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Abstract001

The rapid advancement of large language mod-002
els (LLMs) has heightened concerns about their003
misuse in generating deceptive mathematical004
content. To address the lack of specialized005
benchmarks for machine-generated mathemat-006
ical text detection, we introduce MathGen-007
Bench, the first comprehensive benchmark tar-008
geting machine-generated mathematical text.009
Our benchmark integrates authentic human-010
written content from arXiv, Mathematics Stack011
Exchange (MSE), and Wikipedia with machine-012
generated samples produced by 10 leading lan-013
guage models. To simulate real-world adversar-014
ial scenarios, we employ various text manipu-015
lation strategies, including paraphrase attacks016
and perturbation attacks. Building upon the017
TOCSIN framework, we propose TOCSIN*,018
which enhances detection robustness through019
a learnable linear aggregation mechanism for020
token cohesiveness and zero-shot scores. Ex-021
tensive experiments demonstrate TOCSIN*’s022
superiority over existing methods across differ-023
ent scenarios. This work provides critical tools024
for combating machine-generated mathemati-025
cal text.026

1 Introduction027

Recent advanced LLMs, such as OpenAI o1 (Jaech028

et al., 2024) and Qwen 2.5 (Yang et al., 2024),029

have significantly elevated the quality of machine-030

generated text. These models achieve human-031

like fluency through enhanced reasoning capabili-032

ties and training on massive datasets (e.g., Qwen033

2.5’s 18T tokens). Consequently, their adop-034

tion has expanded across diverse domains, includ-035

ing advertising (Meguellati et al., 2024), journal-036

ism (Quinonez and Meij, 2024), creative writing037

(Gómez-Rodríguez and Williams, 2023), and code038

generation (Mu et al., 2024). However, the pow-039

erful generative capabilities of LLMs have also040

raised concerns about potential misuse, as their041

inherent limitations—including tendencies to fabri-042

cate facts (Ji et al., 2023), rely on outdated knowl- 043

edge, and exhibit sensitivity to prompt phrasing— 044

create vulnerabilities that could be exploited for 045

spreading misinformation, enabling fraud (Ayoobi 046

et al., 2023; Roy et al., 2024), generating spam 047

(Mirsky et al., 2023), or facilitating academic mis- 048

conduct (Kasneci et al., 2023). Furthermore, the 049

growing practice of using machine-generated text 050

in AI research training data risks creating feedback 051

loops that could degrade data quality and diversity 052

over time (Alemohammad et al., 2024). 053

To address these challenges, researchers have 054

proposed benchmark datasets and evaluation meth- 055

ods to distinguish machine-generated text from 056

human-written content. However, existing bench- 057

marks often exhibit a paucity of samples from 058

mathematical domains, limiting their effectiveness 059

in evaluating detection performance in this spe- 060

cialized context. Mathematical texts differ sig- 061

nificantly from general natural language due to 062

their reliance on formal logical structures and the 063

heavy use of symbolic notation. Existing detec- 064

tion methods can be broadly categorized into two 065

categories: training-based methods and zero-shot 066

methods. Training-based methods utilize classifi- 067

cation models trained on corpora comprising both 068

machine-generated and human-written text. While 069

demonstrating strong detection performance fol- 070

lowing extensive training, they exhibit notable lim- 071

itations, including poor interpretability, overfitting 072

(Pu et al., 2023), and limited temporal adaptability. 073

In contrast, zero-shot methods leverage statistical 074

metrics like log-likelihood, entropy, token rank, 075

and perplexity to perform thresholding-based clas- 076

sification. Specifically, TOCSIN (Ma and Wang, 077

2024) combines token cohesiveness and other zero- 078

shot scores for machine-generated text detection. 079

By directly utilizing pre-trained LLMs without 080

fine-tuning, zero-shot methods circumvent domain 081

adaptation challenges associated with model re- 082

training. 083
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To address the critical gap in domain-specific084

