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Abstract

Prompt-based learning for Pre-trained Lan-
guage Models (PLMs) has achieved remark-
able performance in few-shot learning by ex-
ploiting prompts as task guidance and turn-
ing downstream tasks into masked language
problems. In most existing approaches, the
high performance of prompt-based learning
heavily relies on handcrafted prompts and ver-
balizers, which may limit the application of
such approaches in real-world scenarios. To
solve this issue, we present CP-Tuning, the
first end-to-end Contrastive Prompt Tuning
framework for PLMs without any manual en-
gineering of task-specific prompts and verbal-
izers. It is integrated with the task-invariant
continuous prompt encoding technique with
fully trainable prompt parameters. We further
propose a pair-wise cost-sensitive contrastive
loss to optimize the model in order to achieve
verbalizer-free class mapping and enhance the
task-invariance of prompts. Experiments over
a variety of NLP tasks show CP-Tuning consis-
tently outperforms state-of-the-art methods. '

1 Introduction

Starting from BERT (Devlin et al., 2019), fine-
tuning Pre-trained Language Models (PLMs) has
become the de facto standard practice for solving
a majority of NLP tasks (Yang et al., 2019a; Lan
et al., 2020; Sun et al., 2021). To guarantee high ac-
curacy, it is necessary to obtain a sufficient amount
of training data for downstream tasks, which is the
bottleneck in low-resource scenarios.

The successful application of GPT-3 (Brown
et al., 2020) shows that with a sufficiently large
memory capacity and massive pre-training compu-
tation, large PLMs can learn to solve a task with
very few training samples. However, the large

'All datasets are publicly available. Source codes are
provided in the attachments and will be released to public.
We further give a theoretical analysis on the pair-wise cost-
sensitive contrastive loss in the appendix.
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Figure 1: Prompt and verbalizer in classical prompt-
based fine-tuning for review sentiment analysis.

model size and the long inference time make it
infeasible to deploy such PLMs online with lim-
ited computational resources. Inspired by these
works, Gao et al. (2021a) propose a prompt-based
approach to fine-tune BERT-style PLMs in a few-
shot learning setting. It converts text classifica-
tion and regression problems into masked language
problems where the knowledge captured during
pre-training can be better utilized during the few-
shot learning process. Similar usage of prompts has
also been shown in Schick and Schiitze (2021a,b)
and many others. Scao and Rush (2021) conduct
a rigorous test to show that prompting is highly
beneficial in low-data regimes.

In most prompt-based approaches, there exist
two types of model components that require careful
manual engineering, namely prompts and verbaliz-
ers. Here, prompts are fixed templates or patterns
that are employed to inject task-specific guidance to
input texts, while verbalizers establish explicit map-
pings between output tokens and class labels. An
example of prompts and verbalizers on review senti-
ment analysis is illustrated in Figure 1. As reported
in Liu et al. (2021b), designing high-performing
prompts and the corresponding verbalizers is chal-
lenging and requires a very large validation set.
As for prompts, even a slight change of expres-
sions can lead to big variance in the performance
of downstream tasks. To alleviate this issue, Liu
et al. (2021b) propose P-tuning, which uses con-
tinuous prompt embeddings to avoid the manual



prompt engineering process. However, this method
still requires the design of verbalizers, with a strong
hypothesis of token-to-label mappings. Therefore,
the drawbacks of prompt engineering potentially
hinder the wide application of these approaches.

We present CP-Tuning, an end-to-end Con-
trastive Prompt Tuning framework for PLMs with-
out the manual design of task-specific prompts and
verbalizers. To our knowledge, our work is the first
to study contrastive learning for prompting PLMs
without manual prompt engineering. Specifically,
our approach consists of two major techniques:
Task-invariant Continuous Prompt Encoding.
We employ continuous embeddings as prompts and
do not employ any prompt encoders to avoid learn-
ing additional parameters during few-shot learning
(in contrast to Liu et al. (2021b)). Specially, we
initialize continuous prompt embeddings as the
pre-trained representations of a collection of rask-
invariant tokens, and enable prompt embeddings
to be task-adaptive by back propagation.
Verbalizer-free Class Mapping. We propose
the verbalizer-free mechanism to ease the manual
labor of designing verbalizers and to improve the
generalization ability of our model, as well as the
task-invariance of prompts. Specifically, the Pair-
wise Cost-sensitive Contrastive Loss (PCCL) is in-
troduced to train our few-shot learner, together with
an auxiliary Mask Language Modeling (MLM) task
as the regularizer. PCCL explicitly learns to dis-
tinguish different classes and makes the decision
boundary smoother by assigning different costs
to easy and hard cases. In contrast to previous
approaches, embeddings of instances before the
MLM classifier are directly used for inference.

