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Abstract

Clustering tabular data remains a significant open challenge in data analysis and
machine learning. Unlike for image data, similarity between tabular records often
varies across datasets, making the definition of clusters highly dataset-dependent.
Furthermore, the absence of supervised signals complicates hyperparameter tuning
in deep learning clustering methods, frequently resulting in unstable performance.
To address these issues and reduce the need for per-dataset tuning, we adopt an
emerging approach in deep learning: zero-shot learning. We propose ZEUS, a self-
contained model capable of clustering new datasets without any additional training
or fine-tuning. It operates by decomposing complex datasets into meaningful
components that can then be clustered effectively. Thanks to pre-training on
synthetic datasets generated from a latent-variable prior, it generalizes across
various datasets without requiring user intervention. To the best of our knowledge,
ZEUS is the first zero-shot method capable of generating embeddings for tabular
data in a fully unsupervised manner. Experimental results demonstrate that it
performs on par with or better than traditional clustering algorithms and recent deep
learning-based methods, while being significantly faster and more user-friendly.

1 Introduction

Clustering remains a fundamental yet challenging task in unsupervised learning. It is particularly hard
for tabular data, which inherently lacks the structured spatial or semantic properties of images or texts.
Unlike for image clustering, where intrinsic visual similarities can guide cluster formation, defining
meaningful similarities in tabular data is highly dataset-specific, complicating the generalization
of clustering methods across diverse applications. Recent developments leveraging deep learning
have demonstrated promise in generating richer representations for clustering tasks. However, these
methods frequently suffer from instability due to their sensitivity to hyperparameter selection, a
challenge exacerbated by the absence of supervised signals to guide optimization. Consequently,
practitioners working with tabular data often resort to simpler, classical algorithms like k-means [23]],
despite their limited capacity for capturing complex underlying data structures, simply to avoid
extensive manual tuning.
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Figure 1: Schematic characterization of ZEUS: (left) synthetic datasets generation; (middle) pre-
training on datasets with known labels; (right) deployment of a frozen model for real-world tasks.

We address these challenges with ZEUS — a zero-shot transformer-based model for embedding new
tabular datasets in a form convenient for unsupervised separation (=clustering), without the need
for additional fine-tuning. Given a new dataset, ZEUS returns its transformed representation, where
clusters can be easily discovered using simple methods, like k-means. Since it works as a zero-shot
learner, it significantly reduces hyperparameter tuning complexity and computation time, enabling
effective clustering in seconds. It is a plug-and-play solution that requires no fine-tuning and runs in
a single forward pass for new datasets.

Inspiration for ZEUS stems from the Prior-data Fitted Networks (PFNs) [[L6]], a recently introduced
framework highlighting the potential of in-context learning for tabular data. PFNs operate by feeding
a transformer [31]] contexts representing complete tasks, i.e., training data along with query samples
for which the model predicts labels. Despite their impressive performance, they are limited to
supervised problems. ZEUS extends this basic idea for unsupervised tasks by addressing the two key
challenges of how to: (1) generate prior synthetic data with clear but non-trivial clustering structures
for pre-training; and (2) encode prior clustering knowledge for new unlabeled datasets. Additionally,
in contrast to TabPFN, ZEUS is a zero-shot model and during inference does not rely on any context
labels.

Unlike traditional methods that optimize arbitrary heuristics (e.g., DEC [32]), ZEUS approaches
clustering by learning how to invert data generation processes. In particular, it is pre-trained on
synthetic datasets to learn how to infer cluster assignments. The datasets have known latent structures,
which enables supervised guidance for the training, and by generating diverse datasets we supply it
with the prior knowledge about what can constitute a possible clustering structure, enabling effective
generalization to new real-world datasets during inference. Figure|l|illustrates the key concepts of
the method while Figure [2] presents representations generated by ZEUS.

Experiments demonstrate that ZEUS consistently matches or surpasses both classical clustering
algorithms and recent deep learning-based approaches, establishing it as a powerful and practical
tool for the unsupervised analysis of tabular data. Beyond its strong empirical performance, we
also provide theoretical justification by showing that ZEUS fits the framework of Prior-data Fitted
Networks, thereby reinforcing its theoretical soundness (see Section [2.3).

We supplement the paper with an appendix that includes background on prior-data fitted networks,
specifics of the synthetic data generation process, details of the experimental results, and additional
experimental studies. The code used in this paper is available at https://github.com/gmum/zeus|

2 Pre-training representation for clustering

In this section, we introduce our approach to zero-shot representation pre-training for clustering.
First, we characterize the proposed probabilistic model and its training objective. Then, we explain
the process of generating synthetic datasets for pre-training. Finally, we highlight the connection
between our model, Bayesian learning and the framework for prior-data fitted networks.
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Figure 2: t-SNE visualization for a sample synthetic dataset. The representation from ZEUS (right
panel) significantly improves consistency with ground-truth classes and reveals a clearer data structure.

2.1 ZEUS method

Zero-shot pre-training. Traditional machine learning models fy are trained by optimizing parame-
ters 6 to solve a specific fixed task, such as classification or clustering, over a fixed dataset. On the
other hand, in-context learning (ICL) [9} 21}, [14]] enables pre-trained models fy+ to adapt to new tasks
or datasets without ever updating the pre-trained parameters 6*. Similarly, zero-shot learning allows
models to address problems they were never explicitly trained on, without requiring any examples of
the target task. Unlike ICL, which adapts through demonstration examples, zero-shot approaches rely
entirely on knowledge encoded during pre-training. The pre-training of zero-shot models typically
involves massive and diverse datasets that encourage the model to learn rich, generalizable represen-
tations of underlying patterns and relationships. This is usually done using transformers, as they both
can process set-valued inputs (e.g., accept a whole dataset at once) and model complex dependencies.

Our approach involves pre-training a transformer fy on a diverse collection of datasets D such that
D := (x,y), where y = {y;} denotes ground-truth labels (e.g., clusters) and x = {z;} are feature
vectors. A loss £ encourages fy to assign accurate labels y to all data points in the target datasets D:

1
0" = argmin E,(p) [L(y, fo(x))] = arg min o > Ly, fox)), )]
D~p(D)

where p(D) is a process generating prior datasets which implicitly characterize a space of possible
target tasks (here approximated with Np Monte-Carlo samples). Note, the loss £ may factorize
over individual points as L(y,p) = ), (s, p;), where p; denotes a probabilistic prediction for an
individual input x;, but unlike for classification, for tasks such as clustering or anomaly detection,
the predictions p must be made jointly for all inputs. Hence, fy(x) can not be decomposed into
predictions for individual inputs ;. Furthermore, in contrast to typical supervised ICL, training labels
are not included in the context, as they are unavailable during inference. This makes the unsupervised
learning problem significantly more challenging, since we cannot explicitly guide the model toward
the desired structure in a given dataset.

Representation learning for probabilistic clustering. We pre-train an encoder fy to map inputs
X to representation vectors z(x;) = fy(x); € RP =: S. We aim at positioning data points in .S,
so that they naturally form probabilistic clusters, and our goal is to make the encoder find better
representations for target tasks. This objective we frame as maximizing the log-likelihood of correct
cluster assignments. Since the ground-truth cluster assignments y; are available during pre-training,
this is expressed as:

E;m“ob = - Z Ingy,- (Iz) (2)

For specifying p,(x), we draw inspiration from Gaussian Mixture Models (GMMs) [[7,[13]], where
each cluster k is represented by a Gaussian distribution centered at ¢y, and data points are probabilis-
tically assigned to clusters through probabilities py (z;), based on their proximity to these centroids.
Consequently, alongside the encoded representations, we need to define a set of K cluster centroids
(e.g., prototypical representations) { ck}szl, which reside in the same representation space S. We



then jointly optimize £ w.r.t f and {ci } such that the representations z(z;) become structured in a
way undisclosing underlying probabilistic structures in datasets.

We aim for higher probabilities p for points closer to these centroids. To achieve this, we first define
scores a(x;) = —||z(2;) — cx||? to quantify the compatibility between representations and centroids
¢k, and then transform them into cluster membership probabilities using softmax, yielding soft cluster

exp(ag (i) N :
== 22— Note that the ground-truth cluster assignments 1; are known
S, exp(ay (21)) & & Yi

during pre-training, and hence, the maximum likelihood centroids can be straightforwardly estimated
a8 & = N 2 (1.y,=h) (i), where N} denotes the number of data points assigned to the k-th cluster.
Following this formulation, the optimization needs to be performed only w.r.t the parameters 6 of the
neural network fy, as the centroids are already specified by them.

assignments py(x;) =

Besides the centroids, we additionally consider another concept from GMMs, namely cluster priors 7.
Similar to centroids, the prior cluster frequencies 75, can be estimated from the training labels as
the proportions of examples in the k-th cluster, and then incorporated directly into the probability
calculation, resulting in the final form of our probabilistic scoring:

pelas) = 7t exp(a(2:)) . where  ag(zi) = —|2(a) — % 3)

SR 7y explay (x4))

Remark 2.1. ZEUS cluster assignments correspond to the membership probabilities in GMMs
TN (2(z:)|ck,Sk)
S TN (z(wi)|cj,25)
effectively forcing the encoder to learn circular clusters rather than elliptical ones.

defined as: r;, = , but with fixed diagonal covariance matrices ¥y, := I,

Inference. The structural relations learned during pre-training are leveraged during inference when
the representations z produced by the model fy- are used to create a predictive distribution for new,
previously unseen inputs x* as p* := p(y* | for (x*)) At this point, the labels y* are unknown and
therefore cannot be used to estimate the centroids nor the priors. Hence, to structure the obtained
representation into clusters, we use a traditional learning algorithm, for example, similar to GMMs
relying on Expectation-Maximization or simply k-means.

Regularization. Although theoretically £, is sufficient to build a clustering representation, we
experimentally verified that the introduction of additional regularizers further improves the predictions
in the inference (see Section [3.4).

First, we aim to ensure that the representations z(x;) associated with a particular cluster are compactly
distributed around their corresponding centroid to enhance intra-cluster cohesion. We define a point
concentration regularizer that explicitly minimizes the distance between representations and the
centroids, analogous to the k-means objective of minimizing within-cluster sum of squares:

Lop=) Zk ag (). )

k dyi=

Second, to prevent the cluster centroids c; from collapsing towards similar points in the space, we
add a centroid separation regularizer. We achieve this by maximizing the sum of squared distances
between all distinct pairs of centroids. However, to avoid this term dominating the loss if centroids
were pushed infinitely far apart, we cap the contribution of each pair’s squared distance at a predefined
threshold 7". The term to be minimized is thus:

K K
Lsep=—Y_ > min(]léx — ] T). )

k=1 j=k+1
The final loss combines the main clustering objective with two regularization terms as

L= £prob + )\cpﬁcp + Asepﬁsep (6)

where the hyperparameters A, > 0 and )4, > 0 promote point concentration and control the
relative importance of enforcing centroid separation, respectively. We used simply A¢p = Agep = 1.



