
[Short]From Decoding to Encoding: Cognitive
Reorganization of Human Coding under Generative

AI

Jongwon Ryu, Junyeong Kim
Department of Artificial Intelligence

Chung-Ang University
Seoul, 06974

[fbwhddnjs511, junyeongkim]@cau.ac.kr

Abstract

The emergence of large generative models has reshaped human coding cognition.1

Traditional programming requires both encoding-conceptualizing a problem, and2

decoding-translating concepts into code. Generative models automate much of3

the decoding process, externalizing expressive cognition and allowing humans4

to focus on higher-level conceptual reasoning. This study examines how such5

automation reorganizes cognitive processes in programming. In a within subject6

pilot experiment , participants completed equivalent coding tasks with and without7

assistance from ChatGPT-5. Behavioral, verbal, and self-report data revealed8

greater conceptual focus and reduced low-level control effort under AI-assisted9

conditions. Overall, the findings suggest that generative AI redistributes cognitive10

load, shifting programming from an implementation task to a conceptual design11

activity.12

1 Introduction13

The rise of large generative models has fundamentally changed how humans engage in programming.14

Traditional coding involves two distinct cognitive stages: encoding-conceptualizing and structuring15

a problem, and decoding-translating concepts into executable code. These stages rely on separable16

cognitive subsystems, with decoding often demanding greater cognitive precision and working-17

memory resources [2, 5, 9, 3].18

Generative models now automate much of the decoding process [4, 1]. By offloading expressive19

implementation to an external agent, programmers are relieved from micro-level control and can20

redirect cognitive resources toward higher-level conceptual reasoning [6, 8]. This shift reframes pro-21

gramming from “how to implement” to “what to implement,” signaling a fundamental reorganization22

of human coding cognition [7].23

Theoretical perspective. We formalize this transformation through an encoding–decoding cognitive24

model, where total cognitive load is distributed between conceptual (encoding) and expressive25

(decoding) processes. When a generative model assumes decoding, human cognitive resources are26

reallocated toward encoding, producing a functional segregation that explains observed performance27

gains not as simple efficiency, but as a reorganization of cognitive structure [9, 3].28

Research objective. While prior studies on AI-assisted programming have reported productivity29

improvements, they seldom explain the underlying cognitive mechanisms. This work addresses that30

gap by examining how generative models externalize expressive cognition and redistribute mental31

effort toward conceptual reasoning [6, 1].32

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



Figure 1: Overview of the proposed encoding–decoding cognitive framework.

2 Method and Results33

We conducted a within-subject pilot study (n=5) to examine how generative models redistribute34

cognitive roles in programming. Each participant solved two short Python tasks under Control (no35

assistance) and Generative (ChatGPT-5 assistance) conditions, counterbalanced to mitigate order36

effects [9, 3]. Tasks emphasized reasoning over syntax and were designed to be solvable within 3037

lines of code [4]. Participants verbalized their thought process during each session [5], and behavioral,38

verbal, and self-report data were collected.39

Quantitative analysis compared planning ratio, task performance, and cognitive ratings. As shown40

in Table 1, generative assistance increased pre-coding planning time (∆=+0.083) and conceptual41

focus (∆Q2=+1.5), while reducing micro-level control effort (∆Q1=-1.2) and total completion time42

(∆=-93.2s). Verbal analysis revealed that participants produced more conceptual and fewer syntactic43

utterances, indicating a cognitive shift from expressive to conceptual reasoning [2, 6].44

Table 1: Paired comparison of key metrics between conditions (T = Generative, C = Control, n = 5).
Metric Mean ∆(T-C) t p Cohen’s d
Planning ratio +0.083 5.21 0.007 2.3
First pass time (s) -93.2 -3.88 0.017 1.7
Tests passed +0.4 1.94 0.12 0.9
Q1 Micro control burden -1.2 -4.12 0.014 1.8
Q2 Conceptual focus +1.5 4.37 0.011 1.9
Q3 Overall demand -0.7 -2.26 0.086 1.0

3 Discussion and Conclusion45

Results suggest that generative models do more than improve efficiency-they restructure cognitive46

processes in programming. By externalizing the decoding process, humans allocate more cognitive47

resources to conceptual reasoning, supporting a functional segregation between human and AI48

cognition [9, 6]. Qualitative analysis of verbal protocols further revealed a linguistic shift: participants49

in the generative condition framed their intentions conceptually (e.g., “I need a structure for fast50

lookup”) rather than procedurally (e.g., “write a loop to sort”), illustrating how expressive cognition51

was externalized to the model. This implies that generative AI functions as a cognitive redistribution52

mechanism, transforming programming from implementation to conceptual design.53

Although limited by sample size (n=5), consistent behavioral, subjective, and linguistic patterns54

validate this hypothesis. Future work should expand to larger populations and incorporate multimodal55

cognitive measures (e.g., eye-tracking, EEG) to examine real-time cognitive load redistribution.56

Overall, these findings move beyond the “AI for productivity” narrative toward a view of AI as a57

catalyst for cognitive transformation.58

2



References59

[1] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi, Penny60

Collisson, Jina Suh, Shamsi Iqbal, Paul N Bennett, Kori Inkpen, et al. Guidelines for human-ai61

interaction. In Proceedings of the 2019 chi conference on human factors in computing systems,62

pages 1–13, 2019.63

[2] John R Anderson. The architecture of cognition. Psychology Press, 2013.64

[3] Alan Baddeley. Working memory. Memory, pages 71–111, 2020.65

[4] Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini Kalliamvakou, Travis66