For evaluation, we conduct extensive experi-
ments to verify the effectiveness of CP-Tuning over
eight public NLP datasets, including review sen-
timent analysis, sentence paraphrase, natural lan-
guage inference, etc. Experimental results show
that CP-Tuning consistently outperforms state-of-
the-art for prompt-based few-shot learning. In sum-
mary, we make the following contributions:

* We introduce the end-to-end CP-Tuning
framework to enable prompt-based few-
shot learning without designing task-specific
prompts and verbalizers. To our knowledge,
our work is the first to employ contrastive
learning for end-to-end prompt-based learn-
ing that eases manual engineering.

* In CP-Tuning, the task-invariant continuous
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Figure 2: Framework overview. For simplicity, we only
show text sequences for single-sentence classification.

prompt encoding technique is presented. We
further propose the PCCL technique to train
the model without the usage of any verbalizers
based on contrastive learning.

* Experiments over eight public datasets show
that CP-Tuning consistently outperforms state-
of-the-arts for prompt-based few-shot learn-
ing. We also theoretically derive the relations
between PCCL and other losses.

2  CP-Tuning: Proposed Approach

We begin with an overview of our approach. After
that, the detailed techniques are elaborated.

2.1 Overview of CP-Tuning

Let D be an N-way K -shot training set of a specific
NLP task, where each of the IV classes is associated
with K training samples. > Denote M as the col-
lection of parameters of the underlying PLM. The
goal of our work is to generate a high-performance
few-shot learner initialized from M based on D
that can effectively generalize to previously un-
seen samples of the same task. The overview of
our approach is in Figure 2, with major techniques
summarized below.

As traditional prompt-based models require the
cumbersome process of prompt engineering, we

20ur work can be easily extended to standard fine-tuning
scenarios without modification where each class is associated
with different numbers of training samples. We also find CP-

Tuning is better at learning with unbalanced training sets than
previous methods. Refer to experiments for details.



Task Type Example of Input Sequence

Single-sentence  [CLS] Movie [TMSK], get ready to take

off... the other direction. It is [OMSK]

[CLS] What was Telenet? [OMSK]
Telenet was [TMSK] in 1973 and started
operations in 1975.

Sentence-pair

Table 1: Examples of input token sequences. Texts
underlined in the inputs refer to the universal task-
invariant prompts. The second sentence in sentence-
pair classification is printed in italic.

employ continuous embeddings as input prompts.
Rather than employing sub-networks (e.g., LSTMs)
as prompt encoders (Liu et al., 2021b), to avoid
learning additional parameters during few-shot
learning, we directly feed prompt embeddings to
the PLM encoder, and enable the embeddings to
be task-adaptive by back propagation.

Besides manually-designed patterns, previous
methods also require handcrafted verbalizers,
which map the output of the masked token to
the class label (Schick and Schiitze, 2021a,b). In
our work, we propose the verbalizer-free mech-
anism to ease the manual labor and to improve
the generalization ability of our few-shot learner.
As prompts and verbalizers are semantically cor-
related, this technique also enhances the task-
invariance of prompts. Inspired by the contrastive
learning paradigm (Jaiswal et al., 2020), we pro-
pose the Pair-wise Cost-sensitive Contrastive Loss
(PCCL) to train our few-shot learner. In the few-
shot learning setting, the lack of training data may
easily result in model over-fitting. Hence, an auxil-
iary MLM loss is also optimized during few-shot
learning to alleviate the issue. In addition, we fur-
ther show that PCCL is an extension to a variety of
loss functions in the appendix.

2.2 Task-invariant Prompt Encoding

The input format of our approach is significantly
different from previous works to facilitate task-
invariant continuous prompt learning. To be more
specific, in contrast to Devlin et al. (2019), we have
three additional types of special tokens:

* [PROJ: the placeholder for prompts;

* [TMSK]: the token mask of the input texts for
optimizing the auxiliary MLM loss;

* [OMSK]: the token mask as a placeholder to
generate the output result.

