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Abstract

Prompt-based learning for Pre-trained Lan-001
guage Models (PLMs) has achieved remark-002
able performance in few-shot learning by ex-003
ploiting prompts as task guidance and turn-004
ing downstream tasks into masked language005
problems. In most existing approaches, the006
high performance of prompt-based learning007
heavily relies on handcrafted prompts and ver-008
balizers, which may limit the application of009
such approaches in real-world scenarios. To010
solve this issue, we present CP-Tuning, the011
first end-to-end Contrastive Prompt Tuning012
framework for PLMs without any manual en-013
gineering of task-specific prompts and verbal-014
izers. It is integrated with the task-invariant015
continuous prompt encoding technique with016
fully trainable prompt parameters. We further017
propose a pair-wise cost-sensitive contrastive018
loss to optimize the model in order to achieve019
verbalizer-free class mapping and enhance the020
task-invariance of prompts. Experiments over021
a variety of NLP tasks show CP-Tuning consis-022
tently outperforms state-of-the-art methods. 1023

1 Introduction024

Starting from BERT (Devlin et al., 2019), fine-025

tuning Pre-trained Language Models (PLMs) has026

become the de facto standard practice for solving027

a majority of NLP tasks (Yang et al., 2019a; Lan028

et al., 2020; Sun et al., 2021). To guarantee high ac-029

curacy, it is necessary to obtain a sufficient amount030

of training data for downstream tasks, which is the031

bottleneck in low-resource scenarios.032

The successful application of GPT-3 (Brown033

et al., 2020) shows that with a sufficiently large034

memory capacity and massive pre-training compu-035

tation, large PLMs can learn to solve a task with036

very few training samples. However, the large037

1All datasets are publicly available. Source codes are
provided in the attachments and will be released to public.
We further give a theoretical analysis on the pair-wise cost-
sensitive contrastive loss in the appendix.

Pre-trained Language Model

[CLS] Wonderful movie in every aspect. It is [MASK].

Input Text Prompt

good -> label: positive
Verbalizer terrible -> label: negative [MLM 

Head]

Figure 1: Prompt and verbalizer in classical prompt-
based fine-tuning for review sentiment analysis.

model size and the long inference time make it 038

infeasible to deploy such PLMs online with lim- 039

ited computational resources. Inspired by these 040

works, Gao et al. (2021a) propose a prompt-based 041

approach to fine-tune BERT-style PLMs in a few- 042

shot learning setting. It converts text classifica- 043

tion and regression problems into masked language 044

problems where the knowledge captured during 045

pre-training can be better utilized during the few- 046

shot learning process. Similar usage of prompts has 047

also been shown in Schick and Schütze (2021a,b) 048

and many others. Scao and Rush (2021) conduct 049

a rigorous test to show that prompting is highly 050

beneficial in low-data regimes. 051

In most prompt-based approaches, there exist 052

two types of model components that require careful 053

manual engineering, namely prompts and verbaliz- 054

ers. Here, prompts are fixed templates or patterns 055

that are employed to inject task-specific guidance to 056

input texts, while verbalizers establish explicit map- 057

pings between output tokens and class labels. An 058

example of prompts and verbalizers on review senti- 059

ment analysis is illustrated in Figure 1. As reported 060

in Liu et al. (2021b), designing high-performing 061

prompts and the corresponding verbalizers is chal- 062

lenging and requires a very large validation set. 063

As for prompts, even a slight change of expres- 064

sions can lead to big variance in the performance 065

of downstream tasks. To alleviate this issue, Liu 066

et al. (2021b) propose P-tuning, which uses con- 067

tinuous prompt embeddings to avoid the manual 068
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prompt engineering process. However, this method069

