# [Short]From Decoding to Encoding: Cognitive Reorganization of Human Coding under Generative AI

### Jongwon Ryu, Junyeong Kim

Department of Artificial Intelligence Chung-Ang University Seoul, 06974 [fbwhddnjs511, junyeongkim]@cau.ac.kr

#### **Abstract**

The emergence of large generative models has reshaped human coding cognition. Traditional programming requires both encoding-conceptualizing a problem, and decoding-translating concepts into code. Generative models automate much of the decoding process, externalizing expressive cognition and allowing humans to focus on higher-level conceptual reasoning. This study examines how such automation reorganizes cognitive processes in programming. In a within subject pilot experiment, participants completed equivalent coding tasks with and without assistance from ChatGPT-5. Behavioral, verbal, and self-report data revealed greater conceptual focus and reduced low-level control effort under AI-assisted conditions. Overall, the findings suggest that generative AI redistributes cognitive load, shifting programming from an implementation task to a conceptual design activity.

#### 1 Introduction

2

8

9

10

11 12

- The rise of large generative models has fundamentally changed how humans engage in programming.
- 15 Traditional coding involves two distinct cognitive stages: *encoding*-conceptualizing and structuring
- a problem, and decoding-translating concepts into executable code. These stages rely on separable
- 17 cognitive subsystems, with decoding often demanding greater cognitive precision and working-
- memory resources [2, 5, 9, 3].
- 19 Generative models now automate much of the decoding process [4, 1]. By offloading expressive
- 20 implementation to an external agent, programmers are relieved from micro-level control and can
- 21 redirect cognitive resources toward higher-level conceptual reasoning [6, 8]. This shift reframes pro-
- 22 gramming from "how to implement" to "what to implement," signaling a fundamental reorganization
- of human coding cognition [7].
- Theoretical perspective. We formalize this transformation through an encoding-decoding cognitive
- 25 model, where total cognitive load is distributed between conceptual (encoding) and expressive
- 26 (decoding) processes. When a generative model assumes decoding, human cognitive resources are
- 27 reallocated toward encoding, producing a functional segregation that explains observed performance
- gains not as simple efficiency, but as a reorganization of cognitive structure [9, 3].
- 29 Research objective. While prior studies on AI-assisted programming have reported productivity
- 30 improvements, they seldom explain the underlying cognitive mechanisms. This work addresses that
- 31 gap by examining how generative models externalize expressive cognition and redistribute mental
- effort toward conceptual reasoning [6, 1].

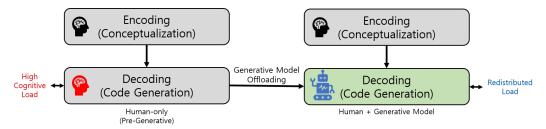


Figure 1: Overview of the proposed encoding-decoding cognitive framework.

#### 3 2 Method and Results

We conducted a within-subject pilot study (*n*=5) to examine how generative models redistribute cognitive roles in programming. Each participant solved two short Python tasks under **Control** (no assistance) and **Generative** (ChatGPT-5 assistance) conditions, counterbalanced to mitigate order effects [9, 3]. Tasks emphasized reasoning over syntax and were designed to be solvable within 30 lines of code [4]. Participants verbalized their thought process during each session [5], and behavioral, verbal, and self-report data were collected.

Quantitative analysis compared *planning ratio*, *task performance*, and *cognitive ratings*. As shown in Table 1, generative assistance increased pre-coding planning time ( $\Delta$ =+0.083) and conceptual focus ( $\Delta Q2$ =+1.5), while reducing micro-level control effort ( $\Delta Q1$ =-1.2) and total completion time ( $\Delta$ =-93.2s). Verbal analysis revealed that participants produced more conceptual and fewer syntactic utterances, indicating a cognitive shift from expressive to conceptual reasoning [2, 6].

Table 1: Paired comparison of key metrics between conditions (T = Generative, C = Control, n = 5).

| Metric                  | Mean $\Delta$ (T-C) | t     | p     | Cohen's d |
|-------------------------|---------------------|-------|-------|-----------|
| Planning ratio          | +0.083              | 5.21  | 0.007 | 2.3       |
| First pass time (s)     | -93.2               | -3.88 | 0.017 | 1.7       |
| Tests passed            | +0.4                | 1.94  | 0.12  | 0.9       |
| Q1 Micro control burden | -1.2                | -4.12 | 0.014 | 1.8       |
| Q2 Conceptual focus     | +1.5                | 4.37  | 0.011 | 1.9       |
| Q3 Overall demand       | -0.7                | -2.26 | 0.086 | 1.0       |

#### 45 3 Discussion and Conclusion

- Results suggest that generative models do more than improve efficiency-they restructure cognitive 46 processes in programming. By externalizing the decoding process, humans allocate more cognitive 47 resources to conceptual reasoning, supporting a functional segregation between human and AI 48 cognition [9, 6]. Qualitative analysis of verbal protocols further revealed a linguistic shift: participants 49 in the generative condition framed their intentions conceptually (e.g., "I need a structure for fast 50 lookup") rather than procedurally (e.g., "write a loop to sort"), illustrating how expressive cognition 51 was externalized to the model. This implies that generative AI functions as a cognitive redistribution 52 mechanism, transforming programming from implementation to conceptual design. 53
- Although limited by sample size (*n*=5), consistent behavioral, subjective, and linguistic patterns validate this hypothesis. Future work should expand to larger populations and incorporate multimodal cognitive measures (e.g., eye-tracking, EEG) to examine real-time cognitive load redistribution. Overall, these findings move beyond the "AI for productivity" narrative toward a view of AI as a catalyst for cognitive transformation.