For a better understanding, please refer to an exam-

ple for single-sentence classification in Figure 2.
Here, “[TMSK]” is only applied to a small portion
of the input texts for MLM. “[OMSK]” is used for
generating outputs, rather than the “[CLS]” token.
Hence, no additional parameters are introduced to
our model for prompt learning.

As the parameters w.r.t. “[PRO]” tokens need to
be learned for a given task, the lack of training data
in few-shot learning still brings some burdens. In-
spired by GPT-3 (Brown et al., 2020) and TS5 (Raf-
fel et al., 2020), we initialize prompt embeddings
to be the pre-trained representations of universal
task-invariant prompts.* Readers can also refer to
the examples in Table 1.

2.3 Verbalizer-free Class Mapping

A common property of existing prompt-based ap-
proaches is that they require handcrafted verbaliz-
ers to establish mappings between tokens and class
labels (Schick and Schiitze, 2021a,b; Liu et al.,
2021b). We suggest that this practice might be sub-
optimal. Consider the example on review analysis
in Figure 3. Verbalizer-based approaches generate
the distributions over the entire vocabulary (which
may contain over 10 thousand words), and only
pay attention to the probabilities of very few words
(such as “good” and “terrible” in our case). The
semantic association between words is also ignored
to a large extent. For example, the probabilities of
words such as “nice”, “fantastic”, “bad” and “horri-
ble” are also strong indicators of class labels. If we
replace the high-dimensional, sparse distributions
with lower-dimensional, dense representations, the
generalization ability and the flexibility of the un-
derlying model can be largely increased.

In our work, we propose a novel verbalizer-
free approach to generate model outputs based
on PCCL. During training, denote B as the collec-
tion of instances in a batch (3 C D). Each instance
1 € B can be treated as an anchor, with the label
denoted as y;. We also have the positive set P (i)

*For sentence-pair tasks, the input format can be
[CLS][TXT][TXT][PROJ[PRO][OMSK][TXT][TMSK][TXT].
The “[PRO]J” and “[OMSK]” tokens are placed between text
pairs to better capture the relations between them.

“Here, the universal task-invariant prompt for single-
sentence classification tasks is “it is”’; and “?” for sentence-
pair classification tasks. Refer to examples in Table 1. This
setting can be viewed as the knowledge prior for prompt
embeddings. During model training, the representations of
prompts can be automatically adapted to specific tasks. In the
experiments, we further show that it is unnecessary to design
task-specific prompts for our approach. Hence, we do not

need to vary the numbers and positions of “[PRO]” tokens for
model tuning.
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Figure 3: A simple comparison between verbalizer-
based and verbalizer-free approaches w.r.t. model out-
puts. The underlying task is review sentiment analysis.

and the negative set N (i) w.r.t. the instance 7 and
the batch B: P(i) = {jlj # t,y; = vi,j € B}
and N (i) = {jly; # vi-J € B}.

Let z; be the lo-normalized embedding of the
“[OMSK]” token of the last layer of the underlying
PLM (before the softmax function). In the con-
text of contrastive learning, we aim to maximize
the within-class similarity s; , = ZlT - Zp where
p € P(i), and also minimize the between-class
similarity s;, = z_;T - Z, where n € N(i). Fol-
lowing previous supervised contrastive learning
models (Khosla et al., 2020; Gao et al., 2021b), it
is straightforward to derive the sample-wise con-
trastive loss:

exp(sip/T)
exp(sip/T) + exp(sin/T)

Lew(i) = —log (1)

where 7 is the temperature value. When multiple
instances in P (i) and N () are considered, we re-
write Lcr,(7) as follows:

) = —log Z

peP(i)

exp(sip/T)

ZaeA exp(siq/T)

2
where the collection A(i) = B\ {i}. This gives
the model more generalization abilities in that mul-
tiple within-class and between-class similarity val-
ues are averaged, thus making the learned decision
boundary smoother.