still requires the design of verbalizers, with a strong070

hypothesis of token-to-label mappings. Therefore,071

the drawbacks of prompt engineering potentially072

hinder the wide application of these approaches.073

We present CP-Tuning, an end-to-end Con-074

trastive Prompt Tuning framework for PLMs with-075

out the manual design of task-specific prompts and076

verbalizers. To our knowledge, our work is the first077

to study contrastive learning for prompting PLMs078

without manual prompt engineering. Specifically,079

our approach consists of two major techniques:080

Task-invariant Continuous Prompt Encoding.081

We employ continuous embeddings as prompts and082

do not employ any prompt encoders to avoid learn-083

ing additional parameters during few-shot learning084

(in contrast to Liu et al. (2021b)). Specially, we085

initialize continuous prompt embeddings as the086

pre-trained representations of a collection of task-087

invariant tokens, and enable prompt embeddings088

to be task-adaptive by back propagation.089

Verbalizer-free Class Mapping. We propose090

the verbalizer-free mechanism to ease the manual091

labor of designing verbalizers and to improve the092

generalization ability of our model, as well as the093

task-invariance of prompts. Specifically, the Pair-094

wise Cost-sensitive Contrastive Loss (PCCL) is in-095

troduced to train our few-shot learner, together with096

an auxiliary Mask Language Modeling (MLM) task097

as the regularizer. PCCL explicitly learns to dis-098

tinguish different classes and makes the decision099

boundary smoother by assigning different costs100

to easy and hard cases. In contrast to previous101

approaches, embeddings of instances before the102

MLM classifier are directly used for inference.103

For evaluation, we conduct extensive experi-104

ments to verify the effectiveness of CP-Tuning over105

eight public NLP datasets, including review sen-106

timent analysis, sentence paraphrase, natural lan-107

guage inference, etc. Experimental results show108

that CP-Tuning consistently outperforms state-of-109

the-art for prompt-based few-shot learning. In sum-110

mary, we make the following contributions:111

• We introduce the end-to-end CP-Tuning112

framework to enable prompt-based few-113

shot learning without designing task-specific114

prompts and verbalizers. To our knowledge,115

our work is the first to employ contrastive116

learning for end-to-end prompt-based learn-117

ing that eases manual engineering.118

• In CP-Tuning, the task-invariant continuous119
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Figure 2: Framework overview. For simplicity, we only
show text sequences for single-sentence classification.

prompt encoding technique is presented. We 120

further propose the PCCL technique to train 121

the model without the usage of any verbalizers 122

based on contrastive learning. 123

• Experiments over eight public datasets show 124

that CP-Tuning consistently outperforms state- 125

of-the-arts for prompt-based few-shot learn- 126

ing. We also theoretically derive the relations 127

between PCCL and other losses. 128

2 CP-Tuning: Proposed Approach 129

We begin with an overview of our approach. After 130

that, the detailed techniques are elaborated. 131

2.1 Overview of CP-Tuning 132

LetD be anN -wayK-shot training set of a specific 133

NLP task, where each of theN classes is associated 134

with K training samples. 2 DenoteM as the col- 135

lection of parameters of the underlying PLM. The 136

goal of our work is to generate a high-performance 137

few-shot learner initialized from M based on D 138

that can effectively generalize to previously un- 139

seen samples of the same task. The overview of 140

our approach is in Figure 2, with major techniques 141

summarized below. 142

As traditional prompt-based models require the 143

cumbersome process of prompt engineering, we 144

2Our work can be easily extended to standard fine-tuning
scenarios without modification where each class is associated
with different numbers of training samples. We also find CP-
Tuning is better at learning with unbalanced training sets than
previous methods. Refer to experiments for details.
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Task Type Example of Input Sequence
Single-sentence [CLS] Movie [TMSK], get ready to take

off... the other direction. It is [OMSK]
Sentence-pair [CLS] What was Telenet? [OMSK]

Telenet was [TMSK] in 1973 and started
operations in 1975.

Table 1: Examples of input token sequences. Texts
underlined in the inputs refer to the universal task-
invariant prompts. The second sentence in sentence-
pair classification is printed in italic.