2.2 Prior data for pre-training ZEUS

The key component of ZEUS is the data-generating prior p(D). As it primarily affects the general-
ization ability of the pre-trained model fy-, it must be designed to cover diverse data distributions
and various cluster configurations. In particular, we construct it as a latent variable model (LVM),
assuming that each dataset D is sampled from a K -component mixture of distributions. Formally, the
probability of a data point € D under this model is

Zp ple |y =k),

where p(y) is a categorical distribution, and p(x | y = k) represents the k-th (continuous) component.
Although the categories y remain latent for real datasets, they are known during synthetic data
generation and can serve as ground-truth labels — a property integral to pre-training ZEUS. This
procedure, coupled with Theorem|[T](in Appendix) ensures that a sufficiently expressive model trained
on synthetic datasets can handle real datasets drawn from arbitrary mixtures of distributions.

The number of categories K we sample uniformly between 2 and 10, and the observations x are
sampled from multivariate Gaussian distributions. To control the complexity of datasets, we introduce
a constraint (Eq.[7)in Appendix) that ensures a sufficient separation between each pair of components.
For each component, we generate between 50 and 800 samples. Since real data rarely consist of
Gaussian clusters, we additionally transform the data points from each category using randomized
ResNet-like neural networks to produce more realistic cluster shapes. We selected ResNets due to
their properties, as they can define invertible transformations [2f], and this ensures that clustering
structures will be preserved in outputs. Finally, we append a certain fraction of categorical features
in one-hot encoding scheme to selected datasets, which is followed by an optional PCA reduction
to keep the data dimension at the requested maximum level. Complete details of the prior-data
generating process can be found in Appendix [B.2] Theoretical justification of this procedure is
presented in Appendix [B.1]

The above strategy for generating clustering datasets illustrates the key idea behind ZEUS. Instead
of clustering each dataset individually using an arbitrary loss criterion (as in k-means or DEC),
ZEUS learns to perform clustering by inverting the data generation process. Although our synthetic
datasets are limited by the selected family of distributions specified above, the proposed paradigm for
zero-shot unsupervised learning for clustering is general.

2.3 Relation to Bayesian learning and Prior-Data Fitted Networks

The recently introduced framework of Bayesian inference through transformers demonstrates that
neural networks pre-trained on synthetic datasets implicitly approximate Bayesian inference without
explicitly computing posterior distributions [25,[16]. By framing the approach described in Section[2.T]
as a Prior-Data Fitted Network (PFN), we show ZEUS implicitly performs approximate Bayesian
averaging.

Given a prior distribution p(D) over (synthetic) datasets D, a PEN parameterized by 6 is trained to min-
imize the negative log-likelihood of predicting held-out labels within datasets sampled from this prior.
The associated loss function is defined as: Lppn(0) = Ep_,, Uf(z,y)1~p(D)[— 108 40 (y|7, Detz)]-
Minimizing the Prior-Data Negative Log-Likelihood is then equivalent to minimizing the expected
Kullback-Leibler divergence between the network’s predictive distribution and the true Posterior
Predictive Distribution (PPD) p(y|z, Ders) = fq) p(ylx, d)p(Deta|d)p(@)dd (see Corollary 1.1 in
[25]). A pre-trained PFN approximates this integral implicitly, yielding a distribution gg (y|z, Dets)
directly from forward propagation of the network. In Section[A] a more detailed explanation of PFNs
was provided.

ZEUS instead of directly outputting gg(y|z, Dt ), maps inputs z to latent representation vectors
z(x). The probabilistic assignments p, (x) are then constructed from these vectors according to Eq. l
This equation specifies a PPD for inference, but also defines a probability mass function for training:

Remark 2.2. Egs.[l| 2] and[3|constitute a valid Prior-Data Negative Log-Likelihood, equivalent to
Eq. (2) from [23] with Doy, = 0.

This follows by mapping p,, () := g¢(y|z, !) and noting that Eq. Icorresponds to the cross-entropy
between the true labels {y} and the probabilistic assignments p, (). Intuitively, this formulation



reinterprets probabilistic clustering with known labels as a classification task. Then, pre-training the
transformer by minimizing the cross-entropy loss over prior-generated datasets remains identical to
PFNs, and thus, we can conclude that ZEUS implicitly learns a Bayesian approximation through
prior fitting.

Our method, however, deviates from traditional PFNs by imposing an explicit mixture-like structure
on latent representations (Eq. [3), unlike more general PFNs:

Remark 2.3. By enforcing the clustering structure, ZEUS may impose stronger assumptions on the
PPD compared to vanilla PFNs. This structure might be suboptimal for classification tasks and the
true PPD may not belong to the family of attainable solutions.

As explained above, our clustering-based extension is theoretically sound, nonetheless, the assumption
could limit representational expressivity compared to the more flexible transformers employed for
the original PFNs [[L6]. On the other hand, the enforced structures shall be more appropriate for
unsupervised tasks.

3 Experiments

This section presents an experimental evaluation of the clustering performance of our method. Due to
space constraints, further results are provided in Appendix [G|

3.1 Experimental setup

Model architecture: ZEUS relies on a transformer architecture similar to TabPFN [16]]. It consists of
12 attention blocks, each with 6 heads and a token dimension of 512, with GeLU activation employed.
Following the TabPFN design, each data point is first embedded using a linear transformation and
then passed as a token to the transformer. For the unsupervised setting, no label embeddings are ever
created or presented to the model. Similarly, for the zero-shot case, no query set is used either, and
consequently, attention is computed solely over the support set. Finally, unlike TabPFN, we omit any
additional MLP decoder after the transformer.

Pre-training: In the pre-training phase, we sample datasets from the mixture of Gaussians and
transformed mixtures in equal proportions (1:1), generating 1000 unique dataset batch samples for
each epoch. For training, we employ the Adam optimizer along with a cosine learning rate scheduler
with warm-up, using a learning rate of 2e-5. The plot illustrating model improvements during the
pre-training process is available in Section

Inference: During inference, preprocessing of each dataset involves standardizing numerical features,
followed by scaling them to the range [—1, 1], whereas categorical features are transformed using
one-hot encoding. The input size of our model is fixed to 30. For datasets with lower dimensionality,
we pad the missing positions with zeros, while for higher-dimensional datasets, we reduce the number
of input features via Principal Component Analysis (PCA). Unless stated otherwise, at inference
we use k-means applied to the normalized (=scaled to [—1, 1]) transformer output in order to obtain
clusters from our learned representation.

Datasets: For evaluation, we consider three groups of datasets: real datasets from OpenML [3] (Real),
synthetic mixtures of Gaussians (Syn. Gauss.), and synthetic mixtures of Gaussians transformed by
ResNet-like neural networks (Syn. Transf.). Both types of synthetic datasets are augmented with
categorical variables. The process of generating synthetic datasets is described in Section[2.2]

Each dataset contains at most 2000 samples as per model design and due to memory limitations.
The study covers 34 real datasets, selected based on their clustering feasibility, defined as ARI
> 0.4 achieved by at least one of the methods. Additionally, 20 synthetic datasets of each type were
generated from the same prior as in the pre-training phase, but with a different random seed to ensure
a fair comparison. Detailed statistics of the datasets, such as the number of numerical and categorical
features, are provided in Appendix

Baselines: We compare ZEUS against a wide spectrum of state-of-the-art clustering methods used
for tabular data. It includes k-means (KM), Gaussian Mixture Model (GMM), and deep-learning
methods based on autoencoder (AE) architectures, including DEC [32], IDEC [13], IDC [30], and G-
CEALS [27]]. We additionally consider k-means and GMM performed in the autoencoder latent space



Table 1: Clustering quality (ARI) of ZEUS versus competing methods (higher is better).

KM GMM AE-KM AE-GMM DEC IDEC IDC G-CEALS TabPFN SCARF ZEUS

Real 55.54 4849 51.43 53.56 5593 5457 5228 40.37 31.32 26.95 57.43
Syn. Gauss.  89.90  76.93 81.26 81.40 89.35 8257 6643 62.84 55.97 8.32 89.03
Syn. Transf. ~ 75.04  75.88 60.45 71.29 7994 6126 66.78 49.17 15.66 2.48 86.33

Table 2: Average rank of the methods used in the benchmark (lower is better).

KM GMM AE-KM AE-GMM DEC IDEC IDC G-CEALS TabPFN SCARF ZEUS

Real 4.69 5.65 5.72 5.24 4.69 5.01 5.62 8.18 8.22 8.85 4.13
Syn. Gauss.  2.65 3.65 5.65 5.60 3.23 570  7.95 8.90 8.75 11.00 2.92
Syn. Transf.  4.80  3.50 6.85 4.50 3.20 635  6.05 7.80 9.75 11.00 2.20

(respectively referred to as AE-KM and AE-GMM), along with k-means applied to representations
obtained from TabPFN-Unsupervised [17] (TabPFN) and SCAREF [[1]], to assess the clustering quality
of different feature representations.

For AE-based baselines, we employ the standard configuration used in the prior literature, i.e., an
architecture comprising of hidden layers with sizes [500, 500, 2000]. We used the latent dimension
of 20, which we verified experimentally as the best value. Further details on the hyperparameters and
code repositories for the baselines are provided in Appendix

Reporting: In the main text, we report only the results aggregated for each group of datasets (Real,
Syn. Gauss, Syn. Transf.), while detailed results for individual datasets can be found in Section[F] For
the reader’s convenience, we bold the best results and underline the second-best ones.

3.2 How effective is ZEUS for clustering?

To evaluate the performance of the clustering methods, we employ a standard evaluation procedure,
where clusters identified by models are expected to correspond to undisclosed ground-truth classes.
We use the Adjusted Rand Index (ARI) for quantitative evaluation, and to improve readability, we
scale the ARI values by a factor of 100, where 100 indicates perfect clustering and values near 0
represent random grouping. Table[T] presents a summary of ARI scores averaged over 5 random seeds
and all datasets within each dataset group. Additionally, Table 2]displays the average rankings for
each of the methods.

We observe that ZEUS achieves competitive

performance for all three groups of datasets.

In particular, it achieves the best average ARI —o— KMEANS ~ —e— AE-KMEANS —— DEC G-CEALS
and the best rank for both the OpenML and oMM TemAmoMM  Tem ibEc Tem WS
Synthetic Transformed datasets, e.g., for the
most challenging clustering scenarios. No-
tably, ZEUS outperforms the second-best
method, DEC, by more than 6 percentage
points, and the classical baselines by over

10 percentage points on the Synthetic Trans- £ /

formed datasets. The results on the Real £ &~

datasets further demonstrate that ZEUS ef-
fectively generalizes the knowledge acquired
during the pre-training stage on synthetic data 10° 4

to general data distributions. For the simplest M:::
Gaussian datasets, ZEUS ends up in top-3,

with results Only Sllghtly below those of k- 128 256 512 1024 2048 2094
means and DEC. In terms of average rank it Number of samples

gets the second place.

Among the AE-based methods, DEC per- Figure 3: Clustering time vs. input size.

forms the best, while G-CEALS consistently

demonstrates the weakest performance across

all datasets. K-means and GMM, as representatives of the classical methods, perform reasonably well.

102 4




Table 3: Soft clustering quality of ZEUS vs. baselines, measured by Brier score (lower is better).