Minimizing Lc,(7) alone may be insufficient as
it does not consider sample difficulty. For example
if s;p = 0.2 and s, i = = 0.95 where p,p € P(3).
The model should pay more attention to s; , to
reach the optima, and less attention to s, + to avoid
model over-fitting. Inspired by (Sun et al 2020a),

Lcr (i)
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(a) Original Contrastive Loss

{ Negatives

Margin
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Figure 4: Illustration of how PCCL improves the learn-
ing process of “[OMSK]” embeddings of the last trans-
former encoder layer for review sentiment analysis.

we introduce pair-wise relaxation factors and pro-
pose a new loss function named Pair-wise Cost-
sensitive Contrastive Loss (PCCL) as follows:

exp(Qip * Sip/Tp)
- 2 T

Lpccr(i)
pEP (i)

3)

where Z (i) is the normalization factor:
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pEP(3) P neN (i) n

Z2(i) = n)

4)
a; p and «; p, are pair-wise relaxation factors with
the definitions as follows:

a;p =max{0,1+m —s;p}

a;n = max{0, s; , +m} )
Comparing to the original L (i), two new fea-
tures are added to PCCL. Inside ;) and «;p,
a margin factor m is employed to expect that
sip > 1 —m and s;,, < m. Hence, there is a
relaxed margin between s; ;, and s; ,,. The usage
of a;, and «;, also makes the model focus on
learning hard cases and avoid over-fitting on easy
cases. Another empirical setting is that we use sep-
arate temperatures 7, and 7, for within-class and
between-class similarities, instead of a uniform
temperature 7. We further set 7, = §-7, (§ > 1) to
give more relaxations on positive samples in order
to make the within-class similarities not too large,
as it is easy to see:

Q5 p ] Q5 p ) Q5 p ]

—=S8ip = ——8jp = ——8 (6)
i,p i,p i,p

Tp § T Tn

where &; ;, = max{0, %(1+m—si7p)}. In this way,
our few-shot learner will be less likely to over-fit
to training instances. We further provide an illus-
trative example in Figure 4 and a brief theoretical
analysis on PCCL.



2.4 Auxiliary Masked Language Modeling

As the learning objective of PCCL is signifi-
cantly different from the MLM task, minimiz-
ing Lpccr (i) only may result in the catastrophic
forgetting of the pre-training knowledge. Sim-
ilar to Schick and Schiitze (2021a,b), we treat
MLM as an auxiliary task during few-shot learn-
ing to improve the model performance on previ-
ously unseen instances. Denote the sample-wise
MLM loss as Ly (i). The sample-wise over-
all loss function £(i) can be written as follows:
E(l) =X\ /CPCCL(i) + (1 - )\) . /CMLM(Z) where
A is a pre-defined balancing hyper-parameter. In
Figure 2, we apply the auxiliary MLM task to
“[TMSK]” tokens and PCCL to “|[OMSK]” tokens,
separately. This practice can be viewed as perform-
ing task-specific continual pre-training (Sun et al.,
2020b) and few-shot learning at the same time.

2.5 Model Inference

During the model inference time, because we do
not tune the “[CLS]” prediction head, we directly
take the embedding Z; of a testing instance ¢ to
generate the class label ¢; by comparing 2; against
the k-nearest neighbors in the few-shot training set.
When CP-Tuning is applied to larger training sets,
for better scalability, the label g; is predicted by:

~ g AN
Ui = argmax .ccz; - Zc (7

where C is the collection of the class labels, and Z.
is the prototype embedding of the class ¢ € C (i.e.,
the averaged embedding of all training instances
with the class label as c¢). Hence, this practice is
closely in line with prototypical networks (Snell
et al., 2017; Ji et al., 2020).

3 Experiments

We conduct extensive experiments to evaluate CP-
Tuning and compare it against state-of-the-arts.

3.1 Datasets and Experimental Settings

In the experiments, we employ eight public NLP
datasets to evaluate CP-Tuning: three for review
sentiment analysis (SST-2 (Socher et al., 2013),
MR (Hu and Liu, 2004) and CR (Pang and Lee,
2005)), two for sentence paraphrase (MRPC (Dolan
and Brockett, 2005) and QQP ), two for natural
language inference (QNLI (Rajpurkar et al., 2016)
and RTE (Bar-Haim et al., 2014)) and one for

Shttps://www.quora.com/q/quoradata/

subjectivity classification (SUBJ (Pang and Lee,
2004)). The dataset statistics are summarized in
Table 3. For few-shot learning, the evaluation pro-
tocols and the training/development/testing splits
are the same as in Gao et al. (2021a). The un-
derlying PLM is the RoOBERTa large model (with
335M parameters) (Liu et al., 2019). In the exper-
iments, we set K = 16 and measure the average
performance in terms of accuracy across 5 differ-
ent randomly sampled training and development
splits. Hence, the performance of CP-Tuning can
be rigorously evaluated with a minimal influence
of random seeds or datasets.

