
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CS-BENCH: A COMPREHENSIVE BENCHMARK FOR
LARGE LANGUAGE MODELS TOWARDS COMPUTER SCI-
ENCE MASTERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have demonstrated significant potential in ad-
vancing various fields of research and society. However, the current community
of large language models (LLMs) overly focuses on benchmarks for analyzing
specific foundational skills (e.g. mathematics and code generation), neglecting an
all-round evaluation of the computer science field. To bridge this gap, we introduce
CS-Bench, the first multilingual (English, Chinese, French, German) benchmark
dedicated to evaluating the performance of LLMs in computer science. CS-Bench
comprises approximately 10K meticulously curated test samples, covering 26 sub-
fields across 4 key areas of computer science, encompassing various task forms and
divisions of knowledge and reasoning. Utilizing CS-Bench, we conduct a compre-
hensive evaluation of over 30 mainstream LLMs, revealing the relationship between
CS performance and model scales. We also quantitatively analyze the reasons for
failures in existing LLMs and highlight directions for improvements, including
knowledge supplementation and CS-specific reasoning. Further cross-capability ex-
periments show a high correlation between LLMs’ capabilities in computer science
and their abilities in mathematics and coding. Moreover, expert LLMs specialized
in mathematics and coding also demonstrate strong performances in several CS
subfields. Looking ahead, we envision CS-Bench serving as a cornerstone for LLM
applications in the CS field and paving new avenues in assessing LLMs’ diverse
reasoning capabilities.

1 INTRODUCTION

Large language models (LLMs), exemplified by ChatGPT (OpenAI, 2022), have emerged as a signif-
icant milestone in artificial intelligence (AI), demonstrating potential far beyond natural language
processing (NLP) (Zhao et al., 2023; Chang et al., 2024). These models are increasingly impacting
diverse fields including education, industry, and scientific research (Guha et al., 2023; Guo et al.,
2023; Xiao et al., 2023; Huang et al., 2023a; Zhou et al., 2023a; Zhao et al., 2024; Zhang et al.,
2024a). As computer science (CS) continues to be the cornerstone of modern information technology,
from the advent of electronic computers to today’s AI advancements (Denning, 2000; Campbell-Kelly
et al., 2023), a key challenge lies in enabling LLMs to effectively leverage CS knowledge to better
serve humanity in the evolving intelligent era (Donadel et al., 2024; Murtuza, 2024; Marques et al.,
2024).

Understanding the performance of LLMs in computer science is fundamental to the research and
application of LLMs within the field. Despite studies like MMLU and C-Eval (Hendrycks et al.,
2021a; Huang et al., 2023b; Liu et al., 2023a; Li et al., 2024; Gu et al., 2024) covering a wide range
of fields including CS, their broad scope implies that CS is merely a component within the multiple
categories of science and engineering, overlooking the importance of thoroughly evaluating the
CS field. Moreover, such evaluation result can further guide the development of LLMs, offering
practical insights to advance the corresponding capabilities. Recently, a series of studies have devoted
on actively assessing and analyzing the capabilities of LLMs in mathematics, coding, and logical
reasoning (Frieder et al., 2023; Collins et al., 2023; Wu et al., 2023; Yuan et al., 2023b; Dong et al.,
2024; Liu et al., 2024; Zhang et al., 2024b; Lin et al., 2024; Liu et al., 2023b; Saparov et al., 2023; Xu
et al., 2023; Wu et al., 2024). Unfortunately, efforts on LLMs in cross-capability evaluation is quite

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

CS-Bench

CS-Bench

Li
ne

ar
 L

ist

O
ve

rv
ie

w

St
ac

ks
, Q

ue
ue

s

an
d

Ar
ra

ys
St

rin
g

Searching
Graph

Tree
s

Sorting

Overvicw and Architecture
Physical LayerData Link Layer

Network Layer

Transport Layer

A
pplication Layer

Overview

Processes and

Threads

Mem
ory

Man
ag

em
en

t

Fi
le

M
an

ag
em

en
t

In
pu

t/O
ut

pu
t

M
an

ag
em

en
t

Overview

Data Representation

and Operation

Storage
System

Instruction

System
Central

Processing Unit
Bus

Input/O
utput

System

Temporal and Spatial Complexity of Algorithms

Linked Lists

Stack and Queue

KMP Pattern Matching Algorithm
Binary Tree

Huffman Tree

Depth-First Search

Minimum Spanning Tree Algorithm

 Red-Black TreeHash Search
 Quick Sort

Logic Unit

Central Processing Unit

Cache

Main Memory

Instruction Cycle and Pipeline

CPU Architecture

Instruction Addressing

Multiprocessor Concept

Exception and Interrupt Mechanism

I/O Interface

Kernel Subsystem
Concurrency and Asynchronous

Virtual Machine
Batch Processing System

Process and Thread

Deadlock

Processor Scheduling

Process Synchronization and Mutual Exclusion
Virtual Memory Management

Disk Scheduling
I/O Spooling

Bandwidth Throughput

OSI Seven-Layer Model
Round-Trip Time

Network Interface Card
LAN and WAN

IPv4 and IPv6
Router

UDP and TCP

HTTP

World Wide Web

Mobile IP

Subject Number

Data Structure and Aigorithm 2396

Computer Netork 2488

Computer Organization 2628

Operating System 2164

Task Number

Msltipie Choice 5924

Assertion 1964

Fill-in-the-Blank 1032

Open-ended 756

Cogution Number

Knowledge 6152

Reasoning 3524

Split Number

Valid 944

Test 8732

4

Language Number

English 2419

Chinese 2419

French 2419

German 2419

Figure 1: Overview diagram and statistics of CS-Bench.

scarce. Considering the intersection of computer science with coding, mathematics, and reasoning
abilities, we have grounds to believe that cross-capability research and analysis in CS can effectively
propel the comprehensive development of the LLM community. Here, we are particularly interested
in two research questions for evaluating LLMs’ proficiency in computer science field:

RQ1: How do LLMs perform in the field of computer science and what are the challenges and
potential directions for improvement?

RQ2: What are the relationship between the abilities of LLMs in computer science, mathematics, and
code programming?

As the bedrock for exploration, we first propose CS-Bench, the first benchmark dedicated to evaluating
the performance of LLMs in the field of computer science. CS-Bench features high-quality, diverse
task forms, varying capacities, and quadrilingual evaluation. Firstly, CS-Bench comprises approxi-
mately 10K carefully curated test items spanning 26 sections across 4 key CS domains. Diverging
from conventional benchmarks consisting solely of multiple-choice (MC) questions (Hendrycks
et al., 2021a; Huang et al., 2023b; Li et al., 2024), CS-Bench includes 4 tasks: multiple-choice,
assertion, fill-in-the-blank (FITB), and open-ended, to better simulate real-world scenarios and assess
the robustness of LLMs to different task formats. In addition to knowledge-type questions assessing
LLMs’ mastery of CS knowledge, reasoning-type questions further evaluate LLMs’ ability to apply
CS knowledge for reasoning. Lastly, by supporting evaluation in English, Chinese, French, and
German, CS-Bench enables the appraisal of LLMs’ adeptness in addressing CS challenges across
different language contexts.

In response to RQ1, we evaluate over 30 mainstream LLMs on CS-Bench. Our main findings are:
(1) CS-Bench effectively differentiates the capabilities of LLMs in the CS field while also posing
challenges to the best-performing GPT-4o/OpenAI-o1. (2) LLMs exhibit a consistent logarithmic
growth pattern in scale and a linear growth pattern in scores on the CS-Bench. By establishing the
scale-score fitting function, smaller models can be used to predict and guide the development of
larger-scale models. (3) Further error type analysis indicates that the primary reason for the limited
performance of LLMs is the lack of domain knowledge, and the CS-specific reasoning is difficult to
achieve merely by enhancing general reasoning abilities, necessitating targeted reinforcement.

In response to RQ2, we perform a detailed analysis of the relationship of General LLMs’ ability in
three domains: mathematics, coding, and computer science, as well as the performance of code- and
math-specific expert LLMs on CS-Bench. We observe consistent trends in the overall performance of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the general LLMs across CS-Bench and scores in benchmarks related to mathematics and coding,
indicating a strong correlation between LLM’s computer science proficiency and its mathematical
and programming abilities. Furthermore, despite a decline in general capabilities, some expert LLMs
still exhibit improvements in certain areas of CS, such as data structures and algorithms, with more
pronounced knowledge and reasoning capabilities evident in supplementary smaller-scale models.

To summarize, our contributions are as follows:

• We introduce CS-Bench, the first benchmark dedicated to evaluate the performance of LLMs in
the field of computer science. CS-Bench supports four languages, covers four key areas with 26
subfields, and includes a diverse range of task formats.

• Utilizing CS Bench, we conduct a comprehensive evaluation of mainstream LLMs, revealing the
relationship between CS performance and model scales. We also quantitatively analyze the reasons
for failures in existing LLMs and highlight directions for improvement.

• We conduct exploratory experiments on LLMs’ cross-ability and find a strong relationship between
their CS proficiency and mathematical and programming abilities. Moreover, the expertise in
mathematics and programming of expert LLMs can improve performance in specific CS subfields.

2 CS-BENCH

2.1 DESIGN PRINCIPLE

The objective of CS-Bench is to robustly assess the knowledge and reasoning capabilities of LLMs
in different linguistic contexts within the field of computer science. To this end, our benchmark
adheres to the following guidelines: (1) Coverage of key domains: it covers key areas of CS with
finer subfields for specificity. (2) Diverse task forms: questions vary in format to simulate diverse
real-world user queries. (3) CS-specific reasoning: it evaluates CS logical and arithmetic reasoning
in addition to CS knowledge. (4) Multilinguality support: it supports assesses LLMs’ performance
in different language environments. Based on these criteria, CS-Bench focuses on quadrilingual
evaluation in English, Chinese, French, and German, covering four domains: Data Structure and
Algorithm (DSA), Computer Organization (CO), Computer Network (CN), and Operating System
(OS). Twenty-six fine-grained subfields, diverse task forms, and divisions of knowledge and reasoning
are further developed to enrich the dimensions of assessment and simulate real-world scenarios.

2.2 DATA COLLECTION

Table 1: Comparison of perplexity (PPL)
across evaluation datasets. The PPL of En-
glish and Chinese datasets is calculated on
Llama2-7B-base and Qwen1.5-7B-base, re-
spectively. “MC” denotes multiple-choice,
and “ALL” denotes all tasks.

English Dataset PPL Chinese Dataset PPL

TruthfulQA (MC) 7.73 C-Eval 11.47
MMLU 9.54 CMMLU 13.62
CS-Bench (MC) 11.86 CS-Bench (MC) 13.31
CS-Bench (ALL) 13.3 CS-Bench (ALL) 16.95

Data Sources. Diverse data sources are key to
achieving the sample diversity of CS-Bench. Our
raw data originates from three sources: (1) Com-
puter science-related questions obtained from pub-
licly available online channels, such as professional
exams and practice tests. (2)Knowledge-type ques-
tions obtained through the initial manual extraction
and subsequent adaptation of blog articles from var-
ious computer-related websites. (3) Construction of
teaching materials and examination papers authorized
by the authors’ institutions. 1 The latter two cate-
gories constitute the vast majority (over 70%) of the
data, and these data are not directly exposed on the internet, effectively reducing the likelihood of
LLMs encountering these questions during pre-training. We compare the perplexity (Jelinek et al.,
1977) of models on CS-Bench English and Chinese datasets with several other prominent evaluation
datasets in Table 1. In both English and Chinese, the perplexity of CS-Bench is comparable to or
even higher than that of other datasets, further indicating the high quality of CS-Bench samples and
the rarity of data leakage instances.

Data Processing. The data processing relies on a team composed of five members, each holding a
bachelor’s degree in computer science and receiving appropriate compensation. Initially, we parse

1More collection and processing procedures can be found in Appendix C.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

questions and answers for each sample from the data sources either automatically or manually.
Subsequently, we manually label questions with knowledge-type or reasoning-type tags depending
on whether in-depth reasoning and calculation are required. For reasoning-type questions, we attempt
to collect explanations from the data sources whenever possible; otherwise, we handle them through
cross-annotation and verification among team members. We first construct Chinese data, then translate
it into other languages using GPT-4, supplemented by manual checks, to create t multilingual data.
Finally, we conduct thorough manual checks on the entire dataset to ensure quality. As this benchmark
pertains to objective knowledge and reasoning in the field of computer science, the annotation content
is not influenced by regional or cultural differences among annotators.

Statistics. CS-Bench is an evaluation benchmark supporting quadrilingual assessment, encompass-
ing a total of 26 subfields across 4 domains, with a cumulative total of 9676 samples. These samples
encompass various task formats including multiple-choice, assertion, fill-in-the-blank, and open-
ended questions. Besides, CS-Bench assesses both knowledge-type and higher-order reasoning-type
questions, with each reasoning question accompanied by an explanation. To validate the effectiveness
of models, we randomly sample 10% of the data for validation, using the remaining 90% for testing.
The statistics of CS-Bench are shown in Figure 1, with detailed exposition provided in Appendix C.

3 EXPERIMENT

3.1 EXPERIMENTAL SETUP

Evaluation Protocols. Due to the diverse task formats in CS-Bench, we first design question
templates for each task type. For comprehension tasks (MC and Assertion), we use regex to
match LLM’s predictions and then calculate their accuracy against the ground-truth answers. For
generation tasks (FITB and Open-ended), due to the diversity of ground-truth answers, we score
LLM’s predictions by GPT-4 using standard answers in CS-Bench as references. In detail, FITB
questions are scored as either 0 or 1, while the score range for Open-ended questions is 1-10, which
is then linearly mapped to a range of 0.1 to 1. Finally, scores are weighted based on the quantity
of each type to derive the ultimate overall score. It is worth emphasizing that while employing
GPT-4 for scoring generation tasks may introduce a certain threshold for evaluation, its primary
purpose is to simulate diverse task formats in real-world scenarios. Therefore, we encourage isolating
comprehension tasks from CS-Bench to facilitate automatic evaluation with no need for GPT-4. We
provide the details of the evaluation setup in Appendix D, where we also verify the validity of GPT-4
scoring through its consistency with manually scored results, and the effect of different scoring
models.

Models. For open-source models, we selected Gemma-2B/7B (Team et al., 2024), Llama2-
7B/13B/70B (Touvron et al., 2023), Llama3-8B/70B (Meta, 2024), Llama3.1-405B (Dubey et al.,
2024), ChatGLM3-6B (THUDM, 2023), Baichuan2 (v2.0)-7B/13B (Yang et al., 2023), InternLM2-
7B/20B (Cai et al., 2024) , Qwen1.5-4B/7B/14B/72B/110B (Alibaba, 2024), Mistral-7B (v0.2)
(Jiang et al., 2023), Mixtral-8×7B (v0.1) (Jiang et al., 2024), Mistral-Large-123B (MistralAI, 2024),
and DeepSeekLLM-7B/67B (Bi et al., 2024). For closed-source commercial models, we utilized
PaLM-2 (palm-2-chat-bison) (Anil et al., 2023), Claude-2.1 (Anthropic, 2023), Claude-3 (opus)
(Anthropic, 2024a), Claude-3.5 (Sonnet) (Anthropic, 2024b), as well as GPT-3.5, GPT-4 (0125
version) (Achiam et al., 2023), GPT-4o (OpenAI, 2024a) and OpenAI-o1-mini/preview (0912 ver-
sion) (OpenAI, 2024b)2. To ensure the instruction-following abilities, we employ the official chat or
instruction-tuned versions for all models. Details on these models are provided in Appendix D.4.

3.2 MAIN RESULTS

Table 2 presents the overall results of all foundation models directly answering questions under
the zero-shot setting 3. In summary, the overall scores of models range from 39.86% to 72.29%,
demonstrating CS-Bench’s effectiveness in distinguishing between the abilities of various models
in the field of CS while also posing significant challenges to the best-performing existing models.

2Due to the unique reasoning form of OpenAI-o1, we exclude it from Section 3.2 analyze it in Section 3.3.
3Due to space constraints, the results and analyses in other languages are provided in Appendix E.3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: Zero-shot scores (%) of LLMs across domains on CS-Bench (EN), where “Klg” denotes
knowledge-type, “Rng” denotes reasoning-type, and “Avg” denotes Average. The random scores are
weighted as follows: 25% for MC, 50% for Assertion, 0% for FITB, and 10% for Open-ended. The
highest scores for open-source and closed-source LLMs is marked in green and blue respectively.

Model Data Struc & Algo Computer Organization Computer Network Operating System Overall

Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg

Random 28.04 24.63 26.65 26.57 25.24 26.13 26.34 22.49 24.98 29.06 24.23 27.27 27.4 24.12 26.2

Open-source LLM (Scale<10B)

Gemma-2B 56.76 23.44 43.20 47.69 30.18 41.92 45.22 26.38 38.59 37.79 31.32 35.39 46.89 27.59 39.86
Qwen1.5-4B 58.76 36.56 49.72 52.31 33.88 46.23 52.70 33.97 46.11 40.03 38.52 39.47 51.18 35.70 45.54

ChatGLM3-6B 51.10 34.08 44.17 48.11 32.73 43.04 51.15 32.66 44.64 43.57 37.03 41.14 48.63 34.07 43.33
Llama2-7B 51.51 32.61 43.82 48.89 31.82 43.26 46.72 30.75 41.10 41.04 26.26 35.55 47.15 30.48 41.08

DeepseekLLM-7B 56.42 28.94 45.23 52.09 32.48 45.62 52.43 31.41 45.03 41.66 31.98 38.06 50.87 31.11 43.67
Baichuan2-7B 53.11 34.95 45.72 45.10 38.67 42.98 51.26 34.27 45.28 43.47 33.63 39.82 48.29 35.33 43.57

Gemma-7B 59.53 35.18 49.62 49.97 33.27 44.46 60.87 37.09 52.50 48.67 34.23 43.31 54.90 35.02 47.66
Qwen1.5-7B 59.90 35.28 49.88 55.21 42.73 51.09 61.56 43.02 55.04 52.01 39.78 47.47 57.34 40.08 51.05

InternLm2-7B 59.57 40.92 51.98 58.83 37.94 51.94 62.65 40.60 54.89 50.94 39.29 46.61 58.31 39.77 51.56
Mistral-7B 63.24 34.86 51.69 57.52 38.67 51.30 61.48 44.92 55.65 51.66 43.79 48.73 58.63 40.44 52.01
Llama3-8B 66.25 37.29 54.46 55.38 40.67 50.53 62.21 53.02 58.98 55.26 49.34 53.06 59.75 44.97 54.37

Open-source LLM (Scale>10B)

Llama2-13B 51.74 35.00 44.93 51.81 36.18 46.66 53.03 37.99 47.74 48.12 32.36 42.27 51.31 35.46 45.54
Baichuan-13B 54.82 33.39 46.10 50.50 39.52 46.88 55.87 42.21 51.06 48.44 34.73 43.35 52.53 37.44 47.03
Qwen1.5-14B 64.95 46.74 57.54 60.06 45.58 55.28 68.66 52.91 63.12 56.56 51.48 54.67 62.79 49.18 57.83

InternLm2-20B 66.72 38.21 55.11 58.38 39.82 52.26 64.13 50.35 59.28 53.51 46.43 50.88 60.81 43.66 54.56
Qwen1.5-32B 69.70 51.19 62.17 67.63 52.91 62.78 69.23 58.74 65.54 60.06 56.21 58.63 66.87 54.72 62.45
Mistral-8×7B 70.94 40.50 58.55 66.88 42.06 58.70 67.49 52.86 62.34 57.56 51.65 55.37 65.91 46.66 58.90

DeepseekLLM-67B 69.70 44.17 59.31 63.59 39.15 55.53 69.04 50.25 62.43 57.86 50.11 54.98 65.23 45.96 58.22
Llama2-70B 64.28 41.51 55.01 56.35 40.85 51.24 61.99 43.07 55.33 51.79 41.15 47.84 58.73 41.68 52.52
Llama3-70B 75.72 53.03 66.48 71.45 51.09 64.74 74.78 63.02 70.64 63.77 58.08 61.65 71.65 56.36 66.08

Qwen1.5-72B 72.71 50.69 63.75 69.28 54.12 64.28 71.97 66.73 70.13 63.96 59.62 62.35 69.63 57.75 65.31
Qwen1.5-110B 73.11 53.58 65.16 73.65 54.18 67.23 75.36 70.75 73.74 64.55 65.27 64.82 71.98 60.91 67.95

Mistral-Large-123B 79.43 59.82 71.45 74.21 63.76 70.76 77.98 68.19 74.54 66.92 66.10 66.61 74.84 64.37 71.03
Llama3.1-405B 77.63 58.85 69.99 76.57 57.58 70.31 78.50 69.90 75.47 68.86 64.73 67.33 75.64 62.81 70.96

Closed-source LLM

PaLM-2 70.07 38.98 57.41 63.81 41.91 56.59 65.11 49.43 59.59 60.41 45.96 55.22 64.85 44.01 57.26
Claude-2.1 68.39 44.54 58.68 62.09 50.24 58.18 66.58 52.81 61.74 53.93 50.55 52.67 62.97 49.42 58.04

Claude-3-Opus 77.53 52.25 67.24 72.53 64.12 69.76 75.08 68.69 72.83 64.36 62.80 63.78 72.57 61.75 68.63
GPT-3.5 71.34 39.22 58.27 60.78 42.97 54.91 65.27 52.16 60.66 54.42 39.01 48.69 63.04 43.45 55.91
GPT-4 78.53 59.36 70.73 75.40 59.21 70.06 77.38 67.64 73.95 67.21 64.40 66.16 74.85 62.66 70.41

Claude-3.5-Sonnet 77.16 58.07 69.39 75.13 61.76 70.72 77.92 71.46 75.65 69.55 64.73 67.76 75.13 63.97 71.07
GPT-4o 81.51 57.80 71.86 75.60 58.61 70.00 80.57 71.76 77.47 69.35 68.68 69.10 76.95 64.15 72.29

20 30 40 50 60 70 80
Knowledge Score (%)

20

30

40

50

60

70

80

R
ea

so
ni

ng
 S

co
re

 (%
)

maxmin

max

min

40

45

50

55

60

65

70

Overall (%)

Figure 2: The distribution of
knowledge-type and reasoning-
type scores across all models.

