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ABSTRACT

We consider the problem of computing tight privacy guarantees for the compo-
sition of subsampled differentially private mechanisms. Recent algorithms can
numerically compute the privacy parameters to arbitrary precision but must be
carefully applied.
Our main contribution is to address two common points of confusion. First, some
privacy accountants assume that the privacy guarantees for the composition of a
subsampled mechanism are determined by self-composing the worst-case datasets
for the uncomposed mechanism. We show that this is not true in general. Second,
Poisson subsampling is sometimes assumed to have similar privacy guarantees
compared to sampling without replacement. We show that the privacy guarantees
may in fact differ significantly between the two sampling schemes. This occurs
for some parameters that could realistically be chosen for DP-SGD.

1 INTRODUCTION

One of the fundamental properties of differential privacy is that composing multiple differentially
private mechanisms to construct a new mechanism still satisfies differential privacy. This property
allows us to design complicated mechanisms with strong formal privacy guarantees such as differen-
tially private stochastic gradient descent (DP-SGD, Song et al. (2013); Bassily et al. (2014); Abadi
et al. (2016)).

The privacy guarantees of a mechanism inevitably deteriorate with the number of compositions.
Accurately quantifying the privacy parameters under composition is highly non-trivial and is an
important area within the field of differential privacy. A common approach is to find the privacy
parameters for each part of a mechanism and apply a composition theorem (Dwork et al., 2010;
Kairouz et al., 2015) to find the privacy parameters of the full mechanism. In recent years, several
alternatives to the traditional definition of differential privacy with cleaner results for composition
have gained popularity (see, e.g., Dwork and Rothblum (2016); Bun and Steinke (2016); Mironov
(2017); Dong et al. (2019)).

Another important concept is privacy amplification by subsampling (see, e.g., Balle et al. (2018);
Steinke (2022)). The general idea is to improve privacy guarantees by only using a randomly sam-
pled subset of the full dataset as input to a mechanism. In this work we consider the problem of
computing tight privacy parameters for subsampled mechanisms under composition.

One of the primary motivations for studying privacy accounting of subsampled mechanisms is DP-
SGD. DP-SGD achieves privacy by clipping gradients and adding appropriate Gaussian noise to
each batch. As such, we can find the privacy parameters by analyzing the subsampled Gaussian
mechanism under composition. One of the key contributions of Abadi et al. (2016) was the moments
accountant which gives tighter bounds for the mechanism than the generic composition theorems.
Later work improved the accountant by giving improved bounds on the Renyi Differential Privacy
guarantees of the subsampled Gaussian mechanism under both Poisson subsampling and sampling
without replacement (Mironov et al., 2019; Wang et al., 2020).

Even small constant factors in an (ε, δ)-DP budget are important. First, from the definition, such
constant factors manifest exponentially in the privacy guarantee. Furthermore, when training a
model privately with DP-SGD, it has been observed that they can lead to significant differences in
the downstream utility, see, e.g., Figure 1 of De et al. (2022). Consequently, “saving” such a factor
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in the value of ε through tighter analysis can be very valuable. This has motivated a recent line of
work on numerically estimating the privacy parameters (Sommer et al., 2019; Koskela et al., 2020;
2021; Gopi et al., 2021; Zhu et al., 2022).

Most privacy accounting techniques for DP-SGD assume a version of the algorithm that employs
amplification by Poisson subsampling. That is, the batch for each iteration is formed by including
each point independently with sampling probability γ. Other privacy accountants consider a variant
where random batches of a fixed size are selected for each step. Note that both of these are incon-
sistent with the standard method in the non-private setting, where batches are formed by randomly
permuting and then partitioning the dataset. Indeed, the latter approach is much more efficient, and
highly-optimized in most libraries. Consequently, many works in private ML implement a method
with the conventional shuffle-and-partition method of batch formation, but employ privacy accoun-
tants that assume some other method of sampling batches. The hope is that small modifications of
this sort would have negligible impact on the privacy analysis, thus justifying privacy accountants
for a setting which is technically not matching.