employ continuous embeddings as input prompts.145

Rather than employing sub-networks (e.g., LSTMs)146

as prompt encoders (Liu et al., 2021b), to avoid147

learning additional parameters during few-shot148

learning, we directly feed prompt embeddings to149

the PLM encoder, and enable the embeddings to150

be task-adaptive by back propagation.151

Besides manually-designed patterns, previous152

methods also require handcrafted verbalizers,153

which map the output of the masked token to154

the class label (Schick and Schütze, 2021a,b). In155

our work, we propose the verbalizer-free mech-156

anism to ease the manual labor and to improve157

the generalization ability of our few-shot learner.158

As prompts and verbalizers are semantically cor-159

related, this technique also enhances the task-160

invariance of prompts. Inspired by the contrastive161

learning paradigm (Jaiswal et al., 2020), we pro-162

pose the Pair-wise Cost-sensitive Contrastive Loss163

(PCCL) to train our few-shot learner. In the few-164

shot learning setting, the lack of training data may165

easily result in model over-fitting. Hence, an auxil-166

iary MLM loss is also optimized during few-shot167

learning to alleviate the issue. In addition, we fur-168

ther show that PCCL is an extension to a variety of169

loss functions in the appendix.170

2.2 Task-invariant Prompt Encoding171

The input format of our approach is significantly172

different from previous works to facilitate task-173

invariant continuous prompt learning. To be more174

specific, in contrast to Devlin et al. (2019), we have175

three additional types of special tokens:176

• [PRO]: the placeholder for prompts;177

• [TMSK]: the token mask of the input texts for178

optimizing the auxiliary MLM loss;179

• [OMSK]: the token mask as a placeholder to180

generate the output result.181

For a better understanding, please refer to an exam-182

ple for single-sentence classification in Figure 2.3 183

Here, “[TMSK]” is only applied to a small portion 184

of the input texts for MLM. “[OMSK]” is used for 185

generating outputs, rather than the “[CLS]” token. 186

Hence, no additional parameters are introduced to 187

our model for prompt learning. 188

As the parameters w.r.t. “[PRO]” tokens need to 189

be learned for a given task, the lack of training data 190

in few-shot learning still brings some burdens. In- 191

spired by GPT-3 (Brown et al., 2020) and T5 (Raf- 192

fel et al., 2020), we initialize prompt embeddings 193

to be the pre-trained representations of universal 194

task-invariant prompts.4 Readers can also refer to 195

the examples in Table 1. 196

2.3 Verbalizer-free Class Mapping 197

A common property of existing prompt-based ap- 198

proaches is that they require handcrafted verbaliz- 199

ers to establish mappings between tokens and class 200

labels (Schick and Schütze, 2021a,b; Liu et al., 201

2021b). We suggest that this practice might be sub- 202

optimal. Consider the example on review analysis 203

in Figure 3. Verbalizer-based approaches generate 204

the distributions over the entire vocabulary (which 205

may contain over 10 thousand words), and only 206

pay attention to the probabilities of very few words 207

(such as “good” and “terrible” in our case). The 208

semantic association between words is also ignored 209

to a large extent. For example, the probabilities of 210

words such as “nice”, “fantastic”, “bad” and “horri- 211

ble” are also strong indicators of class labels. If we 212

replace the high-dimensional, sparse distributions 213

with lower-dimensional, dense representations, the 214

generalization ability and the flexibility of the un- 215

derlying model can be largely increased. 216

In our work, we propose a novel verbalizer- 217

free approach to generate model outputs based 218

on PCCL. During training, denote B as the collec- 219

tion of instances in a batch (B ⊂ D). Each instance 220

i ∈ B can be treated as an anchor, with the label 221

denoted as yi. We also have the positive set P (i) 222

3For sentence-pair tasks, the input format can be
[CLS][TXT][TXT][PRO][PRO][OMSK][TXT][TMSK][TXT].
The “[PRO]” and “[OMSK]” tokens are placed between text
pairs to better capture the relations between them.

4Here, the universal task-invariant prompt for single-
sentence classification tasks is “it is”; and “?” for sentence-
pair classification tasks. Refer to examples in Table 1. This
setting can be viewed as the knowledge prior for prompt
embeddings. During model training, the representations of
prompts can be automatically adapted to specific tasks. In the
experiments, we further show that it is unnecessary to design
task-specific prompts for our approach. Hence, we do not
need to vary the numbers and positions of “[PRO]” tokens for
model tuning.
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Figure 3: A simple comparison between verbalizer-
based and verbalizer-free approaches w.r.t. model out-
puts. The underlying task is review sentiment analysis.

and the negative set N(i) w.r.t. the instance i and223

the batch B: P (i) = {j|j 6= i, yj = yi, j ∈ B}224

and N(i) = {j|yj 6= yi, j ∈ B}.225

Let ~zi be the l2-normalized embedding of the226

“[OMSK]” token of the last layer of the underlying227

PLM (before the softmax function). In the con-228

text of contrastive learning, we aim to maximize229

the within-class similarity si,p = ~zTi · ~zp where230

p ∈ P (i), and also minimize the between-class231

similarity si,n = ~zTi · ~zn where n ∈ N(i). Fol-232

lowing previous supervised contrastive learning233

models (Khosla et al., 2020; Gao et al., 2021b), it234

is straightforward to derive the sample-wise con-235

trastive loss:236

LCL(i) = − log
exp(si,p/τ)

exp(si,p/τ) + exp(si,n/τ)
(1)237

where τ is the temperature value. When multiple238

instances in P (i) and N(i) are considered, we re-239

write LCL(i) as follows:240

LCL(i) = − log
∑
p∈P (i)

exp(si,p/τ)∑
a∈A(i) exp(si,a/τ)

(2)241

where the collection A(i) = B \ {i}. This gives242

the model more generalization abilities in that mul-243

tiple within-class and between-class similarity val-244

ues are averaged, thus making the learned decision245

boundary smoother.246

Minimizing LCL(i) alone may be insufficient as247

it does not consider sample difficulty. For example,248

if si,p = 0.2 and si,p′ = 0.95 where p, p
′ ∈ P (i).249

The model should pay more attention to si,p to250

reach the optima, and less attention to si,p′ to avoid251

model over-fitting. Inspired by (Sun et al., 2020a),252

Margin

Positives Negatives

(a) Original Contrastive Loss

Margin

Positives Negatives

(b) Proposed PCCL

Figure 4: Illustration of how PCCL improves the learn-
ing process of “[OMSK]” embeddings of the last trans-
former encoder layer for review sentiment analysis.