Llama2-7B Llama2-13B Llama2-70B GPT-4
0

20

40

60

80

Sc
or

e
(%

)

DSA CO CN OS

Llama2-7B Llama2-13B Llama2-70B GPT-4
0

20

40

60

80

Sc
or

e
(%

)

MC Assertion FITB Open-ended

Figure 3: Comparison of representative LLMs’ scores across
different domains and tasks.

Subsequently, we conduct a comprehensive analysis of the experimental results from various aspects
including Foundation Models, Knowledge & Reasoning, Domains, and Task Formats.

Comparison between Foundation Models. Firstly, the closed-source models Claude3.5/GPT-4o
represent the highest standard on CS-Bench, with a proficiency exceeding 70%. Secondly, leading
open-source models (Mistral-Large-123B and Llama3.1-405B) have significantly narrowed the gap
between open-source and closed-source models. On one hand, both models exhibit a substantial
increase in parameters; on the other hand, current closed-source models are tending towards a
balance between performance and efficiency, exemplified by GPT-4o-mini and Gemini Flash. Thirdly,
newer models demonstrate significant improvements compared to earlier versions. For example,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Type Model Score Reasoning / Completion Tokens

Knowledge
GPT-4o 76.95 - / 8.67

OpenAI-o1-mini 77.60 (+0.65) 251.0 / 269.06 (×31.03)
OpenAI-o1-preview 83.61 (+6.66) 518.49 / 545.37 (×62.9)

Reasoning
GPT-4o 64.15 - / 56.43

OpenAI-o1-mini 76.12 (+11.97) 500.1 / 546.78 (×9.69)
OpenAI-o1-preview 80.98 (+16.83) 1106.43 / 1198.78 (×21.24)

Overall
GPT-4o 72.29 - / 26.08

OpenAI-o1-mini 77.06 (+4.77) 341.8 / 370.29 (×14.2)
OpenAI-o1-preview 82.65 (+10.36) 732.79 / 783.54 (×30.04)

Figure 4: Comparison between OpenAI-o1 and GPT-4o. Reason-
ing Tokens refer to tokens used for internal reasoning in OpenAI-
o1; Completion Tokens refer to all tokens consumed both inter-
nally and in external output. “+” and “×” indicate performance
gains and token consumption of OpenAI-o1 over GPT-4o.

10 100 1000
Number of Completion Tokens (Logarithmic)

65.0

67.5

70.0

72.5

75.0

77.5

80.0

82.5

Sc
or

e
(%

)

Knowledge
Reasoning
Overall
GPT-4o
OpenAI-o1-mini
OpenAI-o1-preview

Figure 5: The relationship be-
tween CS-Bench scores and the
number of tokens consumed.

among models with scales below 10B, Llama3-8B performs the best, rivaling previous much larger-
scale models and even surpassing Llama2-70B, indicating significant potential for compression in
model parameters (Delétang et al., 2024). Lastly, while performance variations exist among models
of different families at the same scale, models within the same family continue to improve with
increasing scale on CS-Bench (see detailed scale analysis in Section 3.4).

Comparison of Knowledge and Reasoning. Overall, all models perform worse on reasoning
(average 45.60%) compared to knowledge scores (average 60.61%), indicating that reasoning poses
a greater challenge to LLMs compared to knowledge. As shown in Figure 2, there is a strong
positive correlation between reasoning scores and knowledge scores. However, this correlation is not
absolute. For instance, PaLM-2 has a higher knowledge score but a lower reasoning score compared
to Claude-2.1, showing PaLM-2’s weakness in applying knowledge. Furthermore, more powerful
LLMs demonstrate a stronger ability to use knowledge for reasoning compared to weaker LLMs. This
is reflected in the much lower reasoning scores of weaker models relative to their knowledge scores.
However, as the model’s capability increases, the growth in reasoning scores is more pronounced
than that of knowledge scores, gradually bridging the gap between knowledge and reasoning abilities.

Comparison between Domains. First, regarding knowledge scores in Table 2 and Figure 3 (a),
models generally perform best in DSA and worst in OS, which we attribute mainly to differences in
the scale of pretraining data and the varying learning capabilities induced by model size. Second,
the demand for reasoning ability varies across different domains, as evidenced by the gap between
knowledge and reasoning scores. A notable example is GPT-4o, which shows close knowledge and
reasoning scores in OS, while exhibiting extreme differences in DSA, with the highest and lowest
scores, respectively. We further explore LLMs’ performance in fine-coursed subfields in Appendix
E.1 and explore the impact of Code and Math abilities on different CS domains in Section 3.5.

Comparison between Tasks. As shown in Figure 3 (b) and Table 14, given the varying initial
random scores, LLMs generally performs best on Assertion questions (average 63.14% across all
models), followed by MC questions (average 55.45%), Open-ended questions (average 49.3%), and
performs worst on FITB questions (average 41.58%). However, the variation in task format sensitivity
is highly pronounced in weaker models, while stronger models can mitigate the disparities caused
by different task formats, exhibiting robustness. For instance, Llama2-7B scores only 26.19% on
Open-ended reasoning but 60.61% on Assertion reasoning, whereas GPT-4 scores comparably on
both Open-ended reasoning (68.94%) and Assertion reasoning (67.68%).

3.3 OPENAI-O1 RESULT

Compared to general models’ reasoning processes, OpenAI-o1 models think before they answer,
forming a long internal chain of thought through reasoning tokens. As shown in Figure 4, OpenAI-o1
significantly improves reasoning performance. While OpenAI-o1-mini nearly matches GPT-4o
on knowledge-type questions, it boosts scores by 11.97 points on reasoning problems. Further-
more, OpenAI-o1-preview achieves substantial progress in both knowledge and reasoning questions.
However, this performance gain comes at the expense of a high token consumption. For instance,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 7 14 32 72 110
Parameter Scale (Linear)

30

40

50

60

70

O
ve

ra
ll

Sc
or

e
(%

)

(a)

Llama2
Llama3
Gemma
InternLM2
DeepseekLLM
Qwen1.5

7 14 32 72 110 1000
Parameter Scale (Logarithmic)

30

40

50

60

70

80
fit predict

(b)

Qwen1.5 Fitting
Llama2 Fitting
Qwen1.5 Observed Score
Llama2 Observed Score
Qwen1.5-110B Prediction

Llama2
7B

Llama2
13B

Llama2
70B

Llama3
8B

GPT-3.5 Llama3
70B

GPT-4
30

40

50

60

70

80

(c)

0-shot answer-only
5-shot answer-only
5-shot COT

Figure 6: (a) The performance of LLMs at different parameter scales. (b) The scale-score fitting
curve of Qwen1.5 and Llama2 series. (c) Comparison of models under 0-shot answer-only, 5-shot
answer-only, and 5-shot COT settings.

OpenAI-o1-preview consumes an average of nearly 1.2K tokens on reasoning questions, 21.24 times
that of GPT-4o. Figure 5 visualizes the relationship between model performance and completion
token consumption. For reasoning questions, performance roughly increases logarithmically with the
number of tokens, while the gains from token expenditure are lower for knowledge-type questions.
We conduct a case study in Appendix E.7, comparing the responses of GPT-4o and OpenAI-o1 to the
same questions.

3.4 QUALITATIVE ANALYSIS

Relationship between Scores and Model Scales. To investigate how the performance of models
varies with the increase in parameter size, we examine several model families and plot the results in
Figure 6 (a). It can be observed that although different families exhibit distinct performances, models
within the same family consistently show improvement as the parameter size increases. However, as
the model parameter size continues to increase, the performance gains from scaling diminish, resulting
in diminishing returns in efficiency. For instance, the score in Qwen1.5 improves by 16.19% from
0.5B to 7B, by 7.11% from 14B to 72B, and by only 2.66% from 72B to 110B. Additionally, as shown
in Figure 6 (b), when the parameter scale grows exponentially, the score approximately increases
linearly. This indicates that in the CS field, the model’s performance also follows a logarithmic scale
pattern. Given the substantial computational resources required for large-scale models, we aim to
establish the relationship between model scales and scores to predict the performance of larger-scale
models in the CS field by fitting smaller-scale model scores. Due to space limitations, the specific
design and implementation of the fitting function are provided in Appendix E.2. Overall, we fit the
functions of Llama2 and Qwen1.5 series based on models ranging from 7B to 70/72B. We validate
the fitting function on Qwen-1.5 110B, where the predicted value (67.83%) closely matches the actual
value (67.95%), enabling further predictions for theoretical models, even up to 1000B.

Comparison between Zero-shot, Few-shot and COT Prompting. To investigate the impact of
few-shot prompts and chain of thought (COT (Wei et al., 2022)) on model performance, we evaluate
model’s performance under 5-shot answer-only (AO) and 5-shot COT prompts in Figure 6 (c), where
the prompt samples are sampled from the validation set and match the domain of the test questions.
Given that model-generated results under 0-shot COT often don’t adhere to specific formats, making
regular matching difficult, we omit 0-shot COT experiments, similar to C-Eval. Additionally, for
Open-ended questions, since the answers include detailed explanations, 5-shot COT is the same as
5-shot AO. For all tested models, the 5-shot prompts show improvement compared to 0-shot, with
average increases of 1.47% for 5-shot AO and 2.00% for 5-shot COT, respectively. Moreover, the
efficacy of few-shot prompts in bringing improvements appears more pronounced in some robust
models such as GPT-3.5 and GPT-4, owing to their superior in-context learning capabilities.

Analysis of Error Types. To delve into the roots of LLMs’ failure on CS-Bench and offer pathways
toward improvement, we acquire the solution process of model errors under 5-shot COT, and utilize
GPT-4 to categorize each error type in MC questions in Figure 7. It should be emphasized that models
may cause joint errors, resulting in more than one error type assigned to a single answer. In general,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60 70

GPT-4

GPT-3.5

Llama2-
70B

Llama2-
13B

Llama2-
7B

11.93%

18.88%

32.81%

43.56%

45.26%

7.58%

14.0%

4.57%

2.98%

5.11%

9.68%

14.47%

14.54%

15.46%

19.42%

(a) Types of wrong answers to knowledge-based questions

Complete conceptual error
Partially conceptual error
Conceptual confusion

0 20 40 60 80 100

GPT-4

GPT-3.5

Llama2-
70B

Llama2-
13B

Llama2-
7B

34.99%

50.36%

52.2%

62.07%

68.9%

7.58%

16.09%

9.85%

7.71%

11.75%

6.85%

15.85%

20.49%

19.68%

18.44%

(b) Types of wrong answers to reasoning-based questions

Concept-related error
Logical reasoning error
Mathematical reasoning error

Figure 7: The proportion of different error types varies by models for multiple-choice questions.

Qwen1.5
0.5B

Qwen1.5
1.8B

Llama2
7B

Qwen1.5
4B

Llama2
13B

Qwen1.5
7B

Llama2
70B

Qwen1.5
14B

Mixtral
8×7B

Qwen1.5
32B

Qwen1.5
72B

GPT-4
0

25

50

75

100

Sc
or

e
(%

)

(a) GSM8K (p=0.93)

GSM8K CS-Bench

Qwen1.5
0.5B

Qwen1.5
1.8B

Llama2
7B

Qwen1.5
4B

Llama2
13B

Qwen1.5
7B

Llama2
70B

Qwen1.5
14B

Mixtral
8×7B

Qwen1.5
32B

Qwen1.5
72B

GPT-4
0

25

50

75

Sc
or

e
(%

)

(b) MATH (p=0.94)

MATH CS-Bench

Qwen1.5
0.5B

Qwen1.5
1.8B

Llama2
7B

Qwen1.5
4B

Llama2
13B

Qwen1.5
7B

Llama2
70B

Qwen1.5
14B

Mixtral
8×7B

Qwen1.5
32B

Qwen1.5
72B

GPT-4
0

25

50

75

Sc
or

e
(%

)

(c) HumanEval (p=0.91)

HumanEval CS-Bench

Qwen1.5
0.5B

Qwen1.5
1.8B

Llama2
7B

Qwen1.5
4B

Llama2
13B

Qwen1.5
7B

Llama2
70B

Qwen1.5
14B

Mixtral
8×7B

Qwen1.5
32B

Qwen1.5
72B

GPT-4
0

25

50

75

Sc
or

e
(%

)

(d) MBPP (p=0.96)

MBPP CS-Bench

Figure 8: The score changes on CS-Bench as LLM’s
Math/Code score increases. p denotes Pearson corre-
lation coefficient. We obtain the scores on Math/Code
datasets from (Alibaba, 2024).

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Pearson correlation coefficient (P)

Tool-use-
eval

T-Eval

GPQA

C-Eval

L-eval

BBH

Chatbot
Arena

HumanEval

GSM8K

MATH

MBPP

0.4019

0.5282

0.7175

0.7983

0.8902

0.8986

0.899

0.9146

0.9349

0.9458

0.9636

Average:0.9397
Average:0.7334

Figure 9: The consistency of model perfor-
mance between CS-Bench and other bench-
marks. Model scores from other benchmarks
are sourced from their official papers/websites
or the OpenLLM Leaderboard.

from Llama2-7B all the way to GPT-4, the total number of errors continues to decrease for both
knowledge-type and reasoning-type questions. For knowledge-type questions, both single concept
errors and concept confusion show a decreasing trend. Initially, some completely wrong concepts
transitioning to partially erroneous ones and subsequently being eliminated, thus exhibiting an initial
rise followed by a decline in partial concept errors. For reasoning-type questions, we observe that a
significant portion of errors still fall under the category of knowledge-based mistakes. While stronger
models have evidently reduced arithmetic reasoning errors for reasoning inaccuracies, there hasn’t
been much change in logic reasoning errors specific to the CS field. Our analysis highlights that
reinforcing CS knowledge concepts is the most direct and effective approach to improving LLMs’
performance in the field of CS. Furthermore, significant improvements in CS reasoning performance
are challenging to achieve solely by enhancing general reasoning abilities and mathematical reasoning,
necessitating CS-specific reinforcement. More details can be found in E.4.

3.5 WHAT’S THE RELATIONSHIP BETWEEN CS, MATH, AND CODE ABILITIES OF LLMS?

To explore the relationship between CS proficiency and the mathematical and coding capabilities of
models, we investigate (1) the performance of general LLMs across the fields of Math, Code, and CS,
and (2) the performance of LLMs specialized in Code and Math within the field of CS. 4

Exploration on General Models. In Figure 8, we illustrate how the models’ performance on
CS-Bench varies with increasing scores on the Math datasets (GSM8K (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021b)) and Code datasets (HumanEval (Chen et al., 2021), MBPP (Austin et al.,

4We leave the analysis from the model representation perspective in Appendix E.5.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: The performance of the Math-expert LLMs on CS-Bench (EN). We use blue to emphasize
areas where the expert LLMs improve compared to the Chat LLMs.

Model Type DSA CO CN OS All

Klg Rng Klg Rng Klg Rng Klg Rng Klg Rng Avg

InternLm2-7B Chat 59.57 40.92 58.83 37.94 62.65 40.60 50.94 39.29 58.31 39.77 51.56
InternLM-Math-7B (Ying et al., 2024) Math 60.23 31.56 50.56 38.61 55.93 44.47 47.69 43.85 53.64 39.41 48.45

DeepseekLLM-7B Chat 56.42 28.94 52.09 32.48 52.43 31.41 41.66 31.98 50.87 31.11 43.67
DeepSeekMath-Instruct-7B (Shao et al., 2024) Math 63.98 34.82 55.13 39.64 61.26 42.16 45.29 42.69 56.68 39.67 50.49

Llama2-13B Chat 51.74 35.00 51.81 36.18 53.03 37.99 48.12 32.36 51.31 35.46 45.54
MAammoTH-13B (Yue et al., 2023) Math 50.84 28.26 46.16 34.61 51.39 30.45 34.94 32.64 46.20 31.32 40.78

Llama2-70B Chat 64.28 41.51 56.35 40.85 61.99 43.07 51.79 41.15 58.73 41.68 52.52
WizardMath-70B (Luo et al., 2023a) Math 60.17 28.67 56.41 34.91 58.52 41.51 47.01 42.53 55.77 36.67 48.82

Table 4: The performance of the Code-expert LLMs on CS-Bench (EN).

Model Type DSA CO CN OS All

Klg Rng Klg Rng Klg Rng Klg Rng Klg Rng Avg

Llama2-7B Chat 51.51 32.61 48.89 31.82 46.72 30.75 41.04 26.26 47.15 30.48 41.08
CodeLlama-7B (Rozière et al., 2024) Code 58.90 36.15 45.46 36.24 52.87 26.23 44.35 25.33 50.36 31.09 43.34
Dolphcoder-7B (Wang et al., 2024c) Code 50.13 36.47 34.71 34.36 41.78 23.92 40.03 28.35 41.40 30.82 37.54
WizardCoder-7B (Luo et al., 2023b) Code 47.42 33.58 35.54 37.09 41.17 26.03 40.88 30.60 41.02 31.73 37.63

Llama2-13B Chat 51.74 35.00 51.81 36.18 53.03 37.99 48.12 32.36 51.31 35.46 45.54
CodeLlama-13B (Rozière et al., 2024) Code 59.87 34.17 44.96 35.82 51.56 35.83 43.28 34.56 49.84 35.08 44.47
WizardCoder-13B (Luo et al., 2023b) Code 50.80 32.98 38.69 35.27 43.42 28.34 40.88 34.29 43.27 32.59 39.38

2021)). We observe that the overall trend in CS-Bench performance closely aligns with changes in
Math and Code scores, as indicated by a Pearson correlation coefficient (Cohen et al., 2009) exceeding
0.9. Besides the general enhancement of diverse competencies that superior models typically bring,
we consider this evidence to suggest a close correlation between CS proficiency and abilities in Math
as well as Code.