The central aim of our paper is to clarify some common problems with privacy accounting in order
to facilitate more faithful comparisons between DP-SGD algorithms. We organize our paper as
follows.

• In Sections 4 and 5, we establish that the datasets used to compute the privacy guarantees
of typical subsampled mechanism do not in general give the correct result when the mech-
anism is composed multiple times. Some popular privacy accountants assume otherwise,
which is an error that can be corrected easily.

• In Section 6, we show that rigorous privacy accounting is significantly affected by the
method of sampling batches. This results in sizeable differences in the resulting privacy
guarantees for settings which were previously treated as interchangeable by prior works.
Consequently, we demonstrate the invalidity of the common practice of using one method
of batch sampling and employing the privacy accountant for another.

• Lastly, in Section 7, we discuss issues that arise in tight privacy accounting under the
substitution relation. It is known for the add/remove relation that the privacy guarantees
are determined by just one of two pairs of datasets. We show that this is unfortunately not
the case in general under the substitution relation.

2 PRELIMINARIES

Differential privacy is a rigorous privacy framework introduced by Dwork et al. (2006). Differential
privacy is a restriction on how much the output distribution of a mechanism can change between any
pair of datasets that differ only in a single individual. Such datasets are called neighboring, and we
denote a pair of neighboring datasets as D ∼ D′. We formally define neighboring datasets below.
Definition 1 ((ε, δ)-Differential Privacy). A randomized mechanism M satisfies (ε, δ)-DP under
neighboring relation ∼ if for all D ∼ D′ and all measurable sets of outputs Z we have

Pr[M(D) ∈ Z] ≤ eε Pr[M(D′) ∈ Z] + δ.

In this work, we consider datasets where each datapoint is a single-dimensional real value in the
interval [−1, 1]. The mechanisms we consider apply more generally to multi-dimensional real-
valued queries, and the pitfalls we highlight in this work are present for such input as well. We
focus on single-dimensional inputs for simplicity of presentation. Likewise, any mechanism we
define on [−1, 1] can be extended to all of R by clipping to the range [−1, 1]. After the appropriate
rescaling, this is equivalent to the mechanisms used in practice for tasks including differentially
private stochastic gradient descent.

On the domain [−1, 1]∗, we define the neighboring definitions of add, remove, and substitution
(replacement). We typically want the neighboring relation to be symmetric, which is why add and
remove are typically included in a single definition. However, as noted by previous work we need
to analyze the add and remove cases separately to get tight results (see, e.g., Zhu et al. (2022)).
Definition 2 (Neighboring Datasets). Let D and D′ be datasets. If D′ can be obtained by adding
a datapoint to D, then we write D ∼A D′. Likewise, if D can be obtained by adding a datapoint
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to D′, then we write D ∼R D′. Combining these, write D ∼A/R D′ if D ∼A D′ or D ∼R D′.
Finally, we write D ∼S D′ if D can be obtained from D′ by swapping one datapoint for another.

Note that differential privacy under add and remove implies differential privacy under substitution,
with appropriate translation of the privacy parameters. For any pair of neighboring datasets D ∼S
D′ that differ in index i we can construct an intermediate datasetD′′ by removingDi. IfM satisfies
(εA, δA)-DP and (εR, δR)-DP for the add and remove relations, respectively, thenM satisfies (εA+
εR, e

εAδR + δA)-DP under substitution because

Pr[M(D) ∈ Z] ≤ eεR Pr[M(D′′) ∈ Z] + δR ≤ eεA+εR Pr[M(D′) ∈ Z] + eεAδR + δA.