In the experiments, we employ the standard
fine-tuning approach (Devlin et al., 2019) ©,
PET (Schick and Schiitze, 2021a,b) 7 LM-
BFF (Gao et al., 2021a) (with three different set-
tings: Auto T, Auto L and Auto T+L) 8 and P-
tuning (Liu et al., 2021b) ° as strong baselines.
Specifically, PET, LM-BFF and P-tuning are re-
cent state-of-the-art approaches for prompt-based
few-shot learning. As the experimental settings of
PET, LM-BFF and P-tuning are different, in order
to conduct a rigorous comparison, we re-produce
the results based on their open-source codes and
the same set of random seeds. Hence, the results
reported in our work are slightly different from
their original papers. Our own CP-Tuning algo-
rithm is implemented in PyTorch and run with
NVIDIA V100 GPUs. In default, we set 7, = 2,
Tn = 1 (with§ = 2), A = 0.5, m = 0.3 and
k = 3, and also tune the parameters over the few-
shot development sets. The model is trained with
the Adam optimizer (Kingma and Ba, 2015), with
the learning rate and the batch size tuned around
{le — 5,3e — 5,5e — 5} and {4, 8,16}, respec-
tively. The optimization of auxiliary MLLM is the
same as PET. We also study how the change of
some important hyper-parameters affect the overall
performance, with results reported below.

3.2 Overall Performance Comparison

The experimental results of CP-Tuning and all base-
lines on eight testing sets for few-shot learning
are presented in Table 2. From the experimental

®https://github.com/huggingface/
transformers
"https://github.com/timoschick/pet
$https://github.com/princeton-nlp/
LM-BFF. In LM-BFF, “Auto T”, “Auto L’ and “Auto T+L”
refer to automatically generated templates, labels and both
(reported by Gao et al. (2021a)), respectively.
‘https://github.com/THUDM/P-tuning
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Method /Task SST-2 MR CR MRPC QQP OQNLI RTE SUBJ | Average
Standard Fine-tuning 78.62  76.17 7248 64.40 63.01 6232 5228 86.82 | 69.51
PET 92.06 87.13 87.13 66.23 7034 6438  65.56 91.28 | 78.01
LM-BFF (Auto T) 90.60 87.57 90.76 66.72 65.25 6887 6599 91.61 | 7842
LM-BFF (Auto L) 90.55 85.51 91.11 67.75 7092 6622 66.35 90.48 | 78.61
LM-BFF (Auto T+L) 9142 86.84 9040 66.81 61.61 61.89 66.79 90.72 | 77.06
P-tuning 91.42 87.41 9090 71.23 66.77 63.42 67.15 89.10 | 78.43
CP-Tuning (Our Approach) | 93.35 8943 91.57 72.60 73.56 69.22  67.22 92.27 | 81.24

Table 2: Comparison between CP-Tuning and baseline methods over the testing sets in terms of accuracy (%).

Task #Training #Testing Task Group Labels Method/Task SST-2 MR MRPC QQP
SST-2 6,920 872 Full Implement. 93.35 89.43 72.60 73.56
MR 8,662 2,000 positive, negative wlo. auxiliary MLM | 91.35  86.67 7196 7247
CR 1,775 2,000 w/o. a,p and o p 9250  88.59 68.28 69.32
MRPC 3,668 408 equivalent, w/o. similarity avg. 92.04 86.37 67.11 69.14
QQP 363,846 40,431 not equivalent

QNLI 104,743 5,463 entailment, Table 4: Ablation study of CP-Tuning on four tasks in
RTE 2,490 277 not entailment terms of accuracy (%). “Full Implement.” refers to the
SUBJ 8,000 2,000 subjective, objective full implementation of our method. The lowest accu-

Table 3: Dataset statistics. We only sample K x |C|
instances from the original training sets to form few-
shot training and development sets.