Another piece of evidence is the consistency between CS-Bench and other benchmarks, including
non-CS scientific benchmarks (GPQA (Rein et al., 2023)), specialized benchmarks (Tool-use-eval
(Alibaba, 2024), T-Eval (Chen et al., 2024), L-eval (An et al., 2023), BBH (Suzgun et al., 2022)), and
general benchmarks (Chatbot Arena (Zheng et al., 2023), C-Eval(Huang et al., 2023b)). The results
are illustrated in Figure 9. We observe that CS-Bench and agents, tool usage, and other scientific
fields have a low correlation (P<0.8), whereas their correlation with benchmarks involving long texts,
multi-step reasoning, and general tasks is moderate (P<0.9). In contrast, the P-values for CS-Bench
and benchmarks in mathematics/coding are all above 0.9, reaching as high as 0.96 in MBPP, which
strongly supports the assertion that the model’s CS capabilities are closely related to its coding and
mathematical abilities. Additionally, we find that Chatbot Arena, BBH, and L-eval include subsets
related to mathematics and coding, resulting in their correlation with CS-Bench being higher than
that of other non-Code/Math benchmarks.

Next, we examine models with inconsistent patterns between CS and Math/Code. In the Math domain,
Qwen1.5-7B outperforms Llama2-70B in both GSM8K and MATH, yet in CS-Bench, Llama2-70B
surpasses Qwen1.5-7B. In the Code domain, Mixtral-8×7B performs better than Qwen1.5-32B on
HumanEval and MBPP, whereas the opposite is observed on CS-Bench. Given the NLP community’s
sustained focus on the Code and Math domains, some recently released models have been trained on a
large amount data in these domains, leading to smaller-scale models outperforming much larger-scale
ones (e.g., Qwen1.5-7B surpassing Llama2-70B). However, in the CS domain, due to insufficient
attention and training data, even excellent small-scale models struggle to surpass much larger-scale
models. This also indicates that CS-Bench has not been overfitted during LLM pretraining, making it
a fairer benchmark for measuring model performance differences.

Exploration on Expert Models. We present the results of the Math and Code expert LLMs in
Tables 3 and 4. Compared to general Chat LLMs, expert LLMs usually sacrifice other abilities to
boost proficiency in Math or Code, which is reflected in the lower overall performance of most expert
LLMs. Therefore, we are more concerned with identifying the specific aspects of CS where Math and
Code models show improvement. Regarding mathematics, InternLm-Math-7B improves InternLm2-
7B’s performance in CO, CN, and OS reasoning tasks, while DeepseekMath exhibits significant
improvements across all domains. According to (Shao et al., 2024), DeepseekMath effectively
maintains general knowledge and reasoning ability during specialization. Conversely, MAammoTH

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

and WizardMath perform poorly due to just fine-tuning on limited mathematical datasets, resulting in
a significant decline in general knowledge and reasoning. The score changes in LLMs suggest that
OS is most closely linked to mathematics, followed by CO, and lastly DSA and CN.

In terms of Code, many Code models show significant improvements in DSA (especially knowledge)
and OS (especially reasoning), such as CodeLlama and Dolphcoder. This indicates that the disciplines
of DSA and OS are more closely related to code, thus enhancing knowledge and reasoning abilities in
these directions, while CO and CN have lower relevance, leading to a decrease in scores. Finally, we
observe that the enhancement brought about by small-scale expert LLMs compared to larger-scale
LLMs is more pronounced (see CodeLlama-7B/13B, WizardCoder-7B/13B). We attribute this to the
supplementary need for specific knowledge and reasoning capabilities in small-scale LLMs, whereas
large-scale LLMs already encompass a greater breadth of knowledge and stronger reasoning abilities,
resulting in diminishing gains from further training in specific domains.

4 RELATED WORK

Exploration of LLMs in Computer Science. Given the powerful capabilities of LLMs, recent
research has explored their potential applications across various industries and scientific fields,
including finance (Zhao et al., 2024), autonomous driving (Huang et al., 2023a; Zhou et al., 2024),
robotics (Yuan et al., 2023a; Xiao et al., 2023; Wang et al., 2024a), medicine (Zhou et al., 2023a;
Vaid et al., 2024), and chemistry (Guo et al., 2023; Zhang et al., 2024a). Currently, studies exploring
LLMs in the field of computer science fall into two main categories. The first category includes broad
evaluation benchmarks covering various fields, such as MMLU (Hendrycks et al., 2021a), CMMLU
(Li et al., 2024), C-Eval (Huang et al., 2023b), Xiezhi (Gu et al., 2024), and M3KE (Liu et al., 2023a).
However, computer science constitutes only a small fraction of these benchmarks, accounting for less
than 5% and lacking detailed CS-specific analysis. The second category focuses solely on exploring
specific applications of LLMs within computer science, such as network topology (Donadel et al.,
2024), cybersecurity (Ferrag et al., 2024; Murtuza, 2024), and software engineering (Marques et al.,
2024; Dipongkor, 2024). Nonetheless, there has been a persistent lack of comprehensive evaluation
of LLMs’ foundational knowledge and reasoning abilities in computer science. To address this
gap, we propose CS-Bench and conduct a thorough evaluation of LLMs, providing guidance for
understanding and improving their performance in the CS field.

Evaluation of LLMs’ Capabilities. Evaluating and understanding the capabilities of LLMs is a
major focus within the NLP community. Researchers have extensively explored the capabilities of
LLMs including planning (Huang et al., 2024), multilingual processing (Lai et al., 2023; Bang et al.,
2023), instruction following (Zhou et al., 2023b; Wang et al., 2023b), and cross-domain generalization
(Wang et al., 2023a; Song et al., 2023; Wang et al., 2024b). Recently, there has been growing interest
in LLMs’ abilities in mathematics (Frieder et al., 2023; Collins et al., 2023; Wu et al., 2023; Yuan
et al., 2023b; Dong et al., 2024; Liu et al., 2024), code programming (Luo et al., 2023b; Rozière et al.,
2024; Wang et al., 2024c; Zhang et al., 2024b; Lin et al., 2024), and logical reasoning (Liu et al.,
2023b; Saparov et al., 2023; Xu et al., 2023; Wu et al., 2024). While individual capabilities have been
well-studied, research on their integrated application and interrelationships remains sparse. Different
from (Dong et al., 2024), which investigates interactions between abilities during the supervised
fine-tuning phase, we choose computer science as our research context. Given that computer science
inherently integrates coding, mathematics, and reasoning, we utilize CS-Bench in this paper to deeply
explore the relationship between LLMs’ performance in computer science and their mathematical and
coding abilities, aiming to advance cross-capability research and integrated analysis of LLM abilities.

5 CONCLUSION

In this work, we introduce CS-Bench, the first benchmark specifically designed to systematically
analyze the knowledge and reasoning capabilities of mainstream LLMs in the field of computer
science. Our evaluation of over 30 models highlights that even the top-performing GPT-4o/OpenAI-o1
has significant room for improvement in computer science. Further score-scale experiments and
error type analyses provide directions for enhancing LLMs in the field. Moreover, our investigation
into the relationship between computer science, mathematics, and coding demonstrates their close
interconnections and provides valuable insights into LLMs’ cross-abilities and applications.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Zhipu AI, 2024. URL https://zhipuai.cn/news/95.

Alibaba. Introducing qwen1.5 — qwen, 2024. URL https://qwenlm.github.io/blog/
qwen1.5/.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and
Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models. arXiv
preprint arXiv:2307.11088, 2023.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Anthropic. Introducing claude 2.1, 2023. URL https://www.anthropic.com/news/
claude-2-1.

Anthropic. Introducing the next generation of claude, 2024a. URL https://www.anthropic.
com/news/claude-3-family.

Anthropic. Introducing claude 3.5 sonnet, 2024b. URL https://www.anthropic.com/
news/claude-3-5-sonnet.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Baidu. Wenxinyiyan online, 2023. URL https://yiyan.baidu.com/.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Lovenia,
Ziwei Ji, Tiezheng Yu, Willy Chung, Quyet V. Do, Yan Xu, and Pascale Fung. A multitask,
multilingual, multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity, 2023.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
Zhi Chen, Pei Chu, et al. Internlm2 technical report. arXiv preprint arXiv:2403.17297, 2024.

Martin Campbell-Kelly, William F Aspray, Jeffrey R Yost, Honghong Tinn, and Gerardo Con Dı́az.
Computer: A history of the information machine. Routledge, 2023.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zehui Chen, Weihua Du, Wenwei Zhang, Kuikun Liu, Jiangning Liu, Miao Zheng, Jingming Zhuo,
Songyang Zhang, Dahua Lin, Kai Chen, et al. T-eval: Evaluating the tool utilization capability of
large language models step by step. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 9510–9529, 2024.

11

https://zhipuai.cn/news/95
https://qwenlm.github.io/blog/qwen1.5/
https://qwenlm.github.io/blog/qwen1.5/
https://www.anthropic.com/news/claude-2-1
https://www.anthropic.com/news/claude-2-1
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://yiyan.baidu.com/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen, Yiteng
Huang, and Israel Cohen. Pearson correlation coefficient. Noise reduction in speech processing,
pp. 1–4, 2009.

Katherine M. Collins, Albert Q. Jiang, Simon Frieder, Lionel Wong, Miri Zilka, Umang Bhatt,
Thomas Lukasiewicz, Yuhuai Wu, Joshua B. Tenenbaum, William Hart, Timothy Gowers, Wenda
Li, Adrian Weller, and Mateja Jamnik. Evaluating language models for mathematics through
interactions, 2023.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher
Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus
Hutter, and Joel Veness. Language modeling is compression, 2024.

Peter J Denning. Computer science: The discipline. Encyclopedia of computer science, 32(1):9–23,
2000.

Atish Kumar Dipongkor. Towards interpreting the behavior of large language models on software
engineering tasks. In Proceedings of the 2024 IEEE/ACM 46th International Conference on
Software Engineering: Companion Proceedings, pp. 255–257, 2024.

Denis Donadel, Francesco Marchiori, Luca Pajola, and Mauro Conti. Can llms understand computer
networks? towards a virtual system administrator, 2024.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected
by supervised fine-tuning data composition, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Mohamed Amine Ferrag, Fatima Alwahedi, Ammar Battah, Bilel Cherif, Abdechakour Mechri, and
Norbert Tihanyi. Generative ai and large language models for cyber security: All insights you
need, 2024.

Simon Frieder, Luca Pinchetti, Alexis Chevalier, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas
Lukasiewicz, Philipp Christian Petersen, and Julius Berner. Mathematical capabilities of chatgpt,
2023.

Zhouhong Gu, Xiaoxuan Zhu, Haoning Ye, Lin Zhang, Jianchen Wang, Yixin Zhu, Sihang Jiang,
Zhuozhi Xiong, Zihan Li, Weijie Wu, Qianyu He, Rui Xu, Wenhao Huang, Jingping Liu, Zili
Wang, Shusen Wang, Weiguo Zheng, Hongwei Feng, and Yanghua Xiao. Xiezhi: An ever-updating
benchmark for holistic domain knowledge evaluation, 2024.

Neel Guha, Julian Nyarko, Daniel E. Ho, Christopher Ré, Adam Chilton, Aditya Narayana, Alex
Chohlas-Wood, Austin Peters, Brandon Waldon, Daniel N. Rockmore, Diego Zambrano, Dmitry
Talisman, Enam Hoque, Faiz Surani, Frank Fagan, Galit Sarfaty, Gregory M. Dickinson, Haggai
Porat, Jason Hegland, Jessica Wu, Joe Nudell, Joel Niklaus, John Nay, Jonathan H. Choi, Kevin
Tobia, Margaret Hagan, Megan Ma, Michael Livermore, Nikon Rasumov-Rahe, Nils Holzenberger,
Noam Kolt, Peter Henderson, Sean Rehaag, Sharad Goel, Shang Gao, Spencer Williams, Sunny
Gandhi, Tom Zur, Varun Iyer, and Zehua Li. Legalbench: A collaboratively built benchmark for
measuring legal reasoning in large language models, 2023.

Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen Liang, Zhichun Guo, Nitesh V. Chawla, Olaf
Wiest, and Xiangliang Zhang. What can large language models do in chemistry? a comprehensive
benchmark on eight tasks, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021b.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of llm agents: A survey, 2024.

Yu Huang, Yue Chen, and Zhu Li. Applications of large scale foundation models for autonomous
driving. arXiv preprint arXiv:2311.12144, 2023a.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu, Maosong Sun, and Junxian He. C-eval: A
multi-level multi-discipline chinese evaluation suite for foundation models, 2023b.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):
S63–S63, 1977.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention, 2023.

Viet Dac Lai, Nghia Trung Ngo, Amir Pouran Ben Veyseh, Hieu Man, Franck Dernoncourt, Trung
Bui, and Thien Huu Nguyen. Chatgpt beyond english: Towards a comprehensive evaluation of
large language models in multilingual learning, 2023.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese, 2024.

Jiayi Lin, Hande Dong, Yutao Xie, and Lei Zhang. Scaling laws behind code understanding model,
2024.

Chuang Liu, Renren Jin, Yuqi Ren, Linhao Yu, Tianyu Dong, Xiaohan Peng, Shuting Zhang, Jianxiang
Peng, Peiyi Zhang, Qingqing Lyu, Xiaowen Su, Qun Liu, and Deyi Xiong. M3ke: A massive
multi-level multi-subject knowledge evaluation benchmark for chinese large language models,
2023a.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang. Evaluating the logical
reasoning ability of chatgpt and gpt-4, 2023b.

Wentao Liu, Hanglei Hu, Jie Zhou, Yuyang Ding, Junsong Li, Jiayi Zeng, Mengliang He, Qin Chen,
Bo Jiang, Aimin Zhou, and Liang He. Mathematical language models: A survey, 2024.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct, 2023a.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct, 2023b.

Nuno Marques, Rodrigo Rocha Silva, and Jorge Bernardino. Using chatgpt in software requirements
engineering: A comprehensive review. Future Internet, 16(6):180, 2024.

Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3/.

13

https://ai.meta.com/blog/meta-llama-3/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

MistralAI. Large enough — mistral ai — frontier ai in your hands, 2024. URL https://mistral.
ai/news/mistral-large-2407/.

Shariq Murtuza. Sentinels of the stream: Unleashing large language models for dynamic packet
classification in software defined networks – position paper, 2024.

OpenAI. Introducing chatgpt, 2022. URL https://openai.com/index/chatgpt/.

OpenAI. Hello gpt-4o, 2024a. URL https://openai.com/index/hello-gpt-4o/.

OpenAI. Openai o1 hub — openai, 2024b. URL https://openai.com/o1/.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark.
arXiv preprint arXiv:2311.12022, 2023.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov,
Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre
Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Seyed Mehran Kazemi,
Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
models using ood examples, 2023.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024.

Xiaoshuai Song, Keqing He, Pei Wang, Guanting Dong, Yutao Mou, Jingang Wang, Yunsen Xian,
Xunliang Cai, and Weiran Xu. Large language models meet open-world intent discovery and
recognition: An evaluation of chatgpt, 2023.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models
based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

THUDM. Chatglm3 series: Open bilingual chat llms, 2023. URL https://github.com/
THUDM/ChatGLM3.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Akhil Vaid, Joshua Lampert, Juhee Lee, Ashwin Sawant, Donald Apakama, Ankit Sakhuja, Ali
Soroush, Denise Lee, Isotta Landi, Nicole Bussola, et al. Generative large language models are
autonomous practitioners of evidence-based medicine. arXiv preprint arXiv:2401.02851, 2024.

Jiaqi Wang, Zihao Wu, Yiwei Li, Hanqi Jiang, Peng Shu, Enze Shi, Huawen Hu, Chong Ma, Yiheng
Liu, Xuhui Wang, et al. Large language models for robotics: Opportunities, challenges, and
perspectives. arXiv preprint arXiv:2401.04334, 2024a.

Jindong Wang, Xixu Hu, Wenxin Hou, Hao Chen, Runkai Zheng, Yidong Wang, Linyi Yang, Haojun
Huang, Wei Ye, Xiubo Geng, Binxin Jiao, Yue Zhang, and Xing Xie. On the robustness of chatgpt:
An adversarial and out-of-distribution perspective, 2023a.

Pei Wang, Keqing He, Yejie Wang, Xiaoshuai Song, Yutao Mou, Jingang Wang, Yunsen Xian,
Xunliang Cai, and Weiran Xu. Beyond the known: Investigating llms performance on out-of-
domain intent detection, 2024b.

14

https://mistral.ai/news/mistral-large-2407/
https://mistral.ai/news/mistral-large-2407/
https://openai.com/index/chatgpt/
https://openai.com/index/hello-gpt-4o/
https://openai.com/o1/
https://github.com/THUDM/ChatGLM3
https://github.com/THUDM/ChatGLM3

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Shenzhi Wang and Yaowei Zheng. Llama3-8b-chinese-chat (revision 6622a23), 2024. URL https:
//huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat.

Yejie Wang, Keqing He, Guanting Dong, Pei Wang, Weihao Zeng, Muxi Diao, Yutao Mou, Mengdi
Zhang, Jingang Wang, Xunliang Cai, and Weiran Xu. Dolphcoder: Echo-locating code large
language models with diverse and multi-objective instruction tuning, 2024c.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang,
Xin Jiang, and Qun Liu. Aligning large language models with human: A survey, 2023b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yiran Wu, Feiran Jia, Shaokun Zhang, Hangyu Li, Erkang Zhu, Yue Wang, Yin Tat Lee, Richard
Peng, Qingyun Wu, and Chi Wang. An empirical study on challenging math problem solving with
gpt-4, 2023.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin Wang, Najoung Kim,
Jacob Andreas, and Yoon Kim. Reasoning or reciting? exploring the capabilities and limitations of
language models through counterfactual tasks, 2024.

Xuan Xiao, Jiahang Liu, Zhipeng Wang, Yanmin Zhou, Yong Qi, Qian Cheng, Bin He, and Shuo
Jiang. Robot learning in the era of foundation models: A survey. arXiv preprint arXiv:2311.14379,
2023.

Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun Liu, and Erik Cambria. Are large language
models really good logical reasoners? a comprehensive evaluation and beyond, 2023.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang, Ce Bian, Chao Yin, Chenxu Lv, Da Pan,
Dian Wang, Dong Yan, et al. Baichuan 2: Open large-scale language models. arXiv preprint
arXiv:2309.10305, 2023.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning,
2024.

Mingze Yuan, Peng Bao, Jiajia Yuan, Yunhao Shen, Zifan Chen, Yi Xie, Jie Zhao, Yang Chen,
Li Zhang, Lin Shen, et al. Large language models illuminate a progressive pathway to artificial
healthcare assistant: A review. arXiv preprint arXiv:2311.01918, 2023a.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models, 2023b.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning, 2023.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Qiang Zhang, Keyang Ding, Tianwen Lyv, Xinda Wang, Qingyu Yin, Yiwen Zhang, Jing Yu, Yuhao
Wang, Xiaotong Li, Zhuoyi Xiang, Xiang Zhuang, Zeyuan Wang, Ming Qin, Mengyao Zhang,
Jinlu Zhang, Jiyu Cui, Renjun Xu, Hongyang Chen, Xiaohui Fan, Huabin Xing, and Huajun Chen.
Scientific large language models: A survey on biological and chemical domains, 2024a.