Definition 1 can be restated in terms of the hockey-stick divergence:

Definition 3 (Hockey-stick Divergence). For any α ≥ 0 the hockey-stick divergence between distri-
butions P and Q is

Hα(P ||Q) := Ey∼Q

[(
dP

dQ
(y)− α

)
+

]
= P (Sα)− αQ(Sα),

where dP
dQ is the Radon–Nikodym derivative and Sα = {y| dPdQ (y) ≥ α}.

Specifically, a randomized mechanism M satisfies (ε, δ)-differential privacy if and only if
Heε(M(D)||M(D′)) ≤ δ for all pairs of neighboring datasets D ∼ D′. This restated defini-
tion is the basis for the privacy accounting tools we consider in this paper. If we know what choice
of neighboring datasets D ∼ D′ maximizes the expression then we can get optimal parameters by
computing Heε(M(D)||M(D′)).

The full range of privacy guarantees for a mechanism can be captured by the privacy curve.

Definition 4 (Privacy Curves). The privacy curve of a randomized mechanismM under neighboring
relation ∼ is the function δ∼M : R→ [0, 1] given by

δ∼M(ε) := min{δ ∈ [0, 1] :M is (ε, δ)-DP}.

If there is a single pair of neighboring datasets D ∼ D′ such that δ∼M(ε) = Heε(M(D)||M(D′))
for all ε ∈ R, we say that the privacy curve ofM under∼ is realized by the worst-case dataset pair
(D,D′).

Unfortunately, a worst-case dataset pair does not always exist. A broader tool that is now frequently
used in the computation of privacy curves is the privacy loss distribution (PLD) formalism (Dwork
and Rothblum, 2016; Sommer et al., 2019).

Definition 5 (Privacy Loss Distribution). Given a mechanismM and a pair of neighboring datasets
D ∼ D′, the privacy loss distribution ofM with respect to (D,D′) is

LM(D||D′) := ln(dM(D)/dM(D′))∗M(D),

i.e. ln( dM(D)
dM(D′) (y)) ∼ LM(D||D′) when y ∼M(D).

An important caveat is that the privacy loss distribution is defined with respect to a specific pair of
datasets, whereas the privacy curve implicitly involves taking a maximum over all neighboring pairs
of datasets. Nonetheless, the PLD formalism can be used to recover the hockey-stick divergence via

Heε(M(D)||M(D′)) = EY∼LM(D||D′)[1− eε−Y ],

from which we can reconstruct the privacy curve as

δ∼M(ε) = max
D∼D′

EY∼LM(D||D′)[1− eε−Y ].

Lastly, we define the two subsampling procedures we consider in this work: sampling without re-
placement and Poisson sampling. Given a dataset D = (x1, . . . , xn) and a set I ⊆ {1, . . . , n}, we
denote by D|I := (xi1 , . . . , xib) the restriction of D to I = {i1, . . . , ib}.
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Definition 6 (Subsampling). LetM take datasets of size1 b ≥ 1. The
(
n
b

)
-subsampled mechanism

MWOR is defined on datasets of size n ≥ b as

MWOR(D) :=M(D|I),
where I is a uniform random b-subset of {1, . . . , n}.
On the other hand, given a mechanismM taking datasets of any size, the γ-subsampled mechanism
MPoisson is defined on datasets of arbitrary size as

MPoisson(D) :=M(D|I),
where I includes each element of {1, . . . , |D|} independently with probability γ.

3 RELATED WORK

After Dwork and Rothblum (2016) introduced privacy loss distributions, a number of works used the
formalism to estimate the privacy curve to arbitrary precision, beginning with Sommer et al. (2019).
Koskela et al. (2020; 2021) develop an efficient accountant that efficiently computes the convolution
of PLDs by leveraging the fast Fourier transform. Gopi et al. (2021) fine-tunes the application of
FFT to speed up the accountant by several orders of magnitude.