we introduce pair-wise relaxation factors and pro- 253

pose a new loss function named Pair-wise Cost- 254

sensitive Contrastive Loss (PCCL) as follows: 255

LPCCL(i) = −
∑
p∈P (i)

log
exp(αi,p · si,p/τp)

Z(i)
(3) 256

where Z(i) is the normalization factor: 257

Z(i) =
∑
p∈P (i)

exp(
αi,p
τp

si,p)+
∑

n∈N(i)

exp(
αi,n
τn

si,n)

(4) 258

αi,p and αi,n are pair-wise relaxation factors with 259

the definitions as follows: 260

αi,p = max{0, 1 +m− si,p}
αi,n = max{0, si,n +m}

(5) 261

Comparing to the original LCL(i), two new fea- 262

tures are added to PCCL. Inside αi,p and αi,n, 263

a margin factor m is employed to expect that 264

si,p > 1 − m and si,n < m. Hence, there is a 265

relaxed margin between si,p and si,n. The usage 266

of αi,p and αi,n also makes the model focus on 267

learning hard cases and avoid over-fitting on easy 268

cases. Another empirical setting is that we use sep- 269

arate temperatures τp and τn for within-class and 270

between-class similarities, instead of a uniform 271

temperature τ . We further set τp = ξ ·τn (ξ > 1) to 272

give more relaxations on positive samples in order 273

to make the within-class similarities not too large, 274

as it is easy to see: 275

αi,p
τp

si,p =
αi,p
ξ · τn

si,p =
α̃i,p
τn

si,p (6) 276

where α̃i,p = max{0, 1ξ (1+m−si,p)}. In this way, 277

our few-shot learner will be less likely to over-fit 278

to training instances. We further provide an illus- 279

trative example in Figure 4 and a brief theoretical 280

analysis on PCCL. 281
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2.4 Auxiliary Masked Language Modeling282

