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ABSTRACT

Accurate prediction of energy and forces for 3D molecular systems is one of fun-
damental challenges at the core of AI for Science applications. Many powerful
and data-efficient neural networks predict molecular energies and forces from
single atomic configurations. However, one crucial aspect of the data generation
process is rarely considered while learning these models i.e. Molecular Dynamics
(MD) simulation. Molecular Dynamics (MD) simulations generate time-ordered
trajectories of atomic positions that fluctuate in energy and explore regions of the
potential energy surface (e.g., under standard NVE/NVT ensembles), rather than
being constructed to steadily lower the potential energy toward a minimum as in
geometry relaxations. This work explores a novel way to leverage molecular dy-
namics (MD) data, when available, to improve the performance of such predictors.
We introduce a novel training strategy called FRAMES, that use an auxiliary loss
function for exploiting the temporal relationships within MD trajectories. Counter-
intuitively, on two atomistic benchmarks and a synthetic system we observe that
minimal temporal information, captured by pairs of just two consecutive frames,
is often sufficient to obtain the best performance, while adding longer trajectory
sequences can introduce redundancy and degrade performance. On the widely used
MD17 and ISO17 benchmarks, FRAMES significantly outperforms its Equiformer
baseline, achieving highly competitive results in both energy and force accuracy.
Our work not only presents a novel training strategy which improves the accuracy
of the model, but also provides evidence that for distilling physical priors of atomic
systems, more temporal data is not always better.

1 INTRODUCTION

Predicting the quantum properties of atomic systems underpins many tasks in computational chem-
istry and materials science, yet traditional simulation methods (e.g. ab initio calculations) are often
too expensive for large-scale or high-throughput applications. In response, machine learning meth-
ods—especially Graph Neural Networks (GNNs) (Wu et al., 2020)—have emerged as a fast and
accurate alternative for estimating energies, forces, and other properties, with successful extensions
to protein structure prediction, virtual drug screening, and materials design. GNNs generally model
atoms as nodes and the physical interaction of two atoms with edges, and also the interaction of
atoms with message passing.

Among these, equivariant GNNs, highly researched in recent years (Finzi et al., 2020; Fuchs et al.,
2020; Huang et al., 2022; Hutchinson et al., 2021b; Satorras et al., 2021b; Liao & Smidt, 2023),
explicitly encode the physical symmetries of space: when the input configuration of atoms is
translated, rotated, or reflected, the network’s scalar and vector outputs transform accordingly (Han
et al., 2022). By building in these inductive biases, equivariant models achieve greater data efficiency
and generalization in single, static atomic configurations—much as convolutional networks do for
images. However, nearly all existing equivariant GNNs ignore the rich temporal context information
available in the molecular dynamics simulations data they are often trained on.

In this work we focus on datasets that explicitly expose Molecular Dynamics (MD) trajectories,
i.e., time-ordered configurations sampled at a fixed integration time step under a chosen thermo-
dynamic ensemble. This is distinct from geometry relaxations or re-relaxed subsamples (such as
revMD17 (Christensen & von Lilienfeld, 2020)), which no longer form a physically meaningful tra-

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

jectory. While many modern MLIP datasets are constructed from a mixture of protocols (equilibrium
databases, rattling, structure searches, etc.), MD-style trajectories remain prevalent and practically
important, for example in large-scale benchmarks with MD-like tasks such as OC20/OC22 (Chanus-
sot et al., 2021; Tran et al., 2023) and follow-up challenges. In this paper we investigate: when
MD trajectories are available, how can we best exploit their temporal structure to improve static
predictors with minimal information?

A few recent works have tried to address this by incorporating temporal information, typically by
feeding a fixed sequence of consecutive frames into an equivariant spatio-temporal GNN Wu et al.
(2023); Satorras et al. (2021a). While these approaches can improve trajectory forecasting, they have
two key limitations. First, such models are tied to a fixed history window; they struggle when one
wants to predict a single future frame from an arbitrary state, or when the optimal memory length
varies across the system. Second, they operate on the assumption that more historical data is always
beneficial. This paper challenges that core assumption.

In this work, we propose a different approach. Instead of building a complex spatio–temporal model,
we introduce novel training strategy, FRAMES, which utilizes an auxiliary loss function designed
to distill temporal information from MD simulations into a standard predictor. This approach is
model-agnostic and improves the accuracy of any baseline architecture while leaving it purely static
at test time, requiring only a single configuration as input. Furthermore, our framework allows us
to systematically investigate the value of temporal information. We challenge the implicit ”more
is better” assumption, hypothesizing that minimal temporal information—derived from just two
consecutive frames—is not only sufficient but optimal. We empirically demonstrate that using more
than two frames can be detrimental, degrading model accuracy and efficiency due to data redundancy.