Ziyin Zhang, Chaoyu Chen, Bingchang Liu, Cong Liao, Zi Gong, Hang Yu, Jianguo Li, and Rui
Wang. Unifying the perspectives of nlp and software engineering: A survey on language models
for code, 2024b.

15

https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat
https://huggingface.co/shenzhi-wang/Llama3-8B-Chinese-Chat

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Huaqin Zhao, Zhengliang Liu, Zihao Wu, Yiwei Li, Tianze Yang, Peng Shu, Shaochen Xu, Haixing
Dai, Lin Zhao, Gengchen Mai, et al. Revolutionizing finance with llms: An overview of applications
and insights. arXiv preprint arXiv:2401.11641, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2023.

Lianmin Zheng, Ying Sheng, Wei-Lin Chiang, Hao Zhang, Joseph E Gonzalez, and Ion Stoica.
Chatbot arena: Benchmarking llms in the wild with elo ratings. Blog post, May, 2023.

Hongjian Zhou, Boyang Gu, Xinyu Zou, Yiru Li, Sam S Chen, Peilin Zhou, Junling Liu, Yining
Hua, Chengfeng Mao, Xian Wu, et al. A survey of large language models in medicine: Progress,
application, and challenge. arXiv preprint arXiv:2311.05112, 2023a.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models, 2023b.

Ziqi Zhou, Jingyue Zhang, Jingyuan Zhang, Boyue Wang, Tianyu Shi, and Alaa Khamis. In-context
learning for automated driving scenarios. arXiv preprint arXiv:2405.04135, 2024.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Appendix

CONTENTS

1 Introduction 1

2 CS-Bench 3

2.1 Design Principle . 3

2.2 Data Collection . 3

3 Experiment 4

3.1 Experimental Setup . 4

3.2 Main Results . 4

3.3 OpenAI-O1 Result . 6

3.4 Qualitative Analysis . 7

3.5 What’s the Relationship between CS, Math, and Code abilities of LLMs? 8

4 Related Work 10

5 Conclusion 10

A Limitations and Dataset Bias 19

B Broaden Impact 19

C More Details on CS-Bench 20

C.1 Details of Data Collection and Processing. 20

C.2 Detailed Design Motivation and Statistics of CS-Bench 20

C.3 Distribution of Word Lengths . 22

C.4 CS-Bench Examples . 22

D More Details on Experiment Setup 26

D.1 Details of Template for Each Task Format . 26

D.2 Details of GPT-4 Scoring . 26

D.3 Details of Inference Implementation . 27

D.4 Details of the Models being Evaluated . 27

E More Details on Experiment 31

E.1 Details of Model Performance . 31

E.2 Scale-Score Fitting Function for CS-Bench . 33

E.3 Model performance on CS-Bench across different languages 34

E.4 Case Study of Error Types . 36

E.5 Analysis from Model Representation . 40

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E.6 Exploration for Improving CS Performance . 41

E.7 Case Study of OpenAI-o1 . 42

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A LIMITATIONS AND DATASET BIAS

In this paper, we introduce CS-Bench, providing a comprehensive evaluation of LLMs and exploring
the relationships between model capabilities. However, there are still some limitations to this paper.

(1) Coverage Limitations: Although CS-Bench has made significant strides in comprehensiveness of
CS evaluations compared to existing work, given the breadth of computer science, our evaluations
cannot cover the entire scope of computer science knowledge. Furthermore, our assessment content
focuses on university-level content, examining LLM’s mastery of basic subjects in computer science,
rather than specific computer science-related research scenarios.

(2) Evaluation Limitations: In the CS-Bench evaluation experiments, we employ GPT-4 scoring to
assess generative tasks such as fill-in-the-blank and open-ended tasks. This might lead to certain
evaluation thresholds and costs. However, such issues only constitute about 20% of CS-Bench.
Additionally, we provide an evaluation scheme that separates comprehension tasks from CS-Bench,
allowing for automatic evaluations without the need for GPT-4. We also explore the effect of different
scoring models and find that even slightly inferior models produce score rankings consistent with
GPT-4, while significantly reducing costs.

(3) Language Limitations: CS-Bench are primarily focused on Chinese, French, German, and
English language environments, ensuring comprehensive and in-depth evaluations in these language
environments. However, for other environments, its support and coverage are relatively weak, and
further optimization and improvement are needed.

The main biases of CS-Bench can be categorized into two aspects:

(1) Difficulty Level: Overall, the benchmark reflects a university-level difficulty.

(2) Task Focus: It emphasizes knowledge- and reasoning-based questions rather than specific real-
world production scenarios in computer science.

The impact of difficulty on LLM evaluation is: lower difficulty tends to narrow the score differences
between models, while higher difficulty amplifies these differences. It is worth noting that although
CS-Bench maintains an overall university-level difficulty, the diversity of difficulty across questions
remains significant, ranging from simple definitions in data structures to challenging computer
network application problems. This is reflected in the model score range of 39.86% to 72.29%,
demonstrating CS-Bench’s effectiveness in distinguishing LLMs’ capabilities in computer science
and presenting challenges even for the best-performing models.

Regarding task scenarios, a key motivation for CS-Bench is that “some prior work has explored
LLMs in specific applications such as cybersecurity and software engineering.” However, as stated in
Section 4, there has been a lack of comprehensive evaluations of LLMs’ fundamental knowledge
and reasoning capabilities in computer science. Besides, considering the extensive research already
conducted by the LLM community on coding abilities, we view programming as a separate focus area.
Therefore, CS-Bench does not include programming questions but instead focuses on the relationship
between CS capabilities and coding abilities.

B BROADEN IMPACT

Societal Impact. CS-Bench is anticipated to play a significant role in the field of computer sci-
ence. LLMs, trained and evaluated with the aid of CS-Bench, can enhance the work efficiency of
relevant professionals, enabling them to complete computer-related tasks, such as code review, error
detection, and algorithm optimization, more quickly and accurately. Although this might result in the
disappearance of some repetitive jobs, it could also create new career opportunities. In the realm of
education, the CS-Bench dataset can serve as an effective teaching tool, assisting teachers in better
explaining complex computer science concepts and techniques, and also enabling students to better
understand and master this knowledge through practice. However, we should also be cautious of
potential risks associated with CS-Bench, such as exam cheating by students in the CS field, which
requires management mechanisms and logging to prevent misuse.

Ethics Statement. We ensure adherence to applicable laws and ethical guidelines during the
process of data collection, annotation, and usage, providing adequate compensation to all our crowd

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

workers. As this benchmark pertains to objective knowledge and reasoning in the field of computer
science, the annotation content is not influenced by regional or cultural differences among annotators.
Moreover, our dataset does not contain any personally identifiable information or offensive content.
The authenticity and accuracy of CS-Bench have been thoroughly verified, providing a reliable
basis for evaluating LLMs. CS-Bench is intended solely for academic and research purposes. Any
commercial use or other misuse deviating from this purpose is strictly prohibited. We urge all users
to respect this provision to maintain the integrity and ethical use of this valuable resource.

C MORE DETAILS ON CS-BENCH

In C.1, we introduce the details of data collection and processing for CS-Bench. In C.2, we provide
a detailed explanation of the design motivation and statistics for CS-Bench. In C.3, we present the
distribution of question and answer lengths for each task in CS-Bench. In C.4, we provide a case
example for each type under each dimension of CS-Bench.

C.1 DETAILS OF DATA COLLECTION AND PROCESSING.

Our data mainly comes from three sources: 1. Public channels providing computer science-related
questions, such as professional exams and practice tests5. 2. Knowledge-based questions manually
extracted and adapted by professionals from various academic-permitted CS-related blog posts 6. 3.
Questions constructed from non-public teaching materials and exam papers authorized by the author’s
affiliated institution. For resources sourced from the internet, we manually extract the knowledge
points and questions. For physical materials, we use Optical Character Recognition (OCR) to obtain
the data. We then ensure the accuracy of the collected data through manual cross-checking. The data
collection was carried out by a team of five students with bachelor’s degrees in computer science. We
provided each person with adequate wages, significantly above the local minimum wage standard.
Based on whether the questions require in-depth reasoning and computation, we label each question
as either knowledge-type or reasoning-type. Additionally, we tag each instance with domain and task
type labels. For English data, we used GPT-4 to translate the Chinese instances into English, French,
and German, followed by manual verification.

C.2 DETAILED DESIGN MOTIVATION AND STATISTICS OF CS-BENCH

We elaborate on the design motivation of CS-Bench and statistics under each dimension as follows.

Evaluation Content. To ensure comprehensive coverage of fundamental and critical areas in
computer science, we select the four most foundational and prevalent domains within the field of
computer science as the core content of the CS-Bench dataset. These four domains are as follows:
Data Structure and Algorithm, investigating data organization and algorithmic efficiency; Computer
Organization, focusing on hardware composition and foundational system operation; Computer
Network, involving the analysis of network communication and data transmission; Operating System,
delving into system resource management and process control. As depicted in Figure 10 (a), these
four disciplines exhibit a roughly uniform distribution. Furthermore, we subdivide the disciplines into
26 granular chapters, allowing CS-Bench to furnish more nuanced evaluation outcomes for models
and provide comprehensive guidance for model refinement. We summarize these chapters in Table 5.

Task Format. To better simulate the diverse forms of problems encountered in the real world,
we introduce assertion, fill-in-the-blank, and open-ended questions in addition to multiple-choice
questions. Specifically, multiple-choice and assertion questions correspond to understanding tasks in
CS, while fill-in-the-blank and open-ended questions correspond to generation tasks in CS. Although
assessing generation tasks using GPT-4 incurs certain costs, it is important to emphasize that this
component represents only a minority (fill-in-the-blank: 10.67%, open-ended: 7.81%), whereas
comprehension tasks relying on rule-based scoring constitute the majority (multiple-choice: 61.22%,

5e.g., https://github.com/CodePanda66/CSPostgraduate-408, https://github.com/ddy-ddy/cs-408
6e.g., https://www.wikipedia.org/, https://www.cnblogs.com/, https://www.csdn.net/,

https://zhuanlan.zhihu.com

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 5: Summary of 26 fine-grained subfields of CS-Bench.
Chatpter Main Content Subject Question Number

Overview Concepts and elements of data structure, Temporal and spatial complexity... DSA 168
Linear List Linear tables, Sequential tables and Linked lists... DSA 276
Stack, Queue,and Array Shared stack, Circle queue, Arrays,Special matrices... DSA 352
String Concept and operation of strings, Pattern matching of strings... DSA 132
Tree Binary trees, Traversal of trees ans forests, Huffman tree... DSA 428
Graph Concepts of graphs, Traversals of graphs,Application of graphs... DSA 368

Searching Sequential search, Half-split search, Chunked search, Red-black tree, B-tree
and B+ tree, Hash search... DSA 316

Sorting Insert Sorting, Swap Sorting, Selection Sorting, Merge Sorting, Heap Sorting,
Merge Sorting, Cardinality Sorting, External Sorting Algorithms... DSA 356

Overview Hardware and performance indicators of computers... CO 224
Data Representation and
Operation

Number system and encoding, Representation and operation of fixed-point nu-
mbers and floating-point numbers...

CO 436

Storage System Main Memory, External Memory, Cache Memory, Virtual Memory... CO 448
Instruction System Instruction format, Instruction addressing method, CISC and RISC... CO 312

Central Processing Unit
Functions of CPU, Instruction execution process, CPU internal bus and data
path, CPU hard wiring design and micro programming, Exception and inter-
rupt mechanisms, Instruction pipelines, and multiprocessor concepts...

CO 488

Bus Overview of the bus, Bus arbitration, Bus operation and timing, Bus standards... CO 268
Input/Output System I/O interfaces and methods... CO 312

Overview and Architecture Concepts, compositions, functions of computer networks, Architecture and
reference models of computer networks... CN 296

Physical Layer Fundamentals of Communication Theory, Transmission Media and Physical
Layer Devices... CN 328

Data Link Layer Data frames, Error control, Flow control and Reliable transmission, Media acc-
ess control, Local and wide area networks, and data link layer devices... CN 632

Network Layer Overview of network layer functions, Routing algorithms, IPv4 and IPv6, Rou-
ting protocols, IP multicast, Mobile IP, Router... CN 600

Transport Layer The services provided by the transport layer, UDP and TCP protocols... CN 364

Application Layer Network application model, Domain name system DNS, FTP protocol, World
Wide Web, and HTTP... CN 408

Overview Concepts of operating systems, Development and classification of operating
systems, Operational mechanisms and architecture of operating systems... OS 332

Processes and Threads Processes and threads, Scheduling of processors, Synchronization and mutual
exclusion of processes, Deadlock issues... OS 700

Memory Management Concept of memory management, Concept of virtual memory management,
and methods of virtual memory management... OS 432

File Management File systems, Organization and management of disks... OS 332
Input/Output Management I/O devices and control methods, I/O core subsystem, Buffer management... OS 368

24.76%
(2396)

27.16%
(2628)

25.71%
(2488)

22.36%
(2164)

(a) Domain

DSA
CN

CO
OS

61.22%
(5924)

20.3%
(1964)

10.67%
(1032)

7.81%
(756)

(b) Task Format

Multiple Choice
Assertion

Fill-in-the-Blank
Open-end

63.58%
(6152)

36.42%
(3524)

(c) Cognition

Knowledge
Reasoning

25.0%
(2419)

25.0%
(2419)

25.0%
(2419)

25.0%
(2419)

(d) Language

English
Chinese

French
German

Figure 10: The quantity and proportion of each type in different dimensions on CS-Bench.

assertion: 20.3%). Therefore, if resources are limited, we recommend considering the independent
use of understanding tasks from CS-Bench for evaluation purposes.

Knowledge / Reasoning. The design goal of CS-Bench is not only to assess the mastery of
knowledge in the field of CS but also to evaluate the model’s ability to reason using CS knowledge.
Therefore, each dataset is labeled with “knowledge” or “reasoning”, corresponding to simple questions
requiring knowledge recall and challenging questions necessitating knowledge inference, respectively.
As shown in Figure 10 (c), knowledge-based questions account for 63.58%, while reasoning-based
questions account for 36.42%.

Language. To assess the ability of LLMs in addressing CS problems in various linguistic environ-
ments, and to adapt CS-Bench for the evaluation of a wider range of LLMs, CS-Bench comprises
quadrilingual (English, Chinese, French, and German) data, with each language accounting for 25%.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The other data is obtained through translation by GPT-4, followed by manual verification of processed
Chinese data.

C.3 DISTRIBUTION OF WORD LENGTHS

We compute the distributions of word lengths for questions and answers in CS-Bench (English)
across various task formats, as illustrated in Figure 11. For Multiple-Choice questions, the question
length includes both the question itself and the four options. Since Multiple-Choice and Assertion
questions are comprehension tasks, the answers consist of only one character (A/B/C/D or True/False).
For generation tasks, Fill-in-the-blank answers are relatively short, with an average word length of
approximately 2, whereas Open-ended questions typically yield longer answers as they entail detailed
explanatory processes.

0 30 60 90 120 150
0

0.75

1.5

2.25

3

Pe
rc

en
ta

ge
 (%

)

Multiple Choice
Question
Mean=42.57
Median=37

0 15 30 45 60 75
0

2

4

6

8
Assertion
Question
Mean=18.36
Median=17

0 15 30 45 60 75
0

2

4

6

8
Fill-in-the-blank
Question
Mean=17.64
Median=16

0 40 80 120 160 200
0

0.5

1

1.5

2
Open-end
Question
Mean=50.19
Median=38.5

0 5 10 15 20 25
0

25

50

75

100

Pe
rc

en
ta

ge
 (%

)

Multiple Choice
Answer
Mean=1
Median=1

0 5 10 15 20 25
0

25

50

75

100 Assertion
Answer
Mean=1
Median=1

0 5 10 15 20 25
0

10

20

35

40
Fill-in-the-blank
Answer
Mean=1.71
Median=2

0 40 80 120 160 200
0

0.3

0.6

0.9

1.2 Open-end
Answer
Mean=93.38
Median=82.5

Figure 11: Question and answer lengths of each task format in CS-Bench (English).

C.4 CS-BENCH EXAMPLES

We present samples of knowledge and reasoning types in Table 6, samples from various domains in
Table 7, samples of different task formats in Table 8, and samples from different languages in Table 9.

Table 6: Examples of knowledge-type and reasoning-type.

Type Example

Knowledge

Question:
The three fundamental elements of data structure include ().
A: Logical structure, storage structure, operations on data.
B: Logical structure, algorithm design, program implementation.
C: Data types, data storage, data manipulation.
D: Data Definition, Data Implementation, Data Manipulation.
Answer:
A
Analysis:
None

Reasoning

Question:
The time complexity of a certain algorithm is O(n2), indicating that the algorithm’s ().
A: The problem size is O(n2).
B: Execution time equals O(n2).
C: The execution time is directly proportional to O(n2).
D: The problem size is directly proportional to O(n2).
Answer:
C
Analysis:
The time complexity is O(n2), which means the time complexity T (n) satisfies
T (n) ≤ c ∗ n2 (where c is a proportionality constant), that is, T (n) = O(n2). The time
complexity T (n) is a function of the problem size n, and the problem size remains n, not
n2.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: Examples of samples in different domains.

Domain Example

Data
Structure

and
Algorithm

Question:
The correct statement about data structures is ().
A: The logical structure of data is independent of its storage structure.
B: The storage structure of data is independent of its logical structure.
C: The logical structure of data uniquely determines its storage structure.
D: The data structure is determined solely by its logical structure and storage structure.
Answer:
A
Analysis:
The logical structure of data is approached from the perspective of practical problems,
using only abstract expressions and is independent of the various choices of data storage
methods. The storage structure of data is the mapping of the logical structure on a
computer, and it cannot exist independently of the logical structure. Data structure
includes three essential elements, all of which are indispensable.

Computer
Organization

Question:
A complete computer system should include ().
A: Arithmetic Logic Unit (ALU), Memory, Control Unit
B: Peripheral devices and host computer
C: Host and Application
D: The accompanying hardware devices and software systems
Answer:
D
Analysis:
A is a component of the computer host, while B and C only involve parts of the computer
system and are both incomplete.

Computer
Network

Question:
The most basic function of computer networks is ().
A: Data Communication
B: Resource Sharing
C: Distributed Processing
D: Information Synthesis Processing
Answer:
A
Analysis:
The functions of computer networks include: data communication, resource sharing,
distributed processing, integrated information processing, load balancing, enhancing
reliability, etc. However, the most fundamental function is data communication, which is
also the basis for realizing other functions.

Operating
System

Question:
Among the following options, () is not an issue of concern for the operating system.
A: Manage bare-metal computers
B: Design and provide an interface between user programs and hardware systems
C: Manage computer system resources
D: Compiler for High-Level Programming Languages
Answer:
D
Analysis:
The operating system manages computer software/hardware resources, expands the bare
machine to provide a more powerful extended machine, and acts as an intermediary
between the user and the hardware. Clearly, the compiler for high-level programming
languages is not a concern of the operating system. The essence of a compiler is a set of
program instructions that are stored in the computer.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 8: Examples of different task formats.