As the learning objective of PCCL is signifi-283

cantly different from the MLM task, minimiz-284

ing LPCCL(i) only may result in the catastrophic285

forgetting of the pre-training knowledge. Sim-286

ilar to Schick and Schütze (2021a,b), we treat287

MLM as an auxiliary task during few-shot learn-288

ing to improve the model performance on previ-289

ously unseen instances. Denote the sample-wise290

MLM loss as LMLM (i). The sample-wise over-291

all loss function L(i) can be written as follows:292

L(i) = λ · LPCCL(i) + (1− λ) · LMLM (i) where293

λ is a pre-defined balancing hyper-parameter. In294

Figure 2, we apply the auxiliary MLM task to295

“[TMSK]” tokens and PCCL to “[OMSK]” tokens,296

separately. This practice can be viewed as perform-297

ing task-specific continual pre-training (Sun et al.,298

2020b) and few-shot learning at the same time.299

2.5 Model Inference300

During the model inference time, because we do301

not tune the “[CLS]” prediction head, we directly302

take the embedding ~zi of a testing instance i to303

generate the class label ŷi by comparing ~zi against304

the k-nearest neighbors in the few-shot training set.305

When CP-Tuning is applied to larger training sets,306

for better scalability, the label ŷi is predicted by:307

ŷi = argmaxc∈C~z
T
i · ~zc (7)308

where C is the collection of the class labels, and ~zc309

is the prototype embedding of the class c ∈ C (i.e.,310

the averaged embedding of all training instances311

with the class label as c). Hence, this practice is312

closely in line with prototypical networks (Snell313

et al., 2017; Ji et al., 2020).314

3 Experiments315

We conduct extensive experiments to evaluate CP-316

Tuning and compare it against state-of-the-arts.317

3.1 Datasets and Experimental Settings318

In the experiments, we employ eight public NLP319

datasets to evaluate CP-Tuning: three for review320

sentiment analysis (SST-2 (Socher et al., 2013),321

MR (Hu and Liu, 2004) and CR (Pang and Lee,322

2005)), two for sentence paraphrase (MRPC (Dolan323

and Brockett, 2005) and QQP 5), two for natural324

language inference (QNLI (Rajpurkar et al., 2016)325

and RTE (Bar-Haim et al., 2014)) and one for326

5https://www.quora.com/q/quoradata/

subjectivity classification (SUBJ (Pang and Lee, 327

2004)). The dataset statistics are summarized in 328

Table 3. For few-shot learning, the evaluation pro- 329

tocols and the training/development/testing splits 330

are the same as in Gao et al. (2021a). The un- 331

derlying PLM is the RoBERTa large model (with 332

335M parameters) (Liu et al., 2019). In the exper- 333

iments, we set K = 16 and measure the average 334

performance in terms of accuracy across 5 differ- 335

ent randomly sampled training and development 336

splits. Hence, the performance of CP-Tuning can 337

be rigorously evaluated with a minimal influence 338

of random seeds or datasets. 339

In the experiments, we employ the standard 340

fine-tuning approach (Devlin et al., 2019) 6, 341

PET (Schick and Schütze, 2021a,b) 7, LM- 342

BFF (Gao et al., 2021a) (with three different set- 343

tings: Auto T, Auto L and Auto T+L) 8 and P- 344

tuning (Liu et al., 2021b) 9 as strong baselines. 345

Specifically, PET, LM-BFF and P-tuning are re- 346

cent state-of-the-art approaches for prompt-based 347

few-shot learning. As the experimental settings of 348

PET, LM-BFF and P-tuning are different, in order 349

to conduct a rigorous comparison, we re-produce 350

the results based on their open-source codes and 351

the same set of random seeds. Hence, the results 352

reported in our work are slightly different from 353

their original papers. Our own CP-Tuning algo- 354

rithm is implemented in PyTorch and run with 355

NVIDIA V100 GPUs. In default, we set τp = 2, 356

τn = 1 (with ξ = 2), λ = 0.5, m = 0.3 and 357

k = 3 , and also tune the parameters over the few- 358

shot development sets. The model is trained with 359

the Adam optimizer (Kingma and Ba, 2015), with 360

the learning rate and the batch size tuned around 361

{1e − 5, 3e − 5, 5e − 5} and {4, 8, 16}, respec- 362

tively. The optimization of auxiliary MLM is the 363

same as PET. We also study how the change of 364

some important hyper-parameters affect the overall 365

performance, with results reported below. 366

3.2 Overall Performance Comparison 367

The experimental results of CP-Tuning and all base- 368

lines on eight testing sets for few-shot learning 369

are presented in Table 2. From the experimental 370

6https://github.com/huggingface/
transformers

7https://github.com/timoschick/pet
8https://github.com/princeton-nlp/

LM-BFF. In LM-BFF, “Auto T”, “Auto L” and “Auto T+L”
refer to automatically generated templates, labels and both
(reported by Gao et al. (2021a)), respectively.

9https://github.com/THUDM/P-tuning
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Method/Task SST-2 MR CR MRPC QQP QNLI RTE SUBJ Average
Standard Fine-tuning 78.62 76.17 72.48 64.40 63.01 62.32 52.28 86.82 69.51
PET 92.06 87.13 87.13 66.23 70.34 64.38 65.56 91.28 78.01
LM-BFF (Auto T) 90.60 87.57 90.76 66.72 65.25 68.87 65.99 91.61 78.42
LM-BFF (Auto L) 90.55 85.51 91.11 67.75 70.92 66.22 66.35 90.48 78.61
LM-BFF (Auto T+L) 91.42 86.84 90.40 66.81 61.61 61.89 66.79 90.72 77.06
P-tuning 91.42 87.41 90.90 71.23 66.77 63.42 67.15 89.10 78.43
CP-Tuning (Our Approach) 93.35 89.43 91.57 72.60 73.56 69.22 67.22 92.27 81.24

Table 2: Comparison between CP-Tuning and baseline methods over the testing sets in terms of accuracy (%).

Task #Training #Testing Task Group Labels
SST-2 6,920 872
MR 8,662 2,000 positive, negative
CR 1,775 2,000
MRPC 3,668 408 equivalent,
QQP 363,846 40,431 not equivalent
QNLI 104,743 5,463 entailment,
RTE 2,490 277 not entailment
SUBJ 8,000 2,000 subjective, objective

Table 3: Dataset statistics. We only sample K × |C|
instances from the original training sets to form few-
shot training and development sets.

results, we can draw the following conclusions.371

Prompt-based methods (such as PET, LM-BFF372

and P-tuning) outperform standard fine-tuning by a373

large margin. This shows that prompts are highly374

useful for few-shot learning over PLMs. Based on375

our re-production results, LM-BFF (with different376

settings) and P-tuning have similar performance,377

while PET produces slightly lower performance.378

The performance gains of CP-Tuning over all the379

testing sets are consistent, compared to all the state-380

of-the-art methods. Overall, the average improve-381

ment is around 3% in terms of accuracy. It can382

be seen that even without task-specific prompts383

and verbalizers, CP-Tuning is capable of producing384

high-accuracy models with few training instances.385

We also conduct paired t-tests to compare the ac-386

curacy scores on all tasks produced by CP-Tuning387

against LM-BFF and P-tuning. Experimental re-388

sults show that the improvement of CP-Tuning is389

statistically significant (with the p-value p < 0.05).390

3.3 Detailed Model Analysis391

We further study how CP-Tuning improves the392

model performance in various aspects. Here, we393

treat SST-2, MR, MRPC and QQP as pilot tasks to394

explore our method.395

Ablation Study. The ablation results of CP-Tuning396

are shown in Table 4. Here, “w/o. auxiliary MLM”397

refers to the variant of CP-Tuning without the aux-398

iliary MLM task; “w/o. αi,p and αi,n” refers to CP-399

Tuning without pair-wise relaxation factors; and400

Method/Task SST-2 MR MRPC QQP
Full Implement. 93.35 89.43 72.60 73.56
w/o. auxiliary MLM 91.35 86.67 71.96 72.47
w/o. αi,p and αi,n 92.50 88.59 68.28 69.32
w/o. similarity avg. 92.04 86.37 67.11 69.14