Our contributions are as follows:

• We introduce FRAMES, a novel training strategy using auxiliary loss that leverages temporal
data from MD trajectories to significantly improve the accuracy of static energy and force
predictors.

• We provide strong empirical evidence for a ”less is more” principle, demonstrating that
using pairs of two consecutive frames is optimal, while performance degrades with three
frames due to data redundancy.

• Our method, applied to a standard Equiformer (Liao & Smidt, 2023) baseline, achieves
highly competitive results on the MD17 (Chmiela et al., 2017) and ISO17 (Schütt et al.,
2017) benchmarks, validating our approach.

2 RELATED WORKS

SE(3)/E(3)-Equivariant Networks. Incorporating SE(3)/E(3) equivariance (equivariance to 3D
rotations, translations, and optionally reflections) as an inductive bias in Graph Neural Networks
(GNNs) is often highly beneficial for modeling 3D atomistic systems, leading to strong data efficiency
and generalization in many benchmarks. At the same time, recent work has shown that carefully
designed non-equivariant or partially equivariant architectures can achieve competitive performance
in some regimes, suggesting a spectrum of effective inductive biases rather than a single universally
superior choice. (Duval et al., 2023) Key approaches include methods based on irreducible repre-
sentations (irreps) of the symmetry group, such as Tensor Field Networks (TFNs) (Thomas et al.,
2018), SE(3)-Transformers (Fuchs et al., 2020), LieTransformer (Hutchinson et al., 2021a), and
Equiformer (Liao & Smidt, 2023) (which FRAMES utilizes). These methods often use spherical
harmonics and tensor products to construct equivariant features and operations. Another significant
line of work involves scalarization or coordinate-based methods, which operate primarily on invariant
quantities (e.g., distances) combined with equivariant directional information. E(n)-Equivariant
Graph Neural Networks (EGNNs) (Satorras et al., 2021a) are a prominent example, offering compu-
tational efficiency by avoiding higher-order representations. (Garcia Satorras et al., 2021) The Graph
Mechanics Network (GMN) (Huang et al., 2022) also employs similar principles for constrained
systems. The field strives for a balance between the expressivity of irrep-based models and the effi-
ciency of scalarization techniques, with attention mechanisms also being integrated into equivariant
frameworks.
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Equivariant spatio-temporal graph neural networks. While most GNNs for molecular dynamics
assume Markovian dynamics (predicting the next state based only on the current one), real systems
exhibit memory effects and periodic motions (Wu et al., 2023). To address this, few equivariant spatio-
temporal GNNs have been developed. These models typically process a sequence of past frames to
predict future states. For instance, ESTAG (Wu et al., 2023) (Equivariant Spatio-Temporal Attentive
Graph Networks) uses historical trajectories and an Equivariant Discrete Fourier Transform (EDFT)
to capture non-Markovian properties and periodic patterns. Equivariant Graph Neural Operator (Xu
et al., 2024) models dynamics as continuous trajectories using equivariant temporal convolutions.
However, such models often rely on a fixed history window at inference, which can be inflexible and
computationally demanding. FRAMES differs by using historical frames to improve the training of
its latent state via a multi-step lookahead loss, while still allowing for efficient single-step inference
without explicit history.

Multi-step Loss and Auxiliary Predictive Objectives. Auxiliary tasks, where secondary objectives
are learned alongside the primary task, can enhance representation learning and generalization.
Predicting future states or properties over multiple steps is a powerful self-supervisory signal that
encourages models to capture system dynamics and long-range dependencies. This is a common
strategy in reinforcement learning (Merlis et al., 2024) and sequence modeling. In molecular modeling,
while some GNNs use multi-step prediction as the primary goal for trajectory forecasting like
MDNet (Zheng et al., 2021), or employ other self-supervised tasks like masked position prediction (An
et al., 2025), FRAMES specifically uses a multi-step lookahead loss on future energies and forces as
an auxiliary objective. The goal is to enrich the GNN’s latent representation for improved single-step
prediction accuracy and efficiency, rather than direct multi-step forecasting at inference.

Denoising-based objectives are closely related but complementary to our approach. Noisy-node style
regularization (Godwin et al., 2022) perturbs equilibrium structures with small random displacements
and trains the model to predict the clean configuration, and the recent DeNS method (Liao et al.,
2024) applies a similar idea to non-equilibrium structures along its trajectory. These methods operate
on unordered or partially ordered sets of structures and do not explicitly exploit full MD trajectories.
In contrast, FRAMES leverages the temporal ordering of MD data and shows that, for the benchmarks
studied here, minimal temporal context from two consecutive frames already captures most of the
useful dynamical signal. We view DeNS and noisy-node-style objectives as complementary: they can
be applied in settings without full trajectories and could in principle be combined with FRAMES in
future work.