The most relevant related paper for our work is by Zhu et al. (2022). They introduce the concept
of a dominating pair of distributions. A typical approach to analyzing the privacy guarantees of a
mechanism is to consider a pair of datasets that represents the worst-case for the privacy parameters.
However, for some problems, determining what is a worst-case pair is not obvious: sometimes there
is not a single pair of worst-case datasets. Their notion of a dominating pair of distributions helps
formalize the idea of worst-case datasets.
Definition 7 (Dominating Pair of Distributions (Zhu et al., 2022)). The ordered pair of distributions
(P,Q) dominates a mechanismM (under some neighboring relation ∼) if for all α ≥ 0

sup
D∼D′

Hα(M(D)||M(D′)) ≤ Hα(P ||Q).

The hockey-stick divergence of the dominating pair P and Q gives an upper bound on the value
δ for any ε. Note that the distributions P and Q do not need to correspond to distributions of
running the mechanism on actual datasets. However, if there exists a pair of neighboring datasets
such that P =M(D) and Q =M(D′) then we can find tight privacy parameters by analyzing the
mechanisms with inputsD andD′ becauseHeε(M(D)||M(D′)) is also a lower bound on δ for any
ε. The definition of dominating pairs of distributions is useful for analyzing the privacy guarantees
of composed mechanisms. In this work, we focus on the special case where a mechanism consists
of k self-compositions. This is, for example, the case in DP-SGD, in which we run several iterations
of the subsampled Gaussian mechanism. The property we need for composition is presented in
Theorem 8.
Theorem 8 (Following Theorem 10 of Zhu et al. (2022)). If (P,Q) dominates a mechanismM then
(P k, Qk) dominates k iterations ofM.

When studying differential privacy parameters in terms of the hockey-stick divergence, we usually
focus on the case of α ≥ 1. Recall that the hockey-stick divergence of order α can be used to bound
the value of δ for an (ε, δ)-DP mechanism where ε = ln(α). We typically do not care about the
region of α < 1 because it corresponds to negative values of ε. However, it is crucial that definition
of dominating pairs of distributions consider these values as well. This is because outputs with
negative privacy loss are important for composition and Theorem 8 would not hold if the definition
only considered α ≥ 1. In Sections 5 and 7 we consider distribution where the distributions that
bound the hockey-stick divergence for α ≥ 1 without composition does not bound α ≥ 1 under
composition.

Zhu et al. (2022) studied general mechanisms in terms of dominating pairs of distributions under
Poisson subsampling and sampling without replacement. Their work give upper bounds on the
privacy parameters based on the dominating pair of distributions of the non-subsampled mechanism.
We use some of their results which we introduce later throughout this paper.

1We treat the sample size and batch size as public knowledge in line with prior work. (Zhu et al., 2022)
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4 WORST-CASE PAIR OF DATASETS UNDER ADD AND REMOVE RELATIONS

In this section we give pairs of neighboring datasets with provable worst-case privacy parameters
under the add and remove neighboring relations separately. We use these datasets as examples of the
pitfalls to avoid in the subsequent section, where we discuss the combined add/remove neighboring
relation.
Proposition 9. LetM(x1, . . . , xn) :=

∑n
i=1 xi +N(0, σ2) denote the Gaussian mechanism.

1. There exists a dataset pair D ∼R D′ such that δ∼R

MPoisson
is realized by (D,D′) and

δ∼A

MPoisson
is realized by (D′, D) (recall Definition 4).

2. Likewise, there exists a dataset pair D ∼R D′ such that δ∼R

MWOR
is realized by (D,D′)

and δ∼A

MWOR
is realized by (D′, D).

Our worst-case datasets can be found by reduction to one of the main results of Zhu et al. (2022).
Theorem 10 (Theorem 11 of Zhu et al. (2022)). LetM be a randomized mechanism, letMPoisson

be the γ-subsampled version of the mechanism, and letMWOR be the
(
n
b

)
-subsampled version of

the mechanism on datasets of size n and n− 1 with γ = b/n.