data insufficiency, we introduce MathGenBench085

(Mathematical Machine-Generated Text Detec-086

tion Benchmark), a comprehensive benchmark of087

machine-generated text detection in mathemati-088

cal domains. MathGenBench integrates multiple089

data sources, including arXiv, MSE and Wikipedia,090

and covers texts generated by 10 LLMs from the091

Qwen, Llama, and Mistral series. To simulate092

real-world detection scenarios, we employ various093

attack strategies, including DIPPER paraphraser,094

back-translation via Google Translate, and polish-095

ing using LLMs, as well as perturbation attacks at096

the character, word, and sentence levels. Based on097

this, we systematically evaluate the performance of098

mainstream zero-shot detectors on MathGenBench,099

providing an in-depth analysis of the detectors’ per-100

formance differences across different data sources,101

LLMs, attack types, and text lengths.102

Additionally, we enhance TOCSIN by introduc-103

ing linear score aggregation, resulting in TOCSIN*.104

Experimental results show that TOCSIN* achieves105

competitive performance on MathGenBench under106

both white-box and black-box settings and demon-107

strates robustness against text attacks. By analyz-108

ing the parameters of TOCSIN*, we reveal that the109

importance of token cohesiveness increases with110

the scale of the LLMs. This finding provides a111

new perspective for understanding the detection112

mechanisms of texts generated by LLMs.113

2 Related Work114

2.1 Large Language Models115

Research has demonstrated that increasing the pa-116

rameter scale or training data volume of pre-trained117

language models generally leads to performance118

improvements on downstream tasks, a phenomenon119

known as the Scaling Law (Kaplan et al., 2020).120

For instance, GPT-3 has 175B parameters, while121

Google’s subsequent PaLM scales up to 540B pa-122

rameters. These large-scale pre-trained language123

models significantly outperform smaller counter-124

parts in complex task scenarios. In zero-shot and125

few-shot learning tasks, large models can accom-126

plish sophisticated tasks such as text summariza-127

tion, translation, and question-answering without128

domain-specific training data or with minimal ex-129

emplars, producing outputs with enhanced accu-130

racy and coherence. Notably, when pre-trained131

language models reach a critical scale threshold,132

they spontaneously exhibit novel characteristics or133

behaviors unseen in smaller models—a capability 134

referred to as Emergent Abilities (Wei et al., 2022). 135

Since the release of ChatGPT (OpenAI, 2022) 136

in November 2022, the development of LLMs has 137

entered a phase of rapid advancement. Major tech- 138

nology companies worldwide have launched pro- 139

prietary models, iteratively refining them through 140

improved training frameworks and methodologies. 141

Following GPT-3, OpenAI introduced GPT-4 (Ope- 142

nAI, 2023) and GPT-4o (Hurst et al., 2024), enhanc- 143

ing multimodal task capabilities. In 2024, OpenAI 144

unveiled the o1 (Ope, a) and o3 (Ope, b) series: o1 145

surpassed human PhD-level performance on bench- 146

marks like GPQA Diamond and achieved 83% ac- 147

curacy on AIME, while o3-mini achieved break- 148

throughs in programming, mathematical reasoning, 149

and scientific inference, scoring 2727 points on 150

Codeforces programming contests—approaching 151

professional programmer proficiency. Since 2023, 152

Meta has released the open-source Llama series 153

including Llama 1 (Touvron et al., 2023a), Llama 154

2 (Touvron et al., 2023b), and Llama 3 (Dubey 155

et al., 2024), each iteration introducing architec- 156

tural innovations to improve performance and ver- 157

satility. DeepSeek released the DeepSeek-V3 (Liu 158

et al., 2024) model, a 671B-parameter Mixture- 159

of-Experts (MoE) architecture with 37B activated 160

parameters, pre-trained on 14.8T tokens. It demon- 161

strates notable advancements in knowledge repre- 162

sentation, long-text processing, coding, mathemat- 163

ics, and Chinese language tasks, achieving a 3× 164

speed improvement (60 TPS) over its V2.5 version. 165

2.2 Machine-Generated Text Detection 166

Current detection methods can be devided in to two 167

categories, i.e., training-based methods and zero- 168

shot methods. In this paper we consider eight zero- 169

shot detection methods, including Log-Likelihood, 170

Rank, Log-Rank, Entropy, LRR, Fast-DetectGPT, 171

Binoculars and TOCSIN. 172

• Log-Likelihood (Solaiman et al., 2019): This 173

approach leverages a language model to calcu- 174

late the token-wise log probability of a given 175

input text. Higher values indicate a higher 176

probability of being generated by a large lan- 177

guage model. 178

• Rank (Gehrmann et al., 2019): This metric 179

calculates the average rank of token probabili- 180

ties in the model’s output distribution. Lower 181

scores suggest text is more likely machine- 182

generated. 183
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• Log-Rank (Solaiman et al., 2019): Similar to184

Rank metric, Log-Rank uses logarithmic rank185

values instead of raw ranks for calculation.186

• Entropy (Ippolito et al., 2020): This metric187

calculates the average entropy of token proba-188

bility distributions conditioned on preceding189

context. Machine-generated text typically ex-190

hibits lower entropy values.191

• LRR (Su et al., 2023): Log-Likelihood Log-192

Rank Ratio (LRR) combines log-likelihood193

and log-rank through division. It outperforms194

DetectGPT (Mitchell et al., 2023) by captur-195

ing complementary features.196

• Fast-DetectGPT (Bao et al., 2024): Fast-197

DetectGPT enhances DetectGPT by using a198

more efficient sampling strategy. It proposed199

a metric named conditional probability curva-200

ture and observed that machine-generated text201

tends to have higher conditional probability202

curvature.203

• Binoculars (Hans et al., 2024): Binoculars204

calculates a detection score by contrasting the205

perplexity of a text under observer model with206

the cross-perplexity computed using observer207

model and performer model.208

• TOCSIN (Ma and Wang, 2024): TOCSIN209

leverages token cohesiveness as a plug-and-210

play module to improve existing zero-shot de-211

tectors, based on the observation that machine-212

generated text tends to exhibit higher token213

cohesiveness.214

3 MathGenBench215

Existing benchmarks for detecting machine-216

generated text struggle with mathematical content217

due to insufficient domain-specific samples and218

limited coverage of complex notation and domain-219

specific reasoning patterns. To address this gap,220

we introduce MathGenBench, a specialized bench-221

mark combining three critical dimensions: (1)222

human-authored mathematical texts from moder-223

ated sources (arXiv, MSE, and Wikipedia), (2)224

machine-generated content from 10 leading LLMs,225

and (3) adversarially augmented samples simulat-226

ing real-world evasion tactics. This resource en-227

ables comprehensive evaluation of detection robust-228

ness, while providing granular insights into model-229

specific generation patterns and attack vulnerabili-230

ties. The remainder of this section is organized as231

follows: We first present the design framework of 232

MathGenBench, followed by dataset statistics and 233

analysis. 234

3.1 Benchmark Construction Framework 235

Data Curation Human-written texts in Math- 236

GenBench are from three rigorously moderated 237

sources: 500 academic abstracts from arXiv Math- 238

ematics (subject to disciplinary moderation and 239

endorsement policies), 500 question-answer pairs 240

from MSE (peer-reviewed through community vot- 241

ing and expert moderation), and 500 encyclopedic 242

summaries from Wikipedia mathematics portals 243

(maintained through citation-based verification and 244

editorial oversight). The institutional governance 245

mechanisms inherent to these platforms—spanning 246

academic validation, collaborative quality control, 247

and verifiability standards—minimize the inclusion 248

of AI-generated content while ensuring authorita- 249

tive representation of mathematical discourse. 250

Models To construct the machine-generated text 251

corpus, we selected 10 leading open-source mod- 252

els from Qwen, Llama, and Mistral series as of 253

November 2024. Machine-generated texts are gen- 254

erated by running inference on these models. For 255

more details on the LLMs and generation protocol, 256

please refer to Appendix A. 257

Adversarial Augmentation To simulate com- 258

plex real-world detection scenarios and evaluate 259

the robustness of detection methodologies, follow- 260

ing DetectRL (Wu et al., 2024), we implemented 261

adversarial augmentation with paraphrase attacks 262

and perturbation attacks. 263

Paraphrase attacks are designed to preserve se- 264

mantic integrity while altering surface-level ex- 265

pressions. We employed three approaches: the 266

DIPPER paraphraser (Krishna et al., 2023), back- 267

translation via Google Translate, and polish using 268

LLMs. More details of polish paraphrase can be 269

found in Appendix A.3. 270

Perturbation attacks focus on inducing misclas- 271

sification through minimal modifications, utilizing 272

three established frameworks targeting different 273

linguistic granularities: DeepWordBug (Gao et al., 274

2018) for character-level transformations through 275

critical token identification via scoring functions, 276

TextFooler (Jin et al., 2020) for context-aware syn- 277

onym substitution with linear time complexity, and 278

TextBugger (Li et al., 2019) as a unified frame- 279

work generating visually/semantically consistent 280

adversarial examples for deep learning-based text 281
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understanding systems. These methodologies col-282