#### 59 References

- [1] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny
  Collisson, Jina Suh, Shamsi Iqbal, Paul N Bennett, Kori Inkpen, et al. Guidelines for human-ai
  interaction. In *Proceedings of the 2019 chi conference on human factors in computing systems*,
  pages 1–13, 2019.
- 64 [2] John R Anderson. The architecture of cognition. Psychology Press, 2013.
- 65 [3] Alan Baddeley. Working memory. *Memory*, pages 71–111, 2020.
- [4] Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini Kalliamvakou, Travis
  Lowdermilk, and Idan Gazit. Taking flight with copilot: Early insights and opportunities of
  ai-powered pair-programming tools. Queue, 20(6):35–57, 2022.
- [5] Allen Newell, Herbert Alexander Simon, et al. *Human problem solving*, volume 104. Prentice-hall
  Englewood Cliffs, NJ, 1972.
- 71 [6] Ben Shneiderman. Human-centered artificial intelligence: Three fresh ideas. *AIS Transactions* on *Human-Computer Interaction*, 12(3):109–124, 2020.
- 73 [7] Ben Shneiderman and Pattie Maes. Direct manipulation vs. interface agents. *interactions*, 4(6): 42–61, 1997.
- 75 [8] S Shyam Sundar. Rise of machine agency: A framework for studying the psychology of human—ai interaction (haii). *Journal of computer-mediated communication*, 25(1):74–88, 2020.
- 77 [9] John Sweller. Cognitive load during problem solving: Effects on learning. *Cognitive science*, 12 (2):257–285, 1988.

### 9 A Experimental Setup

#### 80 A.1 A.1 Experimental Design

A within-subject design was adopted to examine cognitive role redistribution during programming with and without generative-model assistance. Each participant completed two programming tasks of comparable complexity under two counterbalanced conditions: (1) **Control**—coding without external assistance, and (2) **Generative**—coding with ChatGPT-5 assistance. This structure isolates the cognitive effects of model assistance while holding individual skill and task difficulty constant [9, 3, 5].

### 87 A.2 A.2 Participants

- Five participants (*n*=5) with 1–5 years of Python programming experience were recruited. All reported regular exposure to IDE-based coding but no prior training in cognitive or experimental research, ensuring naturalistic programming behavior [2]. Each session lasted approximately 30
- 91 minutes.

#### 92 A.3 A.3 Experimental Environment

All experiments were conducted on standard laptops (Python 3.10, VSCode IDE). The generative model used in the assisted condition was **ChatGPT-5** (April 2025 release), accessed through the official web interface with default settings. Internet access and external searches were disabled for both conditions.

#### of A.4 A.4 Task Materials

Two programming tasks were designed to emphasize conceptual reasoning while minimizing boilerplate code:

- Task A: File Extension Counter. Count occurrences of file extensions from a list of 100 filenames, ignoring case and excluding files without extensions. 101
  - Task B: URL Query Parser. Parse and decode query strings into key-value pairs, merging duplicate keys into lists.
- Each task contained three predefined unit tests for scoring. Full prompts and test cases are provided 104 in the supplementary materials [4]. 105

#### A.5 A.5 Procedure 106

102

103

116

117

118

119

120

121

125

126

128

132

133

135

107 Participants first completed a 2-minute orientation and a short think-aloud practice session [5]. They then performed two 10-minute programming tasks (one per condition) with a 2-minute break in 108 between. In the Generative condition, participants interacted freely with ChatGPT-5 using natural-109 language prompts and could copy or edit its responses [1, 7]. The Control condition disallowed 110 any external assistance or web search. All sessions were screen-recorded, and verbalizations were 111 transcribed for later analysis.

#### A.6 A.6 Data Collection 113

- We collected three complementary data streams to capture both behavioral and cognitive dimensions 114 of programming: 115
  - Verbal protocol: Think-aloud recordings were transcribed into sentence-level utterances for qualitative analysis [5].
    - Behavioral logs: Automatic timestamps captured first keypress, first successful test, and total task time.
    - **Self-report:** Three 7-point Likert items measured (Q1) perceived micro-level control burden, (Q2) conceptual focus, and (Q3) overall mental demand [9, 3].
- For the Generative condition, all ChatGPT-5 prompts and responses were also logged for post-hoc 122 linguistic classification (conceptual vs. imperative prompts) [8]. 123

#### **A.7 Measurement Definitions** 124

- Planning ratio:  $(t_{\text{first\_keypress}} t_{\text{start}})/t_{\text{total}}$ .
  - First pass time: Elapsed time until the first successful test case.
- **Tests passed:** Number of passing unit tests (0–3). 127
  - Q1–Q3: 7-point Likert responses on perceived cognitive effort and focus.

#### A.8 Post-task Questionnaire 129

- After each task, participants rated the following items on a 7-point Likert scale (1 = strongly disagree, 130 7 = strongly agree): 131
  - Q1. "I had to manage many low-level implementation details." (micro-level control burden)
  - Q2. "I focused mainly on understanding and structuring the problem conceptually." (conceptual focus)
  - Q3. "The task required a high level of mental effort." (overall mental demand)
- After both conditions, participants also answered an open-ended reflection question: "What felt most 136 different between the two coding experiences?" 137

### A.9 A.9 Analysis

- Quantitative data were analyzed using paired t-tests with Cohen's d for effect sizes. Given the 139 small sample size, results are treated as exploratory indicators rather than confirmatory evidence. 140 Qualitative analysis focused on the proportion of encoding-related utterances and the frequency of
- encoding–decoding transitions, consistent with cognitive process-tracing methods [2, 6].

## A.10 A.10 Analysis Tools

- All data were processed in Python using pandas, SciPy, and matplotlib. Raw behavioral logs, anonymized transcripts, and analysis scripts will be made publicly available upon publication.