FlashMD(Bigi et al., 2025) proposes direct, long-stride prediction of MD trajectories, taking as input
the positions and momenta at a single time step and predicting the configuration at a later time. Their
focus is on designing architectures and constraints for fast and stable multi-step MD simulation,
whereas our contribution is a training strategy for static predictors that uses an auxiliary temporal
loss but leaves inference purely single-frame. Conceptually, their observation that MD is effectively
Markovian and can be advanced from the current state alone complements our empirical finding that
a very short temporal context (two frames) already provides most of the useful dynamical signal for
improving static energy/force prediction.

3 METHOD

In §3.1, we formalize the task of energy and force prediction; in §3.2, we describe our model
architecture; in §3.3, we detail the FRAMES training objective; and finally, in §3.4, we explain how
this framework is used to test our hypothesis on temporal data redundancy.

3.1 PROBLEM FORMALIZATION AND PROPOSED APPROACH

The accurate prediction of quantum mechanical properties, such as energy and forces, is essential
for modeling complex atomic systems like molecules and crystals. While this paper utilizes datasets
generated from Molecular Dynamics (MD) simulations, which consist of atomic trajectories, our
primary goal is to enhance predictors that operate on single, static snapshots from these trajectories.

3
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Figure 1: An overview of our proposed training and inference framework. On the left, the shared
GNN body processes a history of frames (St, St−1, etc.) to produce latent embeddings. The primary
Output Head uses these embeddings to predict energies and forces for the entire window, supervised
by a primary loss. Concurrently, the embeddings are concatenated

⊕
and fed to an Auxiliary Head,

which is trained with an auxiliary loss to predict the displacement to the next frame ∆rt. On the
right, at test time, the auxiliary head is detached. The model operates as a simple, static predictor,
taking a single frame St as input to efficiently predict its corresponding energy and forces.

We define an atomic system’s configuration at a specific time t as a frame, St, represented by a set of
tuples St = {(zi, ri) | i = 1, . . . ,m} where for each of m atoms, zi ∈ N is its atomic number and
ri ∈ R3 is its 3D position vector.

Associated with each frame St is a scalar potential energy shown with Et ∈ R, and a set of the
atom-wise forces, Ft =

{
fi ∈ R3 | i ∈ {1, . . . ,m}

}
, where each fi is the force vector acting on the

i-th atom.

To avoid confusion with momentum, we use r for atomic positions throughout.

Task Definition We aim to learn the function fϕ, parameterized by ϕ, which maps a single static
frame St to its corresponding energy and forces. Formally, the task is:

fϕ(St) →
{
Êt, F̂t

}
(1)

where Êt and F̂t are the model’s prediction for the true Energy and forces.

Proposed Approach Although the system configuration at any given instant determines its energy
and, thereby, forces operating on each atom, the temporal evolution of the system overtime provides
additional cues over the space of possible energy/force values. However, learning these spatio-
temporal dynamics adds to the computational burden, given that the trajectories evolve over long
time periods. Instead of relying on complex spatio-temporal models, we aim to capture the useful
temporal dynamics from MD trajectories in a lightweight way, so that static predictors can benefit
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from temporal information while still operating on single configurations at test time. The key insight
is that temporal correlations contain rich cues about energy and forces, but extracting them does not
require long histories. In fact, we hypothesize that minimal temporal information — such as pairs of
consecutive frames — can be sufficient and likely even more effective than using longer trajectories,
which often introduce redundancy and noise. In the following, we describe our model architecture.

3.2 MODEL ARCHITECTURE

Our model consists of two main components: a shared GNN Backbone that processes atomic config-
urations into latent representations, and two distinct Prediction Heads that use these representations
to perform the primary and auxiliary tasks (Figure 1).

3.2.1 THE GNN BACKBONE

For our GNN backbone, we employ Equiformer architecture (Liao & Smidt, 2023), an E(3)-
equivariant graph attention transformer. The function of the GNN backbone is to map a single
atomic frame, St, into a set of rich, equivariant latent feature vectors, ht, one for each atom in the
system.

During training, this GNN backbone is applied independently to each frame in the input window
(St−T+1, . . . , St) with shared weights, which produces a sequence of embeddings, (ht−T+1, . . . , ht)
that serves as input to the prediction heads.