lectively enabled comprehensive evaluation of de-283

tection robustness across lexical, syntactic, and se-284

mantic dimensions while preserving real-world op-285

erational validity.286

3.2 Benchmark Statistics287

The statistical breakdown of dataset categories is288

presented in table 1. The corpus contains 10,500289

human-authored texts, comprising 1,500 original290

samples and 9,000 instances derived through para-291

phrasing and perturbation attacks. The distribu-292

tion of machine-generated texts mirrors this struc-293

ture: for each model, 1,500 original generations294

and 9,000 attack-modified samples are included,295

with a total of 10 distinct models employed for text296

generation. Figure 1 illustrates the word count dis-297

tributions of original texts compared to Qwen-14B298

generated outputs. Cross-source analyses reveal299

minimal disparities in word count distributions be-300

tween original and generated texts: arXiv texts pre-301

dominantly concentrate within 250 words (93.2%302

of samples), while MSE texts exhibit broader dis-303

tribution spans with 8.2% of samples exceeding304

1,000 words. Further granularity is provided in305

fig. 2, which visualizes model-specific word count306

distributions across different data sources.307

Figure 1: Word count distribution of original text and
Qwen-14B generated text

4 Method308

4.1 TOCSIN309

TOCSIN (Ma and Wang, 2024) introduces310

BARTScore (Yuan et al., 2021) to measure token311

cohesiveness, achieving enhanced detection per-312

formance through integration with other zero-shot313

detection methods including Likelihood, LogRank,314

LRR, and Fast-DetectGPT. The key assumption315

of TOCSIN is that LLM-generated text typically316

exhibits higher token cohesiveness compared to 317

human-written text. 318

Token Cohesiveness Token cohesiveness quan- 319

tifies the semantic difference between candidate 320

text and its perturbed variant. Higher token co- 321

hesiveness indicates stronger semantic coherence 322

among consecutive tokens. Ma et al. (Ma and 323

Wang, 2024) hypothesize that text generated by 324

LLMs and human-written text exhibit distinct char- 325

acteristics in token cohesiveness. LLMs inherently 326

generate tokens sequentially based on preceding 327

context, which naturally strengthens semantic de- 328

pendencies between adjacent tokens. In contrast, 329

human writing involves greater lexical flexibility 330

and is subject to subjective stylistic choices with- 331

out explicit sequential constraints. Formally, token 332

cohesiveness is defined as: 333

u(x) ≜ E(DIFF(x, x̃)), 334

where DIFF(·, ·) denotes a semantic difference 335

metric and E(·) represents expectation operator. 336

Given input text x, its token cohesiveness can be 337

empirically estimated through perturbation analy- 338

sis: generating N perturbed variants {x̃i}Ni=1 and 339

computing the sample mean of semantic differ- 340

ences: 341

û(x) =

N∑
i=1

DIFF(x, x̃i)

N
. (1) 342

In the TOCSIN framework, DIFF(·, ·) is imple- 343

mented using the negative BARTScore, which cal- 344

culates semantic similarity through conditional log- 345

likelihood: 346

BARTScore(x, x̃) =
k∑

j=1

log pϕ(xj |x<j , x̃), 347

where ϕ represents the parameters of the BART 348

model. 349

4.2 TOCSIN* 350

We see an opportunity to improve TOCSIN’s score 351

aggregation mechanism: it uses the following for- 352

mula 353

w(x) = esgn(v(x))û(x)v(x) 354

to combine the empirical token cohesiveness û(x) 355

and the score obtained by some zero-shot method. 356

This formula is not fully discussed in (Ma and 357

Wang, 2024) and lacks weight control on scores 358

from two distinct sources. 359
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Attack Types - Paraphrase Attacks Perturbation Attacks Total
Data Source BP DP PP CP WP SP

ArX Human 500 500 500 500 500 500 500 3,500
LLMs 5,000 5,000 5,000 5,000 5,000 5,000 5,000 35,000

MSE Human 500 500 500 500 500 500 500 3,500
LLMs 5,000 5,000 5,000 5,000 5,000 5,000 5,000 35,000

WP Human 500 500 500 500 500 500 500 3,500
LLMs 5,000 5,000 5,000 5,000 5,000 5,000 5,000 35,000

Total - 16,500 16,500 16,500 16,500 16,500 16,500 16,500 115,500

Table 1: Benchmark statistics; ArX: arXiv, MSE: Mathematics Stack Exchange, WP: Wikipedia; LLMs refers to the
collective term for all models selected in the paper; BP: Back-translation Paraphrase, DP: DIPPER Paraphrase, PP:
Polish Paraphrase, CP: Character-level Perturbation, WP: Word-level Perturbation, SP: Sentence-level Perturbation.

Figure 2: Word count distribution of generated texts across model series and data sources

Here, we propose a simple linear score aggrega-360

tion mechanism as follows:361

w(x) = αû(x) + βv(x), (2)362

where α and β are learnable parameters obtained363

via logistic regression on training data. This ap-364

proach allows adaptive weight assignment between365

the empirical token cohesiveness score û(x) and366

the zero-shot score v(x), ensuring appropriate con-367

tributions from each source to the final detection368

metric. We name the framework using the above369

new detection metric TOCSIN*, and its framework370

is shown in fig. 3. The effectiveness of (2) will be371

verified in the next section.372

5 Experiments373

5.1 Detectors Configuration374

We conducted evaluations on multiple representa-375

tive zero-shot methods, including five logits-based376

approaches (Log-Likelihood, Rank, Log-Rank, En-377

tropy, and LRR), perturbation-based methods (Fast-378

DetectGPT and TOCSIN), Binoculars, and our pro-379

posed improved version of TOCSIN (TOCSIN*). 380

To streamline the experimental setup, in the black- 381

box scenario, both the sampling model and scoring 382

model in Fast-DetectGPT were implemented us- 383

ing Neo-2.7 (Black et al., 2021). Similarly, all 384

other logits-based methods employed Neo-2.7 as 385

the proxy model. BARTScore in TOCSIN and 386

TOCSIN* was computed using BART-base(Lewis 387

et al., 2020). According to the experimental results 388

from Binoculars (Hans et al., 2024), the observer 389

model and performer model in Binoculars were im- 390

plemented using Falcon-7B and Falcon-7B-Instruct 391

(Almazrouei et al., 2023) respectively. 392

5.2 Main Results 393

Table 4 and table 5 present the evaluation results of 394

detectors under white-box and black-box settings, 395

respectively. 396

Under the white-box setting, in terms of de- 397

tection performance averaged across all models, 398

our proposed TOCSIN* achieves the highest aver- 399

age AUROC on the arXiv dataset (corresponding 400

to the dataset generated from arXiv data source, 401
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Figure 3: TOCSIN* framework

