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Abstract—Abuses of forgery techniques have created a con-
siderable problem of misinformation on social media. Although
scholars devote many efforts to face forgery detection (a.k.a
DeepFake detection) and achieve some results, two issues still
hinder the practical application. 1) Most detectors do not
generalize well to unseen datasets. 2) In a supervised manner,
most previous works require a considerable amount of man-
ually labeled data. To address these problems, we propose a
simple contrastive pertaining framework for DeepFake detection
(DFCP), which works in a finetuning-after-pretraining manner,
and requires only a few labels (5%). Specifically, we design a
two-stream framework to simultaneously learn high-frequency
texture features and high-level semantics information during
pretraining. In addition, a video-based frame sampling strategy
is proposed to mitigate potential noise data in the instance-
discriminative contrastive learning to achieve better performance.
Experimental results on several downstream datasets show the
state-of-the-art performance of the proposed DFCP, which works
at frame-level (w/o temporal reasoning) with high efficiency but
outperforms video-level methods.

Index Terms—Face Forgery Detection, DeepFake, Self-
supervised Learning, Contrastive Learning

I. INTRODUCTION

The face forgery technology, also known as DeepFake, uti-
lizes prime mature methods like Face2Face [1] to generate fake
videos by synthesizing the identities, movements, or gestures
of a target person into the original video. This technology has
been widely spread since developers uploaded user-friendly
tools. However, abuse of DeepFake could cause violation
of privacy and portrait rights, even sensitive political issues.
Therefore, DeepFake detection has become a research hot-spot
in recent years. Typically, DeepFake detection can be divided
into frame-level [2]–[6] and video-level [7]–[11] methods. The
former makes decisions based on single frames, while the latter
considers consecutive frame sequences. Generally speaking,
video-level methods perform better since they introduce tem-
poral artifacts as the judgment basis. Nevertheless, they bring
extra computational overhead.

Most current DeepFake detection models are trained in a
supervised manner. They require a large amount of labeled
data, while the labeling process is labor-intensive and error-
prone. Besides, they fail to give ideal results on unseen types of
DeepFake due to inconsistent forgery clues. Retraining models
on new datasets is inevitable for practical deployment despite
being time-consuming. The prevalent pretraining-finetuning
paradigm seems promising to overcome the shortcomings
above, but only a few related attempts [12] have been made

Fig. 1. Overview of DFCP. We adopt three pretraining tasks: ① We maximize
the similarity between RGB frames and their texture map. ② We apply
dense-contrastive learning that pulls representations from the same video
closer by leveraging the contrast between local areas in frames. ③ We
perform contrastive learning between frames and texture maps from randomly
chosen frames. ④ indicates applying commonly used image augmentations.
⑤ represents high-frequency texture map extraction.

in the field of DeepFake detection, and there is a noticeable
performance gap compared with supervised methods.

In this work, we empirically reveal two major reasons
for the failure and propose a novel contrastive pertaining
framework for frame-level detection called DFCP. Specifically,
we introduce a simple but crucial frame sampling strategy
to avoid putting potential positive sample pairs into negative
pairs. Inspired by [13], we design dense-contrastive learning
for DeepFake detection to overcome the defect of regular
contrastive learning that only focuses on global features. In
addition, previous work [2] shows high-frequency texture
features play a decisive role in DeepFake detection. However,
utilizing texture features always needs special encoder designs.
We develop a two-stream pretraining framework that enables
contrast between RGB frames and texture maps to improve
the understanding of high-frequency features without changing
commonly used image encoders. To demonstrate the effective-
ness of DFCP, we validate our method on FaceForensics++



[1], Celeb-DF [14], and DFDC [15]. The results show our
framework outperforms most supervised methods and achieves
state-of-the-art performance in cross-dataset evaluations. Our
contributions are summarized as follows:
• We propose a contrastive pretraining framework DFCP

that simultaneously learns high-frequency texture features
and high-level semantics without changing commonly
used image encoders.

• We empirically reveal two major reasons for the failure
of previous works and specially design a video-based
frame sampling strategy and dense-contrastive learning
for DeepFake detection.