Lowdermilk, and Idan Gazit. Taking flight with copilot: Early insights and opportunities of67

ai-powered pair-programming tools. Queue, 20(6):35–57, 2022.68

[5] Allen Newell, Herbert Alexander Simon, et al. Human problem solving, volume 104. Prentice-hall69

Englewood Cliffs, NJ, 1972.70

[6] Ben Shneiderman. Human-centered artificial intelligence: Three fresh ideas. AIS Transactions71

on Human-Computer Interaction, 12(3):109–124, 2020.72

[7] Ben Shneiderman and Pattie Maes. Direct manipulation vs. interface agents. interactions, 4(6):73

42–61, 1997.74

[8] S Shyam Sundar. Rise of machine agency: A framework for studying the psychology of human–ai75

interaction (haii). Journal of computer-mediated communication, 25(1):74–88, 2020.76

[9] John Sweller. Cognitive load during problem solving: Effects on learning. Cognitive science, 1277

(2):257–285, 1988.78

A Experimental Setup79

A.1 A.1 Experimental Design80

A within-subject design was adopted to examine cognitive role redistribution during programming81

with and without generative-model assistance. Each participant completed two programming tasks82

of comparable complexity under two counterbalanced conditions: (1) Control—coding without83

external assistance, and (2) Generative—coding with ChatGPT-5 assistance. This structure isolates84

the cognitive effects of model assistance while holding individual skill and task difficulty constant85

[9, 3, 5].86

A.2 A.2 Participants87

Five participants (n=5) with 1–5 years of Python programming experience were recruited. All88

reported regular exposure to IDE-based coding but no prior training in cognitive or experimental89

research, ensuring naturalistic programming behavior [2]. Each session lasted approximately 3090

minutes.91

A.3 A.3 Experimental Environment92

All experiments were conducted on standard laptops (Python 3.10, VSCode IDE). The generative93

model used in the assisted condition was ChatGPT-5 (April 2025 release), accessed through the94

official web interface with default settings. Internet access and external searches were disabled for95

both conditions.96

A.4 A.4 Task Materials97

Two programming tasks were designed to emphasize conceptual reasoning while minimizing boiler-98

plate code:99

3



• Task A: File Extension Counter. Count occurrences of file extensions from a list of100

filenames, ignoring case and excluding files without extensions.101

• Task B: URL Query Parser. Parse and decode query strings into key–value pairs, merging102

duplicate keys into lists.103

Each task contained three predefined unit tests for scoring. Full prompts and test cases are provided104

in the supplementary materials [4].105

A.5 A.5 Procedure106

Participants first completed a 2-minute orientation and a short think-aloud practice session [5]. They107

then performed two 10-minute programming tasks (one per condition) with a 2-minute break in108

between. In the Generative condition, participants interacted freely with ChatGPT-5 using natural-109

language prompts and could copy or edit its responses [1, 7]. The Control condition disallowed110

any external assistance or web search. All sessions were screen-recorded, and verbalizations were111

transcribed for later analysis.112

A.6 A.6 Data Collection113

We collected three complementary data streams to capture both behavioral and cognitive dimensions114

of programming:115

• Verbal protocol: Think-aloud recordings were transcribed into sentence-level utterances116

for qualitative analysis [5].117

• Behavioral logs: Automatic timestamps captured first keypress, first successful test, and118

total task time.119

• Self-report: Three 7-point Likert items measured (Q1) perceived micro-level control burden,120

(Q2) conceptual focus, and (Q3) overall mental demand [9, 3].121

For the Generative condition, all ChatGPT-5 prompts and responses were also logged for post-hoc122

linguistic classification (conceptual vs. imperative prompts) [8].123

A.7 A.7 Measurement Definitions124

• Planning ratio: (tfirst_keypress − tstart)/ttotal.125

• First pass time: Elapsed time until the first successful test case.126

• Tests passed: Number of passing unit tests (0–3).127

• Q1–Q3: 7-point Likert responses on perceived cognitive effort and focus.128

A.8 A.8 Post-task Questionnaire129

After each task, participants rated the following items on a 7-point Likert scale (1 = strongly disagree,130

7 = strongly agree):131

• Q1. “I had to manage many low-level implementation details.” (micro-level control burden)132

• Q2. “I focused mainly on understanding and structuring the problem conceptually.” (con-133

ceptual focus)134

• Q3. “The task required a high level of mental effort.” (overall mental demand)135

After both conditions, participants also answered an open-ended reflection question: “What felt most136

different between the two coding experiences?”137

A.9 A.9 Analysis138

Quantitative data were analyzed using paired t-tests with Cohen’s d for effect sizes. Given the139

small sample size, results are treated as exploratory indicators rather than confirmatory evidence.140

Qualitative analysis focused on the proportion of encoding-related utterances and the frequency of141

encoding–decoding transitions, consistent with cognitive process-tracing methods [2, 6].142

4



A.10 A.10 Analysis Tools143

All data were processed in Python using pandas, SciPy, and matplotlib. Raw behavioral logs,144

anonymized transcripts, and analysis scripts will be made publicly available upon publication.145

5