3.2.2 PREDICTION HEADS

The latent embeddings produced by the GNN backbone are passed to two distinct prediction heads
for our multi-task objective.

Output Head The Primary Head is responsible for the main prediction task. For each frame St

in the input window, its corresponding embedding ht is fed into the Primary Head to produce the
predicted energy Êt and forces F̂t for that specific frame. For the scalar value, energy, a feedforward
network transforms embedding features ht on each node into a scalar and then sums over all nodes.
The atomic forces F̂t are then derived analytically as the negative gradient of the predicted energy
with respect to the atomic positions, F̂t = −∇rtÊt, ensuring energy conservation.

Auxiliary Head Used only during training, the Auxiliary Head’s role is to help the model learn
from the system’s temporal dynamics.

Unlike the Primary Head, the Auxiliary Head takes the concatenated embeddings from the entire
historical window of T frames as its single input. This input is the vector z = [ht−T+1, . . . , ht]. It
processes this concatenated vector to predict a single output: the atomic displacement to the next
frame, ∆p̂t.

The Auxiliary Head is itself an equivariant graph attention network, consistent with the GNN
backbone. This ensures that the processing of the concatenated temporal information respects the
underlying physical symmetries of the system.

3.3 THE FRAMES TRAINING OBJECTIVE

To improve the performance of the static predictor defined in §3.1, we introduce a multi-task training
objective called FRAMES. This objective is used only during training and combines a standard
primary loss with our novel auxiliary loss. The total loss, Ltotal is a weighted sum of these two
components:

Ltotal = Lprimary + λauxLaux (2)

where λaux is a hyperparameter that balances the contribution of the auxiliary task. To ensure
stable training, all ground-truth energy and force values are normalized before being used in the loss
calculations. We now describe each component in detail.
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Because the FRAMES objective only augments the loss and does not constrain the backbone archi-
tecture, it is directly applicable to a wide range of MLIP models (e.g., Equiformer, NequIP, EGNN).
In all experiments below we instantiate FRAMES with Equiformer, but no architectural changes are
required to transfer the same objective to other backbones.

3.3.1 THE PRIMARY LOSS Lprimary

The primary loss, Lprimary measures the accuracy of the model on the main task of predicting energy
and forces. For each of the T frames in the input window, the output head produces the prediction
(Êt, F̂t). The primary loss averages error over this entire window, which is a weighted sum of energy
and force error:

Lprimary =
1

T

t∑
t′=t−T+1

(
λE |Et′ − Êt′ |+ λF ∥Ft′ − F̂t′∥2

)
(3)

where λE and λF are loss-weighting hyperparameters.

3.3.2 THE AUXILIARY LOSS Laux

The goal of our auxiliary task is to predict the atomic displacement to the next frame. We define this
ground-truth displacement vector, calculated from the simulation data, as:

∆rt = rt+1 − rt (4)

As described in §3.2, the Auxiliary Head takes the concatenated embeddings, z = [ht−T+1, . . . , ht]
and outputs a single prediction of this displacement, denoted as ∆p̂t. Having these two in mind, the
auxiliary loss, Laux is defined as the L2 norm between ground-truth and predicted displacement:

Laux = ∥∆p̂t −∆rt∥2 (5)

By encouraging the model to predict the subsequent motion from the embeddings, this auxiliary task
forces the model to learn a representation that is more grounded in the system’s physical dynamics,
thereby improving performance on the primary task.

Because the FRAMES objective only augments the loss and does not constrain the backbone archi-
tecture, it is directly applicable to a wide range of MLIP models (e.g., Equiformer, NequIP, EGNN).
In all experiments below we instantiate FRAMES with Equiformer, but no architectural changes are
required to transfer the same objective to other backbones.

3.4 INVESTIGATING TEMPORAL REDUNDANCY

Our FRAMES framework provides a controlled testbed to investigate the central hypothesis of this
work: that for distilling physical priors from dynamics, minimal temporal information is optimal, and
that including additional historical data can be detrimental.

To test this hypothesis, we systematically vary the number of historical frames, T , used to create the
concatenated embedding z = [ht−T+1, . . . , ht], for the auxiliary task. We train several otherwise
identical models, each with a different value of T .

We specifically compare the following three conditions:

• Baseline (T = 1): This model is trained using only the primary loss, with no auxiliary
objective. It represents a standard, purely static predictor.

• FRAMES (T = 2): Our main proposed model. The auxiliary head is trained on concate-
nated embeddings from two consecutive frames, providing it with information analogous to
velocity.