• Extensive experiments demonstrate that our DFCP out-
performs supervised methods, especially in cross-dataset
evaluations.

II. RELATED WORK

Supervised DeepFake Detection. Most recent works are
supervised. At frame-level, [2] define DeepFake detection
as a fine-grained classification problem. They add a Multi-
attention module and texture enhancement branch to improve
the performance. [3] propose a dynamic augmentation method,
which makes the network learn fake clues from limited local
characteristics. At video-level, [7] use LSTM to integrate
spatial domain knowledge into the temporal domain. [8] come
up with Spatio-Temporal modeling by 3DCNN, making the
spatial and temporal features complementary in training. Some
supervised methods take advantage of the ideal of clustering
in contrastive learning to improve model generalization. They
are classified as supervised contrastive learning. [5] propose a
two-branch framework to realize an intra-instance contrast and
an inter-instance contrast. [16] leverage the similarity between
videos under different compression qualities. Nevertheless,
these methods are still trained in a supervised manner. They
can not get rid of large-scale manually annotated datasets.
Self-supervised Contrastive Learning. Contrastive Learning
is a typical pretraining-finetuning method. The pretraining
aims to maximize the similarity between images with their
augmentations (positive pairs) meanwhile against other combi-
nations (negative pairs). [17] presented a simple but powerful
framework named SimCLR. It was trained end-to-end, and
every model part was differentiable. [18] came up with mo-
mentum update mechanics and a dictionary to save samples’
representations during training. This framework benefited from
the consistency of representations saved in the dictionary. To
our knowledge, only a few DeepFake detection works are
self-supervised using contrastive learning. [12] adopt settings
from simCLR and preliminary confirm that self-supervised
methods can detect DeepFake. [19] pretrain a model pulling
representations of the audio stream and the image stream
in videos closer, then finetune the model for classification.
However, these attempts show the distinctiveness of Deep-
Fake detection compared to general image classification tasks.
Simply adopting contrastive learning in DeepFake detection
will result in a noticeable performance gap compared with
supervised methods.

Fig. 2. For most potentially positive pairs from ImageNet(left), differences
are easy to find. By contrast, in DeepFake datasets(right), potentially positive
pairs could only have facial expressions or head position differences.

III. METHODOLOGY

This section describes technical approaches for DFCP, an
efficient pretraining framework for frame-level DeepFake de-
tection. We aim to realize high-performance detection by
designing pretraining tasks without changing commonly used
image encoders. We first demonstrate the two possible reasons
for the performance gap in previous self-supervised works,
then specify each part of DFCP.

A. Limitations of Previous Work

Potentially Positive Pairs. Typically, contrastive learning
for general image classification treats an image with its
augmentation as a positive pair and other combinations as
negative pairs. The pretraining task requires the network to
maximize the positive pair’s similarity while minimizing the
negative pair’s similarity. This task is “instance-discriminative”
because it treats every image as a distinct class. The instance-
discriminative task possibly leads pairs consisting of two
images from the same class in downstream tasks to be
negative, and we define these pairs as “potentially positive”
pairs. For general image classification datasets like ImageNet
[20], potentially positive pairs will not hinder the downstream
performance since the dissimilarity between the images can be
found in the background or other noticeable differences like
illumination, as shown on the left of Fig. 2. By contrast, in
DeepFake detection, many potentially positive pairs from the
same video contain frames with only facial expressions or head
position differences. They share the same background, light
condition, and identity. Since representations of two similar
frames in a potentially positive pair are pushed apart during the
pretraining, the encoder trend to find subtle differences from
image dithering, blur, or local texture. However, these details
are essential clues for discriminating between real and fake.
Previous works do not deal with potentially positive pairs.
Thus their performances are limited.
Absence of Local information. Standard contrastive learning
employs global feature vectors generated by pooling fea-



ture maps from the image encoder. While many clues of
DeepFake, distinguished from general classification, are not
global attributes. Former attempts only pretrained on global
vectors, thus hindering learning the local features (e.g., local
area inconsistency, unnatural blur, and noise pattern) vital to
DeepFake detection.

