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Abstract

Detecting small objects in large-scale, high-resolution aerial im-
ages presents significant challenges. Most existing detectors fo-
cus primarily on the design of detection heads and fusion layers,
often overlooking information loss in the backbone and the ex-
cessive computational resources required, which are particularly
constrained in aerial image analysis. To address the aforementioned
challenges, we propose the Resolution-Aware Criss-Cross Atten-
tion Detector (RACDet), which effectively leverages the contextual
information embedded in an innovative backbone RACNet of aerial
images. By decomposing the position information into orthogonal
horizontal and vertical components, we achieve efficient modeling
of spatial dependencies. For each pixel, RACNet gathers contextual
information from all other pixels in the same position, establish-
ing position relationships early, which can guide the subsequent
processing in convolutional networks across different resolutions.
The proposed method not only provides an adaptive representa-
tion of feature maps at multi-scale resolutions using normalized
position encoding, but also enhances the detection accuracy of
small objects by leveraging a regression loss function based on
smooth Gaussian Wasserstein distance. We evaluate our method
on two challenging aerial image datasets, including VisDrone2019
and UAVDT. Comprehensive experiments show that our approach
achieves state-of-the-art performance while significantly decreas-
ing the number of FLOPs.
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1 Introduction

Leveraging advancements in Convolutional Neural Networks (CNNs)
and Vision Transformers (ViTs) [4], current object detectors (e.g.,

Faster R-CNN [22], YOLO [21], and DETR [1]) have achieved sub-

stantial progress. However, constructing detectors for aerial images

remains a significant challenge, as current methods fail short of

satisfactory results in terms of accuracy and efficiency.

Aerial images have several unique characteristics compared to
traditional images. Firstly, they are characterized by high resolution
and complex scenes. As illustrated in Fig. 1 (a), objects in aerial
images, viewed from a top-down perspective, are surrounded by
similar objects in both the horizontal and vertical directions. Tradi-
tional detectors typically downsample images without considering
the viewpoint, which can significantly affect the resolution of ob-
jects. This leads to the weakening or disappearance of small object
features, thereby degrading the detector’s performance. Secondly,
Fig. 1 (b) shows that aerial datasets consist of a significant propor-
tion of small and medium objects. An analysis of the VisDrone2019
[8] dataset reveals that over 60.1% of the annotation samples are
small objects, 34.2% are medium, and 5.7% are large. Similarly, in the
UAVDT [7] training annotations, small objects account for 61.9%,
medium objects for 36.3%, and large objects for just 1.8%. In general,
small objects refer to objects with an area less than 32x32 [18], so
effectively detecting small objects in high-resolution aerial images
is key to improving detector performance.

CNNs have long served as the backbone for object detection
methods [2, 12, 14, 20, 25, 37]. Although these methods show con-
siderable potential, there remains significant room for improve-
ment. During the forward propagation process, they only have a
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Figure 1: (a) In aerial images, objects are typically located
in complex road scenes. (b) Statistical analysis reveals the
distribution of small, medium, and large objects in the Vis-
Drone2019 and UAVDT training datasets.

small receptive field, which is beneficial for detecting small ob-
jects, but the lack of fully considering the contextual information
embedded within the feature maps leads to information loss in
the backbone during the training phase. ViTs [5] are widely used
as alternatives to CNNs for extracting contextual information by
leveraging self-attention mechanisms to capture long-range de-
pendencies. However, despite the theoretical advantages shown by
transformer-based models [3, 32, 33, 35, 38, 40] in small object detec-
tion for aerial images, architectures based solely on attention still
face challenges due to the unique characteristics of aerial images,
including high resolution, dense object distribution, and complex
scenes. The global self-attention incurs high computational costs
on large images, while the weakening of local features can cause
missed detections. Therefore, integrating the local perception ad-
vantages of convolutions remains necessary to balance detection
accuracy and efficiency.

This raises the question: Can high-resolution network cap-
tures global contextual information, similar to self-attention,
by linking global features with smaller receptive fields to im-
prove the accuracy and efficiency of small object detection?