Table 4: Ablation study of CP-Tuning on four tasks in
terms of accuracy (%). “Full Implement.” refers to the
full implementation of our method. The lowest accu-
racy scores over each dataset are printed underlined.

“w/o. similarity averaging” refers to the setting 401

where we only consider one positive and one nega- 402

tive instance for each anchor using standard triplet 403

loss. From the results we can see that all three 404

techniques contribute to the overall accuracy im- 405

provement. Specifically, auxiliary MLM has the 406

most influence over SST-2, while similarity averag- 407

ing contributes the most over the remaining three 408

datasets. 10 409

Parameter Analysis. We also show how some of 410

the important hyper-parameters in CP-Tuning af- 411

fect the performance over the four datasets. The 412

results are shown in Figure 5. We can see the the 413

trends are almost consistent across all the datasets. 414

The optimal setting of the margin m is around 0.2. 415

As for the temperature, the optimal value of τn is 416

around 1/8 to 1/32, which is different from other 417

works where the default temperature is 1. This is 418

probably due to the fact that we compute the total 419

scores αi,p · si,p/τp and αi,n · si,n/τn, which are 420

different from those in other works in contrastive 421

learning. Nevertheless, the performance of CP- 422

Tuning is not very sensitive to the choice of the 423

temperature, proving that CP-Tuning is highly gen- 424

eral for real-world applications. 425

We further tune the value of ξ. As seen in the 426

10Note that the performance drops by large margin when
we remove the MLM task for SST-2 and MR. This is because
the few-shot learning ability of PLMs is largely based on
the utilization of pre-trained knowledge learned by MLM.
In CP-Tuning, the PPCL objective is significantly different
from MLM, hence optimizing PPCL alone may lead to the
catastrophic forgetting of the MLM knowledge. We suggest
that the auxiliary MLM task in CP-Tuning is vital for obtaining
the high performance.
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(a) Varying m. (b) Varying 1/τn.

(c) Varying ξ. (d) Varying λ.

Figure 5: Parameter analysis on hyper-parameters.

Few-shot Training Set Testing Set

Figure 6: Visualizations of “[OMSK]” embeddings of
SST-2 by t-SNE. (Best viewed in color.)

figure, for sentence-pair tasks, the optimal ξ is be-427

tween 2 to 5, while easier single sentence tasks428

are not sensitive to this hyper-parameter. We also429

try using the prototype embeddings ~zc for model430

inference, of which the results are similar. We431

suggest that when CP-Tuning is applied to large432

datsets, it is suitable to predict the class label433

ŷi by argmaxc∈C~z
T
i · ~zc for better scalability. In434

PET (Schick and Schütze, 2021a,b), the auxiliary435

MLM task is applied with λ = 1e−4, which is436

sufficiently small. In contrast to their work, we437

suggest that the optimal value of λ is in the range438

between 0.5 to 0.75.439

Visualizations. To show that the generated440

“[OMSK]” embeddings are separable for text clas-441

sification, we plot the embeddings of the few-shot442

training and testing data in SST-2. The results443

are illustrated in Figure 6. The underlying di-444

mension reduction and visualization algorithm is445

t-SNE (van der Maaten and Hinton, 2008). As446

seen, even reduced in two dimensions, most of the447

embeddings in the testing set are clearly separated,448

with the onlyN×K training samples available. Ad-449

ditionally, the embeddings in the few-shot training450

set are widely spread, showing the generalization451

of our algorithm.452

Method/Task SST-2 MR MRPC QQP
PET 87.25 83.44 64.61 58.82
LM-BFF 88.10 83.51 65.98 59.19
P-tuning 87.92 83.20 66.64 61.27
CP-Tuning 91.25 86.52 70.12 65.52

Table 5: Testing results of CP-Tuning and baseline
methods for unbalanced few-shot learning in terms of
accuracy (%).