Type Example

Multiple
Choice

Question:
Given that the storage space for a circular queue is the array A[21], with front pointing to
the position before the head element and rear pointing to the tail element, assuming the
current values of front and rear are 8 and 3, respectively, the length of the queue is ().
A: 5
B: 6
C: 16
D: 17
Answer:
C
Analysis:
The length of the queue is (rear - front + maxsize) % maxsize = (rear - front + 21) % 21 =
16. This situation is the same as when front points to the current element and rear points
to the next element after the last element in the queue.

Assertion

Question:
In a directed graph with n vertices, the degree of each vertex can reach up to 2n.
Answer:
False.
Analysis:
In a directed graph, the degree of a vertex is equal to the sum of its in-degree and
outdegree. In a directed graph with n vertices, any given vertex can have at most one pair
of oppositely directed edges connecting it with each of the other n-1 vertices.

Fill-in-
the-blank

Question:
In a sequential list of length n, when deleting the ith (1 ≤ i ≤ n) element, () elements
need to be moved forward.
Answer:
n-i
Analysis:
The elements from a[i+1] to a[n] need to be moved forward by one position, involving the
movement of n-(i+1)+1=n-i elements.

Open-ended

Question:
Given that the 9th level of a complete binary tree has 240 nodes, how many nodes does
the entire complete binary tree have? How many leaf nodes are there?
Answer:
In a complete binary tree, if the 9th level is full, then the number of nodes = 2(9−1) = 256.
However, currently, there are only 240 nodes on the 9th level, indicating that the 9thlevel
is not full and is the last level. Levels 1 to 8 are full, so the total number of nodes =
28 + 240 = 495. Since the 9th level is the last level, all nodes on the 9th level are leaf
nodes. Moreover, the parents of the 240 nodes on the 9th level are on the 8th level, with
the number of parents being 120, which means there are 120 branch nodes on the 8th
level, and the rest are leaf nodes. Therefore, the number of leaf nodes on the 8th level is
2(8−1) − 120 = 8. Consequently, the total number of leaf nodes = 8 + 240 = 248.
Analysis:
None

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 9: Examples of different languages.

Type Example

English

Question:
For a linear list with sequential storage, the operation with a time complexity of O(1)
should be ().
A: Sort n elements in ascending order.
B: Remove the i-th (1 ≤ i ≤ n) element.
C: Change the value of the i-th element (1 ≤ i ≤ n).
D: Insert a new element after the i-th (1 ≤ i ≤ n) element.
Answer:
C
Analysis:
The time complexity for sorting n elements is at least O(n) (when initially ordered), and
typically O(n log2 n) or O(n2). Options B and D are clearly incorrect. Sequential lists
support random access by index.

Chinese

Question:
对于顺序存储的线性表，其算法时间复杂度为O(1)的运算应该是()。
A:将n个元素从小到大排序
B:删除第i (1 ≤ i ≤ n)个元素
C:改变第i (1 ≤ i ≤ n)个元素的值
D:在第i (1 ≤ i ≤ n)个元素后插入个新元素
Answer:
C
Analysis:
对n个元素进行排序的时间复杂度最小也要O(n)（初始有序时）通常为
O(n log2 n)或O(n2)。B和D显然错误。顺序表支持按序号的随机存取方式。

French

Question:
Pour une liste linéaire stockée de manière séquentielle, l’opération dont la complexité
temporelle algorithmique est O(1) devrait être ().
A: Trier n éléments dans l’ordre croissant.
B: Supprimer le i-ème (1 ≤ i ≤ n)élément.
C: Modifier la valeur du ième élément (1 ≤ i ≤ n).
D: Insérez un nouvel élément après le i-ème (1 ≤ i ≤ n) élément.
Answer:
C
Analysis:
La complexité temporelle pour trier n éléments est au minimum O(n) (lorsque la liste est
initialement ordonnée), généralement O(n log2 n) ou O(n2). Les options B et D sont
manifestement incorrectes. Une liste séquentielle supporte l’accès aléatoire par indice.

German

Question:
Für sequentiell gespeicherte lineare Listen, welche Operation hat eine algorithmische
Zeitkomplexität von O(1)? ().
A: Sortiere n Elemente der Größe nach von klein nach groß.
B: Lösche das i-te (1 ≤ i ≤ n)Element.
C: Ändere den Wert des i-ten Elements (1 ≤ i ≤ n).
D: Füge nach dem i-ten (1 ≤ i ≤ n) Element ein neues Element ein.
Answer:
C
Analysis:
Die Zeitkomplexität für das Sortieren von n Elementen beträgt mindestens O(n) (wenn
sie anfänglich sortiert sind) und ist normalerweise O(n log2 n) oder O(n2). B und D
sind offensichtlich falsch. Eine sequentielle Liste unterstützt den zufälligen Zugriff nach
Index.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D MORE DETAILS ON EXPERIMENT SETUP

In D.1, we present the question templates used to prompt models for each type of task. In D.2, we show
the prompts used for GPT-4 to score models’ answers to fill-in-the-blank and open-ended questions,
and validate the effectiveness of GPT-4’s automatic scoring through consistency experiments with
human scoring. We also explore the effect of different scoring models. In D.3, we detail the
experimental environment used to implement model inference. In D.4, we introduce all the evaluated
model families.

D.1 DETAILS OF TEMPLATE FOR EACH TASK FORMAT

We present the templates for querying LLMs with various question formats in Table 10.

Table 10: Prompt Templates for asking various questions to LLMs.

Type Prompt Template

Multiple
Choice

This is a multiple-choice question. Please read the question carefully and choose the
correct answer. Question: <Question>
Which one of the following options is correct? Options:
(A) <A>
(B)
(C) <C>
(D) <D>
Please provide the answer to this question directly (a single letter):

Assertion
This is a true/false question. Please determine whether the following statement is true
or false. Statement: <Question>
Please give the answer directly (true or false):

Fill-in-
the-blank

You are a professor proficient in computer science. This is a fill-in-the-blank question.
Give answers to the following question without explanation or repeating it.
Question: <Question>
Answer:

Open-ended This is a subjective Question: <Question>
Please provide a brief answer to this question:

D.2 DETAILS OF GPT-4 SCORING

GPT-4 Scoring Prompt. In Table 13, we present the prompts utilized to instruct GPT-4 in scoring
the outputs of LLMs in CS generation tasks, encompassing both FITB and Open-ended questions.

Consistency between GPT-4 Scoring and Manual Scoring. To assess the effectiveness of GPT-4
scoring in evaluating LLM responses, we conduct a consistency experiment between GPT-4 prediction
scores and manual scores. For Fill-in-the-blank and Open-ended types, we randomly sample 100
instances from the GPT-4 scoring samples and employ three human annotators to score these predicted
results. These three annotators all hold bachelor’s degrees in computer science. Their scoring criteria
were consistent with the evaluation standards provided to GPT-4 and can be found in Table 13. In
Table 11, we report the consistency scores among human annotators (measured by Cronbach’s alpha),
as well as the consistency scores between the average human annotation scores and GPT-4 scoring
(measured by Pearson correlation coefficient). The excellent consistency between human and GPT-4
scores validates the effectiveness of GPT-4 scoring.

Table 11: Consistency between GPT-4 scoring and human scoring.

Type Annotation Count Consistency

Human-GPT4 Human-Human

Fill-in-the-blank 100 0.808 0.9311
Open-ended 100 0.9494 0.9751

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Effect of Different Scoring Models To investigate the impact of different models acting as judges,
as well as the relationship between the tested model and the judge’s capabilities on the robustness
of the evaluation process, we first use the Claude family to construct a set of models with varying
abilities: Claude3-Haiku < Claude3-Sonnet < Claude3-Opus < Claude3.5-Sonnet (following the
official Claude capability ranking (Anthropic, 2024b)). Next, we pair each two models respectively
as the judge and the tested model. The results are as shown in Table 12.

Table 12: Performance of tested models under different scoring models.

Model Claude3-Jaiku
(Judge)

Claude3-Sonnet
(Judge)

Claude3-Opus
(Judge)

Claude3.5-Sonnet
(Judge)

GPT-4
(Judge)

Claude3-Haiku (Test) 64.61 64.56 63.22 62.45 60.69
Claude3-Sonnet (Test) 64.33 63.75 62.13 62.05 60.17
Claude3-Opus (Test) 71.74 71.29 70.46 69.97 68.63
Claude3.5-Sonnet (Test) 73.97 73.46 72.43 72.27 71.01

Firstly, when all Claude models act as judges, their scoring of the tested models aligns consistently
with GPT-4. This effectively demonstrates the robustness of the evaluation process, as consistent
ranking results are obtained regardless of whether the tested model’s performance is inferior or
superior to that of the judge model (Claude3-Haiku and Claude3.5-Opus representing the two
extremes of judge model capabilities). We believe that as long as a model possesses a certain level of
discernment, it can serve as a judge, without needing to outperform all tested models. Even the least
capable model, Claude3-Haiku, can yield score rankings consistent with GPT-4 during evaluation,
while costing only $0.25 / 1.25 per million tokens for input/output, respectively, significantly reducing
evaluation costs. Secondly, we observe that stronger models tend to be more stringent in their scoring.
This is reflected in the assessment scores for all tested models, consistently following the order:
Claude3-Haiku < Claude3-Sonnet < Claude3-Opus < Claude3.5-Sonnet. We believe this occurs
because more capable evaluation models can identify deeper levels of error. Lastly, we find that the
models score fairly and do not tend to give themselves disproportionately high scores (as seen when
the same model acts as both judge and test model).

D.3 DETAILS OF INFERENCE IMPLEMENTATION

For all open-source models, we utilize a cluster with 8 NVIDIA A100-80GB GPUs to run the
inference, and we use vLLM (Kwon et al., 2023) for inference acceleration, applying the corre-
sponding chat templates and the same hyper-parameters: batch size=1, temperature=0, top-p=1.0,
and max tokens=2048. For all closed-source models with API access, we also adopt the generation
scheme with temperature=0, and simply run the inference with CPUs, which typically completes
within a day. During the evaluation of GPT-4, we also applied the setting of temperature=0. To avoid
error bias, we conducted the experiments 3 times and took the average of the scores. For models
supporting web search or tool calls, we disable these features to ensure a fair comparison.

D.4 DETAILS OF THE MODELS BEING EVALUATED

Gemma (Team et al., 2024) is a family of lightweight, open models from Google, built from the
same research and technology used to create the Gemini models. They are text-to-text, decoder-only
large language models, available in English, with open weights, pre-trained variants, and instruction-
tuned variants. The Gemma model excels on academic benchmarks in language understanding,
reasoning, and security. Gemma publishes models in two sizes (2 billion and 7 billion parameters) .

Llama2 (Touvron et al., 2023) is an upgraded version of Llama developed by MetaAI. It uti-
lizes more robust data cleaning and mixing techniques, and up-samples sources closest to factual
information, which can enhance knowledge and reduce hallucinations. Additionally, it employs
Grouped-Query Attention technology to lessen reliance on memory.

Llama3 (Meta, 2024) is the latest generation of large language models developed by MetaAI. The
training dataset for Llama 3 is seven times larger than that used for Llama 2, with the amount of code
included being four times that of Llama 2. Compared to previous versions of the model, it has seen a
tremendous enhancement in reasoning, code generation, and instruction following capabilities.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 13: Scoring Prompts for Fill-in-the-blank and Open-ended Questions.

Type Prompt Template

Fill-in-
the-blank

You are now a teaching assistant. As a TA, your task is to grade the fill-in-the-blank
assignments of computer science students.
You will see the standard answer for each question (these answers are verified and
completely correct), and you need to score the students’ answers based on this.
If the student’s answer conveys the same meaning as the standard answer or other
answers (different formats are also considered correct), then award 1 point; if not,
then 0 points.
Question: <question>
Standard Answer: <correct answer>
Other Answers: <other answers>
Student Response: <predict output>
Score (0 or 1):

Open-
ended

You are now serving as a teaching assistant. In this role, your task is to grade the
subjective homework assignments of computer science students. You will be presented
with the standard answers for each question (which are verified and completely correct),
and you must use these to score the students’ responses. The grading scale ranges from 1
to 10 points, with 10 being the highest and 1 being the lowest. When grading, please take
into consideration the accuracy, relevance, completeness, and depth of thought of the
answers. Scores should be assigned based on the following *criteria*:

First Tier: 1-3 points
Accuracy: The answer contains several fundamental errors, showing limited understanding.
Relevance: The answer has low relevance to the question and standard answer, with most
content straying from the requirements. Completeness: The answer omits multiple key
points, failing to cover the main aspects of the question.

Second Tier: 4-6 points
Accuracy: There are some errors in the answer, although most of the basic concepts are
understood correctly.
Relevance: The answer is generally relevant to the question and standard answer, but
some content does not fully conform to the requirements.
Completeness: The answer is fairly complete, but lacks some important details or certain
key points are not fully elaborated.

Third Tier: 7-8 points
Accuracy: The answer is almost entirely correct, with only very minor errors.
Relevance: The answer is highly relevant to the question and standard answer, focused
and with almost no deviation from the topic.
Completeness: The answer is comprehensive and detailed, covering all key aspects
very well.

Fourth Tier: 9-10 points
Accuracy: The answer is free of any errors, demonstrating a deep understanding and
precise grasp of the issue.
Relevance: The answer is in complete accordance with the requirements, strictly aligned
with the question and standard answer, without any deviation.
Completeness: The answer is structured rigorously, logically organized, and systemati-
cally covers all aspects of the question.

Grading Guide: When assigning a score, please first make a preliminary assessment of
accuracy based on the student’s answer compared to the standard answer. Then, consider
the relevance and completeness to determine the final score. Ensure that each point
awarded is based on a fair and justified comprehensive evaluation.

Llama3.1-405B (Dubey et al., 2024) is an auto-regressive language model developed by MetaAI,
utilizing an optimized transformer architecture. Trained on over 15 trillion tokens, it demonstrates
excellent flexibility, control, and advanced capabilities. Llama3.1-405B is the largest openly available
foundation model released by MetaAI.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Llama3-Chinese (Wang & Zheng, 2024) is an instruction-tuned language model for Chinese and
English users with various abilities such as roleplaying and tool-using built upon the Meta-Llama-3-
8B-Instruct model.

ChatGLM3 (Zeng et al., 2022) is a next-generation conversational pre-trained model jointly
released by Zhipu AI and KEG Lab of Tsinghua University. ChatGLM3-6B adopts a newly designed
Prompt format, in addition to regular multi-turn dialogue. It also natively supports complex scenarios
such as function call, code interpretation.

Baichuan2 (Yang et al., 2023) is a large-scale multilingual model developed by Baichuan Company.
It adopts several advanced techniques in its design and training process, including Rotary Position
Embedding, a novel position encoding technique, SwiGLU activation function, and memory efficient
attention mechanism. Compared with Baichuan1, its performance has been greatly improved.

InternLM2 (Cai et al., 2024) is an open-source large-scale language model developed by Shanghai
AI Laboratory. This model has good processing ability for ultra long texts and adopts COOL RLHF
technology. It solves human preference conflicts through a conditional reward model and performs
multiple rounds of online RLHF to improve the model’s alignment ability.

Qwen1.5 (Bai et al., 2023) is a family of language models developed by Alibaba. It has features
such as SwiGLU activation, attention QKV bias, group query attention, mixture of sliding window
attention and full attention, etc. Qwen 1.5 series models have strong basic capabilities including
language understanding.

Mistral-7B (Jiang et al., 2023), a 7-billion-parameter language model designed for superior perfor-
mance and efficiency, which is developed by Mistral AI. Mistral 7B leverages Packet Query Attention
(GQA) for faster inference, combined with Sliding Window Attention (SWA) to efficiently process
sequences of arbitrary length while reducing inference costs.

Mixtral-8×7B (Jiang et al., 2024) is a Sparse Mixture of Experts (SMoE) language model de-
veloped by Mistral AI. Its architecture is the same as that of the Mistral 7B, except that each layer
consists of 8 feedforward blocks (i.e., experts). Mixtral has demonstrated exceptional abilities in
math, code generation, and tasks that require multilingual understanding.

Mistral-Large-123B (MistralAI, 2024) is a language model developed by Mistral AI with a 128K
context window, supporting dozens of languages including French, German, Spanish, Italian, Russian,
Chinese, Japanese, and Korean, as well as over 80 programming languages. It is designed for
single-node inference with long-context applications in mind – its size of 123 billion parameters
allows it to run at large throughput on a single node.

DeepSeekLLM (Bi et al., 2024) is a family of models released by DeepSeek-AI, and its core
architecture borrows from the Llama model. This family of models employs Multi-Head Attention
(MHA) and Group Query Attention (GQA) techniques, which significantly enhance their performance
and efficiency. Furthermore, DeepSeekLLM demonstrates strong bilingual capabilities in both
Chinese and English.

PaLM-2 (Anil et al., 2023) is the higher-performance successor to PaLM released by Google,
which differs in terms of dataset mixing. Compared to the first-generation PaLM version, it uses a
smaller model but performs more training calculations. It also relies on more diverse pre-training
targets.

Claude2 Claude2.1(Anthropic, 2023) and Claude3 (Anthropic, 2024a) are AI models developed by
Anthropic, showcasing advanced language understanding and generation capabilities. Utilizing the
constitutional AI framework, Claude models are designed to ensure helpfulness and trustworthiness.
Claude-3.5-Sonnet (Anthropic, 2024b) is the first product in the Claude-3.5 model series developed by
Anthropic. It demonstrates significant improvements in understanding nuance, humor, and complex
instructions, and excels at generating high-quality content with a natural, relatable tone. It possesses

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

exceptional coding capabilities, allowing it to independently write, edit, and execute code, along with
advanced reasoning and troubleshooting skills. Additionally, it is Anthropic’s most powerful visual
model to date.

GPT GPT-3.5 (OpenAI, 2022), GPT-4 (Achiam et al., 2023) and GPT-4o (OpenAI, 2024a), released
by OpenAI, are part of the GPT-series models enhanced by a three-stage reinforcement learning with
human feedback (RLHF) algorithm. This algorithm not only improves the models’ ability to follow
instructions but also significantly reduces the generation of harmful or toxic content. Additionally,
GPT-4 supports image inputs and achieves human-level performance on various benchmarks. GPT-4o,
the latest model developed by OpenAI, boasts powerful real-time reasoning, language interaction,
and multimodal capabilities.

OpenAI-o1 (OpenAI, 2024b) is a new large language model developed by OpenAI, trained with
reinforcement learning to handle complex reasoning. It can produce a long internal chain of thought
before responding to the user, and o1 refines its chain of thought and improves its strategies by
learning to recognize and correct mistakes, break down complex steps into simpler ones, and adopt
alternative approaches when the current method fails. It currently has two versions: o1-preview,
which has strong reasoning capabilities and broad world knowledge, and o1-mini, a lightweight
version with faster reasoning speed.

GLM-4 (AI, 2024) is a new generation base large model developed by Zhipu AI. It has strong
tool calling and multi-modal capabilities, as well as strong mathematical reasoning ability and code
generation ability.

ERNIE (Baidu, 2023) ERNIE3.5 and ERNIE4 are large language models developed by Baidu.
ERNIE3.5 is capable of processing text data in multiple languages and has a good understanding and
representation ability for entities and relationships in text. Ernie 4 has adopted more advanced knowl-
edge graph information and more advanced knowledge integration technology, further improving the
performance of the model.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

E MORE DETAILS ON EXPERIMENT

In E.1, we present detailed performance of the models on CS-Bench (EN), including the leaderboard,
task formats, and domains. In E.2, we describe and validate the design of the scale-score fitting
function. In E.3, we compare models’ performance across different contexts, with a focus on
evaluating and analyzing the model’s performance on CS-Bench (CN). In E.4, we conduct case
studies to better understand the specific details of the models’ failures on CS-Bench. In E.5, We
further analyze and interpret the relationship phenomena among Code, Math, and CS abilities from
internal representations and data characteristics. In E.6, based on our findings, we explore and
experiment with several specific approaches to enhance CS capabilities. In E.7, we analyze examples
from OpenAI-o1 and compare them with GPT-4o.