1. If (P,Q) dominatesM for add neighbors then (P, (1 − γ)P + Q) dominatesMPoisson

for add neighbors and ((1− γ)P +Q,P ) dominatesMPoisson for removal neighbors.

2. If (P,Q) dominatesM for substitute neighbors then (P, (1−γ)P+Q) dominatesMWOR

for add neighbors and ((1− γ)P +Q,P ) dominatesMWOR for removal neighbors.

We sketch below the proof of Proposition 9. We also note that the proposition can also be proved for
the Laplace mechanism by an identical argument where noise from the Laplace distribution replaces
Gaussian noise.

By symmetry, we will focus the proof sketch on the add neighboring relation. Now, from
Theorem 10 we know that (N (0, σ2), (1 − γ)N (0, σ2) + γN (1, σ2)) dominates MPoisson and
(N (0, σ2), (1 − γ)N (0, σ2) + γN (2, σ2)) dominatesMWOR. We know that the dominating pair
is tight if there exists a pair of neighboring datasets for which the hockey-stick divergence matches
the dominating pair for all α. We can easily show that such inputs exist. Say that D′i is the element
in D′ that is not in D. The case of Poisson subsampling is simple. We set all elements in D to 0 and
setD′i = 1. ThenMPoisson(D

′) is centered around 1 ifD′i is included in the batch and 0 otherwise.
That is, the distribution matches the dominating pair.

The worst-case datasets are similar although slightly different forMWOR. We still set D′i = 1 but
now we set all elements of D to −1. For a batch ofMWOR(D

′) consisting of m = γn elements
the output is either centered around −m or −m + 2 depending on whether of not D′i is included
in the batch whereas MWOR(D) = N (−m,σ2). Shifting both distributions by m gives us the
dominating pair from Theorem 10 and this does not affect the hockey-stick divergence.

As such, there exists true worst-case datasets for both sampling schemes under the add and remove
relations, respectively. Crucially, the distributions above show us that under the add and remove
relations we must add noise with twice the magnitude when sampling without replacement compared
to Poisson subsampling! The intuition for this difference is that the subroutine behaves similarly to
the add/remove neighboring relation when using Poisson subsampling, whereas it resembles the
substitution neighborhood when sampling without replacement. When D′i is included in the batch
another datapoint is ’pushed out’ of the batch when sampling without replacement. Due to this
parallel one might hope that the difference in privacy parameters between Poisson subsampling and
sampling without replacement only differ by a small constant similar to the difference between the
add/remove and substitution neighboring relations. That is indeed the case for many parameters, but
as we show in Section 7 this assumption unfortunately does not always hold.

5 NO WORST-CASE PAIR OF DATASETS UNDER ADD/REMOVE RELATION

So far, we have considered privacy curves defined for all ε ∈ R, which is a necessary subtlety for
PLD privacy accounting tools (e.g., Theorem 8). In this section, we relax the strong notion of worst-
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9 )-subsampled Laplace(2) Mechanism (k Iterations)

Figure 1: The privacy curves for the composed, subsampled Laplace mechanism under the remove
and add neighboring relations respectively.

case dataset from Definition 4 to the more familiar setting where ε ≥ 0. Our main result is to give
an example of a mechanism that admits a worst-case dataset under ∼A/R and ε ≥ 0 when run for a
single iteration, yet fails to admit a worst-case dataset (for ε ≥ 0) when run for multiple iterations.
This violates an implicit assumption made by some privacy accountants. We can correct for this by
computing the privacy curve under ∼A and ∼R separately and then taking the maximum.

Proposition 11. Consider the Laplace mechanismM(x1, . . . , xn) :=
∑n
i=1 xi + Lap(0, s) and let

MWOR be the
(
n
b

)
-subsampled mechanism. Then, for some choice of k > 1 and b ≥ 1, there is no

dataset-pair D ∼A/R D′ such that

δ
∼A/R

Mk
WOR

(ε) = Heε(Mk
WOR(D)||Mk

WOR(D
′))

for all ε ≥ 0.