B. Video-based Frame Sampling Strategy

The solution of mitigating potentially positive pairs is
straightforward. We propose a video-based frame sampling
strategy that samples b videos from the dataset first, then
randomly chooses two frames A and B from each video. Now,
we define 2b positive pairs according to b videos ({A,B} and
{B,A} are considered as different pairs), and 4b2−4b negative
pairs (other combination of 2b frames). In this way, we avoid
harmful potentially positive pairs that contain two frames from
the same video. Besides, the random time span between A and
B increases the diversity of positive pairs. It can be considered
as hard data mining that improves the quality of pretraining.

C. Dense-contrastive Learning in RGB Stream

This subsection realizes ② in Fig: 1, which consists of two
parts. The first part is a global contrast. We first randomly
apply one commonly used augmentation method (horizontal
flip, vertical flip, rotation, random grayscale, color jittering, or
random noising) for each frame (④ in Fig: 1), then divide each
into 4×4 patches and randomly mask 0% to 62.5% patches by
black. Denote Xi ∈ RC×H×W as an augmented view of frame
Xi. A CNN backbone fCNN is used to generate the feature
map mi = fCNN

(
Xi

)
∈ RC′×H′×W ′

. mi is pooled by global
average pooling, then projected by a MLP projection head to
generate the global feature vector vi ∈ RC′

. We compute a
global contrastive loss formulated as:

Lglobal = −
∑
i∈B

log
exp (sim (vi, vi+) /τ)∑
j̸=i+ exp (sim (vi, vj) /τ)

. (1)

where B = {1, . . . , 2b}, vi and vi+ denote vectors of a positive
pair defined in subsection III-B, τ is the temperature parameter
equals 0.07. sim represents the cosine similarity function:

sim (vi, vj) =
vi · vj

∥vi∥ × ∥vj∥
, (2)

The second part is a dense contrast between local areas to
mitigate the absence of local features in standard contrastive
learning. Inspired by [13], we discard the global average
pooling and rearrange the feature map mi into a sequence
of local feature vectors vki ∈ RC′

, where k ∈ N and
N = {1, . . . ,H ′ × W ′}. Unlike [13], we normalize vki by
vi through element-wise division. This operation eliminates
the influence of global attributes like illumination and makes
our dense contrast more focused on local features. Then we
pass local feature vectors through another projection head, and
the outcomes are denoted as uk

i . The positive vector of uk
i is

defined as its most similar vector in mi+ , and negative vectors
are defined as global feature vectors vj for all j ̸= i+. This
definition allows the encoder to find similarities in local areas

while not learning dissimilarities from local details. The dense
contrastive loss is formulated as:

Llocal = −
∑
i∈B

∑
k∈N

log
exp

(
sim

(
uk
i , u

k+

i+

)
/τ

)
∑

j̸=i+ exp
(
sim

(
uk
i , vj

)
/τ

) . (3)

where k+ = argmax
l∈N

sim
(
uk
i , u

l
i+

)
. Finally, the target of

dense-contrastive learning in RGB stream is to minimize
Ldense = Lglobal + Llocal.

D. Contrastive Learning in Texture Stream

As aforementioned, high-frequency texture features are just
as important as high-level semantics in DeepFake detection.
To leverage texture features, we first define the texture map
(⑤ in Fig: 1) XT

i = Xi−X−
i . X−

i denotes a recovered down-
sampled view of Xi under the control of the down-sampled
rate r, which means resizing Xi to RC×rH×rW and then up-
scaling to the original shape. We use a weak ViT encoder
fViT (with a few blocks and attention heads) to generate
feature map mT

i = fViT

(
XT

i

)
∈ RC′×H′×W ′

, since the high-
level understanding of low-level features is unnecessary. Same
as the global contrast in subsection III-C, mT

i is pooled by
global average pooling, then projected by a MLP projection
head to generate the global texture feature vector vTi ∈ RC′

.
For ③ in Fig: 1, we computes LT

global by replacing vi in
equation (1) with vTi . It ensures the CNN encoder of RGB
frames concerns useful texture information. Besides, to further
improve the quality of texture encoding, we introduce an
instance-discriminative task ① in Fig: 1, requiring texture map
XT

i to retrieve the original RGB view Xi among all frames.
Its self-supervised loss LT

self is also calculated by equation (1)
with replacing vi to vTi , but i+ is defined as i+ = i. The
target of contrastive learning in texture stream is to minimize
Ltexture = LT

global + LT
self .