similarly for MSE and Wikipedia datasets) and402

Wikipedia dataset. While Binoculars performs best403

on the MSE dataset, TOCSIN* closely follows404

with superior performance compared to TOCSIN.405

Notably, TOCSIN* demonstrates the most signifi-406

cant improvements over TOCSIN on three specific407

dataset-model combinations: (MSE, Mistral-7B),408

(Wikipedia, Qwen-14B), (Wikipedia, Mistral-8B),409

and (Wikipedia, Mistral-12B), achieving AUROC410

gains of 5.77%, 5.47%, 8.41% and 5.50%, respec-411

tively. However, TOCSIN shows no advantage412

over Fast-DetectGPT, with lower average AUROC413

values on both arXiv and MSE datasets. Notably,414

Binoculars outperforms all other methods on the415

MSE dataset without requiring access to the source416

model. Among other zero-shot methods, LRR417

and Log-Rank exhibit the most competitive per-418

formance, ranking high in AUROC averages across419

all three datasets, while Entropy performs worst420

with AUROC values below 0.5 across all datasets.421

Regarding dataset characteristics, from the per-422

spective of data source, arXiv demonstrates the423

lowest detection difficulty, whereas MSE presents424

the greatest challenge. This may be attributed to the425

highly specialized and logically structured nature426

of human-written texts in arXiv (being article ab-427

stracts with concise language), contrasting with the428

general-knowledge-oriented and potentially redun-429

dant outputs from LLMs. For the MSE dataset, the430

more complete prompts provided during text gen-431

eration likely enable better topic comprehension432

by language models, resulting in outputs closer433

to human-written texts. From the perspective of434

generative model, Llama-series models exhibit the435

lowest detection difficulty, with Fast-DetectGPT,436

TOCSIN, and TOCSIN* achieving AUROC values437

above 99% on both arXiv and Wikipedia datasets. 438

Interestingly, within each model family, detection 439

performance (AUROC) generally decreases with 440

increased parameter scale. This phenomenon might 441

be explained by larger models’ enhanced capacity 442

to internalize diverse training corpus knowledge, 443

thereby generating more indistinguishable texts. 444

Under the black-box setting, regarding detec- 445

tion methodologies, the performance of all detec- 446

tion methods generally declined. On the arXiv and 447

Wikipedia datasets, TOCSIN* demonstrated signif- 448

icantly greater advantages compared to TOCSIN, 449

achieving average AUROC improvements of 8.77% 450

and 13.44%, respectively. Similar to the white-box 451

setting, TOCSIN* exhibited slightly lower aver- 452

age AUROC than Fast-DetectGPT on the MSE 453

dataset but still outperformed TOCSIN. Binoculars 454

performed second only to TOCSIN* on the arXiv 455

and Wikipedia datasets. Among other zero-shot 456

methods, LRR and Log-Rank achieved the best 457

performance, consistently ranking among the top 458

two in terms of average AUROC across all three 459

datasets. 460

5.3 Impact of Adversarial Attack 461

We tested the detectors on datasets generated by 462

Qwen-series models rewritten with various attack 463

methods. The results are shown in fig. 4. 464

Under the white-box setting, paraphrasing at- 465

tacks using DIPPER and polishing significantly 466

impacted detector performance. All detectors 467

achieved average AUROC values below 0.6 on 468

datasets modified by these two attacks. While back- 469

translation had relatively smaller effects compared 470

to the former methods, it still caused a 21.97% 471

decrease in average AUROC for Fast-DetectGPT. 472
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Figure 4: Average AUROC across data sources and generative models under white-box and black-box settings