To address the information loss in high-resolution images dur-
ing the backbone stage and improve the performance of small ob-
ject detection while maintaining the overall lightweight structure,
we propose the Resolution-Aware Criss-Cross Attention Detector
(RACDet). Our detector uses an anchor-free CenterNet [42] as the
baseline, directly predicting the center points of objects from the
extracted feature maps without relying on anchor boxes. CenterNet
predicts the heatmap of the object’s center point and uses features
around the center to infer attributes such as width and length.
In the backbone stage, we introduce the Resolution-Aware Criss-
Cross Network (RACNet), a high-resolution network integrated
with global contextual information. Specifically, during feature
propagation, we apply the Resolution-Aware Criss-Cross Attention
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enhanced with self-attention mechanisms to capture long-range
dependencies and contextual information in aerial images. The re-
sulting features are then fed into the high-resolution network [29]
for detailed extraction across multiple resolution branches. In order
to obtain accurate high-resolution representations while maintain-
ing the overall lightweight structure of RACDet, we forgo designing
complex feature fusion layers during the feature fusion stage af-
ter the backbone. Instead, the high-resolution branch outputs the
feature map directly, while the low-resolution branch uses simple
bilinear upsampling and channel adjustment to match it. This de-
sign is motivated by the parallel connection of multi-resolution
convolutional streams during the backbone stage, where repeated
multi-resolution fusion enables consistent maintenance of high-
resolution representations throughout training.

In addition, to improve the detection accuracy of small objects,
we design a smooth Gaussian Wasserstein distance (GWD) [36] as
the loss function. This loss function reduce the confusion and redun-
dancy of small objects in the background. As a result, it enhances
the sensitivity to small object features. Additionally, to prevent per-
formance degradation when detecting large objects, we combine
the traditional Smooth L; loss. This hybrid approach balances the
weights of large and small objects during optimization.

Our contributions can be summarized as follows.

e We propose the anchor-free Resolution-Aware Criss-Cross
Attention Detector (RACDet) and design a backbone RAC-
Net that leverages global contextual information to guide
different resolution convolution streams for efficient and
accurate small object detection in aerial images.

e We propose a regression loss function based on smooth

Gaussian Wasserstein distance (GWD), which effectively

enhances small object detection accuracy and improves sen-

sitivity to small object features.

Through extensive experiments conducted on the challeng-

ing VisDrone2019 and UAVDT datasets, we thoroughly demon-

strate the effectiveness of RACDet, achieving state-of-the-art
performance.

2 Related Work

2.1 General object detection

General object detection methods in computer vision are mainly
classified into anchor-based and anchor-free approaches. Anchor-
based methods are further divided into two-stage and one-stage
methods. Two-stage methods, such as Faster R-CNN [23], generate
candidate regions for classification and localization, while Mask R-
CNN [10] extends Faster R-CNN by adding instance segmentation.
One-stage methods, such as YOLO [21], directly regress bound-
ing boxes and categories, improving detection speed. Anchor-free
methods like FCOS [26] predict distances to the bounding box sides,
while CenterNet [9] localizes objects using center points.

2.2 Small Object Detection in Aerial Images

In aerial image small object detection, many methods adopt a coarse-
to-fine framework to address challenges like small object distribu-
tion and scale variation. ClusDet [34] refines search after coarse
detection using a clustering-based query embedding, while DMNet
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Figure 2: Overview of the proposed RACDet. The final detection results are obtained from the combination of the image crops
and entire images. This includes the backbone RACNet, where n represents the number of iterations for the Attention module.
Ri-channel (i = 1,2,3,4) refers to the adjustment of the feature map channels, with the range from 1 to 4 channels corresponding
to resolutions from high to low. Finally, the query embedding and the heatmap are combined to obtain the detection results.

[16] simplifies training with a density map for cluster prediction.
CRENet [30] improves clustering and fine-grained prediction, but
these methods often incur high computational costs due to multiple
inference stages, limiting their use on resource-constrained UAV
platforms. Focus-and-Detect [15] tries to reduce complexity with
a Gaussian mixture model, but many existing methods overlook
information loss in the backbone network, negatively impacting
real-time performance and detection accuracy.

2.3 Attention mechanisms in Small Object
Detection

Attention mechanisms, particularly self-attention, have shown
great potential for small object detection by capturing long-range
dependencies in images [13]. For example, PSANet [39] uses point-
wise spatial attention and bi-directional information propagation
for scene parsing, while Channel Attention-based Detection [27]
emphasizes more discriminative channels for small object detec-
tion. However, these methods struggle with high-resolution aerial
images due to high computational complexity and large resource
consumption. To address these challenges, we propose RACDet,
which efficiently captures long-range dependencies and contextual
information while guiding feature training at multiple resolutions.