The intuition of using ViT rather than CNN in texture
stream is: Texture map extraction drastically changes signal
intensity in local areas of Xi. XT

i is sparse and almost black in
most areas since it is generated by subtraction. Consequently,
lines and edges in Xi dominate the signal intensity of XT

i .
However, we do not want clear and strong edges to disturb
the learning of wake blur and dithering brought by image
forgery. CNN generates image representations by convolution.
It is sensitive to local signal intensity, while the attention
mechanism adopted in ViT can reduce the impact of signal
intensity in local areas. Another merit of applying ViT is the
ability to capture long-distance dependencies in XT

i with few
blocks, then reduce the computational overhead of a two-
stream framework setting. Nevertheless, we still use CNN
in the RGB stream because of the limited scale of current
DeepFake datasets. Typically, ViT needs more data to release
the potential. Overall, the total loss of DFCP is formulated as:

Loss = λ× Ldense + (1− λ)× Ltexture (4)

where λ acts as the weight to balance the importance of two
terms. We set λ to 0.5 for all experiments in this paper.



IV. EXPERIMENT

A. Datasets

We evaluate our DFCP on three commonly used datasets.
FF++ [1] includes 1000 real videos and 4000 manipulated
videos generated by four forgery methods. In this paper, all
performances are based on high-quality videos with quan-
tization parameters c23. Celeb-DF (V2) [14] is a widely
used dataset that contains 590 original videos collected from
YouTube with subjects of different ages, ethnic groups, gen-
ders, and 5639 DeepFake videos. Celeb-DF is challenging
since most fake videos are designed to evade noticeable
artifacts. DFDC [15] contains 1131 real videos and 4113 fake
videos generated by several manipulated methods. The light
conditions and the proportion of faces in the picture change
significantly among videos.

B. Implement Details

Preprocessing. We uniformly sample 50 frames from the
first 288 frames in each video, then crop them to align
human faces using bounding boxes detected by MTCNN [21].
The split of training and testing videos follows the official
guidelines of each dataset.
Pretrianing setup. We resize all frames to 256 × 256. The
down-sampling rate r of texture map extraction is 0.1. We
adopt Xception [22] pretrained on ImageNet as the CNN
backbone. The ViT encoder in the texture stream has 6 layers,
each with a hidden dimension of 384. The number of attention
heads is set to 8, and the inputs are divided into 64 patches.
We train the ViT encoder from scratch. All projection heads
have two FC layers, and the output dimension is set to 256.
Our batch size is 256, and the learning rate is 3e−3. We adopt
Adam optimizer with a weight decay of 5e − 4 and pretrain
encoders on FF++ for 60 epochs.
Evaluation protocol. We evaluate DFCP by finetuning a
classification model consisting of the pretrained CNN encoder
in the RGB stream and a single-layer classification head.
The ViT encoder in the texture stream is unnecessary for
classifications since it is designed to help the RGB stream
learn high-frequency textures. The classification model is
finetuned end-to-end on a testing set with labels. To compare
with previous methods, We perform both full-data finetuning
and few-shot finetuning. The few-shot finetuning relies on a
randomly extracted subset (5%) of the testing set.

C. Quantitative Results

Comparison with supervised methods at frame-level.
To demonstrate the effectiveness of DFCP, we conducted
both in-dataset and cross-dataset evaluations and compared
results with predominant supervised methods at frame-level.
In-dataset evaluation means training and testing on the same
dataset. In table I, all previous works are trained on the entire
FF++ in a supervised manner. Besides the last two rows,
all cross-dataset results are zero-shot. We use a classification
model (defined in subsection IV-B) without pretraining as the
baseline. From comparisons with these methods, we list the
following observations: (1) DFCP outperforms cutting-edge

TABLE I
IN-DATASET EVALUATIONS ON FF++ AND CROSS-DATASET EVALUATIONS

ON CELEB-DF&DFDC FOR FRAME-LEVEL METHODS.