Although TOCSIN performed slightly better than473

Fast-DetectGPT on original data, its average AU-474

ROC under character-, word-, and sentence-level475

perturbation attacks was notably lower. TOCSIN*476

outperformed other detectors on all attacks except477

DIPPER and polishing paraphrasing, surpassing478

Fast-DetectGPT and Binoculars by 11.52% and479

8.4% in average AUROC, respectively, on back-480

translation attacked datasets.481

Under the black-box setting, all detectors482

showed decreased average AUROC compared to483

white-box scenario. Similar to white-box results,484

DIPPER and polishing paraphrasing attacks re-485

mained highly impactful, with average AUROC486

values below 0.57 for all detectors except Binoc-487

ulars on these modified datasets. Notably, TOC-488

SIN* demonstrated more pronounced advantages489

over TOCSIN and Fast-DetectGPT in black-box490

scenario. Under character-, word-, and sentence-491

level perturbations, TOCSIN* consistently outper-492

formed Fast-DetectGPT (which in turn surpassed493

TOCSIN), with an average AUROC difference ex-494

ceeding 0.025. Remarkably, TOCSIN* exhibited495

strong robustness against back-translation para-496

phrasing attacks, with only a 1.67% decrease in497

average AUROC.498

5.4 Impact of Text Length499

Studies by Verma (Verma et al., 2024) and Mao500

(Mao et al., 2024) have shown that shorter texts501

are more challenging to detect. To validate this,502

we performed truncation experiments on datasets503

generated by Qwen-series models with varying text504

lengths (measured by word count). The results are505

presented in fig. 5.506

Under the white-box setting, all detectors ex-507

cept Entropy exhibited improved performance with508

longer input texts. For truncations under 800 words, 509

LRR achieved higher average AUROC than Rank, 510

while Rank outperformed LRR when no truncation 511

was applied. The performance gap among Fast- 512

DetectGPT, TOCSIN, and TOCSIN* widened pro- 513

gressively with increasing truncation length. No- 514

tably, TOCSIN* achieved the highest average AU- 515

ROC (surpassing both Fast-DetectGPT and TOC- 516

SIN) when no truncation was performed. 517

The black-box setting revealed similar trends, 518

with all methods except Entropy benefiting from 519

longer text inputs. However, the performance 520

differences between TOCSIN* and other meth- 521

ods (Fast-DetectGPT/TOCSIN) were more pro- 522

nounced compared to white-box scenarios. Specif- 523

ically, TOCSIN* underperformed relative to Fast- 524

DetectGPT and TOCSIN when input length was 525

truncated to less or equal than 100 words. As trun- 526

cation length increased to 200 words, TOCSIN* 527

gradually closed the performance gap and ulti- 528

mately achieved higher average AUROC than both 529

Fast-DetectGPT and TOCSIN. Notably, Binocu- 530

lars maintained the highest performance across all 531

truncation lengths, with its superiority margin over 532

TOCSIN* initially widening and then narrowing as 533

inputs approached full length. 534

5.5 Parameter Interpretability Analysis 535

TOCSIN* employs training data to learn the score 536

aggregation parameters α and β. After standard- 537

izing the features, the absolute values of the logis- 538

tic regression coefficients reflect the importance 539

of each feature. Figure 6 illustrates the absolute 540

coefficient ratios ( |β||α| ) across datasets and models. 541

The results show that, except for the (Wikipedia, 542

Llama) dataset, the ratio decreases with increasing 543

model parameter size within each model series, in- 544
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Figure 5: Average AUROC changes as text length varies under white-box and black-box settings

dicating a gradual rise in the importance of token545

cohesiveness.546

Figure 6: Absolute logistic regression coefficient ratios
(|βα |) in TOCSIN*

6 Conclusion547

This paper tackles the critical challenge of detect-548

ing LLM-generated text through two key contri-549

butions: (1) the construction of MathGenBench,550

a large-scale mathematical domain benchmark en-551

compassing 115,500 annotated samples across di-552

verse sources (arXiv, Mathematics Stack Exchange553

and Wikipedia), multiple LLM families (Qwen,554

Llama, and Mistral series), and adversarial attack555

variants; and (2) the development of TOCSIN*—an556

enhanced zero-shot detection framework. Through 557

systematic evaluation, we reveal critical insights: 558

detection difficulty increases as the scale of LLMs 559

grows; MSE datasets exhibit higher detection dif- 560

ficulty than arXiv and Wikipedia corpora; Llama- 561

derived text shows the lowest detection resistance; 562

input length positively correlates with performance, 563

while paraphrasing/perturbation attacks severely 564

degrade detection reliability. TOCSIN*, combin- 565

ing token cohesiveness and other zero-shot meth- 566

ods through linear score aggregation, demonstrates 567

the best detection performance across all scenarios. 568

Limitations 569

This work has two limitations: First, due to cost 570

constraints, the machine-generated text in our 571

benchmark does not include outputs from the latest 572

closed-source LLMs (e.g., GPT-4o, Claude 3.7), 573

which may limit the generalization of detection per- 574

formance to cutting-edge proprietary models. Sec- 575

ond, while TOCSIN* demonstrates superior perfor- 576

mance over existing zero-shot methods on Math- 577

GenBench, its effectiveness in non-mathematical 578

domains remains to be thoroughly validated. 579
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A Data Collection 872

A.1 Model Inventory 873

We selected prominent open-source models with 874

top rankings in large language model benchmarks 875

as of November 2024. Table 2 provides detailed 876

specifications of the source models, including their 877

repository paths and parameter counts. All models 878

are run locally on a single NVIDIA A6000 GPU 879

(48GB). 880

A.2 Generation Protocol 881

The machine-generated text in the dataset was pro- 882

duced by running inference on models downloaded 883

from Hugging Face. For arXiv and Wikipedia cor- 884

pora, which contain continuous text passages, we 885

get machine-generated text by prompting the model 886

to with the first 30 tokens of the source text. In 887

contrast, the MSE dataset’s question-answer struc- 888

ture required a different approach: source ques- 889

tions were directly employed as prompts to gen- 890

erate machine-generated answers, maintaining the 891

original task’s question-answering paradigm. 892

A.3 Polish Paraphrase 893

Polishing with LLMs has emerged as a widely 894

adopted paraphrasing technique. The prompt tem- 895

plates employed in the process are shown in Table 3. 896

For arXiv and Wikipedia corpora, the {prompt} 897

field is the complete pre-paraphrase text, while 898

for the MSE dataset, the {question} and {prompt} 899

fields correspond to the question and answer text 900

respectively. 901

B Main Results 902

The results of white-box and black-box settings are 903

shown in Table 4 and Table 5, respectively. 904

C Ablation Study 905

C.1 Ablation on Question Texts in MSE 906

Dataset 907

During the creation of the MSE dataset, we used 908

question texts as prompts to generate correspond- 909

ing answers through LLMs, thereby obtaining 910

machine-generated texts. To investigate the im- 911

pact of question inclusion, we compared detection 912

performance with and without question texts on the 913

MSE dataset. The results are presented in table 6. 914

For Fast-DetectGPT and TOCSIN, including 915

question texts yielded better detection performance 916

in the majority of cases. This pattern also held 917
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Model Model File Parameters

Qwen-0.5B (Yang et al., 2024) Qwen/Qwen2.5-0.5B 494M
Qwen-3B Qwen/Qwen2.5-3B 3.09B
Qwen-7B Qwen/Qwen2.5-7B 7.62B
Qwen-14B Qwen/Qwen2.5-14B 14.8B

Llama-1B (AI, 2024a) meta-llama/Llama-3.2-1B 1.24B
Llama-3B meta-llama/Llama-3.2-3B 3.21B
Llama-8B (Dubey et al., 2024) meta-llama/Llama-3.1-8B 8.03B

Mistral-7B (Jiang et al., 2023) mistralai/Mistral-7B-Instruct-v0.3 7.25B
Mistral-8B (AI, 2024c) mistralai/Ministral-8B-Instruct-2410 8.02B
Mistral-12B (AI, 2024b) mistralai/Mistral-Nemo-Instruct-2407 12.2B