• FRAMES (T = 3): A model trained with an auxiliary head fed embeddings from three
consecutive frames, providing it with information analogous to acceleration.

6
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Table 1: Mean absolute error results on the MD17 testing set. Energy and force are in units of meV
and meV/Å, respectively. This table compares several baseline models against our Equiformer-based
approach, which is tested using both two and three frames of temporal context to investigate the
effects of data redundancy.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

Model energy forces energy forces energy forces energy forces energy forces energy forces energy forces energy forces

SchNet (Schütt et al., 2017) 16.0 58.5 3.5 13.4 3.5 16.9 5.6 28.6 6.9 25.2 8.7 36.9 5.2 24.7 6.1 24.3
DimeNet (Gasteiger et al., 2020) 8.8 21.6 3.4 8.1 2.8 10.0 4.5 16.6 5.3 9.3 5.8 16.2 4.4 9.4 5.0 13.1
PaiNN (Schütt et al., 2021) 6.9 14.7 - - 2.7 9.7 3.9 13.8 5.0 3.3 4.9 8.5 4.1 4.1 4.5 6.0
TorchMD-NET (Thölke & Fabritiis, 2022) 5.3 11.0 2.5 8.5 2.3 4.7 3.3 7.3 3.7 2.6 4.0 5.6 3.2 2.9 4.1 4.1
NequIP (Lmax = 3) (Batzner et al., 2022) 5.7 8.0 - - 2.2 3.1 3.3 5.6 4.9 1.7 4.6 3.9 4.0 2.0 4.5 3.3
Equiformer 5.3 7.2 2.2 6.6 2.2 3.1 3.3 5.8 3.7 2.1 4.5 4.1 3.8 2.1 4.3 3.8
Equiformer+Noisy Nodes 10.5 8 4.3 6.3 2.6 3.8 3.6 6.3 3.6 2.5 6 5.2 4.3 2.3 6.5 5.5

Equiformer + 2 Frames 5.2 ±0.16 7.0 ±0.09 2.4 ±0.07 6.3 ±0.27 2.2 ±0.02 3.2 ±0.05 3.3 ±0.05 5.6 ±0.17 3.6 ±0.03 2.2 4.3 ±0.25 4.1 ±0.04 3.6 ±0.03 2 ±0.0.9 4.1 ±0.12 3.5 ±0.10

Equiformer + 3 Frames 5.3 7.3 2.6 6.1 2.2 3.5 3.3 6 3.8 2.4 4.4 4.4 3.5 2 4.1 3.9

Crucially, while the models are trained differently, they are all evaluated on the exact same task at
inference time: the accuracy of static energy and force prediction on the test set, using only a single
frame St as input. The performance on this final task will be used to validate our hypothesis.

To ensure a fair and controlled comparison, all other aspects of the experimental setup are held
constant across these cases. This includes the core model architecture, the training objective (the
combined primary and auxiliary loss function), and all hyperparameters.

4 EXPERIMENTS

To validate our proposed FRAMES framework and test our hypothesis on temporal data redundancy,
we conduct a series of experiments on standard benchmarks. We begin in §4.1 by evaluating our
primary results on the widely-used MD17 dataset, comparing our method against several state-of-
the-art baselines. Then in §4.1 we present a key ablation study to justify our choice of auxiliary
objective. Finally, we test the generalization of our findings on the ISO17 dataset in §4.2 and
provide an illustrative example on a spring-mass system in §4.3 which helps provide insights into the
phenomenon.

4.1 MD17 DATASET

Dataset. The MD17 dataset (Chmiela et al., 2017) features ab-initio molecular dynamics trajectories
for 8 small organic molecules, including Aspirin and Toluene. The primary task is to predict the
potential energy and inter-atomic forces for each molecular configuration (frame) in a trajectory.
Following standard benchmarks, we use 950 frames for training and 50 for validation, with the
remainder used for testing. Crucially for our temporal analysis, we ensure that training samples are
drawn sequentially with a fixed time lag of ∆t between them, preserving the physical dynamics of
the original simulation.

Implemetation details. We train Equiformer (Liao & Smidt, 2023) with FRAMES based on the
official implementation. We trained this model once with two frames as input, and once with three
frames as input. We also implemented a noisy-node style auxiliary loss, where the model predicts
atomic displacements from small random perturbations of the current structure, and considered it as
another usefull baseline. Further details of the noisy-node baseline are provided in Appendix A.5.