Method AUC(%)
FF++ Celeb-DF DFDC

EN-b4 [5] 99.22 68.52 70.12
Face X-ray [4] 87.40 74.20 70.00
F3-Net [23] 98.10 71.21 72.88
MAT(EN-b4) [2] 99.27 76.65 67.34
GFF [24] 98.36 75.31 71.58
LTW [25] 99.17 77.14 74.58
Local-relation [6] 99.46 78.26 76.53
Capsule [26] 96.60 57.50 -
Two Branch [27] 93.18 73.41 -
DCL [5] 99.30 82.30 76.70
baseline (100% FF++) 98.91 67.14 64.98
baseline (5% FF++) 59.20 55.75 56.51
Ours (100% FF++) 99.38 84.35 75.02
Ours (5% FF++) 94.95 87.45 79.28
Ours (5% DFDC) - - 81.61
Ours (5% Celeb-DF) - 89.15 -

TABLE II
IN-DATASET RESULTS FROM VIDEO-LEVEL WORKS AND FINETUNING

RESULTS OF DFCP. †DENOTES THE VIDEO-LEVEL METHOD.

Method ACC(%)
Celeb-DF DFDC Avg

D-FWA† [28] 98.58 85.11 91.85
I3D† [29] 99.23 80.82 90.03
S-MIL-T† [9] 98.84 85.11 91.98
LPS (c23)† [30] 92.55 80.25 86.40
baseline(100%) 95.95 80.30 88.13
Ours(5%) 85.10 76.92 81.01
Ours(100%) 100.0 84.03 92.02

supervised methods in zero-shot cross-dataset evaluations with
5.15% and 2.58% performance gains. It shows the generaliza-
tion of DFCP. (2) Full-data finetuning achieves the runner-
up of in-dataset evaluation but damages the generalization,
possibly due to over-fitting. In addition, we also report our
few-shot performance on Celeb-DF and DFDC.
Comparison with supervised methods at video-level. To
further present the generalization of DFCP, we adopt evalu-
ation metrics from [9] and compare DFCP with video-level
methods that are full-data trained on Celeb-DF and DFDC.
As shown in table II, DFCP is competitive with video-level
methods and achieves impressive 100% accuracy on Celeb-DF.
As for videos in DFDC, some forgery clues hide in camera
movements, changes in picture proportion of people, and
the variation of illumination. The lack of temporal reasoning
makes it hard for DFCP to overcome these difficulties.
Comparison with self-supervised methods. We also list
comparisons between our DFCP with UCL [12] and Zhao et
al. [19], the only two published DeepFake detection works that
are fully self-supervised to the best of our knowledge. UCL
has a standard contrastive learning framework without much
special design for DeepFake detection and can be regarded
as a baseline for all self-supervised methods. Zhao et al.
[19] is a multi-modal method that simultaneously concerns
video and audio. They utilize the inconsistency between video



Fig. 3. Class activation maps (CAM) for variants of DFCP.

and audio as the judgment basis. From the better cross-
dataset performance of DFCP, we guess high-frequency texture
features are more general DeepFake clues compared with
inconsistencies between video and audio.

D. Visualization results

We provide class activation maps (CAM) to demonstrate the
benefits of the two-stream setting and the encoder type setting
in DFCP. Fig. 3 consists of CAMs of: (1) DFCP without
utilizing texture maps (baseline). (2) DFCP leveraging texture
maps without the texture stream. (3) DFCP with CNN encoder
in texture stream. (4) DFCP with ViT encoder in texture
stream. We validate these models on 16 fake faces generated
by four forgery methods. Red dotted boxes mark the manipu-
lated region in each fake face. Generally speaking, vital clues
of forgery often appear along the edge of manipulated regions
or in heavily changed parts inside the manipulated regions.
Comparison between (1) and (2) demonstrates that putting
texture features into the RGB stream will make the encoder
emphasize high-frequency features too much. Separating the
encoding of texture maps into the texture stream mitigate this
defect, but CNN is incompetent to improve the performance
further. (3) shows the model with a CNN texture stream fails to
combine low-frequency semantics and high-frequency texture
features. By contrast, (4) can pinpoint the manipulated regions
and high-frequency edges around them.

