 0.76

100 101

10 4

10 3

10 2

10 1

100

101 PC = 0.52
PC = 0.66
PC = 0.79

100 101

10 4

10 2

100

PC = 0.16
PC = 0.63
PC = 0.75

100 101

10 4

10 2

100

PC = 0.02
PC = 0.01
PC = 0.89

10 4

10 3

10 2

10 1

100

101 PC = 0.83
PC = 0.77
PC = 0.95 W

avelet

100 101
10 4

10 3

10 2

10 1

100

101

Q
(k

y)

PC = 0.73
PC = 0.28
PC = 0.14

100 101

10 4

10 2

100

PC = 0.95
PC = 0.82
PC = 0.78

100 101

10 3

10 2

10 1

100

101 PC = 0.50
PC = 0.72
PC = 0.33

100 101

10 3

10 2

10 1

100

101 PC = 0.99
PC = 0.94
PC = 0.88

100 10110 4

10 3

10 2

10 1

100

101
PC = 0.68

PC = 0.29
PC = 0.41

100 101

10 3

10 2

10 1

100

101 PC = 0.96
PC = 0.97
PC = 0.97

100 101

10 3

10 2

10 1

100

101
PC = 0.28

PC = 0.77
PC = 0.16

100 10110 4

10 3

10 2

10 1

100

101 PC = 0.95
PC = 0.28

PC = 0.73

100 101

10 3

10 2

10 1

100

101 PC = 0.63
PC = 0.97
PC = 0.98

10 3

10 2

10 1

100

101
PC = 0.55
PC = 0.16

PC = 0.99 PCA

100 101

ky

10 4

10 3

10 2

10 1

100

101

Q
(k

y)

PC = 0.44
PC = 0.07

PC = 0.08

100 101

ky

10 3

10 2

10 1

100

101 PC = 0.92
PC = 0.02

PC = 0.37

100 101

ky

10 4

10 3

10 2

10 1

100

101 PC = 0.08
PC = 0.77
PC = 0.91

100 101

ky

10 3

10 2

10 1

100

101 PC = 0.94
PC = 0.04
PC = 0.79

100 101

ky

10 4

10 2

100

PC = 0.05
PC = 0.19
PC = 0.32

100 101

ky

10 4

10 3

10 2

10 1

100

101 PC = 0.16
PC = 0.40
PC = 0.41

100 101

ky

10 4

10 3

10 2

10 1

100

101
PC = 0.17
PC = 0.63
PC = 0.95

100 101

ky

10 4

10 3

10 2

10 1

100

101 PC = 0.78
PC = 0.02
PC = 0.77

100 101

ky

10 4

10 3

10 2

10 1

100

101 PC = 0.08
PC = 0.77
PC = 0.91

100 101

ky

10 4

10 3

10 2

10 1

100

101 PC = 0.26
PC = 0.56
PC = 0.08

JPEG2000
t = 8.4R/Vr t = 16.4R/Vr t = 24.4R/Vr

Figure 9: Extra models for the Q spectra (right Figure 5). The three time snapshots at
[25.2, 49.2, 73.2]R/Vr are specifically sampled in the transitional phase where mode growth and
energy cascade happens, before reaching the statistically stable phase. Visualized as the energy
transfer from higher to lower modes as turbulence develops. Columns are different trajectories,
rows are compression methods, lines of varied colors are the Qspec at specific timesteps, and trans-
parent lines are respective ground truth.

101 102 103 104 105

CR (log)

25

30

35

40

45

50

55

60

P
S

N
R

 [d
B

]

NF
NF + ZFP
AE
VQ-VAE
ZFP
Wavelet
PCA
JPEG2000
AE + EVA
VQ-VAE + EVA

Figure 10: Full PSNR scaling plot with missing curves from Figure 2a

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

101

102

Q

Method
NF
NF + ZFP
AE
VQ-VAE
ZFP
Wavelet
PCA
JPEG2000
AE + EVA
VQ-VAE + EVA

101 102 103 104 105

CR (log)