KM GMM AE-KM AE-GMM DEC IDEC G-CEALS ZEUS

Real 0.4366 0.4799 0.4643 0.4679 0.3941 0.3671 0.4722 0.3817
Syn. Gauss.  0.0970 0.3110 0.2073 0.2484 0.3943 0.2308 0.3946 0.1269
Syn. Transf. 0.2803 0.2566  0.4535 0.3140 0.4638 0.3892 0.4951 0.1796

In particular, k-means consistently lands among the best-performing methods, which justifies its broad
adoption among practitioners, despite being one of the most basic approaches. On the other hand,
approaches such as SCARF or TabPFN are well-suited for tasks like classification, thanks to their
strong performance in feature extraction. However, without additional regularization during training
or specialized post-hoc fine-tuning (such as with DEC), effective separation of their representations is
difficult. The detailed results, including scores for individual datasets corresponding to the averages
in Tables[T]and [2] can be found in Appendix [F]

Finally, Figure 3]illustrates how the examined clustering methods scale with the increasing number
of input data points. ZEUS maintains almost constant time while being only slightly slower than the
basic k-means. It shows that the overhead from creating the representations by ZEUS is minimal. On
the other hand, the remaining deep clustering algorithms require significantly more time and scale
poorly with the increasing input size.

3.3 Are ZEUS’s predictions calibrated?

For applications where uncertainty quantification is as crucial as the clustering decisions themselves,
assessing calibration is particularly relevant. Having demonstrated the strong performance of ZEUS
for hard clustering, we now examine whether its probabilistic foundations yield well-calibrated soft
assignments. We compare it against competing approaches using the Brier score, which measures
the accuracy of predicted probabilities. Unlike the previously used ARI, it penalizes both incorrect
cluster assignments and poorly calibrated confidence scores, thereby providing a more comprehensive
evaluation.

The Brier score is a supervised metric, meaning its direct computation for unsupervised clustering
tasks is not straightforward. However, when ground-truth classes are available and the number of
clusters matches the number of classes, a one-to-one mapping between clusters and classes can be

established using the Hungarian algorithm [19, 20], which aims to maximize the total agreement

between cluster-class pairs. The cost matrix A for this assignment problem is A, = Ef\il Dij * Yies

where Y;. = 1 if data point ¢ belongs to class ¢, and Y;. = 0 otherwise.

Table 3| reports the average Brier score computed over 5 seeds for all datasets in respective groups.
For the analysis, we used the vanilla variant of ZEUS, which is paired with the GMM clustering
since k-means does not provide soft assignments. The covariances were constrained to be identities
as implied by Eq.[3] All competing baselines, except for k-means, provide probabilistic cluster
assignments, making the Brier score calculation straightforward for them. For k-means, we used
one-hot encoding to represent its assignments as probabilities.

ZEUS demonstrates outstanding performance, achieving the best results for the Synthetic Transformed
datasets while ranking second on both the OpenML and Synthetic Gaussian collections. The benefits
of using ZEUS representations are especially visible in comparison with the vanilla GMM. Although
the GMM achieves the second-best score on transformed data, its performance across the remaining
datasets is merely modest. Among the remaining baselines, IDEC exhibits an interesting pattern:
despite relatively weak clustering performance in Table[T] it achieves the top position on real datasets
according to the Brier score and shows marked improvement on synthetic data. DEC displays the
opposite tendency, with calibration results significantly inferior to its strong ARI performance. While
G-CEALS remains generally weaker than other methods, its calibration performance consistently
exceeds its clustering results presented in Table[I] The K-means algorithm, both in its standard
implementation and when applied to autoencoder embeddings, yields impressive scores on Gaussian-
categorical mixture datasets — likely due to the inherent separability of these data structures, which
allows even simple one-hot probability estimates to produce well-calibrated predictions.



3.4 How helpful is regularization for ZEUS?

Representations obtained by minimizing the basic loss L., can be further improved by regularizing
the optimization process to structure the latent representations. In Table[d] we examine how different
combinations of the £, loss with the regularizers L., and L., affect the final performance across
various datasets. To ensure a fair comparison, all models were evaluated using a data generator with
fixed (identical for all) settings.

Table 4: Regularisation impact, measured by ARI (higher is better).

'CpT‘ob Lprob + £sep 'CpT‘Ub + Accp ‘cp’r'ob + Lsep + ﬁcp

Real 44.80 51.60 48.65 57.43
Syn. Gauss.  83.37 81.88 90.59 89.03
Syn. Transf.  79.85 79.29 88.58 86.33

Our main model, which during pre-training incorporates both regularizers, exhibits a clear perfor-
mance advantage on real datasets and consistently holds second place for the synthetic ones. Table ]
shows that a model pre-trained using only £, and its variant with L., included are insufficient
for properly separating the transformer’s representations for the clustering task, as they both struggle
with clustering the synthetic datasets encountered during pre-training. On the other hand, the results
for Ly,0p + Lcp imply a positive impact by the compact loss component, L., especially for synthetic
data, which, however, does not translate to strong performance on the OpenML benchmark. We
conclude that all three loss components are necessary for good performance, with L., being crucial
for pre-training and L., important for real data.

This mismatch between performance on real and synthetic datasets suggests a potential prior mis-
specification, which is then mitigated by the regularizers. In particular, among the real datasets, there
may be some that are not well explained by the data generation process used during pre-training.
Hence, for future work, one may want to explore alternative data-generating priors that may be more
appropriate for these outliers.

3.5 What data-generating prior is optimal?

As mentioned in Section constructing an appropriate data-generating prior p(D) is crucial
for maximizing performance and generalizability of ZEUS. To validate this claim, we conduct an
ablation study evaluating four prior designs: Gaussian + Categorical, NN-transformed + Categorical,
Gaussian + NN-transformed, and Gaussian + NN-transformed + Categorical (the standard ZEUS
model). Each configuration name directly reflects the combination of priors used for pre-training
(see Section [B.2]in the Appendix for further details). For a fair comparison, we keep the default
hyperparameter setup unchanged, except for the prior itself.

Table 5: ARI scores (averages; in rows) for ZEUS variants pre-trained on different priors (columns).

Gauss. + Cat. NN-transf. + Cat. Gauss. + NN-transf.  Gauss. + NN-transf. + Cat.

Real 40.59 50.90 52.00 57.43
Syn. Gauss. 92.61 89.90 75.25 89.03
Syn. Transf. 73.34 87.04 71.29 86.33

The results of the study are summarized in Table 5] As expected, the Gaussian + Categorical
model achieves top performance on the Synthetic Gaussian datasets, while the NN-transformed +
Categorical model excels for the Synthetic Transformed data. Notably, the latter also performs
well on the Gaussian sets, as its prior is built upon transformed Gaussian mixtures. In contrast, the
Gaussian + NN-transformed model yields relatively poor average ARI scores across both synthetic
benchmarks. This drop is primarily caused by a significant decline in ARI performance on the
categorical datasets. Nonetheless, its average rank remains consistently competitive. Finally, for the
OpenML datasets, the best performance is achieved when pre-training includes all three types of
priors, underscoring the complementary importance of each prior in the training process.



4 Related work

Tabular data clustering. Traditional clustering algorithms, like k-means [23]], GMM [7], or
hierarchical methods [26]], have widespread applications across data mining, bioinformatics, customer
segmentation, and anomaly detection. However, these methods often rely on predefined distance
metrics and fail to capture complex, non-linear relationships, making them suboptimal for high-
dimensional and heterogeneous tabular datasets.

A pioneering Deep Embedded Clustering (DEC) [32] improves the target data representation by
training the autoencoder and computing soft assignments in its latent space via Student’s ¢-distribution.
In a concurrent work [33]], the authors perform joint dimensionality reduction using AE and k-means
clustering in the latent space. Then, improved DEC (IDEC) [13] extends DEC by jointly optimizing
reconstruction and clustering objectives, while spectral variants replace k-means steps with graph-
based updates [8]. G-CEALS [27] replaces the ¢t—distribution assumption with multivariate Gaussian
clusters. DEPICT [10] attaches a softmax layer on top of an embedding network and trains with
cross-entropy loss to eliminate the assumption of an explicit distribution prior. Finally, IDC [30]
predicts interpretable cluster assignments at the instance and cluster levels.

Most of these deep learning models require careful hyperparameter tuning and early stopping which
is unrealistic in the fully unsupervised setting due to the lack of labels [28] 29]. Moreover, the
optimization process has to be performed for each dataset, which is often time-consuming. Although
multiple deep clustering approaches are currently in use, most of them are designed for texts or
images [37,[5,122] and cannot be directly adapted for tabular data due to the lack of a dominant neural
architecture for heterogeneous tabular inputs [12} 24].

Representation learning for tabular data. Self-supervised learning (SSL) has been transformative
in domains like vision and language [6, [11] but has struggled to show similar success in tabular data
[34]136]. A large diversity of data and a lack of pre-defined correlation between features hinder the
design of universal pretext tasks or augmentations, as well as the transfer learning between domains
[35]. On the other hand, in-context and zero-shot learning [4] enable the use of a single pre-trained
model for multiple tasks out of the box, without any additional tuning. In particular, TabPFN treats
small tabular datasets as contexts consisting of features along with labels, and achieves state-of-the-art
classification in a single forward pass [16]. Although theoretical analyses reveal that transformers can
implicitly implement algorithms such as gradient descent in context, their use is currently restricted
to supervised problems [9].

5 Conclusion

In this paper, we presented ZEUS, a zero-shot transformer-based model that enables effective and
efficient clustering of tabular data without the need for fine-tuning or extensive hyperparameter
search. By pre-training on synthetic datasets with known latent structures, ZEUS learns generalizable
representations that help simple clustering algorithms to uncover meaningful structures. Our experi-
ments show that ZEUS consistently matches or outperforms both classical and deep learning-based
clustering methods, offering a practical and theoretically grounded solution for unsupervised analysis
of tabular data.

Limitations. Since ZEUS is technically based on the TabPFN architecture, it inherits some of its
drawbacks: a maximum number of input features and samples. However, the recently introduced
TabPFN v2 [17]] showed that tabular transformers can process larger datasets with a negligible
increase in computational time. Moreover, our experimental results demonstrate that even if the
dimension of input data exceeds the fixed value of 30, applying PCA does not significantly hurt the
clustering performance.