results, we can draw the following conclusions.
Prompt-based methods (such as PET, LM-BFF
and P-tuning) outperform standard fine-tuning by a
large margin. This shows that prompts are highly
useful for few-shot learning over PLMs. Based on
our re-production results, LM-BFF (with different
settings) and P-tuning have similar performance,
while PET produces slightly lower performance.
The performance gains of CP-Tuning over all the
testing sets are consistent, compared to all the state-
of-the-art methods. Overall, the average improve-
ment is around 3% in terms of accuracy. It can
be seen that even without task-specific prompts
and verbalizers, CP-Tuning is capable of producing
high-accuracy models with few training instances.
We also conduct paired t-tests to compare the ac-
curacy scores on all tasks produced by CP-Tuning
against LM-BFF and P-tuning. Experimental re-
sults show that the improvement of CP-Tuning is
statistically significant (with the p-value p < 0.05).

3.3 Detailed Model Analysis

We further study how CP-Tuning improves the
model performance in various aspects. Here, we
treat SST-2, MR, MRPC and QQP as pilot tasks to
explore our method.

Ablation Study. The ablation results of CP-Tuning
are shown in Table 4. Here, “w/o. auxiliary MLM”
refers to the variant of CP-Tuning without the aux-
iliary MLM task; “w/o. «; , and «; ,,” refers to CP-
Tuning without pair-wise relaxation factors; and

racy scores over each dataset are printed underlined.

“w/o. similarity averaging” refers to the setting
where we only consider one positive and one nega-
tive instance for each anchor using standard triplet
loss. From the results we can see that all three
techniques contribute to the overall accuracy im-
provement. Specifically, auxiliary MLM has the
most influence over SST-2, while similarity averag-
ing contributes the most over the remaining three
datasets. '°
Parameter Analysis. We also show how some of
the important hyper-parameters in CP-Tuning af-
fect the performance over the four datasets. The
results are shown in Figure 5. We can see the the
trends are almost consistent across all the datasets.
The optimal setting of the margin m is around 0.2.
As for the temperature, the optimal value of 7, is
around 1/8 to 1/32, which is different from other
works where the default temperature is 1. This is
probably due to the fact that we compute the total
scores & p - Sip/Tp and & p - S;pn/Tn, Which are
different from those in other works in contrastive
learning. Nevertheless, the performance of CP-
Tuning is not very sensitive to the choice of the
temperature, proving that CP-Tuning is highly gen-
eral for real-world applications.

We further tune the value of £&. As seen in the

!Note that the performance drops by large margin when
we remove the MLM task for SST-2 and MR. This is because
the few-shot learning ability of PLMs is largely based on
the utilization of pre-trained knowledge learned by MLM.
In CP-Tuning, the PPCL objective is significantly different
from MLM, hence optimizing PPCL alone may lead to the
catastrophic forgetting of the MLM knowledge. We suggest
that the auxiliary MLM task in CP-Tuning is vital for obtaining
the high performance.
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Figure 6: Visualizations of “[OMSK]” embeddings of
SST-2 by t-SNE. (Best viewed in color.)

figure, for sentence-pair tasks, the optimal £ is be-
tween 2 to 5, while easier single sentence tasks
are not sensitive to this hyper-parameter. We also
try using the prototype embeddings Z. for model
inference, of which the results are similar. We
suggest that when CP-Tuning is applied to large
datsets, it is suitable to predict the class label
Ui by argmaxceciir - 2., for better scalability. In
PET (Schick and Schiitze, 2021a,b), the auxiliary
MLM task is applied with A = le—4, which is
sufficiently small. In contrast to their work, we
suggest that the optimal value of A is in the range
between 0.5 to 0.75.

Visualizations. To show that the generated
“[OMSK]” embeddings are separable for text clas-
sification, we plot the embeddings of the few-shot
training and testing data in SST-2. The results
are illustrated in Figure 6. The underlying di-
mension reduction and visualization algorithm is
t-SNE (van der Maaten and Hinton, 2008). As
seen, even reduced in two dimensions, most of the
embeddings in the testing set are clearly separated,
with the only N x K training samples available. Ad-
ditionally, the embeddings in the few-shot training
set are widely spread, showing the generalization
of our algorithm.

Method/Task | SST-2 MR MRPC QQP
PET 8725 8344 6461 5882
LM-BFF 88.10 83.51 6598  59.19
P-tuning 87.92 8320 6664 6127
CP-Tuning | 91.25 8652 70.12  65.52

Table 5: Testing results of CP-Tuning and baseline
methods for unbalanced few-shot learning in terms of
accuracy (%).