3.4 Learning with Unbalanced Datasets 453

In the literature, few-shot learning is formulated as 454

an N-way-K-shot problem. However, it may not be 455

the case in real-world applications. In this set of 456

experiments, we consider the situation where the 457

few-shot training set is unbalanced. Following pre- 458

vious experiments, four binary classification tasks 459

are used for evaluation, namely SST-2, MR, MRPC 460

and QQP. In each few-shot training set, we assume 461

there are 8 and 24 instances of the two classes, in- 462

stead of setting K = 16. We compare CP-Tuning 463

against three strong baselines for few-shot learning 464

(i.e., PET, LM-BFF and P-tuning). The results are 465

shown in Table 5. As seen, CP-Tuning consistently 466

outperforms these baselines by a large margin. The 467

improvement rates are also larger than those in 468

standard few-shot learning scenarios (as reported 469

in Table 2). This is because CP-Tuning focuses 470

on learning the distinctions between positive and 471

negative samples, instead of tuning the MLM head 472

(as in previous approaches). 473

3.5 Study on Task-invariance of Prompts 474

In CP-Tuning, we initialize prompt embeddings as 475

the pre-trained representations of universal task- 476

invariant prompts and utilize the verbalizer-free 477

mechanism. In the following experiments, we aim 478

to study whether CP-Tuning is capable of gener- 479

ating more stable and accurate results compared 480

to the non-contrastive baseline (i.e., PET (Schick 481

and Schütze, 2021a,b)). We consider two review 482

sentiment analysis datasets: SST-2 and MR, as 483

well as two paraphrase datasets: MRPC and QQP. 484

Five prompt settings are employed: the universal 485

task-invariant prompts used in CP-Tuning and the 486

manually designed prompts used in PET (Schick 487

and Schütze, 2021a,b). In Table 6, we present the 488

averaged accuracy and its standard deviation of CP- 489

Tuning and PET, under five different prompt set- 490

tings. We can see that compared to PET, CP-Tuning 491

has a higher accuracy and a lower deviation when 492

the prompts change. This finding is different from 493

previous works, showing that CP-Tuning is not 494
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Task/Method CP-Tuning PET
Acc. Std. Acc. Std.

SST-2 92.91∗ 0.56∗ 91.28 1.38
MR 88.38∗ 1.46 86.28 1.70
MRPC 71.80∗ 2.20∗ 65.73 5.08
QQP 73.84∗ 2.16∗ 66.61 5.22

Table 6: Method comparison with five sets of prompts
in terms of averaged accuracy (%) and standard devia-
tion. ∗ refers to statistical significance of higher accu-
racy and lower deviation at 95% confidence interval.

