© ® N O oA~ W N =

n = o

[Short]From Decoding to Encoding: Cognitive
Reorganization of Human Coding under Generative
Al

Jongwon Ryu, Junyeong Kim
Department of Artificial Intelligence
Chung-Ang University
Seoul, 06974
[fbwhddnjs511, junyeongkim]@cau.ac.kr

Abstract

The emergence of large generative models has reshaped human coding cognition.
Traditional programming requires both encoding-conceptualizing a problem, and
decoding-translating concepts into code. Generative models automate much of
the decoding process, externalizing expressive cognition and allowing humans
to focus on higher-level conceptual reasoning. This study examines how such
automation reorganizes cognitive processes in programming. In a within subject
pilot experiment , participants completed equivalent coding tasks with and without
assistance from ChatGPT-5. Behavioral, verbal, and self-report data revealed
greater conceptual focus and reduced low-level control effort under Al-assisted
conditions. Overall, the findings suggest that generative Al redistributes cognitive
load, shifting programming from an implementation task to a conceptual design
activity.

1 Introduction

The rise of large generative models has fundamentally changed how humans engage in programming.
Traditional coding involves two distinct cognitive stages: encoding-conceptualizing and structuring
a problem, and decoding-translating concepts into executable code. These stages rely on separable
cognitive subsystems, with decoding often demanding greater cognitive precision and working-
memory resources [2, 5, 9, 3].

Generative models now automate much of the decoding process [4, 1]. By offloading expressive
implementation to an external agent, programmers are relieved from micro-level control and can
redirect cognitive resources toward higher-level conceptual reasoning [6, 8]. This shift reframes pro-
gramming from “how to implement” to “what to implement,” signaling a fundamental reorganization
of human coding cognition [7].

Theoretical perspective. We formalize this transformation through an encoding—decoding cognitive
model, where total cognitive load is distributed between conceptual (encoding) and expressive
(decoding) processes. When a generative model assumes decoding, human cognitive resources are
reallocated toward encoding, producing a functional segregation that explains observed performance
gains not as simple efficiency, but as a reorganization of cognitive structure [9, 3].

Research objective. While prior studies on Al-assisted programming have reported productivity
improvements, they seldom explain the underlying cognitive mechanisms. This work addresses that
gap by examining how generative models externalize expressive cognition and redistribute mental
effort toward conceptual reasoning [6, 1].

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

34
35
36
37
38
39

40
41
42
43
44

45

46
47
48
49
50
51
52
53

54
55
56
57
58

@ Encoding @ Encoding
(Conceptualization) (Conceptualization)

Hioh X Generative Model é
Coglr?itive @ Decoding Offloading 1“1 Decoding Redistributed
Load (Code Generation) (Code Generation) Load

Human-only Human + Generative Model
(Pre-Generative)

Figure 1: Overview of the proposed encoding—decoding cognitive framework.

2 Method and Results

We conducted a within-subject pilot study (n=5) to examine how generative models redistribute
cognitive roles in programming. Each participant solved two short Python tasks under Control (no
assistance) and Generative (ChatGPT-5 assistance) conditions, counterbalanced to mitigate order
effects [9, 3]. Tasks emphasized reasoning over syntax and were designed to be solvable within 30
lines of code [4]. Participants verbalized their thought process during each session [5], and behavioral,
verbal, and self-report data were collected.

Quantitative analysis compared planning ratio, task performance, and cognitive ratings. As shown
in Table 1, generative assistance increased pre-coding planning time (A=+0.083) and conceptual
focus (AQ2=+1.5), while reducing micro-level control effort (AQ1=-1.2) and total completion time
(A=-93.2s). Verbal analysis revealed that participants produced more conceptual and fewer syntactic
utterances, indicating a cognitive shift from expressive to conceptual reasoning [2, 6].

Table 1: Paired comparison of key metrics between conditions (T = Generative, C = Control, n = 5).

Metric Mean A(T-C) t P Cohen’s d
Planning ratio +0.083 5.21 0.007 23
First pass time (s) -93.2 -3.88 0.017 1.7
Tests passed +0.4 1.94 0.12 0.9
Q1 Micro control burden -1.2 -4.12 0.014 1.8
Q2 Conceptual focus +1.5 437 0.011 1.9
Q3 Overall demand -0.7 -2.26 0.086 1.0

3 Discussion and Conclusion

Results suggest that generative models do more than improve efficiency-they restructure cognitive
processes in programming. By externalizing the decoding process, humans allocate more cognitive
resources to conceptual reasoning, supporting a functional segregation between human and Al
cognition [9, 6]. Qualitative analysis of verbal protocols further revealed a linguistic shift: participants
in the generative condition framed their intentions conceptually (e.g., “I need a structure for fast
lookup”) rather than procedurally (e.g., “write a loop to sort”), illustrating how expressive cognition
was externalized to the model. This implies that generative Al functions as a cognitive redistribution
mechanism, transforming programming from implementation to conceptual design.

Although limited by sample size (n=5), consistent behavioral, subjective, and linguistic patterns
validate this hypothesis. Future work should expand to larger populations and incorporate multimodal
cognitive measures (e.g., eye-tracking, EEG) to examine real-time cognitive load redistribution.
Overall, these findings move beyond the “Al for productivity” narrative toward a view of Al as a
catalyst for cognitive transformation.

59

60
61
62
63

64

65

66
67
68

69
70

71
72

73
74

75
76

77
78

79

80

81
82
83
84
85
86

87

88
89
90
91

92

93
94
95
96

97

98
99

References

[1] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny
Collisson, Jina Suh, Shamsi Igbal, Paul N Bennett, Kori Inkpen, et al. Guidelines for human-ai
interaction. In Proceedings of the 2019 chi conference on human factors in computing systems,
pages 1-13, 2019.