3 METHODOLOGY

In this section, we provide a detailed introduction to our proposed
Resolution-Aware Criss-Cross Attention Detector (RACDet), which
is an improved version of CenterNet [9]. This detector is a pow-
erful and efficient anchor-free object detection framework that
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utilizes high-resolution feature maps for small object prediction. In
the backbone stage, we propose the Resolution-Aware Criss-Cross
Network (RACNet). RACNet incorporates an enhancement of the
Resolution-Aware Criss-Cross Attention through self-attention [28]
mechanisms, capturing long-range dependencies to extract con-
textual information from aerial images and accurately guiding the
training of features at different resolutions.

3.1 RACNet

As shown in Fig. 2 , RACDet takes aerial images of different resolu-
tions as input. After an initial convolution that generates the initial
feature map without positional information, the feature map is
passed through two consecutive Resolution-Aware Criss-Cross At-
tention modules. In the first module, local features gather contextual
information from both the horizontal and vertical directions. The
feature map generated by the first resolution-aware criss-cross at-
tention module is then fed into the second module, where additional
contextual information from the criss-cross paths is obtained. This
process ultimately establishes entire image dependencies across all
positions. To balance accuracy and efficiency, we introduce criss-
cross positional encoding to enhance positional representation and
constrain the parameters of both module to maintain a lightweight
model.

3.1.1 Criss-Cross Position Encoding. In the computation of the
attention matrix, we consider the influence of keys at different po-
sitions. To capture the spatial relationships in the attention mech-
anism, absolute positional encoding is applied to preprocess the
feature maps H € RE*W>XH Normalize the positions of the feature
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map along the height H and width W.
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The position encodings pj, and p., are normalized along the height
H and width W dimensions.
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The pos, and pos,, represent the position encodings for each pixel
along the height and width of the feature map. kj, and k,, are the
indices that scale the positional information. This scaling is crucial
for capturing long-range dependencies.

®)

The final position information pos is represented by the sum
of the sine and cosine functions of posy and posy, allowing the
position information to be encoded as periodic high-dimensional
vectors, which can be easily incorporated into the attention opera-
tions.

pos = [ sin(pos;,) + sin(pos,,), cos(posy,) + cos(pos,,) |

3.1.2  Resolution-Aware Criss-Cross Attention. The predominant
viewpoint of aerial images is top-down, with scenes often consisting
of "criss-cross" environments, such as intersections and crosswalks,
which makes them particularly suited for Resolution-Aware Criss-
Cross Attention. The top-down perspective provides broad spatial
context, while the "criss" environment leverages the attention mech-
anism to capture global dependencies.

Resolution-Aware Criss-Cross Attention is primarily an improve-
ment on self-attention [28], where two consecutive row-column
correlation matrix transformations replace the global correlation
matrix transformation in self-attention. This modification signifi-
cantly reduces the parameter count required by self-attention while
maintaining high accuracy. However, single-head attention pro-
cesses the input data in a single representation space, which may
limit the model’s capacity to capture the full complexity of the data.
In contrast, multi-head attention maps the input data into multiple
representation subspaces, allowing the model to capture different
aspects of the information and integrate them into the final output.

In the specific implementation, early feature map H € REXW>H
is input into the resolution-aware criss-cross attention module.
Three 1X 1 convolutions are applied to obtain the Q, K, and V matri-
ces, where {Q,K} € RE*WXH and ¢’ is the result of dimensional-
ity reduction of C. Next, the Affinity operation is performed on Q
and K to obtain the attention diagram P € R(H+W-1D)X(HXW) go;
every position m of Q in the space dimension, a vector Qn € R
can be obtained. Feature vectors can be extracted from the cor-
responding rows and columns in K to get a vector set &y, €
REAW-DXC" ‘then the Affinity operation is according to the fol-
lowing equation:

Li,m = Qz—nd)i,m (4)
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The i-th element of &y, denoted as ®; , € R, is used to calcu-
late L; s, € L, which represents the degree of correlation between
Om and ®; ,, where L € REHW-DXHXW) - After performing
the Affinity operation on Q and K, the result L is normalized via
softmax, and the attention matrix B is obtained.

Then, B needs to perform the Aggregation operation.V €

is used for feature adaptation.V,,, € R is a vector at position m in
e R(H+W—1)><C

RCXHXW

the spatial dimension of V and ¥y, is a collection
of vectors in the same row and column as V. The final feature
map is obtained by the following equation:

H+W-1
A= D Bim¥im+An
i=0

©)

where B; »,, is the weight assigned to the i-th vector at position m
(withi=[1,2,...,H+W—1]), and B; , is a scalar. A’ ), € RC is the
feature vector at position m, which is calculated by the resolution-
aware criss-cross attention module.