sensitive to different prompts. Hence, we suggest495

learning with task-invariant prompts and no verbal-496

izers is a desirable setting that reduces the amount497

of human labor. Additionally, during the learning498

process, prompt embeddings can be automatically499

adapted to fit specific tasks.500

4 Related Work501

PLMs. PLMs have achieved significant improve-502

ments on various NLP tasks. Readers can refer to503

the survey (Qiu et al., 2020). Among these PLMs,504

ELMo (Peters et al., 2018) learns contextual word505

representations by self-supervised pre-training us-506

ing bidirectional LSTMs. BERT (Devlin et al.,507

2019) is probably the most popular model, which508

learns contextual representations of tokens by trans-509

former encoders. Other PLMs based on the trans-510

former encoder architecture include ALBERT (Lan511

et al., 2020), Transformer-XL (Dai et al., 2019),512

XLNet (Yang et al., 2019a), StructBERT (Wang513

et al., 2020), Big Bird (Zaheer et al., 2020) and514

many others. Apart from the encoder-based PLMs,515

the encoder-decoder and the auto-regressive de-516

coder architectures are used in T5 (Raffel et al.,517

2020) and the GPT series (Brown et al., 2020). As518

the neural architectures are not our major focus, we519

do not elaborate.520

Prompting PLMs for Few-shot Learning. With521

the prevalence of GPT-3 (Brown et al., 2020),522

prompting PLMs for few-shot learning has be-523

come a new, popular learning paradigm. A re-524

cent survey can be found in Liu et al. (2021a). To525

name a few, PET (Schick and Schütze, 2021a,b)526

turns text classification into cloze-style problems527

and use manually-defined prompts to provide addi-528

tional task guidance. To facilitate automatic prompt529

discovery, Gao et al. (2021a) generate prompts530

from the T5 model (Raffel et al., 2020). Jiang531

et al. (2020) also mine high-performing prompts532

from the training corpus. AutoPrompt (Shin533

et al., 2020) employs gradient searching to detect534

prompts. However, these approaches focus on dis- 535

crete prompts only. P-tuning (Liu et al., 2021b) 536

learns continuous prompt embeddings with differ- 537

entiable parameters for GPT-based models. Prefix- 538

tuning (Li and Liang, 2021) extends the usage of 539

continuous prompts for text generation tasks. Min 540

et al. (2021) propose a noisy channel model for 541

prompt learning. WARP (Hambardzumyan et al., 542

2021) leverages continuous prompts to improve 543

the model performance in fine-tuning scenarios. 544

Knowledgeable prompt-tuning (Hu et al., 2021) 545

optimizes the verbalizer construction process by 546

integrating the knowledge from knowledge bases. 547

Our work further applies contrastive learning to 548

making the few-shot learner fully verbalizer-free. 549

Deep Contrastive Learning. Contrastive learn- 550

ing (Jaiswal et al., 2020) aims to learn an embed- 551

ding space in which similar instances have similar 552

embeddings while dissimilar instances fall apart. 553

In the literature, several contrastive learning ob- 554

jectives have been proposed, such as the triplet 555

loss (Schroff et al., 2015), the N-pair loss (Sohn, 556

2016), InfoNCE (van den Oord et al., 2018) and 557

the supervised contrastive loss (Khosla et al., 2020). 558

Due to its effectiveness, contrastive learning has 559

been applied to various NLP tasks, e.g., sentence 560

representation (Gao et al., 2021b; Kim et al., 2021), 561

text summarization (Wang et al., 2019), aspect de- 562

tection (Shi et al., 2021), machine translation (Yang 563

et al., 2019b), commonsense reasoning (Klein and 564

Nabi, 2020). To our knowledge, CP-Tuning is the 565

first to apply contrastive learning to prompt-based 566

few-shot learning. 567

5 Conclusion and Future Work 568

In this work, we present an end-to-end Contrastive 569

Prompt Tuning (CP-Tuning) framework that en- 570

ables few-shot learning for PLMs without de- 571

signing any task-specific prompts and verbaliz- 572

ers. In CP-Tuning, we employ task-invariant con- 573

tinuous prompt encoding and the Pair-wise Cost- 574

sensitive Contrastive Loss (PCCL) to train the 575

model. Experiments over eight public datasets 576

show that CP-Tuning consistently outperforms 577

state-of-the-art methods. Future work of CP- 578

Tuning includes: i) extending the CP-Tuning frame- 579

work to other NLP tasks such as named entity 580

recognition, machine reading comprehension and 581

text generation; ii) combining CP-Tuning with 582

transfer learning to improve the model performance 583

in low-resource scenarios. 584
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A Appendix 789

A.1 Theoretical Analysis of PCCL 790

In this section, we theoretically show that PCCL is 791

an extension to various metric learning based loss 792

functions. 793
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As PCCL is directly extended from the super-794

vised contrastive loss (Khosla et al., 2020; Gao795

et al., 2021b) by adding pair-wise relaxation fac-796

tors, it is trivial to see that the supervised con-797

trastive loss is a special case of PCCL with αi,p =798

αi,n = 1 and τp = τn.799

Next, we consider the triplet loss (Schroff et al.,800

2015). Assume that there are only one positive and801

one negative samples for each anchor. We simplify802

LPCCL(i) as follows:803

LPCCL(i)
′
= log(1 + exp(

αi,p
τp

si,p −
αi,n
τn

si,n))

= log(1 + exp(
1

τn
(
αi,p
ξ
si,p − αi,nsi,n))

(8)

804

If we set a small value for τn (close to 0, which805

is the case as shown in the experiments), then the806

value of 1
τn
(
αi,p

ξ si,p−αi,nsi,n) is large. As a rough807

approximation, we have:808

LPCCL(i)
′ ≈ 1

τn
(
αi,p
ξ
si,p − αi,nsi,n)

=
1

τn
(
αi,p
ξ
~zTi ~zp − αi,n~zTi ~zn)

∝ − 1

2τn
(
αi,p
ξ
‖~zi − ~zp‖2 − αi,n‖~zi − ~zn‖2)

(9)

809

Approximately speaking, the problem of mini-810

mizing LCCL(i)
′

is equivalent of optimizing the811

loss function LTL(i) (with the margin omitted):812

LTL(i) = αi,n‖~zi− ~zn‖2−
αi,p
ξ
‖~zi− ~zp‖2 (10)813

which is the triplet loss with the positive and nega-814

tive pair-wise weights to be αi,p

ξ and αi,n, respec-815

tively. Therefore, the triplet loss has a close con-816

nection to PCCL.817

As for the N-pair loss (Sohn, 2016), we consider818

the situation where there is one positive sample819

and multiple negative samples for each anchor. We820

re-write LPCCL(i) as:821

LPCCL(i)
′′
= log(1+∑
n∈N(i)

exp(
αi,p
τp

si,p −
αi,n
τn

si,n))

(11)

822

By setting αi,p

τp
= 1 and αi,n

τn
= 1, we sim-823

plify PCCL into the N-pair loss. We can see824

that PCCL combines the advantages of both su-825

pervised learning and metric learning, specifically826

assigning different costs to easy and hard cases.827
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