The final performance of ZEUS heavily relies on the synthetic data used in pre-training. While
we release a basic version of ZEUS, which encodes certain assumptions about data clusters, one
can adjust the pre-training stage using different datasets. Finally, ZEUS does not cluster data itself,
but constructs a convenient embedding space in which clustering can be performed using basic
algorithms.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions: (1) the
introduction of ZEUS, a transformer-based model for zero-shot clustering of tabular data;
(2) the use of synthetic datasets with known latent-variable structure for pre-training; and (3)
strong empirical results on both real and synthetic datasets. These claims are consistently
substantiated in the methodology, experiments, and analysis sections. The scope and limita-
tions (e.g., dimensionality constraints, reliance on synthetic priors) are also acknowledged
in the conclusion.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated Limitations paragraph in the conclusion, where
it explicitly discusses constraints related to model capacity (e.g., fixed number of features
and samples inherited from TabPFN), reliance on synthetic data for pre-training, and the
fact that ZEUS generates embeddings but does not perform clustering end-to-end. It also
notes the potential for prior misspecification and suggests that the performance may vary
depending on how well the synthetic priors match real-world data. These limitations are
realistic, clearly acknowledged, and contextualized in terms of potential extensions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present formal theorems, lemmas, or propositions with
accompanying proofs. While it includes a theoretical framing (e.g., the connection to Prior-
Data Fitted Networks and Bayesian inference), these are presented as conceptual motivations
rather than formal theoretical contributions. There are no formal mathematical results stated
or proven.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive details necessary for reproducing the
main results. It specifies the model architecture, the training procedure (data generation
process, optimizer, learning rate, batch size, number of epochs), the inference pipeline
(standardization, PCA, normalization, clustering algorithm), and the datasets used (OpenML
datasets, synthetic datasets with known priors). It also includes evaluation metrics, and
explicit descriptions of ablation setups. We also provide a link to an anonymized code
repository.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper includes a link to an anonymized code repository. The repository
provides all necessary components to reproduce the main results: the model definition,
synthetic dataset generator, training pipeline, preprocessing scripts, and evaluation code.
Real-world datasets are sourced from OpenML (publicly accessible), and synthetic datasets
can be generated using the provided scripts.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides extensive details about the experimental setup in Section 3]
It specifies:

e Model architecture
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* Optimizer and learning rate, as well as use of cosine scheduling with warm-up

* Dataset preprocessing steps (standardization, PCA for high-dimensional inputs, one-hot
for categorical features)

¢ Evaluation metrics (ARI and Brier score)

These details are enough to interpret the results and, if needed, to reproduce them. Additional
implementation details are provided in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: While we mention that all results are averaged over 5 random seeds (e.g., in
Tables , we do not report any error bars, standard deviations, or confidence intervals. The
source of variability (random seed) is implicitly mentioned, but no statistical significance
tests or variability estimates are provided in figures or tables

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: While the paper presents extensive experimental results, it does not specify the
total compute cost.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research focuses on unsupervised learning for tabular data using synthetic
datasets and publicly available real-world datasets from OpenML. It does not involve any
human subjects, sensitive personal data, or models with known societal or environmental
risks. The synthetic data is generated in a controlled, fully artificial manner, and real datasets
are used strictly for benchmarking in accordance with their licenses. The research is aligned
with the NeurIPS Code of Ethics regarding reproducibility, transparency, and responsible
development of machine learning models.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper includes a Broader Impact section in the appendix, which discusses
both the potential benefits and risks of using ZEUS.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: ZEUS’s pretraining utilizes exclusively synthetic datasets, and thus doesn’t
introduce any risk of misuse. It is not capable of generating human-like content, nor does it
process natural language, images, or other modalities associated with misuse risk. As such,
there is no high-risk component requiring safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper cites and builds upon the publicly available TabPFN v1 codebase,
which is correctly credited and stated to be released under the Apache 2.0 License. All
real-world datasets are obtained from OpenML.org and are explicitly described as open data,
with the acknowledgment that individual datasets may have licenses such as CC-BY. This
information is clearly documented in the paper in the “Licensing and Third-Party Assets”
section of the appendix. The code released by the authors is also provided under the Apache
2.0 License, and appropriate instructions for reproduction are included.

Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
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14.

15.

Justification: The paper introduces a new model, ZEUS, and a synthetic data generation
pipeline used for its pre-training. Both are made available in the anonymized code repository
linked in the main text. The repository includes:

* code for the model architecture, training loop, and inference,

* scripts for generating synthetic datasets,

* configuration files for hyperparameters and preprocessing,

* usage instructions (e.g., via a README file).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any crowdsourcing or research with human subjects.
All experiments are conducted on synthetic datasets or publicly available tabular datasets
from OpenML, with no human annotation, survey, or data collection involved.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve neither crowdsourcing nor research with human
subjects.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The research presented in this paper does not involve large language models
(LLMs) as part of the methodology, experiments, or any original contribution. ZEUS is a
transformer-based model trained on synthetic tabular data for zero-shot clustering, and all
components are specific to structured data. No LLMs were used in model design, training,
inference, evaluation, or theoretical framing. Therefore, no declaration under the NeurIPS
LLM policy is required.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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ZEUS: Zero-shot Embeddings for Unsupervised Separation of Tabular Data —
supplementary material

A Background on Prior-Data Fitted Networks

The recently introduced framework of Bayesian inference through transformers demonstrates that
neural networks pre-trained on synthetic datasets implicitly approximate Bayesian inference without
explicitly computing posterior distributions [25,16]. The pre-trained transformers are known as Prior-
Data Fitted Networks (PFNs). The pre-training involves synthetic prior fitting, wherein a transformer
network is trained offline on numerous datasets generated from a predefined prior distribution over
tasks. This pre-training procedure allows the transformer to implicitly encode a Bayesian posterior
predictive distribution by optimizing a cross-entropy loss between its predictions and the synthetic
data labels.

Formally, pre-training is carried out as follows: given a prior distribution p(D) over (synthetic)
datasets D, a PFN network parameterized by 6 is trained to minimize the negative log-likelihood
of predicting held-out labels within datasets sampled from this prior. The associated loss function,
known as the Prior-Data Negative Log-Likelihood (Prior-Data NLL), is explicitly defined as:

LprN(0) = Ep_,. uf(z,)}~p(D) [~ 108 0 (y|2, Detar )],

where each dataset D, and data point (x,y) are sampled from the predefined prior distribution
p(D). As shown formally in [25]], minimizing this loss is mathematically equivalent to minimizing
the expected cross-entropy between the predictive distribution gy (y|z, D.t,;) and the true posterior
predictive distribution (PPD) derived from the prior. Specifically, minimizing the Prior-Data NLL is
equivalent to minimizing the expected Kullback—Leibler divergence between the network’s predictive
distribution and the true PPD p(y|z, Dtz ):

LppN(0) = Ep,,, zrpp) [H (p(-|2, D), g0 (- |2, Deta))],

where H denotes the cross-entropy. Thus, optimality of the predictive distribution gg implies matching
it exactly to the true Bayesian posterior predictive distribution, provided that the parametric family of
distributions defined by the transformer is sufficiently expressive [25]].

Within this in-context learning as Bayesian inference framework, transformers approximate Bayesian
averaging implicitly. Given a training dataset D¢, = {(x;,¥;)}?_;, a new input x, and a prior over
hypotheses ¢, the Bayesian posterior predictive distribution is formally expressed as:

p(yl, Ders) = [p p(y]2, 6)p(Detal $)p()d,

integrating over all hypotheses ¢ € ®. PFNs approximate this integral implicitly through pre-training
on prior-generated datasets, yielding a distribution gg (y|x, D, ) directly from forward propagation
of the network conditioned on dataset D, [25,[16].

B Details of synthetic data generation process

B.1 Theory for synthetic-to-real data generalization

Theorem 1 (Univeral Approximation Theorem for Mixture Distributions). Let P = Zle m; P; be a
mixture of distributions on R%, where each P; is a probability distribution, and m; > 0, Zle m; =1

Then there exists a mixture of Gaussians () = Zle mN (i, X;) and a neural network F' such that
we can approximate P with arbitrarily small error by the pushforward measure Fy Q). Additionally,
we can select F' so that Fiy N (p;, ;) approximates P; with arbitrarily small error.

Proof. We proceed in several steps.

Step 1: Approximation of individual components.
Making use of the universal approximation theorem, for each component P; there exists a neural
network F; which transforms an arbitrary Gaussian Q; = N (u;, %;) into P, i.e. FiyQ; = P
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Step 2: Constructing a unified neural network.

We now define a single neural network F' that can represent all the F; networks. Define F' :
RY x {1,...,k} — R? such that F(z,i) ~ F;(z). This can be implemented by encoding the index i
as a one-hot vector or embedding and concatenating it to z, enabling F’ to learn the behavior of each
F; conditioned on the index . The network F' can be extended to the domain R? x R in an arbitrary
way.

Step 3: Approximation of the full mixture.
Since each Fiu N (u;, ;) approximates P;, the mixture Fly Q) = Zle i Fu N (i, X;) approximates
P= Zf:l iy Pi.

Thus, we have constructed a mixture of Gaussians () and a neural network F' such that Flu()
approximates P, and each component Fu N (11;, ¥;) approximates P; arbitrarily well. This completes
the proof. O

B.2 Insights into data-generating priors
We use three types of probabilistic procedures to generate the prior data:

1. Gaussian. The goal is to create a continuous data type where each cluster follows a
multivariate Gaussian distribution with carefully designed means and covariance matrices.
This construction process is incremental. Starting with a mixture containing k£ components,
the addition of a new cluster involves initially placing it at position O and then shifting it in a
randomly chosen direction. The covariance structure for each Gaussian is generated through
eigendecomposition, with eigenvalues sampled from a predefined range of [0.005, 0.05] to
control the shape and orientation of the clusters. Additionally, to guarantee the presence of
both full-rank Gaussians in higher dimensions and degenerate ones in lower dimensions,
extra conditions are introduced to narrow the range of eigenvalues. These constraints are
activated with probabilities of 0.25 and 0.2, respectively. To ensure adequate separation
between clusters and to prevent trivial overlap, we apply a Wasserstein-2 distance constraint,
requiring that the means y; and p; of any two clusters, along with their corresponding
covariance matrices 3; and X, are separated by at least a threshold T, as follows:

1

1 1
s — pill3 +tr(S + 55 — 2(B28;82)2) > T 7

The exact minimum distance value 7" varies between 0.5 and 1.0 and is randomly selected
for each component independently in order to promote data diversity. This entire approach
allows us to model a variety of cluster geometries, from spherical to highly elongated
elliptical shapes.

2. Categorical. To enrich the generated data, we incorporate categorical features alongside
continuous ones by sampling from categorical distributions that are biased toward certain
categories for each cluster. To produce these varied categorical probability patterns, we use
the Dirichlet distribution. The probability of including categorical features is controlled
by a categorical_chance parameter, set to 0.3. Up to 3 categorical variables may be
added, each having between 2 and max_categories possible values, defined as 5. The
resulting categorical variables are then converted to one-hot encoding and combined with the
continuous features, producing mixed-type datasets that more closely resemble real-world
tabular data.

3. NN transformed. To create more complex, non-linearly separable cluster structures, we
apply transformations to the numerical features using random neural networks with 3 to 6
layers. These transformations map the original data through several non-linear operations
while preserving cluster identity information, producing datasets with more challenging
decision boundaries. Following the approach of Invertible Residual Networks [2], we
constrain the spectral norm of each transformation layer to be less than 1. In addition,
standardization is applied between residual layers to ensure more stable transformations.
To help preserve cluster separability, we append one-hot vectors indicating the component
identity to the numerical variables before passing them through the random neural network.
After the transformation, these extra dimensions are removed using the PCA algorithm,
restoring the data to its original dimensionality. This comprehensive approach enables the
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simulation of intricate, non-linear data manifold structures often presented in real-world
clustering problems without introducing degenerate configurations.