Table 2: Details of the source models used to produce machine-generated text

Data Source Polish Prompt Template

ArX Given the article abstract, polish the writing to meet the academic abstract style and math-
ematical writing style with {sentences_num} sentences, improve the spelling, grammar,
clarity, concision and overall readability:
abstract: {prompt}
polished abstract:

MSE Given a Q&A pair, polish the answer to meet mathematical writing style with {sen-
tences_num} sentences, improve the spelling, grammar, clarity, logical flow, concision,
and overall readability:
question: {question}
original answer: {prompt}
polished answer:

WP Given the wikipedia page summary, polish the writing to meet the wikipedia page style and
mathematical writing style with {sentences_num} sentences, improve the spelling, grammar,
clarity, concision and overall readability:
summary: {prompt}
polished summary:

Table 3: Polish prompt templates

true for Log-Likelihood and Log-Rank methods.918

Conversely, for Rank, Entropy, LRR, and Binoc-919

ulars, excluding question texts produced superior920

results. It is noteworthy that all main detection921

results reported for the MSE dataset in this study922

incorporated question texts during analysis.923

C.2 Ablation on Proxy Models Selection924

Bao (Bao et al., 2024) investigated the impact of dif-925

ferent sampling models on detection performance926

under white-box settings. To analyze this effect, we927

compared the performance of detectors using vari-928

ous proxy models on the Qwen dataset. As shown929

in table 7, the optimal proxy models for achieving930

the highest average AUROC varied across detec-931

tors.932

For Fast-DetectGPT and TOCSIN, NEO-2.7 933

emerged as the best-performing proxy model, 934

while GPT-2 demonstrated superior results for Log- 935

Likelihood, Log-Rank, and LRR. Notably, NEO- 936

2.7 consistently achieved the highest or second- 937

highest AUROC values across all data sources and 938

detectors compared to alternative proxy models. 939

Based on these findings, NEO-2.7 was selected as 940

the default proxy model for all black-box experi- 941

ments in this study. 942
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Model Qwen-0.5B Qwen-3B Qwen-7B Qwen-14B Llama-1B Llama-3B Llama-8B Mistral-7B Mistral-8B Mistral-12B Avg.
Data Source Method

ArX Log-Likelihood 0.7636 0.7069 0.6989 0.7035 0.9491 0.9403 0.9338 0.8120 0.7935 0.7646 0.8066
Rank 0.7761 0.7303 0.7072 0.7030 0.7378 0.7203 0.7068 0.7492 0.7286 0.7319 0.7291
Log-Rank 0.8051 0.7395 0.7265 0.7230 0.9658 0.9586 0.9535 0.8269 0.8155 0.7888 0.8303
Entropy 0.4704 0.5000 0.4945 0.4847 0.3455 0.3596 0.3741 0.4081 0.3972 0.4092 0.4243
LRR 0.8744 0.7983 0.7805 0.7522 0.9785 0.9690 0.9672 0.8265 0.8520 0.8289 0.8628
Fast-DetectGPT 0.9261 0.9136 0.9133 0.8960 0.9985 0.9986 0.9979 0.9565 0.9454 0.9244 0.9470
Binoculars 0.8129 0.7543 0.7121 0.6471 0.9969 0.9938 0.9835 0.7797 0.8400 0.7527 0.8273
TOCSIN 0.9287 0.9146 0.9122 0.8941 0.9982 0.9985 0.9981 0.9463 0.9405 0.9248 0.9456
TOCSIN* 0.9260 0.9331 0.9195 0.9197 0.9954 0.9966 0.9983 0.9460 0.9716 0.9425 0.9549

MSE Log-Likelihood 0.5442 0.5666 0.6043 0.5455 0.7491 0.7196 0.7382 0.7481 0.6224 0.5777 0.6416
Rank 0.5989 0.5890 0.5801 0.5734 0.6050 0.5884 0.5949 0.6337 0.5774 0.5500 0.5891
Log-Rank 0.5558 0.5733 0.6048 0.5515 0.7526 0.7262 0.7472 0.7265 0.6182 0.5815 0.6437
Entropy 0.5108 0.4731 0.4219 0.4902 0.3542 0.3866 0.3753 0.3651 0.4232 0.4763 0.4277
LRR 0.5992 0.5856 0.5778 0.5714 0.7062 0.7109 0.7245 0.5567 0.5755 0.5882 0.6196
Fast-DetectGPT 0.7576 0.7257 0.6790 0.6873 0.9287 0.9173 0.9333 0.9195 0.7652 0.7347 0.8048
Binoculars 0.6901 0.7205 0.7650 0.6817 0.9215 0.9196 0.9146 0.8685 0.8157 0.7673 0.8065
TOCSIN 0.7600 0.7261 0.6769 0.6994 0.9130 0.9074 0.9256 0.8572 0.7247 0.7326 0.7923
TOCSIN* 0.7602 0.7351 0.7086 0.7020 0.9380 0.9217 0.9292 0.9149 0.7247 0.6858 0.8020

WP Log-Likelihood 0.6676 0.4895 0.4352 0.3776 0.9726 0.9479 0.7615 0.7955 0.6624 0.6251 0.6735
Rank 0.8382 0.7055 0.6476 0.5944 0.8232 0.7931 0.6984 0.7570 0.7488 0.6990 0.7305
Log-Rank 0.7164 0.5042 0.4453 0.3807 0.9850 0.9689 0.8055 0.8001 0.6869 0.6498 0.6943
Entropy 0.5664 0.6422 0.6439 0.6772 0.2018 0.2583 0.4300 0.4898 0.5001 0.5520 0.4962
LRR 0.8339 0.5819 0.5137 0.4601 0.9914 0.9868 0.8848 0.7652 0.7406 0.7157 0.7474
Fast-DetectGPT 0.9495 0.8933 0.8455 0.7589 0.9975 0.9975 0.9680 0.9907 0.8488 0.9030 0.9153
Binoculars 0.7883 0.7070 0.7014 0.6285 0.9976 0.9915 0.9200 0.8581 0.8432 0.7584 0.8194
TOCSIN 0.9572 0.9033 0.8610 0.7902 0.9970 0.9977 0.9725 0.9839 0.8720 0.8996 0.9235
TOCSIN* 0.9449 0.9206 0.8949 0.8449 0.9997 0.9998 0.9851 0.9951 0.9561 0.9546 0.9496