Main Results. The results, presented in Table 1, strongly support our central hypothesis. The
Equiformer + 2 Frames model, which is supplied with velocity information, consistently outperforms
the standard Equiformer (T = 1) baseline across nearly all molecules, achieving the best force
prediction on 5 out of 8 molecules. In contrast, the Equiformer + 3 Frames model, which implicitly
includes acceleration data, shows a marked degradation in performance. For instance, in molecules
like Benzene and Malonaldehyde, its performance on force prediction is worse than the T = 2 model
and is comparable or worse than the T=1 baseline. This trend suggests that adding further temporal
context beyond velocity introduces redundant information, which, akin to multicollinearity, hinders
the model’s ability to learn the underlying force field effectively.

Ablation Study. We conducted an ablation study to empirically validate our choice of the auxiliary
learning objective, as defined in §3.3. We compare two distinct auxiliary loss formulations for
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our FRAMES (T=2) model. The first is our proposed method, which uses a loss on the predicted
displacement, Laux = ∥∆p̂t −∆rt∥2. The second is a more conventional alternative, which uses a
loss on the predicted energy and forces of the next frame, L′

aux = λE |Et+1 − Êt+1|+ λF ∥Ft+1 −
F̂t+1∥2.

The results, presented in Table 2, show that both objectives provide a significant improvement over the
baseline, with highly competitive overall performance. While predicting future forces and energies
yields marginally better results on some molecules (e.g., Benzene), our proposed displacement
prediction objective achieves superior or equivalent performance on the majority of the benchmark,
including on larger molecules like Aspirin and Salicylic Acid.

Given that displacement prediction offers more consistent performance across the benchmark and
represents a more direct and fundamental dynamic property (the immediate consequence of the
current frame’s forces), we confirm its effectiveness and select it as the default auxiliary objective for
our FRAMES framework.

Table 2: Ablation study on the choice of auxiliary loss for the T = 2 model. We compare our proposed
method, which uses a loss on atomic displacements (Aux: Et+1, Ft+1) against our proposed method
of predicting atomic displacements (Aux: ∆rt). Results are mean absolute error (MAE) in meV for
energy and meV/Å for forces.

Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

Model (T=2) energy forces energy forces energy forces energy forces energy forces energy forces energy forces energy forces

Equiformer (T=1, Baseline) 5.3 7.2 2.2 6.6 2.2 3.1 3.3 5.8 3.7 2.1 4.5 4.1 3.8 2.1 4.3 3.8

FRAMES (T=2) with Aux: Et+1, Ft+1 5.3 7.2 2.3 6.1 2.2 3.2 3.2 5.6 3.6 2.2 4.4 4.2 3.8 1.9 4.1 3.6
FRAMES (T=2) with Aux: ∆rt 5.2 7.0 2.4 6.3 2.2 3.2 3.3 5.6 3.6 2.2 4.3 4.1 3.6 2.0 4.2 3.5

4.2 ISO17 DATASET

Dataset. We further validate our approach on the ISO17 dataset (Schütt et al., 2017). This dataset
contains molecular dynamics trajectories of 129 isomers of C7O2H10, presenting a different challenge
by testing generalization across constitutional isomers. As described in the original work, the dataset
is split into two evaluation scenarios. The first, which we term ”Within Distribution,” tests for
generalization to unseen conformations of molecules that were included in the training set. The
second, more challenging ”Outside Distribution” scenario tests for generalization to entirely new
molecular structures (isomers) that the model has never seen during training.

Results. The results, presented in Table 3, demonstrate the remarkable generalization capability of
our FRAMES framework. Our FRAMES (T=2) model achieves the best performance by a significant
margin across all four evaluation metrics. On the ”Within Distribution” task, it substantially improves
upon the baseline, confirming that our method learns a more accurate potential energy surface. More
importantly, on the challenging ”Outside Distribution” task, FRAMES (T=2) shows a dramatic
improvement in generalizing to unseen isomers, indicating that the physical priors learned via the
auxiliary loss are not molecule-specific. Consistent with our findings on MD17, the FRAMES
(T=3) model shows a clear degradation in performance, often performing worse than the baseline.
This validates our central hypothesis that minimal temporal information is optimal and that data
redundancy hinders generalization, even across different chemical structures.

4.3 SPRING-MASS

To build intuition for our hypothesis, we analyze a simple spring–mass system where the underlying
physics is known. This toy problem allows us to create a controlled environment to illustrate the
effects of data redundancy when predicting forces (equivalently, accelerations since m=1) from
trajectory data, a scenario directly analogous to the multicollinearity problem in linear regression.
We test both a simple linear regressor and a non–linear predictor on this problem to demonstrate
how redundant temporal information affects both direct estimation and more complex representation
learning.