E.1 DETAILS OF MODEL PERFORMANCE

The Leaderboard on CS-Bench. We visualize the results of LLMs on CS-Bench in Figure 12.

2B 7B 13B 32B 70B 110B 405B Closed-Source
LLMModel Scale (Billion Parameters)

40

50

60

70

80

Sc
or

e
(%

) o
n

C
S-

B
en

ch
 (E

N
)

Gemma-2B
Qwen1.5-1.8B

Llama2-7B

ChatGLM3-6B Baichuan2-7B
DeepseekLLM-7B

Llama2-13BQwen1.5-4B
Baichuan-13BGemma-7B

Qwen1.5-7BInternLm2-7B Mistral-7B Llama2-70B
Llama3-8B InternLm2-20B

Qwen1.5-14B DeepseekLLM-67BMixtral-8×7B
Qwen1.5-32B

Qwen1.5-72BLlama3-70B
Qwen1.5-110B

Mistral-Large-123B Llama3.1-405B

PaLM2
Claude2.1

Claude3

GPT-3.5

GPT-4

GPT-4o
Claude-3.5

OpenAI-o1-mini

OpenAI-o1-preview

Figure 12: The leaderboard of LLMs on CS-Bench (EN).

Detailed Performance on Each Task Format. We present models’ performance on four types of
tasks in Table 14 and visualize the results in Figure 13.

MC
knowledge

Assertion
knowledge

FITB
knowledge

Open-ended
knowledge

MC
reasoning

Assertion
reasoning

FITB
reasoning

Open-ended
reasoning

20
40

60
80

100

(a) Small open-source models

ChatGLM3-6B
Llama2-7B
Deepseek-7B

Baichuan2-7B
Gemma-7B
Qwen1.5-7B

InternLm2-7B
Mistral-7B
Llama3-8B

MC
knowledge

Assertion
knowledge

FITB
knowledge

Open-ended
knowledge

MC
reasoning

Assertion
reasoning

FITB
reasoning

Open-ended
reasoning

20
40

60
80

100

(b) Large open-source models

Mixtral-8x7B
Deepseek-67B
Llama2-70B
Llama3-70B

Qwen1.5-72B
Qwen1.5-110B
Mistral-Large-123B
Llama3.1-405B

MC
knowledge

Assertion
knowledge

FITB
knowledge

Open-ended
knowledge

MC
reasoning

Assertion
reasoning

FITB
reasoning

Open-ended
reasoning

20
40

60
80

100

(c) Close-source models

PaLM2
GPT-3.5
Claude-2.1

Claude-3
GPT-4
GPT-4o

Claude-3.5
OpenAI-o1-mini
OpenAI-o1-preview

Figure 13: Performance of various LLMs for each ability dimension about task formats.

Detailed Performance on Each Subfield. In Figure 14, we visualize the models’ knowledge and
reasoning performance across the four domains of CS-Bench. Subsequently, we focus on the models’
performance in 26 fine-grained subfields. Table 15 presents the results of eight representative models.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Table 14: Zero-shot scores (%) of LLMs across question formats on CS-Bench (EN).

Model Multiple-choice Assertion Fill-in-the-blank Open-ended All

Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg

Random 25.00 25.00 25.00 50.00 50.00 50.00 0.00 0.00 0.00 10.00 10.00 10.00 27.4 24.12 26.20

Open-source LLM (Scale < 10B)

Gemma-2B 46.87 25.85 38.74 52.58 48.48 51.64 34.12 7.55 27.68 49.60 26.02 32.96 46.89 27.59 39.86
Qwen1.5-4B 53.00 35.47 46.22 56.84 58.59 57.24 29.41 11.32 25.02 55.40 28.58 36.47 51.18 35.70 45.54

ChatGLM3-6B 47.51 33.07 41.92 58.97 60.61 59.34 31.76 5.66 25.43 53.80 28.94 36.25 48.63 34.07 43.33
Llama2-7B 47.00 28.06 39.67 56.84 60.61 57.70 23.53 5.66 19.20 63.80 26.19 37.25 47.15 30.48 41.08

DeepseekLLM-7B 50.19 28.06 41.63 60.49 58.59 60.06 31.76 13.21 27.26 59.80 28.67 37.83 50.87 31.11 43.67
Baichuan2-7B 47.51 35.27 42.77 57.14 59.60 57.70 32.94 7.55 26.78 52.40 26.90 34.40 48.29 35.33 43.57

Gemma-7B 56.70 33.07 47.56 58.05 57.58 57.94 38.82 15.09 33.06 58.20 33.36 40.67 54.90 35.02 47.66
Qwen1.5-7B 59.90 40.08 52.23 58.97 56.57 58.42 38.24 16.98 33.08 69.60 35.75 45.71 57.34 40.08 51.05

InternLm2-7B 59.26 39.48 51.61 60.49 55.56 59.36 45.88 15.09 38.41 69.00 39.03 47.84 58.31 39.77 51.56
Mistral-7B 57.34 39.68 50.51 62.61 54.55 60.77 53.53 16.98 44.66 67.40 42.39 49.75 58.63 40.44 52.01
Llama3-8B 61.81 46.09 55.73 64.44 61.62 63.80 38.24 11.32 31.71 67.60 41.33 49.06 59.75 44.97 54.37

Open-source LLM (Scale > 10B)

Llama2-13B 50.06 33.87 43.79 55.93 56.57 56.08 44.71 22.64 39.36 62.00 29.65 39.16 51.31 35.46 45.54
Baichuan-13B 53.00 37.68 47.07 58.66 53.54 57.49 35.88 16.98 31.30 59.80 31.15 39.58 52.53 37.44 47.03
Qwen1.5-14B 64.62 50.70 59.23 62.61 59.60 61.92 51.76 28.30 46.07 70.60 43.45 51.44 62.79 49.18 57.83

InternLm2-20B 62.20 43.69 55.04 61.09 62.63 61.44 51.18 24.53 44.72 67.20 36.02 45.19 60.81 43.66 54.56
Qwen1.5-32B 70.63 57.92 65.71 63.53 62.63 63.32 53.53 22.64 46.04 73.20 48.76 55.95 66.87 54.72 62.45
Mixtral-8×7B 66.28 47.09 58.85 67.78 56.57 65.22 58.24 26.42 50.52 71.00 45.93 53.30 65.91 46.66 58.90

DeepseekLLM-67B 66.92 45.29 58.55 65.96 63.64 65.43 54.71 28.30 48.30 67.20 42.57 49.81 65.23 45.96 58.22
Llama2-70B 58.88 42.28 52.46 61.09 59.60 60.75 51.18 16.98 42.88 63.80 34.96 43.44 58.73 41.68 52.52
Llama3-70B 73.95 57.52 67.59 69.91 63.64 68.48 63.53 37.74 57.27 72.00 53.98 59.28 71.65 56.36 66.08

Qwen1.5-72B 72.03 60.32 67.50 70.52 66.67 69.64 55.29 28.30 48.74 73.00 52.30 58.39 69.63 57.75 65.31
Qwen1.5-110B 74.33 62.73 69.84 73.25 67.68 71.98 57.06 33.96 51.46 75.20 60.00 64.47 71.98 60.91 67.95

Mistral-Large-123B 78.29 66.13 73.58 73.86 66.67 72.22 60.00 41.51 55.52 74.80 65.13 67.97 74.84 64.37 71.03
Llama3.1-405B 79.57 63.93 73.52 72.04 65.66 70.58 65.29 56.60 63.18 70.80 58.58 62.17 75.64 62.81 70.96

Closed-source LLM

PaLM-2 65.91 43.66 57.30 66.36 62.77 65.54 56.52 29.79 50.04 64.47 35.64 44.12 64.85 44.01 57.26
Claude-2.1 63.47 46.89 57.05 66.87 67.68 67.06 49.41 24.53 43.38 72.40 55.84 60.71 62.97 49.42 58.04

Claude-3-Opus 73.82 61.32 68.98 73.56 70.71 72.91 62.94 37.74 56.83 76.73 66.11 69.23 72.57 61.75 68.63
GPT-3.5 63.35 41.48 54.89 68.39 63.64 67.30 48.82 24.53 42.93 68.00 42.65 50.11 63.04 43.45 55.91
GPT-4 77.27 62.32 71.48 75.38 67.68 73.62 61.18 43.40 56.87 77.40 68.94 71.43 74.85 62.66 70.41

Claude-3.5-Sonnet 77.14 64.33 72.18 73.25 64.65 71.28 69.41 58.49 66.76 73.60 64.16 66.94 75.13 63.97 71.07
GPT-4o 80.08 63.73 73.75 75.68 72.73 75.01 64.71 41.51 59.08 75.20 69.47 71.16 76.95 64.15 72.29

Special Reasoning LLM

OpenAI-o1-mini 80.46 77.56 79.34 76.29 75.76 76.17 67.06 71.70 68.19 75.60 72.74 73.58 77.60 76.12 77.06
OpenAI-o1-preview 87.99 83.57 86.28 79.33 77.78 78.98 72.35 73.58 72.65 80.60 76.73 77.87 83.61 80.98 82.65

DSA
knowledge

CO
knowledge

CN
knowledge

OS
knowledge

DSA
reasoning

CO
reasoning

CN
reasoning

OS
reasoning

20
40

60
80

100

(a) Small open-source models

ChatGLM3-6B
Llama2-7B
Deepseek-7B

Baichuan2-7B
Gemma-7B
Qwen1.5-7B

InternLm2-7B
Mistral-7B
Llama3-8B

DSA
knowledge

CO
knowledge

CN
knowledge

OS
knowledge

DSA
reasoning

CO
reasoning

CN
reasoning

OS
reasoning

20
40

60
80

100

(b) Large open-source models

Mixtral-8x7B
Deepseek-67B
Llama2-70B
Llama3-70B

Qwen1.5-72B
Qwen1.5-110B
Mistral-Large-123B
Llama3.1-405B

DSA
knowledge

CO
knowledge

CN
knowledge

OS
knowledge

DSA
reasoning

CO
reasoning

CN
reasoning

OS
reasoning

20
40

60
80

100

(c) Close-source models

PaLM2
GPT-3.5
Claude-2.1

Claude-3
GPT-4
GPT-4o

Claude-3.5
OpenAI-o1-mini
OpenAI-o1-preview

Figure 14: Performance of various LLMs for each ability dimension about CS domains.

Firstly, we can observe significant variations in scores across different subfields within the same
domains for the models. Taking the DSA domain as an example, Llama2-70B scores range from
45.44% to 76.67% across different chapters (average 56.93%), while GPT-3.5 scores range from
55.17% to 80.00% (average 60.67%). Secondly, the performance of different models in the same
subfield is generally consistent compared to the average scores. For instance, all models perform
above the average scores in the “Overview” and “Stack, Queue, and Array” subfields of DSA but
below average in the “Tree” and “Graph” subfields. These detailed scores allow us to understand
which content poses greater challenges for the models and provides guidance for improving the
models’ performance in computer science by strengthening these weaker subfields.

We further observe that although the overall scores of models from the same family increase with
scale, not all chapters follow this pattern. As shown in Figure 15, the Llama2 series exhibits a trend

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Table 15: Detailed scores of models on fine-grained subfields.
Content Llama2-7B Llama2-13B Llama2-70B Mixtral-8×7B Llama3-8B Llama3-70B GPT-3.5 GPT-4

Data Structure and Algorithm

Overview 56.67 51.11 59.44 68.06 73.33 68.06 71.11 74.17
Linear List 34.48 44.83 53.45 58.62 53.45 65.52 55.17 67.24
Stack, Queue, and Array 49.61 50.91 57.40 57.66 58.96 71.95 61.43 76.49
String 76.67 66.67 76.67 66.67 70.00 80.00 80.00 70.00
Tree 32.78 36.33 45.78 47.89 35.67 57.11 40.33 60.56
Graph 43.80 37.47 45.44 65.70 54.56 68.23 56.96 68.61
Searching 51.29 52.00 61.14 60.57 54.86 56.71 58.14 74.86
Sorting 30.52 37.27 56.10 52.08 54.55 71.56 62.21 74.68
Average 46.98 47.07 56.93 59.66 56.92 67.39 60.67 70.83

Computer Organization

Overview 51.20 61.40 61.60 76.40 68.20 80.20 73.20 81.80
Data Representation and Operation 27.95 38.72 38.46 50.51 39.74 50.38 45.64 57.44
Storage System 41.80 46.10 58.00 61.70 53.60 68.10 56.20 68.50
Instruction System 51.76 53.68 57.79 59.56 53.82 75.74 65.29 80.44
Central Processing Unit 41.93 42.66 53.67 54.50 51.65 62.75 51.74 74.86
Bus 60.70 59.12 61.40 66.32 47.37 71.75 66.49 73.33
Input/Output System 37.58 35.48 29.19 52.42 44.03 52.42 35.48 58.23
Average 44.70 48.17 51.44 60.20 51.20 65.91 56.29 70.66

Computer Network

Overview and Architecture 52.15 48.31 58.77 62.77 58.15 68.62 57.23 69.08
Physical Layer 42.11 47.61 52.25 57.89 53.52 65.77 54.51 69.01
Data Link Layer 32.35 41.06 42.35 57.12 50.61 59.62 60.23 63.94
Network Layer 38.40 48.78 58.47 62.37 65.19 75.57 62.98 77.48
Transport Layer 42.95 48.72 66.28 70.77 63.46 81.79 61.54 86.79
Application Layer 47.61 55.00 60.34 65.91 63.30 75.34 64.55 79.89
Average 42.60 48.25 56.41 62.81 59.04 71.12 60.17 74.37

Operating System

Overview 39.74 40.65 48.57 65.32 60.65 69.87 51.82 68.31
Processes and Threads 34.14 42.61 43.57 55.73 50.83 63.57 47.58 66.82
Memory Management 31.63 42.04 52.04 51.02 53.67 60.71 51.02 70.41
File Management 40.00 49.34 57.37 54.87 55.66 61.97 56.32 64.08
Input/Output Management 34.88 36.83 41.46 50.98 47.07 51.10 38.05 59.76
Average 36.08 42.29 48.60 55.58 53.58 61.44 48.96 65.88

Overall 41.08 45.54 52.52 58.90 54.37 66.08 55.91 70.41

Overview Linear List Stack,
Queue,and Array

String Trees Graph Searching Sorting
0

10

20

30

40

50

60

70

80

(a) Data Structure and Algorithm

Overview Data
Represent-
ation and
Operation

Storage
System

Instruction
System

Central
Processing Unit

Bus Input/Output
System

0

10

20

30

40

50

60

70

80

(b) Computer Organization

Overview
and

Architecture

Physical
Layer

Data Link
Layer

Network
Layer

Transport
Layer

Application
Layer

0

10

20

30

40

50

60

70

80

(c) Computer Network

Overview Processes
and Threads

Memory
Management

File
Management

Input/Output
Management

0

10

20

30

40

50

60

70

80

(d) Operating System

Llama2-7B Llama2-13B Llama2-70B

Figure 15: The performance of the Llama2 series models in each subfield.

of scores increasing with scale in most subfields (17 out of 26 subfields); however, there are some
exceptions. For instance, Llama2-7B performs exceptionally well in the “string” chapter of DSA,
while Llama2-13B excels in the “Data Representation and Operation” chapter of CO, surpassing the
performance of Llama2-70B.

E.2 SCALE-SCORE FITTING FUNCTION FOR CS-BENCH

To enhance CS performance, large-scale models are often utilized; however, these models demand
more computational resources for both training and deployment inference. Therefore, it is desirable

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

7B 14B 32B 72B 110B
Parameter Scale (Logarithmic)

0

10

20

30

40

50

60

70

O
ve

ra
ll

Sc
or

e
(%

)

(a)

Llama2
Qwen1.5

7B 14B 32B 72B 110B
Parameter Scale (Linear)

0

10

20

30

40

50

60

70

(b)

Qwen1.5 Fitting Curve (1=0.89 2=2.12)
Llama2 Fitting Curve (1=0.54 2=2.65)
Qwen1.5 Ground-Truth Score
Llama2 Ground-Truth Score
Qwen1.5-110B Prediction
Llama2-70B Prediction

Figure 16: The logarithmic scale-score performance and scale-score fitting curve of Qwen1.5 and
Llama2 series.

to establish a relationship between model scale and CS performance, enabling the prediction of
theoretically larger models’ scores on CS-Bench based on the performance of smaller-scale models.
The established fitting function should adhere to the following criteria:

1. The score should monotonically increase with the increase in model scale, approaching 0 as the
scale approaches 0, and approaching 1 (100%) as the scale approaches infinity.

2. As illustrated in Figure 16 (a), when the model scale varies exponentially, the score should exhibit
an approximately linear trend.

3. Due to variations in performance and change slopes among different model families at the same
scale, the fitting function needs to incorporate model-family-specific hyperparameters.

Guided by these criteria, we experiment with various functions and find the following function to
satisfy the conditions and work best:

Score = 1− 1

θ1log10(θ2 · Scale + 1) + 1
(1)

Where θ1 and θ2 are hyperparameters specific to the model family. To validate the effectiveness of
the function, we estimate hyperparameters based on the minimum mean square error on small-scale
models and predict performance scores on larger-scale models. For the Qwen1.5 family, we use
models of 7, 14, 32, and 72B to predict the 110B model’s performance. For the Llama2 series, we
predict the 70B model’s performance based on 7B and 13B. As depicted in Figure 16 (b), for Qwen1.5
110B, the predicted score (67.83%) closely matches the true value (67.95%). For Llama2-70B, with
only two reference data points, the predicted score (55.08%) deviates from the true value (52.52%)
by only 2.56%.

E.3 MODEL PERFORMANCE ON CS-BENCH ACROSS DIFFERENT LANGUAGES

We first compare the performance of multilingual models in different languages within CSBench, as
shown in Figure 17. It is observed that the Llama2 and Llama3 series show a significant decline in
performance for languages other than English, such as Llama3-8B. In contrast, GPT-4o maintains
a good balance across multiple languages. Next, we select the Chinese model as a case outside of
English, conducting in-depth tests on Chinese-oriented models and comparing their performance
differences between Chinese and English.

Performance on CS-Bench (CN). We assess models that support Chinese on CS-Bench (CN).
The foundation models include the LLama3 and GPT-4 series, which are not specifically optimized
for Chinese, as well as Chinese-oriented open-source models, including ChatGLM, Baichuan2,
InternLm2, Qwen1.5 and llama3-chinese series. We also evaluate Chinese-oriented closed-source
models, including GLM-4 and ERNIE-3.5/4. Details of these models are provided in Appendix D.4.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

Llama2-7B Llama2-13B Llama2-70B Llama3-8B Llama3-70B GPT-4o
0

10

20

30

40

50

60

70

Sc
or

e
(%

)

Chinese
French
German
English

Figure 17: Comparison of models in different languages on CS-Bench. Due to the Llama2 series not
supporting Chinese, we ignore their results in CS-Bench (CN).

Table 16: Zero-shot scores (%) of LLMs across domains on CS-Bench (CN), where “Klg” represents
knowledge-type, “Rng” represents reasoning-type, and “Avg” represents Average.