3.4 Learning with Unbalanced Datasets

In the literature, few-shot learning is formulated as
an N-way-K-shot problem. However, it may not be
the case in real-world applications. In this set of
experiments, we consider the situation where the
few-shot training set is unbalanced. Following pre-
vious experiments, four binary classification tasks
are used for evaluation, namely SST-2, MR, MRPC
and QQP. In each few-shot training set, we assume
there are 8 and 24 instances of the two classes, in-
stead of setting K = 16. We compare CP-Tuning
against three strong baselines for few-shot learning
(i.e., PET, LM-BFF and P-tuning). The results are
shown in Table 5. As seen, CP-Tuning consistently
outperforms these baselines by a large margin. The
improvement rates are also larger than those in
standard few-shot learning scenarios (as reported
in Table 2). This is because CP-Tuning focuses
on learning the distinctions between positive and
negative samples, instead of tuning the MLM head
(as in previous approaches).

3.5 Study on Task-invariance of Prompts

In CP-Tuning, we initialize prompt embeddings as
the pre-trained representations of universal task-
invariant prompts and utilize the verbalizer-free
mechanism. In the following experiments, we aim
to study whether CP-Tuning is capable of gener-
ating more stable and accurate results compared
to the non-contrastive baseline (i.e., PET (Schick
and Schiitze, 2021a,b)). We consider two review
sentiment analysis datasets: SST-2 and MR, as
well as two paraphrase datasets: MRPC and QQP.
Five prompt settings are employed: the universal
task-invariant prompts used in CP-Tuning and the
manually designed prompts used in PET (Schick
and Schiitze, 2021a,b). In Table 6, we present the
averaged accuracy and its standard deviation of CP-
Tuning and PET, under five different prompt set-
tings. We can see that compared to PET, CP-Tuning
has a higher accuracy and a lower deviation when
the prompts change. This finding is different from
previous works, showing that CP-Tuning is not



Task/Method CP-Tuning PET
Acc. Std. Acc. Std.
SST-2 9291" 0.56" | 91.28 1.38
MR 88.38" 146 86.28 1.70
MRPC 71.80 2.20" | 65.73 5.08
QQP 73.84*  2.16" | 66.61 522

Table 6: Method comparison with five sets of prompts
in terms of averaged accuracy (%) and standard devia-
tion. * refers to statistical significance of higher accu-
racy and lower deviation at 95% confidence interval.

sensitive to different prompts. Hence, we suggest
learning with task-invariant prompts and no verbal-
izers is a desirable setting that reduces the amount
of human labor. Additionally, during the learning
process, prompt embeddings can be automatically
adapted to fit specific tasks.

4 Related Work

PLMs. PLMs have achieved significant improve-
ments on various NLP tasks. Readers can refer to
the survey (Qiu et al., 2020). Among these PLMs,
ELMo (Peters et al., 2018) learns contextual word
representations by self-supervised pre-training us-
ing bidirectional LSTMs. BERT (Devlin et al.,
2019) is probably the most popular model, which
learns contextual representations of tokens by trans-
former encoders. Other PLMs based on the trans-
former encoder architecture include ALBERT (Lan
et al., 2020), Transformer-XL (Dai et al., 2019),
XLNet (Yang et al., 2019a), StructBERT (Wang
et al., 2020), Big Bird (Zaheer et al., 2020) and
many others. Apart from the encoder-based PLMs,
the encoder-decoder and the auto-regressive de-
coder architectures are used in T5 (Raffel et al.,
2020) and the GPT series (Brown et al., 2020). As
the neural architectures are not our major focus, we
do not elaborate.

Prompting PLMs for Few-shot Learning. With
the prevalence of GPT-3 (Brown et al., 2020),
prompting PLMs for few-shot learning has be-
come a new, popular learning paradigm. A re-
cent survey can be found in Liu et al. (2021a). To
name a few, PET (Schick and Schiitze, 2021a,b)
turns text classification into cloze-style problems
and use manually-defined prompts to provide addi-
tional task guidance. To facilitate automatic prompt
discovery, Gao et al. (2021a) generate prompts
from the TS5 model (Raffel et al., 2020). Jiang
et al. (2020) also mine high-performing prompts
from the training corpus. AutoPrompt (Shin
et al., 2020) employs gradient searching to detect