Note that this result can be extended easily to the γ-subsampled mechanismMPoisson as well. In
any case, as we argued in Section 4, the privacy curves of MWOR under both add and remove
neighbouring relations are realized by worst-case datasets. That is, we can find datasets D ∼R
D′ such that δ∼R

MWOR
is realized by (D,D′) and δ∼A

MWOR
is realized by (D′, D). Moreover, it is

generally the case that the privacy curve of a subsampled mechanism under ∼R dominates the same
privacy curve under ∼A when ε ≥ 0 (see e.g. Proposition 30 of Zhu et al. (2022) or Theorem 5
of Mironov et al. (2019)). In our case, the subsampled Laplace mechanism satisfies the symmetry
conditions of Zhu et al. (2022) Proposition 30, we also have that

δ
∼A/R

MWOR
(ε) = δ∼R

MWOR
(ε) ≥ δ∼A

MWOR
(ε)

for ε ≥ 0.

Now, noting that δ
∼A/R

MWOR
(ε) = max{δ∼A

MWOR
(ε), δ∼R

MWOR
(ε)}, Proposition 11 can be proved by

plot. Figure 1 shows several variations of the curves δ∼A

Mk
WOR

and δ∼R

Mk
WOR

, which have been com-
puted numerically by Monte Carlo simulation (as in e.g. Wang et al. (2023)). These curves are seen
to cross in the region ε ≥ 0 when k = 2.

Interestingly, the phenomenon emerges when k increases from 1 but disappears again for larger
values of k. This is better understood by considering the privacy loss distributions LMWOR

(D||D′)
and LMWOR

(D′||D), whose CDFs are shown in Figure 2.

The add relation PLDLMWOR
(D′||D), which has a large mass at− ln(0.1+0.9/e), is more likely to

take on positive values compared to the remove relation PLD LMWOR
(D||D′), which tends to take

on larger values due to its mass being slightly more spread out over [0,∞). This effect is amplified
by composition, which leads to the composed add PLD LM2

WOR
(D||D′) being much more likely to

take on small positive values compared to LM2
WOR

(D′||D). This in turn causes the privacy curve
forM2

WOR to be larger under the add relation compared to the remove relation when ε is small.

Under a larger number of compositions, however, it is known that both PLDs converge to a Gaussian
distribution (Dong et al., 2019). This explains why δ∼R

Mk
WOR

and δ∼A

Mk
WOR

tend toward one another
and the crossing behavior appears to vanish.
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Figure 2: The PLDs of the subsampled Laplace mechanism are mixed, i.e. partially discrete and
partially continuous. The discontinuities of the CDF indicate the atoms of the discrete component
of each distribution.

6 PRIVACY GUARANTEE DIFFERENCE BETWEEN SAMPLING SCHEMES

In this section we explore settings where the privacy parameters between Poisson subsampling and
sampling without replacement differ significantly. We focus on the subsampled Gaussian mecha-
nism since this is the mechanism of choice for DP-SGD. One approach for choosing privacy-specific
hyperparameters is to fix δ and the number of iterations to run DP-SGD. We can then compute the
minimum value of the noise multiplier σ required to achieve (ε, δ)-DP for various sampling rates.
We follow this approach for our example. We fix δ = 10−6 and the number of iterations to 10, 000.
We then vary the sampling rate between 10−4 to 1 and use the PLD accountant implemented in the
Opacus library (Yousefpour et al., 2021) to compute σ.

δ ε (Poisson) ε (WOR)
10−7 1.19 17.48
10−6 0.96 15.26
10−5 0.80 12.98
10−4 0.64 10.62

Figure 3: Plot of smallest noise multiplier σ required to achieve certain privacy parameters for the
subsampled Gaussian mechanism with varying sampling rates under add/remove. Each line shows a
specific value of ε for either Poisson subsampling or sampling without replacement. The parameter
δ is fixed to 10−6 for all lines. The table shows the difference in privacy parameters for sampling
rate γ = 0.001 and noise multiplier σ = 0.8 for multiple values of δ.