Model Data Struc & Algo Computer Organization Computer Network Operating System Overall

Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg

Random 28.04 24.63 26.65 26.57 25.24 26.13 26.34 22.49 24.98 29.06 24.23 27.27 27.4 24.12 26.20

Open-source LLM (Scale < 10B)

ChatGLM3-6B 41.74 32.48 37.97 44.07 34.91 41.05 49.02 32.31 43.14 43.02 32.86 35.98 44.67 33.09 40.45
Baichuan2-7B 42.04 31.51 37.75 44.93 37.88 42.61 50.74 31.11 43.83 42.18 34.07 39.16 45.27 33.47 40.97
InternLm2-7B 41.97 34.54 38.95 55.77 38.67 50.13 60.05 41.86 53.65 50.94 44.07 48.39 52.71 39.61 47.94
Qwen1.5-7B 49.13 37.71 44.48 60.86 44.48 55.46 60.90 45.68 55.54 58.38 48.24 54.61 57.62 43.79 52.59
Llama3-8B 50.47 29.68 42.01 50.81 36.30 46.03 56.09 42.21 51.21 52.01 38.85 47.12 52.46 36.61 46.69

Llama3-8B-Chinese 49.20 33.72 42.90 54.99 33.09 47.77 58.77 48.59 55.19 55.58 41.10 50.20 54.84 39.17 49.13

Open-source LLM (Scale > 10B)

Baichuan2-13B 48.83 34.68 43.07 54.18 36.00 48.18 55.11 39.85 49.74 49.19 40.27 45.88 52.10 37.63 46.83
Qwen1.5-14B 51.47 48.81 50.39 64.43 46.85 58.63 68.69 55.18 63.94 69.58 56.59 64.76 63.78 51.81 59.42

InternLm2-20B 51.97 38.03 46.30 58.36 45.76 54.20 60.60 50.50 57.05 58.70 45.66 53.86 57.59 44.85 52.95
Qwen1.5-32B 55.89 56.70 56.22 67.74 60.00 65.19 70.33 66.83 69.10 72.40 62.03 68.55 66.77 61.35 64.80
Llama3-70B 53.28 55.41 54.15 67.97 49.58 61.91 71.07 61.81 67.81 65.29 57.36 62.35 64.86 56.18 61.70

Qwen1.5-72B 58.16 52.02 55.66 70.28 52.91 64.55 75.25 66.23 72.08 74.12 63.19 70.06 69.73 58.52 65.64

Closed-source LLM

GPT-3 54.15 39.63 48.24 60.86 43.27 55.06 64.29 48.89 58.87 56.36 39.84 50.22 59.27 42.96 53.33
GPT-4 60.03 60.28 60.13 77.60 60.24 71.88 73.50 72.86 73.27 71.46 65.60 69.29 71.06 64.80 68.78
GPT-4o 61.67 66.45 63.62 78.86 55.32 71.10 78.61 74.17 77.05 72.66 69.94 71.67 73.46 66.69 71.00
GLM-4 58.12 58.37 58.22 74.03 59.49 69.24 71.65 70.21 71.14 73.31 67.14 71.06 69.55 63.75 67.44

ERNIE-3.5 58.16 55.62 57.13 74.56 58.73 69.34 74.68 65.16 71.33 72.13 63.37 68.94 70.28 60.63 66.77
ERNIE-4 57.92 62.33 59.72 78.24 64.18 73.60 76.27 69.74 73.97 75.84 69.54 73.54 72.49 66.36 70.26

Table 17: Zero-shot scores (%) of LLMs across task formats on CS-Bench (CN).

Model Multiple-choice Assertion Fill-in-the-blank Open-ended Overall

Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg Klg Rng Avg

Random 25.00 25.00 25.00 50.00 50.00 50.00 0.00 0.00 0.00 10.00 10.00 10.00 27.4 24.12 26.20

Open-source LLM (Scale < 10B)

ChatGLM3-6B 45.21 34.07 40.90 54.41 48.48 53.05 23.53 11.32 20.57 43.80 25.22 30.68 44.67 33.09 40.45
Baichuan2-7B 44.96 32.26 40.05 53.80 56.57 54.43 29.41 13.21 25.48 47.20 27.52 33.31 45.27 33.47 40.97
InternLm2-7B 51.09 40.08 46.83 59.88 55.56 58.89 44.12 18.87 38.00 60.80 33.27 41.37 52.71 39.61 47.94
Qwen1.5-7B 59.64 48.50 55.33 60.79 50.51 58.44 42.35 15.09 35.74 58.20 30.35 38.54 57.62 43.79 52.59
Llama3-8B 53.26 35.67 46.45 56.23 59.60 57.00 42.35 16.98 36.20 49.60 29.47 35.39 52.46 36.61 46.69

Llama3-8B-Chinese 55.43 40.08 49.49 59.57 56.57 58.88 42.94 16.98 36.64 55.60 30.62 37.97 54.84 39.17 49.13

Open-source LLM (Scale > 10B)

Baichuan2-13B 52.11 39.48 47.22 59.57 51.52 57.73 40.00 16.98 34.42 43.40 27.08 31.88 52.10 37.63 46.83
Qwen1.5-14B 67.82 57.72 63.91 65.05 56.57 63.11 43.53 24.53 38.92 63.80 34.96 43.44 63.78 51.81 59.42

InternLm2-20B 58.49 46.89 54.00 59.57 54.55 58.42 47.06 26.42 42.05 67.00 35.40 44.69 57.59 44.85 52.95
Qwen1.5-32B 71.26 68.74 70.28 64.74 63.64 64.49 51.76 28.30 46.07 63.40 42.04 48.32 66.77 61.35 64.80
Llama3-70B 66.03 60.32 63.82 66.57 65.66 66.36 58.24 33.96 52.35 59.00 40.71 46.09 64.86 56.18 61.70

Qwen1.5-72B 72.41 67.74 70.60 72.34 55.56 68.51 54.71 28.30 48.30 63.80 34.96 43.44 69.73 58.52 65.64

Closed-source LLM

GPT-3 57.98 42.48 51.98 65.05 61.62 64.27 54.71 24.53 47.39 56.60 36.81 42.63 59.27 42.96 53.33
GPT-4 73.31 67.13 70.92 72.04 67.68 71.04 62.35 60.38 61.87 60.40 54.16 56.00 71.06 64.80 68.78
GPT-4o 75.92 69.33 73.37 73.86 68.69 72.68 62.94 50.94 60.03 70.20 62.92 65.06 73.46 66.69 71.00
GLM-4 73.68 69.76 72.16 68.09 57.58 65.69 55.03 47.17 53.12 68.00 52.92 57.36 69.55 63.75 67.44

ERNIE-3.5 72.24 63.71 68.94 69.30 61.62 67.55 63.91 50.94 60.76 70.40 51.95 57.38 70.28 60.63 66.77
ERNIE-4 73.55 70.35 72.31 72.34 56.57 68.74 70.00 67.92 69.50 68.40 58.32 61.28 72.49 66.36 70.26

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

ChatGLM3
6B

Baichuan2
7B

Baichuan2
13B

Qwen1.5
7B

InternLm2
7B

Llama3
8B

InternLm2
20B

GPT-3.5 Qwen1.5
14B

Qwen1.5
32B

Qwen1.5
72B

Llama3
70B

GPT-4 GPT-4o
20

30

40

50

60

70

80

Sc
or

e
(%

)

English
Chinese

Figure 18: Comparison of models in English and Chinese on CS-Bench.

As shown in Table 16 and Table 17, the scores of these models on CS-Bench(CN) range from
40.45% to 70.26%. Despite not being specifically optimized for Chinese, GPT-4o still achieves the
best performance. Among the Chinese-oriented models, ERNIE-4 outperforms GPT-4, achieving
performance close to GPT-4o. Additionally, ERNIE-3.5 and GLM-4 score similarly, slightly lower
than GPT-4’s performance in Chinese. Notably, Llama3-8B-chinese surpasses Llama3-8B by 2.44%,
highlighting the importance of adapting models to specific languages. We further compare the
performance of the models on CS-Bench(EN) and CS-Bench(CN) in Figure 18. Compared to English,
the GPT and Llama3 series, which are not optimized for Chinese, perform worse on Chinese context.
For instance, Llama3-8B experiences a decrease of 7.68% on Chinese, and Llama3-70B drops by
4.38%. Although some Chinese-oriented models also show slight decreases in performance in the
Chinese context, such as InterLm2-20B, the decline is much less significant than that of the Llama3
series. Moreover, the Qwen1.5 series even demonstrates improved performance on Chinese tasks.
Finally, we observe that larger models within the same family are less affected by different languages,
as reflected in Baichuan2-7/13B, Internlm2-7/20B, and Llama3-8/70B.

E.4 CASE STUDY OF ERROR TYPES

We first introduce the error types of knowledge-type questions and reasoning-type questions in Table
18 and Table 19. To facilitate a better understanding of each error type, we provide examples of each
error type made by GPT-3.5 in knowledge-based and reasoning-based questions in Table20 and 21,
respectively. Additionally, Table 22 presents several examples that contain multiple error types.

Table 18: Error types for knowledge-type questions.

Error Type Explanation

Complete
conceptual error

For a certain piece of knowledge or concept, the model is completely unaware of it
or has misunderstood all of it.

Partial
conceptual error

For a certain piece of knowledge or concept, the model has only grasped part of it
or has misunderstood part of its content.

Conceptual
confusion

For multiple pieces of knowledge or concepts, the model has incorrectly matched
their names with their attributes.

Table 19: Error types for reasoning-type questions.

Error Type Explanation

Concept-
related error

The model misunderstands certain pieces of knowledge, causing incorrect
answers, This includes the three types of knowledge-based errors mentioned above.

Logical
reasoning error

The model made logical reasoning errors when answering computer science-related
questions.

Mathematical
reasoning error

During the response process, errors in numerical calculations, symbolic calculations,
and other computational processes caused the model to produce incorrect answers.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Table 20: Example of knowledge-type question error types. We use red to mark errors in the output
and blue to indicate the reasons for the errors.

Error Type Example

Complete
conceptual

error

Question:
When two sequential stacks share the same one-dimensional array space, how are their
stack bottoms and stack tops set?”
A: Two stacks with the same bottom end, extending in opposite directions from the top.
B: Two stacks with tops at the same end and bottoms extending in opposite directions.
C: The bottom and top of the stack are at the same end.
D: Two stacks with bottoms at opposite ends and tops extending towards the middle.
Answer:
D
Wrong Output:
When two sequential stacks share the same one-dimensional array space, their stack
bottoms and stack tops are set as follows: Two stacks with tops at the same end and bott-
oms extending in opposite directions. This means that the top of one stack and the bottom
of the other stack are at the same end of the array, while their bottoms extend in opposite
directions. This allows for efficient utilization of the array space for both stacks. The
correct answer is (B). Answer: (B) Two stacks with tops at the same end and bottoms
extending in opposite directions.
Error Details:
In GPT-3.5’s response, it was mentioned that the top of two stacks are at the same end,
while the bottom of the stack extends in opposite directions. This reflects that GPT-3.5 is
completely not familiar with the implementation of shared stacks.

Partial
conceptual

error

Question:
What are the main functions of the network layer?
A: Data Transparent Transmission
B: Power Management
C: Signal Amplification
D: Data Compression
Answer:
A
Wrong Output:
The main functions of the network layer are data transparent transmission and data
compression. The network layer is responsible for routing and forwarding data packets
between different networks, ensuring that data is delivered to the correct destination. It
does not handle power management or signal amplification. The correct answers are A
and D.
Error Details:
GPT-3.5 correctly answered that transparent data transmission is a function of the network
layer, but at the same time incorrectly pointed out that data compression is the main
function of the network layer, witch indicating an incorrect understanding of certain
aspects of network layer functionality.

Conceptual
confusion

Question:
What are the basic steps of simple selection sort?
A: Select the element with the smallest key from the elements to be sorted and swap it
with the first element. B: Insert elements into the sorted sequence in order.
C: Compare adjacent elements in sequence and swap them.
D: Use the divide and conquer method to sort elements.
Answer:
D
Wrong Output:
The basic steps of simple selection sort are: (A) Select the element with the smallest key
from the elements to be sorted and swap it with the first element. (C) Compare adjacent
elements in sequence and swap them. The correct answer is A and C.
Error Details:
The answers output by GPT-3.5 are A and C, and it is claimed that the basic steps of
simple selection sorting are to select the smallest element and exchange it with the first
element, and to compare adjacent elements and exchange them. This is obviously
incorrect because comparing adjacent elements and swapping them is a Bubble Sort This
indicates that GPT confuses bubble sorting and selection sorting.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Table 21: Example of reasoning-type question error types.

Error Type Example

Concept-
related
error

Question:
In the topological ordering of the directed graph G, if vertex Vi precedes vertex Vj, then
the following situation cannot occur: ()
A: G contains an arc <Vi, Vj>.
B: There is a path from Vi to Vj in G.
C: There is no arc <Vi, Vj> in G.
D: There is a path from Vj to Vi in G.
Answer: D
Wrong Output:
If vertex Vi precedes vertex Vj in the topological ordering of the directed graph G, then it
means that there is a directed path from Vi to Vj in G. Therefore, the si- tuation where
there is no arc <Vi, Vj> in G cannot occur. The correct answer is (C) There is no arc
<Vi, Vj> in G.
Error Details:
The sequence obtained by topological sorting has i before j. GPT-3.5 chose C in the
answer, but according to the topological sorting rule, placing i before j does not
necessarily indicate that two nodes can be directly connected. GPT-3.5 does not under-
stand the meaning of topological sorting.

Logical
reasoning

error

Question:
In the array representation of a linear list with n elements, the operations with a time
complexity of O(1) are () I. Accessing the ith (1 ≤ i ≤ n) node and finding the immediate
predecessor of the ith (2 ≤ i ≤ n) node. II. Inserting a new node after the last node. III.
Deleting the first node. IV. Sequentially outputting the values of these n elements.
A:I
B: II, III
C: I, II
D: I, II, III
Answer: C
Wrong Output:
The operations with a time complexity of O(1) in the array representation of a linear list
with n elements are: I. Accessing the ith (1 ≤ i ≤ n) node and finding the immediate
predecessor of the ith(2 ≤ i ≤ n) node. II. Inserting a new node after the last node. III.
Deleting the first node. Therefore, the correct answer is (D) I, II, III. Answer: D
Error Details:
For item II in the question, after deleting the first element of the array, the next n-1
elements need to be moved forward, resulting in a time complexity of o (n). However,
GPT-3.5 considers it to be o(1), which is a GPT-3.5 inference error.

Mathematical
reasoning

error

Question:
In a computer with an 8-bit adder, the machine numbers of signed integers X and y are
represented in two’s complement, with [x] complement = F5H and [y] complement =
7EH. If the calculation X - y is performed in this adder,the carry-in information for the
lower bit and the overflow flag OF after the operation are respectively ().
A: 1,1 B: 1,0 C: 0,1 D: 0,0
Answer: C
Wrong Output:
First, let’s find the two’s complement of y. The two’s complement of a number is obtained
by inverting all the bits and adding 1. [y] complement = 7EH Inverting all the bits:
10000001. Adding 1: 10000010.Now, we can perform the subtraction X - y using the
8-bit adder. [X] complement = F5H [y] complement = 10000010. Adding X and the two’s
complement of y: 11110101 + 10000010 = 101101111. The result is 10110111, which is
the two’s complement representation of the result of X - y. To determine the carry-in
information for the lower bit, we need to look at the carry-out from the lower bit. In this
case, the carry-out is 1, so the carry-in for the lower bit is also 1. To determine the
overflow flag (OF), we need to compare the carry-in and carry-out from the sign bit. In
this case, the carry-in and carry-out from the sign bit are both 0, so the overflow flag is 0.
Error Details:
The complement of x and (- y) is calculated incorrectly.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Table 22: Examples containing multiple types of errors.

Error Type Example

Logical
reasoning

error
&

Mathematical
reasoning

error

Question:
Given that the system uses a 32-bit physical address and a 48-bit virtual address, with a
page size of 4KB and a page table entry size of 8B. Assuming the system employs pure
paging, it will use a ()-level page table, and the page offset is () bits.
A: 3, 12
B: 3, 14
C: 3, 12
D: 4, 14
Answer:
C
Wrong Output:
To determine the number of levels in the page table, we need to calculate the number of
bits required to represent the virtual address space. The virtual address space is 48 bits,
and the page size is 4KB, which is equivalent to 212 bytes. Therefore, the num- ber of
pages in the virtual address space is 248 / 212 = 236 pages. Since each page table entry is
8 bytes, we can calculate the number of entries in each level of the page table. At the first
level, there are 236 entries, which can be represented by 36 bits. At the second level, each
entry points to a page table at the next level, so there are 236 entries. At the third level,
each entry points to a page table at the next level, so there are 236 entries. Therefore, we
need 3 levels of page tables. The page offset is the number of bits required to represent
the offset within a page. Since the page size is 4KB, which is equivalent to 212 bytes, the
page offset is 12 bits. Therefore, the correct answer is (A) 3, 12.
Error Details:
The number of page table items that can be accommodated on each page is 4KB/8B =
512=29, while GPT-3.5 did not mention calculations and directly stated that the first level
page table has 236 items; According to the GPT-3.5 calculation, if there are 236 items in
the first level page table, there should be a 36/36=first level page table instead of a third
level page table, resulting in a mathematical inference error. From the process of
calculating the number of page table levels in GPT-3.5, it can be seen that its logical
reasoning path is not correct.

Complete
conceptual

error
&

Conceptual
confusion

Question:
The following network connecting devices that operate at the data link layer are ()
A: Repeaters and Hubs
B: Hubs and Bridges
C: Network bridges and local area network switches
D: Hubs and Local Area Network (LAN) Switches
Answer:
C
Wrong Output:
The correct answer is (D) Hubs and Local Area Network (LAN) Switches. Repeaters
operate at the physical layer, while hubs and bridges operate at the data link layer. Local
Area Network (LAN) switches also operate at the data link layer. Therefore, the correct
combination of network connecting devices that operate at the data link layer is hubs and
LAN switches.
Error Details:
GPT-3.5 is unaware that the bridge is a network link device operating at the data link
layer, indicating a lack of knowledge about the bridge. Meanwhile, GPT-3.5 believes that
the Hub is a device at the data link layer, indicating that it confuses physical layer devices
with data link layer devices.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

E.5 ANALYSIS FROM MODEL REPRESENTATION

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

(a) Chatbot Arena

LLaMA2-7B
MAmmoTH-7B
CodeLLaMA-7B

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

(b) MATH

LLaMA2-7B
MAmmoTH-7B
CodeLLaMA-7B

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

(c) CS-Bench

LLaMA2-7B
MAmmoTH-7B
CodeLLaMA-7B

75 50 25 0 25 50 75
80

60

40

20

0

20

40

60

(d) MBPP

LLaMA2-7B
MAmmoTH-7B
CodeLLaMA-7B

Figure 19: Representation Visualization of General and Expert Models.

To analyze the reasons behind capability correlations, we first explore the relationships between
different abilities of general models at the representation level. We extract the last hidden layer of
Llama3-8B-instruct and obtain representations for different domains through average pooling. We
then calculate the average cosine distance between CS-Bench reasoning-type representations and
other data representations, where smaller distances indicate greater similarity.

Table 23: Representation Distance between CS-
Bench and Different Datasets.

Dataset Domain Distance
MBPP code 0.4645
MATH math 0.5395
BBH reasoning 0.5494
T-Eval tool 0.6310
Chatbot Arena (first turn) chat 0.5555
GPQA science 0.5775
L-eval long context 0.6409

As shown in Table 23, We find that the simi-
larity of representations between different abili-
ties/domains generally aligns with the observed
capability correlations, especially in the areas
of code and math. This explains the correlation
between CS skills and math and coding abilities
at the representation level. Additionally, due to
BBH containing various reasoning data, the dis-
tance between CS-Bench and BBH is relatively
small, which is consistent with the analysis in
Section 3.5.