Implementation. We simulate a simple harmonic oscillator governed by Hooke’s Law, F = −kx,
setting mass m = 1.0 and spring constant k = 1.0. The trajectory is generated by numerically
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Table 3: Mean Absolute Error on the ISO17 test sets. Our FRAMES (T=2) model is compared
against the baseline Equiformer and a T=3 model. Within Distribution tests generalization to new
conformations of known molecules, while Outside Distribution tests generalization to entirely new
isomers.

Within Distribution Outside Distribution

Energy Forces Energy Forces

Equiformer (Baseline) 0.13228 0.0093 0.1460 0.0174
FRAMES (T = 2) 0.00569 0.0053 0.0248 0.0154
FRAMES (T = 3) 0.07009 0.0101 0.0639 0.0187

integrating the equation of motion ẍ = −x to produce a time series of positions {rt}. Since m=1,
the force and acceleration coincide, so predicting Ft is equivalent to predicting the acceleration.

For this synthetic dataset, we consider two simplified models: a linear model and a non–linear MLP.
We randomly sample from the trajectories generated according to the above setting, and train on 8000
samples for the non–linear model and 100 samples for the linear model, with 2000 samples reserved
for testing.

The linear model consists of a single shared linear layer followed by two linear heads: a main
head that predicts the target force Ft and an auxiliary head that predicts the FRAMES objective,
the next–step displacement ∆ri. The non–linear model has the same structure (shared body, main
head, auxiliary head), but each component is implemented as a small Multi–Layer Perceptron (MLP)
instead of a single linear layer.

For T = 1, the baseline, we disable the auxiliary head and train both models only with the primary
loss on the current force Ft, which corresponds to a standard static predictor without FRAMES.
For T > 1, both models are trained using the FRAMES objective. The input for a history of T is
the vector of positions [rt−T+1, . . . , rt]. The primary task for both models is to predict the force
Ft at the current time. For the auxiliary task, a simple linear head takes the concatenated hidden
layer representations (embeddings) from the historical window and is trained to predict the next-step
displacement, ∆rt = rt+1 − rt.

Results. The results, for the nonlinear model is summarized in Table 4 and for the linear model
visualized in Figure 2, which both of them clearly support our central hypothesis. Performance
is extremely poor with one frame (T = 1), as a single position does not contain information on
temporal dynamics. The error decreases significantly for the (T = 2) model, which can infer the
velocity, but increases again for (T = 3). This suggests that while minimal temporal information is
highly beneficial, additional frames introduce redundancy that degrades performance. This simple
example confirms the core principle that ”less is more,” that we also observe in our main experiments
on complex molecular systems.

Table 4: Mean Squared Error (MSE) on the spring-mass toy example. T denotes the number of
historical frames used as input to predict the current force.

Model T=1 T=2 T=3 T=4 T=5 T=6

MLP Model (10−9) 1.24±1.02 0.83±0.44 1.55±1.09 1.28±0.72 2.15±1.38 1.05±0.45

5 CONCLUSION

In this work, we addressed the challenge of improving molecular force and energy prediction by
leveraging temporal information from Molecular Dynamics simulations. We introduced FRAMES, a
novel and model-agnostic auxiliary loss that distills physical priors from pairwise frame dynamics
into a predictor that remains purely static and efficient at inference time. Our experiments on the
MD17 and ISO17 benchmarks demonstrate that FRAMES significantly improves the accuracy of a
strong Equiformer baseline, achieving highly competitive results in both energy and force prediction.
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Figure 2: Mean squared error (MSE) of the linear predictor on the spring–mass toy system as a
function of the history length T (x-axis). The plot highlights the large performance improvement
when moving from T=1 to T=2, followed by degradation once redundant temporal information
(T≥3) is included. A 95% confidence interval is shown.

Furthermore, we provided strong empirical evidence for our ”less is more” hypothesis. We showed
that using minimal temporal information from two consecutive frames is optimal for this task, while
including more historical data in the training procedure can be detrimental, degrading model perfor-
mance due to data redundancy. This finding was validated across complex molecular benchmarks
and an intuitive spring-mass toy example.

Future work could explore the application of the FRAMES objective to a wider range of equivariant
architectures and other scientific domains where simulation trajectories are available. Ultimately,
our work highlights a simple, powerful, and computationally efficient strategy for creating more
physically-grounded and accurate molecular predictors.