In Figure 3 we plot the noise multiplier required to achieve (ε, δ)-DP with Poisson subsampling
for ε ∈ {1, 2, 5, 10}. For comparison we plot the noise multiplier required to achieve (10, δ)-DP
when sampling without replacement. From the previous section we know that this is twice the noise
required for (10, δ)-DP with Poisson subsampling. The plot is clearly divided into two regions.
When the sampling rate is high, the noise multiplier scales linearly in the sampling rate. However,
for sufficiently low sampling rates the noise multiplier decreases much slower.

This effect has been observed previously (see Ponomareva et al. (2023); Anil et al. (2022) for similar
plots). Ideally, we want to choose parameters on the right side of this hinge as the benefits of privacy
amplification wear off on the left side. For this reason some work has observed improved results
when using large batch size (see, e.g., Dörmann et al. (2021)).
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However, one might choose to select parameters close to the hinge. This can be problematic if the
accountant assumes Poisson sampling but sampling without replacement is used. The hinge happens
when σ is slightly less than 1 for Poisson sampling and therefore it happens when it is slightly less
than 2 for sampling without replacement. The consequence can be seen for the curve for sampling
without replacement in Figure 3. For large sampling rates the noise requires roughly matches that
for ε = 5 with Poisson subsampling. But for the small sampling rates we have to add more noise
than for ε = 1 with Poisson subsampling. As such, if we use an accountant for Poisson subsampling
with a target of ε = 1 but our implementation using sampling without replacement the actual value
of ε could be above 10! We could hope that this increase would be offset if we allow for some slack
in δ as well. However, as seen in the table of Figure 3 there can still be a big gap in ε even when we
allow several orders of magnitude difference in δ.

7 SUBSTITUTION

In this section we consider the substitution neighboring relation. Unfortunately, finding tight bounds
under the substitution relation can be challenging. We have already shown how the worst-case pair
of datasets can differ depending on the value of ε under the add/remove relation. However, the
solution to that problem is straightforward because we simply find the parameters under the add and
remove relations separately and report the maximum value. Here we show that such a solution is not
always possible under the substitution relation using a small concrete example for sampling without
replacement.

First, we restate another result from Zhu et al. (2022) which we use throughout the section. Similar
to the case of add and remove, they show that without composition the worst-case datasets depend
on whether or not α is above 1.

Theorem 12 (Proposition 30 of Zhu et al. (2022)). If (P,Q) dominatesM under the substitution
neighborhood relation for datasets of size γn then under the substitution neighborhood for datasets
of size n we have

δ(α) ≤
{
Hα((1− γ)P + γQ||P ) if α ≥ 1;

Hα(P ||(1− γ)P + γQ) if 0 < α < 1,

where δ(α) is the largest hockey-stick divergence of order α between runningMWOR for a pair of
neighboring datasets.

Next we address a mistake made in related work. In their work on computing tight differential
privacy guarantees Koskela et al. (2020) considered worst-case neighboring datasets for the sub-
sampling Gaussian mechanism under multiple sampling techniques and neighboring relations. In
the case of substitution they compute the hockey-stick divergence between the pair of distributions
(1−γ)N (0, σ2)+γN (−1, σ2) and (1−γ)N (0, σ2)+γN (1, σ2). They consider the same distribu-
tions under both Poisson subsampling and sampling without replacement and as such make the claim
that the privacy curve is identical between the two schemes under the substitution relation. Unfor-
tunately, this is not true and it is also contradicted by our example from Section 6. If this claim was
true the privacy curves for the two schemes would never differ significantly for add/remove either
since the privacy guarantees of substitution never better than under add/remove for the mechanism.