Next, we analyze from the perspective of training data characteristics. We intuitively find that
some questions in CS-Bench can be understood as mathematical problems in a computer sci-
ence context, while the main role of code is to supplement the model’s knowledge of data struc-
tures and logical reasoning abilities. This data-level correlation explains the expert model exper-
imental results in Table 3 and 4, specifically why math and code expert models help improve
CS capabilities in certain areas, even when their general abilities are weakened. For exam-
ple: Q1: If the data part is 3800B and the maximum fragment size is
1420B, what is the total length in bytes of the third fragment? and
Q2: The height h of a binary tree with 1025 nodes is ().

Table 24: Representation Distance of Different
Models on CS-Bench.

Model pair Distance
between Chat and Math model 0.4645
between Chat and Code model 0.5395
between Math and Code model 0.5494

Finally, we analyze the relationship between
general models and math & code expert mod-
els in computer science representations. We
select the chat model Llama2-7B-Chat, math ex-
pert model MAmmoTH, and code expert model
CodeLlama, all based on Llama2-7B-base, to
observe their average cosine distances for the
same data points in CS-Bench.

Table 24 show that expert models’ representa-
tions shift to some extent compared to the Chat model, especially the Code model, which can be
attributed to Code’s unique data patterns. Further representation visualization in Figure 19 reveals
that in the general dataset Chatbot-arena, the features of the three models do not significantly separate.
However, in MATH and CS-Bench datasets, the Code model forms a distinct feature cluster, while
Math and Chat models’ representations remain similar, as we state before: many questions in CS can
be viewed as mathematical problems in a CS context. Lastly, in the MBPP dataset, the representations
of the three models clearly differentiate and form their own clusters.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

E.6 EXPLORATION FOR IMPROVING CS PERFORMANCE

Although the specific methods to enhance LLM performance in CS are not the primary focus of this
paper, we are eager to explore potential solutions based on our findings. These include capability
transfer, inference frameworks, integrating external knowledge sources, incorporating symbolic
reasoning systems, and targeted fine-tuning.

Capability Transfer. The capability analysis experiments in Section 3.5 demonstrate that math and
code expert models can improve CS performance in certain areas. Therefore, in scenarios where CS
data is scarce, training on math or code tasks can be leveraged to transfer and enhance CS capabilities.

Inference Frameworks. The experiments in Section 3.3 show that compared to GPT-4o, OpenAI-
o1 significantly improves the reasoning scores on CS-Bench. This suggests that combining LLMs
with reasoning frameworks can be expected to enhance reasoning capabilities. However, this approach
comes with the trade-off of increased token consumption during inference.

Table 25: Changes in model scores after incorporating RAG.

Model Knowledge Reasoning Overall
GPT-3.5-turbo 63.04 43.45 55.91
GPT-3.5-turbo (+RAG) 64.92(+1.88) 48.68(+5.23) 59(+3.09)
Llama3-8B 59.75 44.97 54.37
Llama3-8B(+RAG) 66.11(+6.36) 50.64(+5.67) 60.47(+6.1)

Integrating External Knowledge
Sources. The error type analysis in
Section 3.4 identifies knowledge gaps
as the main reason for LLM failures
in the CS field. To address this, we
implemented a RAG framework that
uses Wikipedia as an external knowl-
edge source. The process involves extracting key terms from the question, retrieving relevant
information from Wikipedia, and summarizing it to provide supplemental knowledge, which is then
integrated into the context for answering the question. The results are shown in Table 25. Both
knowledge and reasoning scores of the model have improved significantly, aligning with the findings
in error analysis: the primary errors in knowledge and reasoning questions are knowledge-related
issues. Performance is expected to be further enhanced when combined with a more advanced RAG
framework or more suitable knowledge sources.

Table 26: Changes in model scores after incorporating
Python Tool.

Model Knowledge Reasoning Overall
gpt-4o 76.95 64.15 72.29
gpt-4o(+Python Tool) 77.47(+0.5) 71.86(+7.71) 75.42(+3.13)

Incorporating Symbolic Reasoning
Systems. To enable joint reasoning
between language and symbolic sys-
tems, we developed a Python API
as a symbolic reasoning tool. This
allows the LLM to generate Python
code when it identifies a need for sym-
bolic reasoning. The generated code is executed using the Python tool, and the results are reintegrated
into the LLM’s context for further output generation. The results are shown in Table 26. Since
symbolic reasoning focuses on improving reasoning tasks, we observe that there is little improve-
ment in the model’s knowledge capabilities, but there is a significant enhancement in its reasoning
performance.

Table 27: Changes in model scores after CS fine-tuning.

Model Knowledge Reasoning Overall
Llama3-8b-Instruct 66.89 43.73 58.07
Llama3-8b-Instruct (+SFT) 71.19(+4.3) 49.88(+6.15) 63.07(+5)

Fine-tuning. The error analysis also
highlighted the need for specialized
fine-tuning for CS. Due to the scarcity
of fine-tuning data in the CS domain,
we randomly sampled 10% of the En-
glish data from CS-Bench as a mini-
test set. The remaining data was converted into SFT training data and used to fine-tune Llama3-8B-
Instruct. As shown in Table 27, despite the challenges posed by the difficulty of CS tasks and the
limited size of the training set, the model’s knowledge and reasoning capabilities improved after
fine-tuning. We expect that fine-tuning with a larger amount of domain-specific data could further
enhance the LLM’s performance in CS.

Through these discussions, we aim to provide insights and directions for the future development of
LLMs in the field of computer science.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

E.7 CASE STUDY OF OPENAI-O1

We present the responses of GPT-4o, OpenAI-o1-mini, and OpenAI-o1-preview to the same questions
in Table 28, 29, and 30, and analyze them in detail as follows.

Example 1. In this example, the models GPT-4o, OpenAI-o1-mini, and OpenAI-o1-preview each
scored 0.2, 0.3, and 0.2 respectively, but none of them provided the correct answer. GPT-4o had a
correct understanding of the IEEE 754 standard concept but incorrectly identified the e fraction (last
23 bits) as 1000 0000 0000 0000 0000 0000 (24 bits), which led to the wrong result. OpenAI-o1-mini
also had a correct understanding of the IEEE 754 standard concept but made an error in identifying
the e fraction (last 23 bits), resulting in an incorrect outcome. Similarly, OpenAI-o1-preview made a
mistake in the interpretation of the fractional part, leading to an incorrect result. All three models had
a correct understanding of the IEEE 754 standard; however, they made errors in identifying the last
23 bits of the fraction, which led to incorrect results.

Example 2. In this example, the models GPT-4o, OpenAI-o1-mini, and OpenAI-o1-preview each
scored 0.9, 1.0, and 0.3 respectively. GPT-4o and OpenAI-o1-mini answered the question correctly,
while OpenAI-o1-preview did not provide the correct answer. OpenAI-o1-preview showed a detailed
calculation process, it contained several critical errors that led to an incorrect result. The model used
an incorrect throughput formula. The maximum throughput of the pure ALOHA protocol is 18.4% of
the channel capacity, but the model directly used the full bandwidth of 56 kb/s for calculations. This
resulted in an overestimation of the maximum number of stations.

Example 3. In this example, the models GPT-4o, OpenAI-o1-mini, and OpenAI-o1-preview
each scored 0.3, 0.3, and 0.7 respectively, but none of them provided the correct answer. GPT-4o
and OpenAI-o1-mini used incorrect methods to calculate the total number of nodes. The models
incorrectly calculated the number of nodes from level 0 to level 8 as 29 − 1 = 511. The 9th level
should have 28−1 = 255 nodes because the levels are counted starting from 0, which led to incorrect
conclusions. OpenAI-o1-preview correctly calculated the total number of nodes but lacked an analysis
of the leaf nodes at level 8 when calculating the number of leaf nodes. Although the answer was not
fully complete, it arrived at the correct result.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Table 28: An example where GPT-4o, OpenAI-o1-mini , and OpenAI-o1-preview all failed.

Type Content

Question

Question:
Explain which type of number
(normalized number, denormalized number, infinity, 0) the following IEEE 754 single-precision value represents.
When it represents a specific value, please provide
that value: 0b1111 1111 1000 0000 0000 0000 0000 0000.
Reference Answer:
Since the exponent field of the number is all ones and the mantissa field is zero, with the sign bit being one, it
represents negative infinity.

GPT-4o

Output:
The given IEEE 754 single-precision value is: 0b1111 1111 1000 0000 0000 0000 0000 0000
To determine what this represents, let’s break it down:
1. The first bit is the sign bit. 2. The next 8 bits are the exponent. 3. The remaining 23 bits are the fraction (or
mantissa).
For the given value:
- The sign bit (first bit) is 1, indicating a negative number.
- The exponent (next 8 bits) is 1111 1111, which is 255 in decimal.
- The fraction (last 23 bits) is 1000 0000 0000 0000 0000 0000.
According to the IEEE 754 standard: - An exponent of 255 (all ones) with any non-zero fraction indicates a NaN
(Not a Number). - An exponent of 255 with a zero fraction would indicate infinity, determined by the sign bit.
In this case, the fraction is non-zero (it starts with 1000). Therefore, this specific combination represents a NaN
(Not a Number).
So, the IEEE 754 single-precision value 0b1111 1111 1000 0000 0000 0000 0000 0000 represents a NaN (Not a
Number).
Score:
0.2

OpenAI-o1-
mini

Output:
The IEEE 754 single-precision value 0b11111111 10000000 00000000 00000000 represents a NaN (Not a
Number).
Explanation:
- Sign Bit: 1 (negative)
- Exponent: 11111111 (255), which is the maximum value.
- Fraction (Mantissa): 10000000000000000000000 (not all zeros)
In IEEE 754: - When the exponent is 255 and the fraction is not all zeros, the value is classified as NaN. - If the
exponent were 255 and the fraction were all zeros, it would represent infinity.
Since the fraction here is not all zeros, the value is NaN, indicating an undefined or unrepresentable value.
Score:
0.3

OpenAI-o1-
preview

Output:
The given IEEE 754 single-precision binary value is: 0b11111111100000000000000000000000
Breaking it down into the IEEE 754 format:
- Sign bit (S): The first bit is ‘1’, indicating the sign (though for NaNs, sign bits are generally ignored).
- Exponent bits (E): The next 8 bits are ‘11111111’.
- Fraction/Mantissa bits (F): The remaining 23 bits are ‘10000000000000000000000’.
Analysis:
1. Exponent Analysis: - Exponent bits are ‘11111111’ (E = 255), which is the maximum possible value for the
exponent in IEEE 754. - When the exponent is all ones (E = 255), it indicates either infinity or NaN.
2. Fraction Analysis: - Fraction bits are not all zeros (F ̸= 0). Specifically, the most significant bit of the fraction
is ‘1’, and the rest are zeros. - When E = 255 and F ̸= 0, the value represents a Not a Number (NaN).
3. Type of NaN: - Quiet NaN vs. Signaling NaN: - If the most significant bit of the fraction (also known as the quiet
bit) is ‘1’, it’s a Quiet NaN (qNaN). - If this bit is ‘0’ and there’s any non-zero bit in the fraction, it’s a Signaling
NaN (sNaN). - In this case, the most significant bit of the fraction is ‘1’, so it’s a Quiet NaN.
Conclusion:
The given IEEE 754 single-precision value represents a Quiet NaN (Not a Number). This special value is used to
represent undefined or unrepresentable numerical results, such as the result of 0/0 or the square root of a negative
number.
Answer: It represents a quiet NaN (Not a Number) in IEEE 754 single-precision format.
Score:
0.2

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

Table 29: An example where GPT-4o and OpenAI-o1-mini succeeded, OpenAI-o1-preview failed.

Type Content

Question

Question:
A group of N stations share a 56kb/s pure ALOHA channel, with each station outputting a 1000-bit frame on
average every 100s, even if the previous frame has not finished transmitting. What is the maximum value of N?
Reference Answer:
For the pure ALOHA protocol, the channel utilization is 0.184, so the available bandwidth is 0.184x56Kb/s. The
bandwidth required by each station is 1000/100-10b/s. Therefore, the maximum value of N is 1030.

GPT-4o

Output:
To determine the maximum number of stations N that can share a 56 kb/s pure ALOHA channel efficiently, we
need to consider the throughput of the pure ALOHA protocol. The maximum throughput for pure ALOHA is
18.4%, or 1

2e .
First, let’s calculate the frame generation rate for one station:
- One station generates a 1000-bit frame every 100 seconds. - Therefore, the frame rate per station (G) is
1000 bits
100 s = 10 bps.

For the total maximum channel capacity:
- The channel capacity is 56,000 bps. - With the maximum throughput efficiency of 18.4%, the effective throughput
is 56, 000 × 0.184 = 10, 304 bps.
Now, to find the maximum number of stations N :
- Each station contributes 10 bps to the load. - The maximum number of stations can be calculated by dividing the
effective throughput by the load per station: N = 10,304 bps

10 bps per station = 1, 030.4.
Since N must be an integer, the maximum value of N is 1,030.
Thus, the maximum value of N is 1,030 stations.
Score:
0.9

OpenAI-o1-
mini

Output:
To determine the maximum number of stations N that can share a 56 kb/s pure ALOHA channel, follow these steps:
1. Calculate Frame Transmission Time (T): T = 1000 bits

56,000 bits/s ≈ 0.01786 seconds (17.86 ms)
2. Determine the Offered Load (G): Each station sends a frame every 100 seconds, so the load per station per
frame time is Gi = T

100 = 1
5600 . Total offered load for N stations: G = N × Gi = N

5600

3. Apply Pure ALOHA Throughput: The maximum throughput for pure ALOHA is Smax = 1
2e ≈ 0.184.

4. Set Offered Load to Maximum Throughput: N
5600 ≤ 1

2e . Solving for N : N ≤ 5600
2e ≈ 5600

5.436 ≈ 1030
Conclusion: The maximum number of stations N that can effectively share the 56 kb/s pure ALOHA channel is
approximately 1030.
Score:
1.0

OpenAI-o1-
preview

Output:
To determine the maximum number of stations N that can share the 56 kb/s pure ALOHA channel without
exceeding the maximum acceptable load, we follow these steps:
1. Calculate the Frame Transmission Time (Tframe)
The time it takes to transmit one frame is: Tframe = Frame Size

Channel Bandwidth = 1000 bits
56,000 bits/sec = 1

56 sec
2. Determine the Offered Load per Station (Gstation)
Each station generates frames at an average rate of: λstation = 1 frame

100 sec
The offered load per station in frames per frame time is: Gstation = λstation × Tframe =

(
1

100

)
×

(
1
56

)
= 1

5,600

3. Calculate the Total Offered Load (G)
For N stations, the total offered load is: G = N × Gstation = N ×

(
1

5,600

)
4. Apply the Pure ALOHA Throughput Formula
In pure ALOHA, the maximum throughput occurs when the offered load G = 0.5 frames per frame time:
Gmax = 0.5

Setting the total offered load equal to the maximum: N ×
(

1
5,600

)
= 0.5

5. Solve for N
N = 0.5 × 5, 600 = 2, 800
Conclusion:
The maximum number of stations N that can share the channel without exceeding the optimal load for pure
ALOHA is 2,800 stations.
Answer: 2800
Score:
0.3

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

Table 30: An example where GPT-4o and OpenAI-o1-mini failed, OpenAI-o1-preview succeeded.

Type Content

Question

Question:
Given that the 9th level of a complete binary tree has 240 nodes, how many nodes does the entire complete binary
tree have? How many leaf nodes are there?
Reference Answer:
In a complete binary tree, if the 9th level is full, then the number of nodes = 29−1 = 256. However, currently,
there are only 240 nodes on the 9th level, indicating that the 9th level is not full and is the last level. Levels 1 to 8
are full, so the total number of nodes = 28 − 1 + 240 = 495. Since the 9th level is the last level, all nodes on the
9th level are leaf nodes. Moreover, the parents of the 240 nodes on the 9th level are on the 8th level, with the
number of parents being 120, which means there are 120 branch nodes on the 8th level, and the rest are leaf nodes.
Therefore, the number of leaf nodes on the 8th level is 28−1 − 120 = 8. Consequently, the total number of leaf
nodes = 8 + 240 = 248.

GPT-4o

Output:
In a complete binary tree, each level k has 2k nodes. The 9th level has 240 nodes. Given this, we need to
determine the total number of nodes in the tree and the number of leaf nodes.
First, let’s confirm that the given information fits the structure of a complete binary tree. The 9th level should have
29 = 512 nodes. Since 240 nodes do not fit this pattern, it implies the tree is incomplete at that level, hence not
truly complete. Still, if this were a theoretical exercise, we might infer the tree is complete up until level 8 and
partially filled at the 9th level.
1. Calculating the Total Number of Nodes: - Levels 0 through 8 are fully filled, with 20 + 21 + · · · + 28 nodes. -
The sum of nodes from level 0 to 8 is 29 − 1 = 511. - Adding 240 nodes from the 9th level: 511 + 240 = 751.
So, the total number of nodes in the tree is 751.
2. Calculating the Number of Leaf Nodes: - In a complete binary tree, the leaf nodes are typically the nodes at the
last level or partially filled level. - Here, the 9th level only has 240 nodes. These are leaf nodes.
So, there are 240 leaf nodes.
Therefore, the entire complete binary tree has 751 nodes and 240 leaf nodes.

Score:
0.3

OpenAI-o1-
mini

Output:
In a complete binary tree where the 9th level has 240 nodes:
- Total Nodes: The first 8 levels are fully filled, containing 20 + 21 + · · · + 28 = 511 nodes. Adding the 240
nodes at the 9th level gives a total of 511 + 240 = 751 nodes.
- Leaf Nodes: All 240 nodes at the 9th level are leaf nodes.
Summary: - Total Nodes: 751 - Leaf Nodes: 240

Score:
0.3

OpenAI-o1-
preview

Output:
To determine the total number of nodes in the complete binary tree and the number of leaf nodes, we can follow
these steps:
1. Calculate the total nodes from levels 1 to 8:
In a complete binary tree, levels 1 to 8 are fully filled. The number of nodes at each level doubles starting from 1 at
the root.
- Total nodes from level 1 to level 8:

∑7
i=0 2i = 28 − 1 = 256 − 1 = 255 nodes

2. Add the nodes at level 9:
It’s given that there are 240 nodes at level 9.
- Total nodes in the tree: 255 (nodes from levels 1-8) + 240 (nodes at level 9) = 495 nodes
3. Determine the number of leaf nodes:
In a complete binary tree, all nodes at the last level are leaf nodes. Therefore, the number of leaf nodes is equal to
the number of nodes at level 9.
- Number of leaf nodes: 240
Answer:
The complete binary tree has 495 nodes in total, and there are 240 leaf nodes.

Score:
0.7

45

	Introduction
	CS-Bench
	Design Principle
	Data Collection

	Experiment
	Experimental Setup
	Main Results
	OpenAI-O1 Result
	Qualitative Analysis
	What's the Relationship between CS, Math, and Code abilities of LLMs?

	Related Work
	Conclusion
	Limitations and Dataset Bias
	Broaden Impact
	More Details on CS-Bench
	Details of Data Collection and Processing.
	Detailed Design Motivation and Statistics of CS-Bench
	Distribution of Word Lengths
	CS-Bench Examples

	More Details on Experiment Setup
	Details of Template for Each Task Format
	Details of GPT-4 Scoring
	Details of Inference Implementation
	Details of the Models being Evaluated

	More Details on Experiment
	Details of Model Performance
	Scale-Score Fitting Function for CS-Bench
	Model performance on CS-Bench across different languages
	Case Study of Error Types
	Analysis from Model Representation
	Exploration for Improving CS Performance
	Case Study of OpenAI-o1