All features undergo standardization and scaling to ensure numerical stability during training. Contin-
uous features are normalized to the range [—1, 1], while ensuring that the relative separation between
clusters is preserved.

By training on this diverse collection of synthetic datasets-ranging from well-separated Gaussian
clusters to complex, transformed manifolds with mixed feature types ZEUS learns to identify
meaningful cluster structures across a wide spectrum of data distributions. This enables it to adapt to
previously unseen datasets at inference time without additional training.

C Pre-training plots

Synthetic Gaussian Synthetic Transformed
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Figure 4: Visualization of pre-training process

Figure [] presents two plots of average ARI over 200 synthetic validation datasets throughout 300
pre-training epochs. The first plot corresponds to the Gaussian-categorical datasets referred to as
Synthetic Gaussian, while the second illustrates their NN transformed variants, named Synthetic
Transformed. The data generation procedures are described in more detail in Appendix[B.2] Both
plots illustrate that the quality of the ZEUS representation improves over time, indicating that the
model is learning new patterns, as evidenced by the increasing ARI during the pre-training process.

D Statistics of datasets used in experimental study

Tables[6] [7] and [§] provide detailed information about the datasets used in the experimental analysis.
Each table includes the number of set instances, the number of categorical and numerical features, the
total dimensionality, and the overall number of categories, represented by the length of the one-hot
encoded vectors. Additionally, the tables report the number of classes that each dataset contains. In
Table[6] the ID column corresponds to the OpenML ID, while in the remaining tables it functions
solely as an index.
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Table 6: Real/OpenML datasets statistics.

ID # Instances # Numerical # Categorical Dimension # Categories # Classes
features features (one-hots)

14 2000 76 0 76 0 10
15 699 9 0 9 0 2
16 2000 64 0 64 0 10
18 2000 6 0 6 0 10
22 2000 47 0 47 0 10
35 366 1 33 130 129 6
51 294 6 7 25 19 2
53 270 13 0 13 0 2
56 435 0 16 32 32 2
61 150 4 0 4 0 3
187 178 13 0 13 0 3
377 600 60 0 60 0 6
458 841 70 0 70 0 4
481 209 7 1 14 7 2
694 310 8 0 8 0 9
721 200 10 0 10 0 2
733 209 6 0 6 0 2
745 159 14 1 20 6 2
756 159 15 0 15 0 2
796 209 6 1 36 30 2
820 235 12 0 12 0 2
840 205 17 8 68 51 2
854 158 5 2 14 9 2
1462 1372 4 0 4 0 2
1495 250 0 6 18 18 2
1499 210 7 0 7 0 3
1510 569 30 0 30 0 2
1523 310 6 0 6 0 3
4153 180 66 0 66 0 6
40496 500 7 0 7 0 10
40682 215 5 0 5 0 3
40705 959 42 2 44 2 2
42261 150 4 0 4 0 3
42585 344 4 2 10 6 3
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Table 7: Synthetic Gaussian datasets statistics.

ID #Instances # Numerical # Categorical Dimension # Categories # Classes

features features (one-hots)
0 1337 16 0 16 0 8
1 1383 23 0 23 0 8
2 1421 8 2 14 6 7
3 992 9 1 12 3 9
4 1314 8 0 8 0 9
5 1497 16 2 23 7 8
6 1370 2 0 2 0 6
7 1646 4 3 16 12 8
8 1520 11 0 11 0 8
9 1537 18 0 18 0 5
10 825 26 0 26 0 2
11 1112 9 0 9 0 5
12 1093 15 0 15 0 8
13 742 6 0 6 0 3
14 1595 11 2 18 7 7
15 1417 14 0 14 0 6
16 1787 28 0 28 0 5
17 764 19 0 19 0 4
18 889 25 0 25 0 5
19 1660 28 0 28 0 9

Table 8: Synthetic Transformed datasets statistics.

ID #Instances # Numerical # Categorical Dimension # Categories # Classes

features features (one-hots)
0 1337 16 0 16 0 8
1 1627 30 0 30 0 9
2 1631 11 0 11 0 7
3 1891 15 1 17 2 10
4 1142 3 0 3 0 4
5 1222 24 0 24 0 9
6 953 6 0 6 0 6
7 1508 9 0 9 0 10
8 840 7 3 15 8 5
9 1745 14 0 14 0 9
10 1618 23 0 23 0 6
11 1432 13 0 13 0 9
12 1860 9 0 9 0 9
13 563 10 0 10 0 2
14 1033 6 2 13 7 3
15 750 2 0 2 0 4
16 1451 14 2 20 6 10
17 679 30 0 30 0 2
18 859 22 1 25 3 2
19 1493 11 0 11 0 7
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E Baselines

The evaluation of baseline models is based on the following libraries and GitHub repositories:

1. scikit-learn - used for k-means and GMM,

2. https://github.com/vlukiyanov/pt-dec - implementation of the DEC,

3. https://github.com/dawnranger/IDEC-pytorch - source code for the IDEC,
4. https://github.com/jsvir/idc - official implementation of the IDC method,

5

. https://github.com/mdsamad001/G-CEALS—Deep-Clustering-for-Tabular-Data - code-
base for the GCEALS,

6. https://github.com/PriorLabs/tabpfn-extensions|- a library that extends TabPFN function-
ality to a wide spectrum of machine learning tasks, including unsupervised ones,

7. https://github.com/clabrugere/pytorch-scarf - code repository for SCARF.

To ensure fair comparison, hyperparameters are chosen to maximize the performance of each method
with respect to their overall average rank across 5 random seeds. For this reason, all numerical
features are preprocessed using a standard scaler prior to the training phase.

Most parameters of the k-means and GMM methods are left at their default values. Only the n_init
option was increased to 100 for k-means and 50 for GMM in order to improve stability.

As mentioned in Section a standard autoencoder with hidden layers [500, 500, 2000] is used
for each AE-based method. The resulting network is first pre-trained for 1000 epochs and then
fine-tuned for up to 1000 additional epochs, separately for each dataset and model. Following the
GCEALS evaluation procedure, multiple latent dimension sizes [5, 10, 15, 20] were tested across all
considered methods. The results indicate that the default latent dimension of 10 does not yield the best
performance; instead, a dimension of 20 generally performs better. Changing other hyperparameters,
including the learning rate, optimizer, and clustering loss weight -y, generally did not lead to improved
results. Therefore, the remaining parameters were left at their default values as proposed by the
authors of the respective codebases.

For TabPFN, we use the get_embeddings_per_column method from the TabPFNUnsupervisedModel
class, provided in the TabPFN Extensions repositoryﬂ to extract per-column representations. These
embeddings are then averaged across columns to obtain the final representation for each data point.
For SCAREF, we follow the procedure outlined in the example.ipynb notebook from the original
repositoryﬂ In both cases, we cluster the learned representations using k-means, consistent with our
approach in ZEUS.

F Extended experimental results

This section presents extended tables corresponding to the experiments described in Section

F.1 How effective is ZEUS for clustering?

Tables 9] [I0] and [T] contain the complete results for individual datasets from the experiments
discussed in Section3.2]in Tables[T|and 2] as presented in the main text. The reported values represent
averages of ARI over 5 random seeds. In addition to the rows presenting outcomes for specific
datasets, the tables include summary rows labeled Mean, Mean-Rank, Top-3, and Top-1. These
represent, respectively: the average ARI, the average rank computed across all datasets, the number
of times a given model appears in the top 3, and the total number of wins achieved by each method.
It is worth noting that the Top-1 and Top-3 rows indicate clear wins and clear appearances in top-3
positions.

The overall conclusions align with those presented in the primary analysis. One noteworthy point is
that ZEUS achieves strong performance in terms of the Top-3 and Top-1 statistics, being outperformed
in this regard only in Table[I0} where k-means and GMM score better. Another interesting observation

“https://github.com/PriorLabs/tabpfn-extensions
*https://github.com/clabrugere/pytorch-scarf
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is that GMM struggles with categorical features, which significantly worsens its average scores in
Tables[I0land [T11

Table 9: Comparison of clustering quality using ARI metric on OpenML datasets (higher score
indicate better performance).

D KM GMM AE-KM AE-GMM DEC IDEC IDC G-CEALS TabPFN SCARF ZEUS
14 3874 4590 4094 4536 49.60 3678 4503 4504 22.02 190  50.56
15 8285 7138 6144 7174 8629 8748 8320 2438 7431 7501 8128
16 5562 6475  61.66 69.97 6856 5561 6584 5527 14.69 374 7403
18 5486 46.88  51.45 5147 5000 53.54 4440  49.93 51.50 502 5163
2 3548 4739 31.09 5080 5002 3569 4603 2838 11.09 263 56.05
35 7068 7068 7022 7048  68.63 6458 7799 5657 5224 7461  85.12
51 2835 254 37.82 3413 3813 3458 3893  35.13 3826 127 43.66
53 4521 517  39.14 4062 4350 4191 3303 2132 26.61 2424 3576
56 5779 5849  57.10 5831 5697 5520 5925  55.66 5842 6126  66.41
61 6201 9039 5979 6021 5784 60.14 5830 5137 7720 5119 85.15
187 89.75 93.09 8287 8486 8502 8510 8004 5567 3755 4005  88.19
377 5670 5847  62.06 5952 63.03 5901 6239  59.79 66.89 1445 5530
458 9508 9697  64.33 7570 9458 6329 8677 683l 61.41 287 99.19
481 5851 277 3684 4803 5728 5293 4317 19.67 277 1.79 8.68
694 3591 4330 3526 3656 2630 3602 3347 3076 27.68 1409 3338
721 4328 4328 1312 2512 1775 2877 1274  -0.03 23.63 635 4328
733 5097 4629 3839 55.11 6747 7351 6888 2626 -8.35 4941 7497
745 5763 5544 17835 7552 4637 5094 5929 578l 1.26 1675 73.85
756 5570 446 7281 5340  58.60 65.58 5332  44.14 1060 6482 5031
796 4962 226 1654 5219 5007 5592 79.59 4340 0.88 5825  13.99
820 50.16 3677 4429 4924 5121 4930 4459 2451 50.26 13.04 2887
840 39.05 4837  53.60 4672 4914 39.16 1959 2795 .89 3213 2766
854 76.14 021 6233 60.83 3505 7052 6481 7225 -0.54 648  76.14
1462 132 031 10.03 10.17 100 380 883 8.48 331 0.03 9228
1495 96.81 9840 7274 8280 9681 9128 8396  77.51 47.11 510 735
1499 7733 6299  73.68 7528  69.99 7848 67.82  29.60 5.82 2493 8240
1510 67.07 7802  63.73 5977 7132 69.84 7055  69.47 5459 6357 7426
1523 21.16 4121 2548 2457  28.16 2305 31.35 18.50 245 2104  19.60
4153 5578 5803  59.15 4623 5641 5844 5044 3943 2780 3621  62.29
40496 5402 3479 4235 3751 4974 4235 2741 3733 3180 3978 3225
40682 5832 8629  57.89 5922 5739 8605 1795 4058 86.94 1786 53.15
40705 4349 3792 073 3063 47.90 4628 31.38 10.71 -4.40 3290 4545
42261 6201 9039  60.13 58.15 5978 5678 5510  49.09 7720 5253 85.15
42585 60.84 3052 5126 6071 9179 4340 7210 3830 23.04 350  95.05
Mean 5554 4849 5143 5356 5593 5457 5228 4037 3132 2695 5743
Mean-Rank ~ 4.69  5.65 572 524 469 501 562 8.18 8.22 8.85 4.13
Top-3 11 12 6 5 15 11 9 1 6 4 21
Top-1 4 7 3 0 2 1 1 0 2 0 12
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Table 10: Evaluation of clustering quality with the ARI metric on Synthetic Gaussian datasets (higher

scores reflect better performance).