We see that their distributions do not follow the structure of Theorem 12. They compare the datasets
D and D′ where Di = −1, D′i = 1 and all other entries are 0. This is an understandable mistake as
it seems the intuition behind this choice is that we do not want any additional randomness from other
elements than the ith entry. For Poisson subsampling this requires the elements to have a value of 0,
but when sampling without replacement this holds for any pairs of datasets where all other elements
have the same value as we sample a fixed amount.

Instead we can consider the datasets where Di = 1, D′i = −1 and all other elements are −1.
It follows from Theorem 12 that these are worst-case neighbouring datasets without composition.
However, since this is not a dominating pairs of distributions it is more complicated when we con-
sider composition. One might hope that we could simply compute the hockey-stick divergence of
the self-composed distributions in both directions similar to the add/remove case. But sometimes
that is not sufficient because we can combine the directions unlike with the add and remove cases.
Next we give a minimal counterexample to showcase this challenge.
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Figure 4: Hockey-stick divergence of the Laplace mechanism when sampling without replacement
under substitution neighborhood. The worst-case pair of datasets depends on the value of ε.

Figure 4 shows the hockey-stick divergence as a function of ε for three pairs of neighboring datasets.
We consider datasets of size 2 where we sample batches with a single element that is γ = 0.5. We
apply the Laplace mechanism with a scale of 2. We compose the subsampled mechanism with itself
only once, as in we run 2 queries. In all cases the neighboring datasets agree on index 1 and differ
in index 2. For the first line D1 = D′1 = −1, D2 = 1, and D′2 = −1 for both queries. The second
line switches D and D′ compared to the first line. So far this is very similar to the add and remove
cases, the interesting case is the third line. We still have that D1 = D′1 = −1 for both queries but
now the second index differs across queries as we have D2 = 1 and D′2 = −1 for the first query,
but D2 = −1 and D′2 = 1 for the second query. This pair of datasets matches the datasets from the
first line in one query and the second line in the other. We can see from Figure 4 that the worst pair
of datasets depends on the value of ε with all three pairs being the worst within one range.

The above example is possible because the distributions for a query can match either the worst-case
for add or remove. And since queries can be independent we can match the add case for one query
and remove case for the other. This scales up with the number of compositions. For k compositions,
we have to consider k + 1 ways of dividing up the queries between matching the add or the remove
case. This significantly slows down the accountants in contrast to the 2 cases for add/remove. Worse
still, we do not have a formal proof that one of k + 1 cases is the worst-case pair of datasets.

8 DISCUSSION

We have highlighted two issues that arise in the practice of privacy accounting.

First, we have given a concrete example where the worst-case dataset (for ε ≥ 0) of a subsampled
mechanism fails to be a worst-case dataset once that mechanism is composed. Care should therefore
be taken to ensure that the privacy accountant computes privacy guarantees with respect to a true
worst-case dataset for a given choice of ε.

Secondly, we have shown that the privacy parameters for a subsampled and composed mechanism
can differ significantly for different subsampling schemes. This can be problematic if the privacy
accountant is assuming a different subsampling procedure from the one actually employed. We have
shown this in the case of Poisson sampling and sampling without replacement but the phenomenon
is likely to occur when comparing Poisson sampling to shuffling as well. Computing tight privacy
guarantees for the shuffled Gaussian mechanism remains an important open problem. It is best
practice to ensure that the implemented subsampling method matches the accounting method. When
this is not practical, the discrepancy should be disclosed.

We conclude with two recommendations for practitioners applying privacy accounting in the DP-
SGD setting. We recommend disclosing the privacy accounting hyperparameters for the sake of
reproducibility (see Section 5.3.3 of Ponomareva et al. (2023) for a list of suggestions). Finally,
we also recommend that, when comparisons are made between DP-SGD mechanisms, the privacy
accounting for both should be re-run for the sake of fairness.
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