[2] John R Anderson. The architecture of cognition. Psychology Press, 2013.
[3] Alan Baddeley. Working memory. Memory, pages 71-111, 2020.

[4] Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini Kalliamvakou, Travis
Lowdermilk, and Idan Gazit. Taking flight with copilot: Early insights and opportunities of
ai-powered pair-programming tools. Queue, 20(6):35-57, 2022.

[S] Allen Newell, Herbert Alexander Simon, et al. Human problem solving, volume 104. Prentice-hall
Englewood Cliffs, NJ, 1972.

[6] Ben Shneiderman. Human-centered artificial intelligence: Three fresh ideas. AIS Transactions
on Human-Computer Interaction, 12(3):109-124, 2020.

[7] Ben Shneiderman and Pattie Maes. Direct manipulation vs. interface agents. interactions, 4(6):
42-61, 1997.

[8] S Shyam Sundar. Rise of machine agency: A framework for studying the psychology of human—ai
interaction (haii). Journal of computer-mediated communication, 25(1):74-88, 2020.

[9] John Sweller. Cognitive load during problem solving: Effects on learning. Cognitive science, 12
(2):257-285, 1988.

A Experimental Setup

A.1 A.1 Experimental Design

A within-subject design was adopted to examine cognitive role redistribution during programming
with and without generative-model assistance. Each participant completed two programming tasks
of comparable complexity under two counterbalanced conditions: (1) Control—coding without
external assistance, and (2) Generative—coding with ChatGPT-5 assistance. This structure isolates
the cognitive effects of model assistance while holding individual skill and task difficulty constant
[9, 3, 5].

A.2 A.2 Participants

Five participants (n=5) with 1-5 years of Python programming experience were recruited. All
reported regular exposure to IDE-based coding but no prior training in cognitive or experimental
research, ensuring naturalistic programming behavior [2]. Each session lasted approximately 30
minutes.

A.3 A.3 Experimental Environment

All experiments were conducted on standard laptops (Python 3.10, VSCode IDE). The generative
model used in the assisted condition was ChatGPT-5 (April 2025 release), accessed through the
official web interface with default settings. Internet access and external searches were disabled for
both conditions.

A.4 A.4 Task Materials

Two programming tasks were designed to emphasize conceptual reasoning while minimizing boiler-
plate code:

100
101

102
103

104
105

106

107
108
109
110
111
112

113

114
115

116

117

118
119

120
121

122
123

124

125

126

127

128

129

130
131

132

133
134

135

136
137

139
140
141
142

e Task A: File Extension Counter. Count occurrences of file extensions from a list of
filenames, ignoring case and excluding files without extensions.

* Task B: URL Query Parser. Parse and decode query strings into key—value pairs, merging
duplicate keys into lists.

Each task contained three predefined unit tests for scoring. Full prompts and test cases are provided
in the supplementary materials [4].

A.5 A.5Procedure

Participants first completed a 2-minute orientation and a short think-aloud practice session [5]. They
then performed two 10-minute programming tasks (one per condition) with a 2-minute break in
between. In the Generative condition, participants interacted freely with ChatGPT-5 using natural-
language prompts and could copy or edit its responses [1, 7]. The Control condition disallowed
any external assistance or web search. All sessions were screen-recorded, and verbalizations were
transcribed for later analysis.

A.6 A.6 Data Collection

We collected three complementary data streams to capture both behavioral and cognitive dimensions
of programming:

* Verbal protocol: Think-aloud recordings were transcribed into sentence-level utterances
for qualitative analysis [5].

* Behavioral logs: Automatic timestamps captured first keypress, first successful test, and
total task time.

* Self-report: Three 7-point Likert items measured (Q1) perceived micro-level control burden,
(Q2) conceptual focus, and (Q3) overall mental demand [9, 3].

For the Generative condition, all ChatGPT-5 prompts and responses were also logged for post-hoc
linguistic classification (conceptual vs. imperative prompts) [8].

A.7 A.7 Measurement Definitions

° Planniﬂg ratio: (tﬁrstfkeypress - tstart)/ ttotal-
* First pass time: Elapsed time until the first successful test case.

 Tests passed: Number of passing unit tests (0-3).

Q1-Q3: 7-point Likert responses on perceived cognitive effort and focus.

A.8 A.8 Post-task Questionnaire

After each task, participants rated the following items on a 7-point Likert scale (1 = strongly disagree,
7 = strongly agree):
* Q1. “T had to manage many low-level implementation details.” (micro-level control burden)

* Q2. “I focused mainly on understanding and structuring the problem conceptually.” (con-
ceptual focus)

* Q3. “The task required a high level of mental effort.” (overall mental demand)

After both conditions, participants also answered an open-ended reflection question: “What felt most
different between the two coding experiences?”

A9 A.9 Analysis

Quantitative data were analyzed using paired #-tests with Cohen’s d for effect sizes. Given the
small sample size, results are treated as exploratory indicators rather than confirmatory evidence.
Qualitative analysis focused on the proportion of encoding-related utterances and the frequency of
encoding—decoding transitions, consistent with cognitive process-tracing methods [2, 6].

143 A.10 A.10 Analysis Tools

144 All data were processed in Python using pandas, SciPy, and matplotlib. Raw behavioral logs,
145 anonymized transcripts, and analysis scripts will be made publicly available upon publication.