ETHICS STATEMENT

This work proposes a training strategy for graph neural networks aimed at improving energy and
force prediction in atomic and molecular systems. The research is entirely computational and does
not involve human subjects, personal data, or sensitive information. The datasets used (e.g., MD17,
ISO17) are publicly available and widely adopted benchmarks in the community. We believe that the
outcomes of this work will have positive impacts by advancing the use of AI for scientific discovery,
particularly in molecular modeling and materials design. We do not foresee significant risks of misuse
or negative societal impacts beyond those already inherent to general machine learning research in
molecular simulations.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. Details of the FRAMES
datasets and implementation details are described in the main text in Section 4, with further training
hyperparameters details provided in the Appendix 5. We include results across multiple random seeds
to demonstrate stability, and ablation studies to clarify the contribution of individual components. To
facilitate replication, we have released anonymized source code and scripts for training and evaluation
here https://anonymous.4open.science/r/FRAMES-7AB9/README.md.
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A APPENDIX: EXPERIMENTAL DETAILS

Our implementation is based on the official open-source code for Equiformer (Liao & Smidt, 2023).
For hyperparameters shared with the original work, we adopt their reported values unless otherwise
specified to ensure a fair comparison. All models were trained using an Adam optimizer with an
initial learning rate of 5× 10−4.

A.1 TRAINING PROCEDURE

For the FRAMES models, the auxiliary loss weight, λaux, was linearly decayed from its initial value
(see Table 5) to 0 over the course of training. To manage the memory requirements of processing
historical data, we adjusted the batch sizes. The baseline model (‘T=1‘) used a batch size of 8. For
FRAMES, we used a batch size of 4 for both the ‘T=2‘ and ‘T=3‘ configurations.

A.2 TRAJECTORY SUBSAMPLING FOR MD EXPERIMENTS

For all MD-based experiments (MD17 and ISO17), we do not feed every raw MD frame directly to
the model. Instead, for each molecule we construct shorter sub-trajectories by uniformly subsampling
frames along the original trajectory. Let (S1, . . . , SL) denote the sequence of configurations for a
given molecule. We choose a stride k ≥ 1 and build training windows of length T as

(St, St+k, St+2k, . . . , St+(T−1)k),

so that consecutive frames inside a window are equally spaced and separated by k steps in the original
MD trajectory. The stride k is chosen automatically for each trajectory based on its length and the
desired number of training samples, so that we obtain approximately the target number of windows
while keeping the frames in each window well separated (typically on the order of tens of MD steps).

Note that although the frames in a sub-trajectory are non-adjacent in the original MD sequence when
k > 1, the FRAMES auxiliary target is always defined on adjacent elements of the subsampled
window. Concretely, if (St, St+k, . . . ) is a window, we predict the displacement ∆rj = rj+1 − rj
between consecutive frames inside this subsampled sequence, where rj and rj+1 correspond to
configurations that are k integration steps apart in the underlying MD trajectory.

A.3 MD17 HYPERPARAMETERS

The key loss coefficients for our experiments on the MD17 dataset are detailed in Table 5.

Table 5: Hyperparameters used for training our ‘FRAMES‘ models on the MD17 dataset. We report
the coefficients for the primary loss (λE , λF ) and the initial value for the auxiliary loss (λaux).

Hyper-parameter Aspirin Benzene Ethanol Malonaldehyde Naphthalene Salicylic acid Toluene Uracil

Energy coefficient λE 1 1 1 1 2 1 1 1
Force coefficient λF 80 80 80 100 20 80 80 20
FRAMES coefficient λaux 1 0.25 0.25 0.25 1 1 1 0.25

A.4 ISO17 HYPERPARAMETERS

For the ISO17 experiments, we used a consistent set of hyperparameters across all isomers: the
energy coefficient λE = 1, the force coefficient λF = 80, and the initial auxiliary loss coefficient
λaux = 0.25. The model architecture and training procedure were kept identical to those used for the
MD17 experiments.

A.5 NOISY-NODE AUXILIARY OBJECTIVE

For the noisy-node baseline, we follow the general idea of Godwin et al. (2022) and add an additional
denoising-style auxiliary loss on top of the main energy/force prediction loss. Concretely, during
training we apply the following procedure independently for each graph (configuration): with
probability pnoise = 0.1 we construct a corrupted version of the input by randomly selecting a
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fraction pcorr = 0.25 of the atoms and perturbing their positions with small Gaussian noise of
standard deviation 0.02 (in the same units as the input coordinates). The backbone GNN encodes this
corrupted structure, and an auxiliary head is trained to predict the displacement between the clean
and noisy positions (i.e., to denoise the perturbed atoms). The auxiliary noisy-node loss is combined
with the main loss using a fixed weight λaux = 5, so that the total objective is

Ltotal = Lmain + λaux Lnoisy-node.

This auxiliary head is used only during training; at inference time the model reduces to the standard
single-frame predictor without any denoising branch.
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