prompts. However, these approaches focus on dis-
crete prompts only. P-tuning (Liu et al., 2021b)
learns continuous prompt embeddings with differ-
entiable parameters for GPT-based models. Prefix-
tuning (Li and Liang, 2021) extends the usage of
continuous prompts for text generation tasks. Min
et al. (2021) propose a noisy channel model for
prompt learning. WARP (Hambardzumyan et al.,
2021) leverages continuous prompts to improve
the model performance in fine-tuning scenarios.
Knowledgeable prompt-tuning (Hu et al., 2021)
optimizes the verbalizer construction process by
integrating the knowledge from knowledge bases.
Our work further applies contrastive learning to
making the few-shot learner fully verbalizer-free.
Deep Contrastive Learning. Contrastive learn-
ing (Jaiswal et al., 2020) aims to learn an embed-
ding space in which similar instances have similar
embeddings while dissimilar instances fall apart.
In the literature, several contrastive learning ob-
jectives have been proposed, such as the triplet
loss (Schroff et al., 2015), the N-pair loss (Sohn,
2016), InfoNCE (van den Oord et al., 2018) and
the supervised contrastive loss (Khosla et al., 2020).
Due to its effectiveness, contrastive learning has
been applied to various NLP tasks, e.g., sentence
representation (Gao et al., 2021b; Kim et al., 2021),
text summarization (Wang et al., 2019), aspect de-
tection (Shi et al., 2021), machine translation (Yang
et al., 2019b), commonsense reasoning (Klein and
Nabi, 2020). To our knowledge, CP-Tuning is the
first to apply contrastive learning to prompt-based
few-shot learning.

5 Conclusion and Future Work

In this work, we present an end-to-end Contrastive
Prompt Tuning (CP-Tuning) framework that en-
ables few-shot learning for PLMs without de-
signing any task-specific prompts and verbaliz-
ers. In CP-Tuning, we employ task-invariant con-
tinuous prompt encoding and the Pair-wise Cost-
sensitive Contrastive Loss (PCCL) to train the
model. Experiments over eight public datasets
show that CP-Tuning consistently outperforms
state-of-the-art methods. Future work of CP-
Tuning includes: i) extending the CP-Tuning frame-
work to other NLP tasks such as named entity
recognition, machine reading comprehension and
text generation; ii) combining CP-Tuning with
transfer learning to improve the model performance
in low-resource scenarios.
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A Appendix

A.1 Theoretical Analysis of PCCL

In this section, we theoretically show that PCCL is
an extension to various metric learning based loss
functions.



As PCCL is directly extended from the super-
vised contrastive loss (Khosla et al., 2020; Gao
et al., 2021b) by adding pair-wise relaxation fac-
tors, it is trivial to see that the supervised con-
trastive loss is a special case of PCCL with «; , =
iy =land 7, = 7,.

Next, we consider the triplet loss (Schroff et al.,
2015). Assume that there are only one positive and
one negative samples for each anchor. We simplify
Lpccr(i) as follows:

N Qy (673
Lpccor(i) =log(l+ exp(ﬂsi,p — Sin))
Tp Tn
1 o4
= log(1 + exp(—(—Fsip — AinSin))
Tn 5

®)

If we set a small value for 7,, (close to 0, which
is the case as shown in the experiments), then the
value of % ( ag” Sip— Qi nSin) is large. As arough

approximation, we have:
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Approximately speaking, the problem of mini-

mizing Lceop (i) is equivalent of optimizing the
loss function L7y, (7) (with the margin omitted):

Lr1(i) = ainllzi = 5l = =215 - 5] (10)
which is the triplet loss with the positive and nega-
tive pair-wise weights to be 22 and Qi , TESPEC-
tively. Therefore, the triplet loss has a close con-
nection to PCCL.

As for the N-pair loss (Sohn, 2016), we consider
the situation where there is one positive sample
and multiple negative samples for each anchor. We
re-write Lpccr (i) as:

Lpcor(i)’ =log(1+
Q Q5
> e~ Psip = i)

neN (i) p

(In

By setting a;—p” = 1 and a;—n" = 1, we sim-
plify PCCL into the N-pair loss. We can see
that PCCL combines the advantages of both su-
pervised learning and metric learning, specifically
assigning different costs to easy and hard cases.
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