ID KM GMM AE-KM AE-GMM DEC IDEC IDC G-CEALS TabPFN SCARF ZEUS
0 86.16  82.13 83.44 79.66 87.06 77.26 60.64 58.57 65.42 4.06 87.65
1 88.66  87.36 81.13 79.61 85.84 75.62 44.44 54.10 40.26 421 72.04
2 81.30  26.46 71.57 78.04 86.65 7891 53.53 48.59 20.42 11.44 82.96
3 95.02  36.77 92.03 76.44 9274 89.81 65.03 62.67 50.57 2229 95.76
4 90.64 9297 82.65 77.80 91.61 8451 77.56 69.70 61.65 8.80 92.85
5 89.83  25.85 86.52 69.06 90.01 8831 7038 67.70 20.51 10.31 90.72
6 96.21  98.07 85.99 94.26 9424 9239 80.18 73.15 86.50 6.51 97.89
7 92.59  30.52 81.73 79.06 91.35 89.80 46.44 58.10 26.62 10.14 93.60
8 88.29  89.62 81.15 76.53 87.56 7837 7272 50.30 68.54 13.06 84.00
9 9336  98.54 68.58 85.42 91.14 8529 76.64 56.89 65.02 11.37 94.55
10 79.26  93.32 72.75 90.90 72.54 7351  77.64 48.47 89.15 -0.04 87.32
11 93.60 98.48 90.77 89.11 95.03 92.19 74.56 64.24 68.28 2.11 97.45
12 86.82 7745 73.64 71.40 86.04 7793  60.55 58.45 55.27 19.11 86.04
13 96.77  98.07 94.05 90.15 96.11 85.66 86.14 78.20 80.24 529 96.17
14 90.73  43.20 79.65 69.09 92.68 77.93 72.80 67.84 12.93 8.16 94.60
15 93.58  96.23 85.74 89.30 94.43  89.41 7254 72.88 91.02 3.24 96.68
16 94.70  92.45 90.98 89.41 94.53 88.14 77.56 85.86 59.58 4.85 87.19
17 8526 87.10 62.23 79.52 84.08 75.00 50.45 4255 50.06 7.69 86.29
18 88.77 94.83 84.47 84.74 8739 8346 6136 67.96 74.90 7.69 83.01
19 86.54  89.11 76.18 78.46 86.06 67.99 47.46 70.50 32.39 6.02 73.85
Mean 89.90 76.93 81.26 81.40 89.35 8257 6643 62.84 55.97 8.32 89.03
Mean-Rank  2.65 3.65 5.65 5.60 3.23 5.70 7.95 8.90 8.75 11.00 2.92
Top-3 16 13 0 1 15 0 0 0 1 0 14

Top-1 3 10 0 0 1 0 0 0 0 0 6

Table 11: Assessment of clustering quality based
datasets (higher score indicate better performance).

on the ARI metric on Synthetic Transformed

D KM GMM AE-KM AE-GMM DEC IDEC IDC G-CEALS TabPFN SCARF ZEUS
0 60.56 7933 4631 68.98 7693 4635 5667 2942 6.36 094 8742
1 9330 9655  76.57 83.99 9129 7091 6659  73.09 16.59 122 89.40
2 89.76 9631  57.79 6599 9442 6634 7225 4834 10.00 .10 95.88
3 70.16 5038  56.23 7606  83.06 60.09 6513 5454 1536 199 8098
4 4432 80.63  47.60 4477 6839 50.12 3600 4937 19.14 148 73.66
5 9149 9651  74.48 89.11 8646 77.84 60.00 6647 15.12 125 8163
6 60.98 8163  61.97 7629 7558 6189 6943  69.84 18.83 211 87.02
7 76.80 8398 7137 77.69 8656 7749 7675 5651 18.94 320 89.57
8 89.77 7710  85.53 8442 9333 9296 90.69  78.87 24.26 591 98.11
9 84.40 9848 8264 93.03  97.14 8102 9102 6562 9.01 166  97.20
10 8247 9191  61.00 86.16 8758 4608 7042 3927 14.11 046 8642
11 90.77 9932 8141 91.18 9478 88.12 8075  70.29 18.31 172 93.19
12 67.64 9180  52.87 63.56 8545 60.61 73.66 5559 28.50 321 8175
13 85.99 50.80 4548 3534 2904 1291 3022 32.89 35.78 601 9160
14 9352 5456 1581 2279 9412 3821 6854 1510 15.08 554 9849
15 36.62 3093 3771 4370 4278 4065 3264 2970 16.68 063 2896
16 9562 65.11  90.13 9497 9747 9532 8479 9827 17.27 958  99.01
17 60.54 9574 5624 9171 7872 5911 8254 1329 733 0.0 9644
18 63.92 1739 5847 7021 5461 4793 6415 1001 3.79 065  79.70
19 6212 79.06  49.36 6577 8107 5119 6341 2684 273 106 8413
Mean 7504 7588 6045 7129 7994 6126 6678  49.17 15.66 248 8633
Mean-Rank 480  3.50 685 450 320 635 6.05 7.80 9.75 11.00 220
Top-3 4 14 0 6 15 2 1 1 0 0 17

Top-1 0 8 0 1 1 0 0 0 0 0 10

F.2 Are ZEUS’s assignments well calibrated?

Tables[12] [13]and [T4] contain detailed extension of Table [3]from the main part of the paper. Similar to
the Tables in Appendix @ these also include additional rows: Mean, Mean-Rank, Top-3, and Top-1,
which aggregate the results presented in each table.

ZEUS consistently attains at least the second position across all statistics in every table presented
in this section. For the Synthetic Transformed datasets, it is undeniably the best. However, for the
OpenML datasets, it is outperformed by IDEC, and for the Synthetic Gaussian datasets, GMM takes
the lead in the Top-1 metric, while for the other statistics, k-means performs better.
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Table 12: Soft clustering performance of ZEUS versus competing methods on real-world datasets,
measured by Brier score (lower is better).

ID KM GMM AE-KM AE-GMM DEC IDEC G-CEALS ZEUS
14 0.7660 0.8579  0.8240 0.7144  0.5338 0.6409 0.7993 0.7006
15 0.0858 0.1548 0.2100 0.1791 0.1489 0.0644  0.2003 0.0973
16 0.5012 0.4982 0.4224 0.5372 03726 0.5020  0.6099 0.2761
18 0.6060 0.8529 0.7312 0.6961 0.6099 0.5354  0.6855 0.7094
22 0.8316 0.7533  1.0686 0.7684  0.5071 0.6496  0.7201 0.7173
35 0.0710 0.5016 0.4678 0.5711 0.5881 0.3987 0.3836 0.2552
51 0.3741 0.3741 0.3687 0.3844  0.3297 0.3345 0.3997 0.3333
53 0.4074 0.7052  0.3556 0.6285 0.3361 0.2979  0.5234 0.4000
56 0.2391 0.2344  0.2520 0.2703 0.2147  0.2088 0.2517 0.1829
61 0.2267 0.0570  0.3600 0.3796  0.3881 0.3445 0.4167 0.0979
187 0.0899 0.0622  0.1349 0.1146  0.3380 0.0785 0.2518 0.0762
377 0.8633 0.8320  0.6200 0.6275 0.5316 0.5047 0.5739 0.8508
458 0.0285 0.0214 0.5222 0.3407  0.3203 0.3656 0.4104 0.0048
481 0.8038 0.8134  0.4536 0.2136  0.3111 0.2146 0.4422 0.6986
694 1.0155 0.8831  0.9858 09342  0.7616 0.7525 0.7038 0.7621
721 0.3400 0.3400 0.6620 0.6031 0.4491 0.4359 0.7937 0.3400
733 0.1722  0.2859 0.3082 0.4937  0.2115 0.1129  0.3195 0.1244
745 02516 0.2516  0.1359 0.2766  0.3016 0.1793 0.2388 0.1384
756 0.2767 0.3615 0.2113 03262 03178 0.1329  0.4134 0.2767
796 0.0574 0.7943  0.1340 0.3088  0.2046 0.3002 0.5269 0.6253
820 0.2979 0.3720  0.3557 0.2876  0.2334 0.2594 0.3981 0.4596
840 0.8780 0.2790  0.2868 0.2625 0.2746  0.2445 0.4642 0.4665
854 0.6329 0.8203  0.3468 0.4481 0.4469 0.3372 0.3678 0.1266
1462 0.8484 0.8978 0.7688 0.8310  0.6674 0.7714 0.6747 0.0394
1495 0.0160 0.0080 0.1696 0.0397  0.2667 0.0713 0.1583 0.7200
1499 0.2190 0.2933  0.1867 0.1961 0.3939 0.1376 0.4063 0.1239
1510 0.1441 0.1161 0.2257 0.1954  0.2195 0.1432 0.2060 0.1371
1523 1.0516 0.7284  0.9019 0.9708 0.6099 0.7782 0.6316 1.0002
4153 0.7778 0.7178  0.6311 0.8111 0.5757 0.6377 0.8360 0.4651
40496 0.5064 0.9563 0.8312 0.8432  0.6733 0.6143 0.7376 1.0124
40682 0.2233  0.0747  0.2456 0.2251 0.2694  0.0685 0.3210 0.2884
40705 0.3879 0.3837  0.7095 0.4415 0.2541 0.3347 0.4304 0.3254
42261 0.2267 0.0570  0.3413 0.3760  0.3889 0.2854  0.3800 0.1081
42585 0.6279 0.9790  0.5558 0.6111 0.3494 0.7425 0.3795 0.0383
Mean 0.4366 0.4799 0.4643 04679  0.3941 0.3671 0.4722 0.3817
Mean-Rank  4.54 4.94 5.12 5.50 3.88 2.85 5.65 3.51
Top-3 12 9 8 4 19 22 6 21
Top-1 3 5 1 1 6 8 1 8
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Table 13: Soft clustering performance (Brier score) of ZEUS compared to baseline methods on

Synthetic Gaussian datasets (lower score reflect better quality).