Table 4: AUROC across data sources and generative models under white-box setting

Model Qwen-0.5B Qwen-3B Qwen-7B Qwen-14B Llama-1B Llama-3B Llama-8B Mistral-7B Mistral-8B Mistral-12B Avg.
Data Source Method

ArX Log-Likelihood 0.5399 0.5882 0.5728 0.5224 0.9065 0.8997 0.8802 0.6693 0.6723 0.6696 0.6921
Rank 0.6580 0.6585 0.6342 0.5890 0.7286 0.7178 0.6948 0.6831 0.6746 0.6904 0.6729
Log-Rank 0.5802 0.6179 0.5989 0.5435 0.9260 0.9173 0.8944 0.6894 0.6992 0.6957 0.7163
Entropy 0.5344 0.4906 0.4856 0.5129 0.3758 0.3588 0.3657 0.4195 0.4096 0.3858 0.4339
LRR 0.6946 0.6943 0.6651 0.6028 0.9430 0.9308 0.8975 0.7245 0.7619 0.7579 0.7672
Fast-DetectGPT 0.6503 0.6849 0.6523 0.5820 0.9925 0.9863 0.9736 0.7200 0.7077 0.6562 0.7606
Binoculars 0.8129 0.7543 0.7121 0.6471 0.9969 0.9938 0.9835 0.7797 0.8400 0.7527 0.8273
TOCSIN 0.6527 0.6866 0.6564 0.5827 0.9928 0.9865 0.9744 0.7272 0.7140 0.6632 0.7637
TOCSIN* 0.6777 0.7106 0.6999 0.6750 0.9896 0.9775 0.9740 0.8296 0.8918 0.8817 0.8307

MSE Log-Likelihood 0.4741 0.5134 0.5514 0.5171 0.7263 0.6992 0.7154 0.5850 0.5280 0.5168 0.5827
Rank 0.5506 0.5467 0.5574 0.5471 0.6211 0.6133 0.6152 0.5837 0.5495 0.5525 0.5737
Log-Rank 0.4841 0.5177 0.5543 0.5226 0.7265 0.7009 0.7167 0.5924 0.5299 0.5206 0.5866
Entropy 0.5350 0.5086 0.4820 0.5013 0.3557 0.3844 0.3663 0.4763 0.5086 0.5200 0.4638
LRR 0.5285 0.5403 0.5609 0.5440 0.6802 0.6791 0.6745 0.6183 0.5342 0.5397 0.5900
Fast-DetectGPT 0.5426 0.6220 0.6841 0.6184 0.8925 0.8919 0.8904 0.8054 0.6986 0.6979 0.7344
Binoculars 0.6901 0.7205 0.7650 0.6817 0.9215 0.9196 0.9146 0.8685 0.8157 0.7673 0.8065
TOCSIN 0.5363 0.6162 0.6798 0.6092 0.8723 0.8765 0.8748 0.7970 0.6915 0.6908 0.7244
TOCSIN* 0.5256 0.6371 0.6704 0.6237 0.9083 0.8979 0.9034 0.7986 0.6851 0.6893 0.7339

WP Log-Likelihood 0.4758 0.5014 0.5324 0.4754 0.9624 0.9457 0.8346 0.6993 0.6691 0.6273 0.6723
Rank 0.6608 0.6168 0.6097 0.5399 0.8209 0.8014 0.7139 0.6661 0.7032 0.6463 0.6779
Log-Rank 0.5237 0.5328 0.5550 0.4931 0.9738 0.9597 0.8496 0.7142 0.6848 0.6412 0.6928
Entropy 0.6197 0.5562 0.5204 0.5500 0.2476 0.2701 0.3453 0.4486 0.4492 0.4533 0.4460
LRR 0.6577 0.6186 0.6068 0.5450 0.9785 0.9649 0.8477 0.7307 0.7122 0.6627 0.7325
Fast-DetectGPT 0.6900 0.6195 0.6139 0.5508 0.9904 0.9831 0.8896 0.8222 0.7680 0.6891 0.7617
Binoculars 0.7883 0.7070 0.7014 0.6285 0.9976 0.9915 0.9200 0.8581 0.8432 0.7584 0.8194
TOCSIN 0.7072 0.6316 0.6292 0.5569 0.9892 0.9822 0.8977 0.8522 0.8109 0.7209 0.7778
TOCSIN* 0.7968 0.7863 0.7305 0.7800 0.9978 0.9879 0.9237 0.9432 0.9502 0.9269 0.8823

Table 5: AUROC across data sources and generative models under black-box setting
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Model Qwen-0.5B Qwen-3B Qwen-7B Qwen-14B Avg.
Method

Log-Likelihood 0.5292 | 0.5442 0.5201 | 0.5666 0.5897 | 0.6043 0.5154 | 0.5455 0.5386 | 0.5652
Rank 0.7093 | 0.5989 0.6384 | 0.5890 0.6480 | 0.5801 0.6096 | 0.5734 0.6513 | 0.5854
Log-Rank 0.5514 | 0.5558 0.5330 | 0.5733 0.5981 | 0.6048 0.5277 | 0.5515 0.5525 | 0.5714
Entropy 0.5316 | 0.5108 0.5105 | 0.4731 0.4396 | 0.4219 0.5181 | 0.4902 0.4999 | 0.4740
LRR 0.6324 | 0.5992 0.5882 | 0.5856 0.6172 | 0.5778 0.5841 | 0.5714 0.6055 | 0.5835
Fast-DetectGPT 0.7455 | 0.7576 0.6640 | 0.7257 0.6752 | 0.6790 0.6719 | 0.6873 0.6891 | 0.7124
Binoculars 0.7073 | 0.6901 0.7158 | 0.7205 0.7692 | 0.7650 0.7077 | 0.6817 0.7250 | 0.7143
TOCSIN 0.7405 | 0.7600 0.6507 | 0.7261 0.6608 | 0.6769 0.6590 | 0.6994 0.6777 | 0.7156
TOCSIN* 0.7937 | 0.7602 0.7210 | 0.7351 0.7297 | 0.7086 0.6950 | 0.7020 0.7348 | 0.7265

Table 6: AUROC for MSE dataset with and without question texts (left: without question texts, right: with question
texts; bold denotes maximum values in each group)