E. Ablation Study

Effectiveness of components. All results reported in this
subsection from models trained and finetuned on full-scale
FF++. To further demonstrate the effectiveness of each com-
ponent, we specially design the following variant models. 1)
DFCP that doesn’t focus on texture features. 2) DFCP that
treats texture maps as normal augmentations in RGB stream.
3) DFCP that only has global contrastive learning. 4) DFCP
that does not deal with potentially positive pairs. 5) Full DFCP
with all specially designed components.

Comparisons between variation 1, 2, and 5 show the im-
provement brought by using texture features. In table III,
the comparison between variation 2 and variation 1 shows

TABLE III
PERFORMANCE OF SELF-SUPERVISED METHODS. ‡DENOTES THE

MULTI-MODAL METHOD.

Method
AUC(%)

FF++ Celeb-DF DFDC
UCL (100% FF++) [12] 93.00 58.90 -
Zhao et al. (100% FF++)‡ [19] 99.60 84.20 74.50
Ours (100% FF++) 99.38 84.35 75.02
Ours (5% FF++) 94.95 87.45 79.28

using texture features can improve in-dataset performance
by 1.61%, but it damages cross-dataset performance. This
demonstrates that directly adding texture maps into the RGB
stream harms model generalization. However, we observe over
6% improvement in cross-dataset evaluation after applying
texture stream to learn texture features. The 0.26% drop in
in-dataset performance is nothing compared to such a huge
generalization improvement.

Comparing variation 5 and variation 3 shows dense con-
trastive learning brings 3.01% and 1.94% gains in in-dataset
and cross-dataset evaluation. In variation 4, we don’t apply
the video-based sampling strategy. That means i+ = i in
equation 1. Significant performance drops in variation 4 show
the importance of handling potentially positive pairs.
Important hyper-parameters. Table V shows the results
of different masking ratios in the RGB stream and reports
performances under different down-sampling rates in texture
map extraction.

V. CONCLUSION

In this paper, We reveal two major reasons for the failure
of previous pretraining-finetuning DeepFake detection works
and propose a high-performance pretraining framework DFCP,
which has dedicated pretraining tasks designed for DeepFake
detection and does not change commonly used image encoder.
DFCP spontaneously learns high-frequency texture features
and high-level semantics information and can quickly adapt
to new domains by few-shot finetuning. Extensive experiments
demonstrate that our DFCP outperforms supervised methods,
especially in cross-dataset evaluations. One limitation is that
DFCP does not take temporal inconsistency into account.



TABLE IV
ABLATION STUDIES ON THE EFFECTIVENESS OF DIFFERENT COMPONENTS.

variant Common Aug Texture map Texture Stream Dense Contrast Video-based Sampling FF++ Celeb-DF
1 ✓ ✓ ✓ 98.03 79.04
2 ✓ ✓ ✓ ✓ 99.64 78.25
3 ✓ ✓ ✓ ✓ 96.37 82.41
4 ✓ ✓ ✓ ✓ 94.50 77.23
5 ✓ ✓ ✓ ✓ ✓ 99.38 84.35

TABLE V
ABLATION STUDIES ON THE RATIO OF RANDOM MASKING AND THE

DOWN-SAMPLING RATE

masking ratio 0% 37.5% 62.5% 87.5%
FF++ 96.90 98.10 99.38 94.51

down-sampling rate r 0.05 0.1 0.3 0.5
FF++ 99.00 99.38 98.71 98.20

Although learning from temporal features will bring extra
computational overhead, they are still vital clues for forgery
detection. Fortunately, experiments in table II suggest that the
purely frame-level method DFCP is competent for detecting
most current DeepFake videos.
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