ID KM GMM AE-KM AE-GMM DEC IDEC G-CEALS ZEUS
0 0.1448 0.2200 0.1741 0.3558 0.4251 0.3264 0.3921 0.1242
1 0.1218 0.1886 0.2337 04718  0.4379 0.4109 0.4377 0.4502
2 0.1985 0.9985  0.2995 0.1922  0.4303 0.2321 0.5400 0.1952
3 0.0528 0.9078  0.0927 0.3012  0.6196 0.1628 0.4194 0.0413
4 0.1005 0.0575 0.1793 0.3351 0.4955 0.2312 0.3886 0.0792
5 0.1020 1.0950  0.1333 0.4892  0.3355 0.2059 0.3995 0.0881
6 0.0350 0.0156 0.1200 0.0489  0.2971 0.0770  0.3561 0.0209
7 0.0632 0.9781 0.1599 0.2610  0.4693 0.1207 0.6146 0.0543
8 0.1168 0.0844 0.2079 0.2786  0.4626 0.2970  0.5975 0.1631
9 0.0677 0.0092  0.3552 0.1925 0.2167 0.2090  0.4586 0.0573
10 0.1091 0.0292 0.1469 0.0460  0.3300 0.1229 0.3127 0.0655
11 0.0558 0.0117 0.0791 0.1370  0.4110 0.1122 0.4437 0.0234
12 0.1361 0.2296 0.4022 0.3492  0.5917 0.3230  0.3583 0.1545
13 0.0216 0.0115 0.0356 0.0629 03223 0.0980  0.1947 0.0270
14 0.1048 0.8000  0.3009 0.3776  0.3359 0.2380  0.3818 0.0626
15 0.0734 0.0278 0.2574 0.0746  0.3458 0.2483 0.3120 0.0352
16 0.0537 0.0448 0.0958 0.1747  0.1640 0.2528 0.1454 0.1770
17 0.1309 0.3513 0.4178 0.2891 0.4313  0.2756 0.5425 0.1308
18 0.1035 0.0452 0.1458 0.2319  0.5193 0.2117 0.2961 0.1939
19 0.1475 0.1132 0.3094 0.2989  0.2444 0.4612 0.3015 0.3942
Mean 0.0970 0.3110 0.2073 0.2484  0.3943 0.2308 0.3946 0.1269
Mean-Rank  2.30 3.25 4.55 4.95 6.65 4.85 6.75 2.70
Top-3 19 13 6 2 1 3 0 16
Top-1 2 11 0 1 0 0 0 6

Table 14: Evaluation of soft clustering quality on Synthetic Transformed datasets using Brier

(lower score indicate better performance).

score

ID KM GMM AE-KM AE-GMM DEC IDEC G-CEALS ZEUS
0 0.5116 0.2135 0.6639 0.4457 0.5911 0.5063 0.7116 0.1282
1 0.0666 0.0484 0.2328 0.1514  0.4755 0.5045 0.2806 0.2718
2 0.0883 0.0330 0.4996 0.2822 0.4424  0.3441 0.5990 0.0394
3 0.3254 0.6286 0.5872 0.2118  0.3241 0.4862 0.7537 0.2678
4 0.6757 0.1547 0.5580 0.6123 0.3920 0.5158 0.3804 0.3190
5 0.0887 0.0359 0.3201 0.1517 0.6415 0.4114 0.3869 0.2802
6 0.5771 0.1788  0.4789 0.4049 0.5718 0.3069 0.5448 0.1763
7 0.3634 0.2875 0.4281 0.3326 0.5478 0.3379 0.6068 0.2461
8 0.1048 0.2738  0.1271 0.0817 0.4517 0.0784 0.3278 0.0167
9 0.3014 0.0120 0.3120 0.0940  0.4474 0.3329 0.2284 0.0481
10 0.1785 0.0763 0.3674 0.1249 0.3845 0.5057 0.5420 0.1387
11 0.1053 0.0130 0.1684 0.1128 0.6071 0.2580 0.3306 0.1768
12 0.3682 0.0657 0.6462 0.4740  0.3838 0.4585 0.6318 0.1936
13 0.0604 0.2549  0.4206 0.4292 0.3711 0.4073 0.3436 0.0355
14 0.0445 0.7982 1.1164 0.6259 0.3672  0.4949 0.6715 0.0097
15 0.7142 0.7088  0.6256 0.7924  0.5801 0.5741 0.4807 0.8854
16 0.0524 0.4745 0.1194 0.0303 0.5832 0.1743 0.1014 0.0809
17 0.2586 0.0230 0.2616 0.0394  0.3480 0.2156 0.6361 0.0177
18 0.2081 0.6698 0.3781 0.2409 0.3774 0.3861 0.7879 0.1056
19 0.5120 0.1821 0.7577 0.6415 0.3892 0.4845 0.5570 0.1542
Mean 0.2803 0.2566  0.4535 0.3140  0.4638 0.3892 0.4951 0.1796
Mean-Rank  3.95 3.00 5.85 3.95 5.75 5.00 6.15 2.35
Top-3 9 14 0 12 4 3 2 16
Top-1 0 8 0 2 0 0 1 9

31



F.3 How helpful is regularization for ZEUS?

Tables[15] [I6] and [T7] provide extended versions of Tabled], which analyzes the impact of different
combinations of regularization functions. Their structure is analogous to the other tables presented in
Appendix [F]

The conclusions that can be drawn from these extended tables, along with their statistical summaries,
are consistent with our original claims. The model with both L., and L., regularizers performs best
on real-world data collections and consistently ranks at least second in the considered statistics for
synthetic data. On these generated datasets, it is frequently outperformed by the variant that includes
the L., component alone. By contrast, the remaining two approaches clearly grapple with proper
clustering of the synthetic datasets.

Table 15: Impact of regularization components on OpenML datasets, evaluated using the ARI score
(higher is better).

ID £p'rob £p'rob + Esep »Cp'rob + ch Lprob + £sep + ﬁcp
14 48.40 43.49 46.44 50.56
15 86.64 87.17 82.94 81.28
16 69.87 73.33 81.87 74.03
18 43.06 50.80 49.62 51.63
22 63.27 56.86 65.58 56.05
35 52.33 74.58 76.90 85.12
51 32.31 31.54 41.84 43.66
53 5.17 27.38 25.85 35.76
56 58.48 61.34 20.84 66.41
61 48.93 88.57 65.37 85.15
187 88.38 91.50 88.22 88.19
377 46.31 45.16 54.56 55.30
458 98.16 98.49 98.49 99.19
481 2.77 25.87 1.53 8.68
694 42.76 48.86 30.35 33.38
721 43.28 5.39 43.28 43.28
733 34.35 24.94 76.83 74.97
745 59.56 22.80 4.46 73.85
756 76.15 63.49 38.42 50.31
796 6.56 3.96 14.52 13.99
820 39.95 39.95 34.72 28.87
840 0.95 4.13 31.14 27.66
854 12.37 12.37 24.32 76.14
1462 92.00 94.25 62.85 92.28
1495 -0.29 98.40 7.35 7.35
1499 60.63 44.86 71.34 82.40
1510 70.09 73.67 72.51 74.26
1523 25.68 28.13 17.38 19.60
4153 38.28 51.26 50.24 62.29
40496 34.15 33.63 30.68 32.25
40682 -0.39 23.38 42.79 53.15
40705 40.00 40.51 38.18 45.45
42261 48.93 88.57 65.37 85.15
42585 53.97 95.82 97.39 95.05
Mean 44.80 51.60 48.65 57.43
Mean-rank  3.00 2.37 2.68 1.96
Top-3 20 26 25 30
Top-1 2 9 6 15
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Table 16: Effect of regularization components on Synthetic Gaussian datasets, assessed by the ARI
metric (higher score indicate better quality).

ID £p'rob £p'rob + Esep »Cp'rob + Ecp Lprob + £sep + ﬁcp
0 72.89 68.81 85.85 87.65
1 89.50 71.68 88.72 72.04
2 80.18 63.23 92.59 82.96
3 77.05 79.22 91.23 95.76
4 72.32 84.96 92.82 92.85
5 91.88 88.98 82.25 90.72
6 81.85 81.18 87.49 97.89
7 85.33 79.93 93.75 93.60
8 72.54 76.12 87.92 84.00
9 95.47 95.97 93.59 94.55
10 88.23 89.61 85.07 87.32
11 97.26 94.91 96.55 97.45
12 77.58 78.07 85.81 86.04
13 74.41 76.08 96.07 96.17
14 84.00 82.11 95.39 94.60
15 77.65 78.94 97.10 96.68
16 93.82 93.46 95.82 87.19
17 88.83 86.38 88.05 86.29
18 89.90 90.21 90.02 83.01
19 76.62 77.69 85.63 73.85
Mean 83.37 81.88 90.59 89.03
Mean-rank  2.80 3.00 2.00 2.20
Top-3 14 13 17 16
Top-1 3 3 7 7

Table 17: Regularisation impact on Synthetic Transformed datasets, measured by ARI (higher is
better).

1D Eprob ['p'rob + L"scp Eprob + ['cp ['prob + L"Sep + Ecp
0 67.29 71.62 85.76 87.42
1 91.98 91.46 96.88 89.40
2 93.17 93.84 92.36 95.88
3 68.26 71.68 80.53 80.98
4 80.93 81.64 84.22 73.66
5 81.38 80.06 95.99 81.63
6 84.29 82.06 80.67 87.02
7 83.35 73.07 96.83 89.57
8 97.42 98.61 97.16 98.11
9 97.63 96.43 96.37 97.20
10 91.32 77.37 90.58 86.42
11 91.84 89.07 99.17 93.19
12 74.93 92.20 91.14 87.75
13 0.32 0.73 90.67 91.60
14 98.00 98.83 98.16 98.49
15 43.28 48.54 30.50 28.96
16 93.34 90.38 98.11 99.01
17 97.62 98.21 95.86 96.44
18 82.64 82.22 86.94 79.70
19 77.93 67.71 83.78 84.13
Mean 79.85 79.29 88.58 86.33
Mean-rank  2.80 2.70 2.30 2.20
Top-3 15 14 15 16
Top-1 2 5 6 7
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F.4 What data-generating prior is optimal?

Tables[18] [I9] and [20]expand upon the findings presented in Table [5|by examining the influence of
various data-generating priors across all datasets within each group. Their format is consistent with
other tables in Appendix [F

Table 18: Evaluation of clustering quality with the ARI metric on real-world datasets for different
combinations of data-generating probabilistic models (higher scores reflect better performance).

ID Gauss. + Cat. NN-transf. + Cat. Gauss. + NN-transf. Gauss. + NN-transf. + Cat.
14 36.81 49.84 49.84 50.56
15 85.52 85.57 83.46 81.28
16 57.15 73.05 76.01 74.03
18 42.83 46.48 55.29 51.63
22 46.45 62.23 60.63 56.02
35 87.48 76.48 84.25 85.12
51 -0.52 38.26 39.76 43.66
53 37.57 29.79 27.38 35.76
56 48.40 56.35 59.92 66.41
61 68.44 62.26 85.08 85.15
187 89.77 94.87 88.22 88.19
377 35.12 58.34 58.95 55.30
458 47.43 98.79 98.47 99.19
481 6.46 6.94 3.58 8.68
694 27.75 19.90 27.69 33.38
721 43.28 43.28 38.13 43.28
733 73.48 -7.69 75.77 74.97
745 4.46 67.51 28.11 73.85
756 4.46 59.53 4.46 50.31
796 14.80 5.94 15.29 13.99
820 19.26 36.77 33.71 28.87
840 -0.83 0.69 2.57 27.66
854 24.32 73.92 12.56 76.14
1462 1.92 92.56 92.56 92.28
1495 -0.29 0.03 55.17 7.35
1499 58.62 74.43 71.07 82.40
1510 72.50 72.95 70.08 74.26
1523 20.38 18.69 22.01 19.60
4153 41.49 46.33 56.13 62.29
40496 33.20 31.69 30.61 32.25
40682 64.49 58.59 77.21 53.15
40705 29.52 39.74 37.15 45.45
42261 66.34 62.26 81.76 85.15
42585 92.06 94.29 64.95 95.05
Mean 40.59 50.90 52.00 57.43
Mean-Rank 3.10 2.56 2.46 1.88
Top-3 17 27 26 31
Top-1 3 5 8 16
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Table 19: Effect of prior selection on ZEUS’s ARI performance on Synthetic Gaussian datasets
(higher scores indicate better performance).