Model Qwen-0.5B Qwen-3B Qwen-7B Qwen-14B Avg.
Data Source Method

ArX Log-Likelihood 0.6912 | 0.4631 | 0.5399 0.6226 | 0.5644 | 0.5882 0.5949 | 0.5632 | 0.5728 0.5402 | 0.5201 | 0.5224 0.6122 | 0.5277 | 0.5558
Rank 0.7060 | 0.6183 | 0.6580 0.6374 | 0.6430 | 0.6585 0.6143 | 0.6283 | 0.6342 0.5837 | 0.5894 | 0.5890 0.6354 | 0.6197 | 0.6349
Log-Rank 0.7150 | 0.4992 | 0.5802 0.6392 | 0.5924 | 0.6179 0.6120 | 0.5888 | 0.5989 0.5562 | 0.5427 | 0.5435 0.6306 | 0.5558 | 0.5851
Entropy 0.4004 | 0.5858 | 0.5344 0.4345 | 0.5182 | 0.4906 0.4440 | 0.5043 | 0.4856 0.4906 | 0.5273 | 0.5129 0.4424 | 0.5339 | 0.5059
LRR 0.7581 | 0.6232 | 0.6946 0.6691 | 0.6715 | 0.6943 0.6447 | 0.6601 | 0.6651 0.5960 | 0.6154 | 0.6028 0.6670 | 0.6425 | 0.6642
Fast-DetectGPT 0.7229 | 0.5952 | 0.6503 0.6475 | 0.6892 | 0.6849 0.5968 | 0.6679 | 0.6523 0.5539 | 0.6089 | 0.5820 0.6303 | 0.6403 | 0.6424
TOCSIN 0.7299 | 0.5936 | 0.6527 0.6532 | 0.6900 | 0.6866 0.6020 | 0.6684 | 0.6564 0.5566 | 0.6059 | 0.5827 0.6354 | 0.6395 | 0.6446
TOCSIN* 0.7370 | 0.6264 | 0.6777 0.6897 | 0.7206 | 0.7106 0.6878 | 0.7220 | 0.6999 0.6556 | 0.6888 | 0.6750 0.6925 | 0.6894 | 0.6908

MSE Log-Likelihood 0.5347 | 0.4431 | 0.4741 0.5414 | 0.5017 | 0.5134 0.5644 | 0.5447 | 0.5514 0.5368 | 0.5092 | 0.5171 0.5443 | 0.4997 | 0.5140
Rank 0.5750 | 0.5372 | 0.5506 0.5643 | 0.5451 | 0.5467 0.5687 | 0.5542 | 0.5574 0.5513 | 0.5440 | 0.5471 0.5648 | 0.5451 | 0.5505
Log-Rank 0.5460 | 0.4558 | 0.4841 0.5500 | 0.5089 | 0.5177 0.5739 | 0.5492 | 0.5543 0.5429 | 0.5151 | 0.5226 0.5532 | 0.5073 | 0.5197
Entropy 0.4927 | 0.5572 | 0.5350 0.4796 | 0.5204 | 0.5086 0.4634 | 0.4897 | 0.4820 0.4845 | 0.5105 | 0.5013 0.4801 | 0.5194 | 0.5067
LRR 0.5753 | 0.5187 | 0.5285 0.5726 | 0.5427 | 0.5403 0.5950 | 0.5619 | 0.5609 0.5558 | 0.5416 | 0.5440 0.5747 | 0.5412 | 0.5434
Fast-DetectGPT 0.5915 | 0.4976 | 0.5426 0.5681 | 0.6285 | 0.6220 0.5913 | 0.6922 | 0.6841 0.5814 | 0.6259 | 0.6184 0.5831 | 0.6111 | 0.6168
TOCSIN 0.5903 | 0.4944 | 0.5363 0.5654 | 0.6278 | 0.6162 0.5829 | 0.6924 | 0.6798 0.5741 | 0.6247 | 0.6092 0.5782 | 0.6098 | 0.6104
TOCSIN* 0.5354 | 0.5528 | 0.5256 0.5397 | 0.6464 | 0.6371 0.5886 | 0.6760 | 0.6704 0.5483 | 0.6328 | 0.6237 0.5530 | 0.6270 | 0.6142

WP Log-Likelihood 0.6555 | 0.3642 | 0.4758 0.5716 | 0.4548 | 0.5014 0.5809 | 0.4922 | 0.5324 0.5075 | 0.4480 | 0.4754 0.5789 | 0.4398 | 0.4962
Rank 0.6616 | 0.6150 | 0.6608 0.5802 | 0.6063 | 0.6168 0.5617 | 0.6033 | 0.6097 0.5155 | 0.5313 | 0.5399 0.5797 | 0.5890 | 0.6068
Log-Rank 0.7120 | 0.4014 | 0.5237 0.6101 | 0.4802 | 0.5328 0.6133 | 0.5120 | 0.5550 0.5378 | 0.4607 | 0.4931 0.6183 | 0.4636 | 0.5261
Entropy 0.4726 | 0.6873 | 0.6197 0.4872 | 0.5994 | 0.5562 0.4554 | 0.5642 | 0.5204 0.4991 | 0.5793 | 0.5500 0.4786 | 0.6075 | 0.5616
LRR 0.7989 | 0.5584 | 0.6577 0.6815 | 0.5782 | 0.6186 0.6663 | 0.5831 | 0.6068 0.6043 | 0.5152 | 0.5450 0.6878 | 0.5587 | 0.6070
Fast-DetectGPT 0.6921 | 0.6068 | 0.6900 0.5868 | 0.6157 | 0.6195 0.5703 | 0.6261 | 0.6139 0.5113 | 0.5596 | 0.5508 0.5901 | 0.6020 | 0.6186
TOCSIN 0.7209 | 0.6133 | 0.7072 0.6269 | 0.6216 | 0.6316 0.6111 | 0.6357 | 0.6292 0.5554 | 0.5635 | 0.5569 0.6286 | 0.6085 | 0.6312
TOCSIN* 0.7920 | 0.7563 | 0.7968 0.7865 | 0.7942 | 0.7863 0.7535 | 0.7493 | 0.7305 0.8272 | 0.7970 | 0.7800 0.7898 | 0.7742 | 0.7734

Table 7: AUROC with different proxy models under black-box setting (left to right: GPT-2 (Radford et al., 2019),
GPT-J (Wang and Komatsuzaki, 2021), NEO-2.7 (Black et al., 2021); boldface and underlined text denote the
maximum and second-maximum values, respectively, within each group)
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