101

102

103

Figure 11: Full physics scaling plot with missing curves from Figure 3b

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

-1.2e+03

1.3e+03

-5.1e+03

5.4e+03

-3.1e+03

7.0e+03

-6.5e+03

8.1e+03

-1.6e+03

1.5e+03

x/y

v /

v /s

s/y

s/x

-1.6e+03

1.4e+03

-7.8e+04

1.4e+04

-1.5e+04

4.0e+03

-6.0e+03

5.2e+03

-2.0e+03

2.0e+03

x/y

v /

v /s

s/y

s/x

-2.5e+03

2.7e+03

-9.6e+03

4.6e+03

-4.9e+03

5.0e+03

-1.1e+04

1.2e+04

-2.7e+03

2.9e+03

x/y

v /

v /s

s/y

s/x

-1.2e+03

1.4e+03

-3.1e+04

8.6e+03

-7.7e+03

3.6e+03

-4.3e+03

3.6e+03

-1.8e+03

1.6e+03

x/y

v /

v /s

s/y

s/x

-4.0e+03

3.1e+03

-2.4e+04

6.8e+03

-2.0e+04

1.3e+04

-1.3e+04

5.6e+03

-4.1e+03

3.4e+03

x/y

v /

v /s

s/y

s/x

-1.8e+03

1.7e+03

-4.1e+04

1.8e+04

-1.1e+04

5.0e+03

-5.5e+03

3.2e+03

-2.1e+03

2.7e+03

x/y

v /

v /s

s/y

s/x

-3.2e+03

3.6e+03

-7.5e+03

6.0e+04

-6.7e+03

1.2e+04

-9.0e+03

1.2e+04

-3.5e+03

3.6e+03

x/y

v /

v /s

s/y

s/x

-1.8e+03

2.1e+03

-3.2e+04

1.4e+04

-8.5e+03

1.0e+04

-7.1e+03

9.8e+03

-2.2e+03

2.2e+03

x/y

v /

v /s

s/y

s/x

-2.5e+03

2.6e+03

-7.4e+03

5.7e+04

-7.9e+03

1.7e+04

-7.0e+03

8.4e+03

-4.6e+03

3.7e+03

x/y

v /

v /s

s/y

s/x

-2.4e+03

2.1e+03

-4.0e+04

1.1e+04

-1.8e+04

1.0e+04

-6.9e+03

7.0e+03

-3.4e+03

2.4e+03

x/y

v /

v /s

s/y

s/x

Figure 12: Extra reconstructions for f . CR =∼ 1,000×. Each cell is a different trajectory at
timestep 176.4R/Vr. Cells match Figure 13.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

-3.1e+01

2.3e+01

-5.4e+00

5.7e+00

-9.4e+00

1.1e+01

s/y

x/y

x/s

-1.2e+01

1.2e+01

-6.2e+00

7.9e+00

-1.2e+01

1.3e+01

s/y

x/y

x/s

-1.2e+01

9.5e+00

-8.7e+00

8.5e+00

-1.7e+01

1.6e+01

s/y

x/y

x/s

-9.6e+00

9.4e+00

-6.3e+00

9.4e+00

-1.2e+01

1.6e+01

s/y

x/y

x/s

-1.1e+01

1.1e+01

-6.6e+00

6.1e+00

-1.3e+01

1.2e+01

s/y

x/y

x/s

-8.3e+00

8.4e+00

-1.2e+01

7.7e+00

-2.1e+01

1.5e+01

s/y

x/y

x/s

-1.0e+01

1.1e+01

-5.9e+00

6.3e+00

-1.1e+01

1.2e+01

s/y

x/y

x/s

-1.2e+01

1.3e+01

-8.4e+00

1.0e+01

-1.4e+01

1.7e+01

s/y

x/y

x/s

-8.9e+00

6.3e+00

-1.1e+01

9.0e+00

-2.0e+01

1.7e+01

s/y

x/y

x/s

-1.7e+01

1.7e+01

-6.5e+00

7.7e+00

-1.3e+01

1.3e+01

s/y

x/y

x/s

Figure 13: Extra reconstructions for ϕ. CR =∼ 1,000×. Each cell is a different trajectory at
timestep 176.4R/Vr. Cells match Figure 12.

29

	Introduction
	Related Work
	Methods
	Evaluating Plasma Turbulence
	Neural Compression
	Physics-Inspired Neural Compression (PINC)

	Results
	Compression
	Physics and Turbulence Preservation
	Representation Space Experiments

	Conclusions
	Gyrokinetics
	Derivation of the Gyrokinetic equation
	Linear Terms
	Nonlinear Term
	Final Equation

	Dataset
	Implementation details
	Metrics
	Traditional compression
	Autoencoders
	Neural fields
	Extra results