ID Gauss. + Cat. NN-transf. + Cat. Gauss. + NN-transf. Gauss. + NN-transf. + Cat.
0 88.78 87.09 82.89 87.65
1 87.74 79.51 80.38 72.04
2 91.30 87.30 20.50 82.96
3 95.08 93.27 44.56 95.76
4 94.40 94.46 92.48 92.85
5 91.43 90.08 30.45 90.72
6 98.05 97.22 98.02 97.89
7 94.56 94.43 26.90 93.60
8 87.65 87.95 88.05 84.00
9 95.92 92.70 94.79 94.55
10 90.99 86.78 90.07 87.32
11 96.86 96.52 96.74 97.45
12 88.21 86.25 85.55 86.04
13 96.07 93.39 93.81 96.17
14 95.42 92.12 32.24 94.60
15 97.71 95.84 97.14 96.68
16 95.24 94.49 95.50 87.19
17 89.13 84.54 86.66 86.29
18 90.14 87.66 89.37 83.01
19 87.43 76.30 79.00 73.85
Mean 92.61 89.90 75.25 89.03
Mean-Rank 1.35 3.05 2.80 2.80
Top-3 20 13 12 15
Top-1 14 1 2 3

Table 20: Influence of the chosen data-generating prior on ZEUS performance over Synthetic
Transformed datasets, reported in terms of ARI (larger values denote better clustering quality).

ID Gauss. + Cat. NN-transf. + Cat. Gauss. + NN-transf. Gauss. + NN-transf. + Cat.
0 61.54 87.33 88.33 87.42
1 84.60 95.73 94.60 89.40
2 83.73 93.89 97.59 95.88
3 45.52 75.48 52.79 80.98
4 76.52 73.72 81.24 73.66
5 72.95 83.07 79.33 81.63
6 80.87 83.20 83.19 87.02
7 88.97 95.91 91.18 89.57
8 97.55 98.09 36.45 98.11
9 94.25 96.86 98.29 97.20
10 40.64 81.56 88.46 86.42
11 93.42 98.57 98.98 93.19
12 83.00 90.91 92.21 87.75
13 80.76 90.87 94.12 91.60
14 98.19 98.49 13.51 98.49
15 28.32 28.47 29.06 28.96
16 98.40 99.05 18.65 99.01
17 87.75 98.21 98.21 96.44
18 5.50 83.07 3.79 79.70
19 64.25 88.36 85.72 84.13
Mean 73.34 87.04 71.29 86.33
Mean-Rank 3.65 2.00 2.08 2.27
Top-3 6 20 16 18
Top-1 0 6 9 3
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G Additional experiments

In this section, we present additional ablation studies and experiments related to ZEUS, including
analyses regarding its robustness, architectural choices, clustering strategies and performance in
special-case scenarios.

G.1 Robustness to noise and outliers

In order to assess the robustness of our model under noise and outlier conditions, we consider two
alternative evaluation setups:

e ZEUS + noise, where we add Gaussian noise with a standard deviation of 0.05 to each data
point before the ZEUS forward pass,

¢ ZEUS + anomalies, where we introduce a set of global anomalies corresponding to 5%
of the dataset size. Each anomaly is generated by uniformly sampling numerical features
from the range (—1, 1) and randomly selecting categorical values. The resulting dataset,
containing both ground truth data points and anomalies, is then passed through our model.
Final clustering quality is measured only on the ground truth points, for which the true class
assignments are known.

Table [2T] displays the outcomes of these experiments, alongside the performance of the vanilla ZEUS
model.

Table 21: Impact of Gaussian noise and anomalies on clustering performance.

Metric Dataset group ZEUS+noise ZEUS+anomalies ZEUS

ARI Real 55.88 55.83 57.43
ARI Syn. Gauss. 88.01 88.21 89.03
ARI Syn. Transf. 84.82 85.17 86.33
Rank  Real 2.24 1.93 1.84
Rank  Syn. Gauss. 2.45 2.10 1.45
Rank  Syn. Transf. 2.45 2.30 1.25

Overall, the average performance in the perturbed setups is not significantly lower than that of the
vanilla ZEUS model, highlighting a degree of stability of our method in the presence of noise and
outliers.

G.2 Impact of token dimension

The choice of token dimension also has a substantial influence on the performance and generalizability
of ZEUS. This is confirmed by an experiment in which we evaluated dimensions of 32, 128, 512,
and 768 while keeping the standard setup unchanged. Table 22 reports the clustering performance of
these variants, denoted as ZEUS-32, ZEUS-128, ZEUS-512, and ZEUS-768, respectively.

Table 22: Assessment of different token dimensions in the ZEUS architecture.

Metric Dataset group ZEUS-32 ZEUS-128 ZEUS-512 ZEUS-768

ARI Real 44.10 47.81 57.43 50.79
ARI Syn. Gauss. 69.50 83.04 89.03 91.92
ARI Syn. Transf. 67.57 81.62 86.33 87.21
Rank  Real 2.90 2.96 1.90 2.25
Rank  Syn. Gauss. 4.00 3.00 1.78 1.23
Rank  Syn. Transf. 3.90 2.78 1.70 1.63

As one can infer, increasing the dimensionality leads to a consistent improvement in performance
for synthetic data, whereas for OpenML datasets, there is a drop between dimensions 512 and 768,
which may be caused by overfitting to the prior.
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G.3 Effect of the output clustering method

Since ZEUS is a method for learning representations suitable for clustering, in principle, any clustering
algorithm could be used to separate the resulting clusters. However, our approach has the additional
feature of being inherently designed to form spherical clusters; therefore, K-Means (ZEUS-KM)
should, in theory, already be sufficient. The primary advantage of K -means lies in its speed, which is
a crucial factor for us during inference. Moreover, as demonstrated in the Table [23] its clustering
quality (measured by ARI) is comparable to the more computationally intensive Gaussian Mixture
Model (ZEUS-GMM). For reference, we also include results from a simplified variant of GMM with
fixed identity covariance matrices (ZEUS-SGMM), as employed in Section[3.3] All experiments are
conducted using the same checkpoint and datasets as in Section[3.2]

Table 23: Evaluation of clustering methods applied to the learned ZEUS representations.

Metric Dataset group ZEUS-KM ZEUS-SGMM ZEUS-GMM

ARI Real 57.43 57.33 56.45
ARI Syn. Gauss. 89.03 88.18 89.46
ARI Syn. Transf. 86.33 85.57 87.22
Rank  Real 1.94 2.04 2.01
Rank  Syn. Gauss. 1.90 2.33 1.78
Rank  Syn. Transf. 2.13 2.35 1.53

Analysis of the average ARI scores indicates that ZEUS’s output is well-suited to the evaluated
approaches, as there are no significant differences in their results. Deep clustering techniques such as
DEC or IDEC could also potentially be employed. Nevertheless, their reliance on intensive, dataset-
specific training contradicts ZEUS’s objective of delivering efficient, zero-shot representations.

G.4 Integrating TabICL transformer into ZEUS

To mitigate one of the main limitations of our approach, namely the restricted number of input
features and samples, we investigate whether it is feasible to replace the original TabPFN transformer
architecture with a more recent design, such as the one used in TabICL [18]]. Specifically, we adopt the
TabICL transformer with its default hyperparameters and integrate it into our unsupervised pipeline
(ZEUS + TabICL) in exactly the same manner as described in Section 3.1} The resulting clustering
quality, alongside a comparison with the original ZEUS model, are presented in Table [24]

Table 24: Performance of ZEUS vs. its variant with the TabICL transformer backbone.

Metric Dataset group ZEUS ZEUS + TabICL

ARI Real 57.43 52.62
ARI Syn. Gauss. 89.03 89.81
ARI Syn. Transf. 86.33 85.97
Rank  Real 1.38 1.62
Rank  Syn. Gauss. 1.60 1.40
Rank  Syn. Transf. 1.75 1.25

Overall, ZEUS+TabICL performs competitively with the original ZEUS across all evaluated data
collections and even surpasses it in rank on synthetic data. Nonetheless, its average ARI on real-world
datasets is noticeably lower. Future work should investigate whether this is due to random seed
variability, our incomplete understanding of the TabICL architecture, potential overfitting to the prior,
or the need for a more expressive prior.

G.5 Special-case scenarios

Finally, we examine the behavior of our model in several extreme scenarios. To this end, we construct
four synthetic two-dimensional datasets designed to highlight specific challenges:

* Cluster-Imbalance: Three clusters with 1000, 300, and 50 samples, respectively.
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* Covariance-Scaled: Three equally sized clusters (500 samples each) with covariance
matrices scaled by factors of 1, 6, and 36.

* Moons: Generated using make_moons from scikit-learn with 1000 samples and 0.1 noise.

¢ Connection: Two spherical Gaussians linked by a degenerate linear Gaussian.
We report a comparison of ZEUS performance against K'-Means and GMM in Table 23]

Table 25: Comparison of clustering quality on synthetic special-case datasets, assessed by the ARI
metric (higher scores indicate better quality).

KM GMM ZEUS

Cluster-Imbalance 50.12 96.75 96.80
Covariance-scaled 79.68 96.45 94.72
Moons 48.67 49.23 98.80
Connection 7276 89.30 83.16

In summary, ZEUS outperforms K -means across all cases and performs on par with GMM. Notably,
on the Moons dataset, ZEUS is the only method that successfully separates the clusters. This suggests
that these synthetic examples do not represent genuine failure cases for our approach. A more
thorough analysis of datasets where ZEUS underperforms remains an important direction for future
work.

H Licensing and Third-Party Assets.

Our method builds upon the publicly available TabPFN codebase, which is released under the Apache
2.0 License. All real-world datasets used in the evaluation are sourced from OpenML.org, a platform
hosting open datasets for machine learning research; all datasets used are publicly accessible and
labeled as open data, although individual datasets may be subject to specific licenses (e.g., CC-BY
or similar). We ensured that no proprietary or restricted datasets were used. Our released code is
provided under the Apache 2.0 License and includes full instructions to reproduce the experiments.

Broader Impact. Although ZEUS is designed as a general-purpose tool for clustering tabular data,
its use in high-stakes domains like healthcare, finance, or criminal justice carries inherent risks. In
such contexts, automated grouping of individuals - especially without labels or fairness constraints -
can lead to biased or opaque outcomes. We therefore recommend that any deployment of ZEUS in
sensitive applications be accompanied by fairness assessment and expert review.
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