3.1.3  Contextual Information for Resolutions. The resolution-aware
criss-cross attention module allows each pixel in the feature map
to gather information from its respective criss-cross path. However,
pixels outside of this range cannot obtain information. To address
this limitation, we stack two attention modules. The first module
enables each pixel in the feature map to collect information from
its corresponding criss-cross path. The second module then repli-
cates this process, allowing each pixel to acquire global contextual
information. The feature map A’ is fed into another resolution-
aware criss-cross attention module, resulting in a new feature map
A” . Thus, every pixel in A’ contains the global spatial contextual
information of the entire feature map. In contrast to traditional
self-attention [28], which directly generates global contextual infor-
mation, our method reduces both temporal and spatial complexity
from O(N?) to O(NVN) by sequentially stacking two our modules.
We input the feature map A" into the subsequent high-resolution
network, feeding global contextual information into the high-resolution
convolutional network [29] for detailed feature extraction across
different resolutions. This allows the model to learn the overall
contextual information of the entire image across multiple sub-
representational spaces. By feeding the A’/ feature map into the
branches of different resolutions, we effectively combine the lo-
cal information from the low-resolution path while preserving the
high-resolution features. The specific implementation is as follows:
AWM = o(Faun(A”, Ai)) - Tj (Ai) + A (6)
In this formulation, A?“t is the output feature map of the i-th reso-
lution branch after attention enhancement. A is the input attention
feature map containing global contextual information, and A4; is
the original feature map from the i-th resolution branch. o(-) is a
nonlinear activation function. Fattn (A", A;) is the attention inter-
action function same as Eq. 3.1.2, calculates the attention weights
to enhance A; with A. 7;(-) represents the feature transformation
operation. The operator - stands for element-wise multiplication
for adaptive enhancement. Finally, the residual connection formed
by adding A; helps alleviate the vanishing gradient problem while
preserving the original feature information.
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3.2 High-Resolution Representation

To achieve accurate high-resolution representations while main-
taining the overall lightweight structure of RACDet, we avoid using
complex feature fusion layers during the feature fusion stage after
the backbone. Instead, the high-resolution branch directly outputs
the feature map without any additional operations, while the low-
resolution branch employs simple bilinear upsampling to match
the high-resolution branch and adjusts the channels using 1D con-
volution. This results in the final high-resolution feature map. The
motivation behind this approach lies in the fact that during the
backbone stage. By leveraging low-resolution representations to
enhance the high-resolution ones, we ensure that high-resolution
representations are consistently maintained throughout the train-
ing process. The upsampling equation for the feature fusion layer
is as follows:

N-1
Aour = . UpSample (Ri,z") . Aout

i=1

@)

where R; represents the different resolution branches, as shown
in Fig. 2, when i=1, it corresponds to the high-resolution branch,
while i=2,3,4 correspond to the low-resolution branches. The low-
resolution branches upsample with a scaling factor of 2¢. This pro-
cess enhances high-resolution features while maintaining a light-
weight structure, resulting in the final high-resolution output A4

To improve the accuracy of object detection in densely packed
small object regions, RACDet employs higher-resolution heatmaps
for prediction. In CenterNet, each object is modeled as a single
point representing the center of its bounding box, depicted by a
Gaussian kernel in the heatmap. However, the sampling rate of
the heatmap is reduced by a factor of 4x compared to the input
image. This downsampling causes small objects to collapse into
a few points, or even a single point, on the heatmap, making it
difficult to accurately localize their centers. To address this issue,
we focus on high-resolution representations of objects, which helps
retain fine-grained detail and spatial structure, thereby improving
the precision in localizing and detecting small objects.

3.3 Loss Function

CenterNet[9] combines three different losses to jointly optimize
the entire network.

®

Ly is the modified focal loss used in CenterNet [42], L, ¢ 7 represents
the center point offset loss, and Lg;;, denotes Ly loss. By default,
Asize and Aoff are set to 0.1 and 1.

However, the method of size regression using L; loss has limita-
tions. L1 loss is not sufficiently sensitive to small objects and updates
slowly when gradients are small. Since objects in aerial images are
often densely distributed and exhibit significant scale variations,
L1 loss is more suitable for handling objects with distinct features
in typical background scenarios. To address this issue, we intro-
duce a smooth Gaussian Wasserstein distance, which effectively
distinguishes small objects in densely packed regions. Specifically,
for a bounding box R = (cx, cy, w, h), where (Cx, Cy) denote the
coordinates of the center, and w and h represent the width and

Laer = Ly + AsizeLsize + AoffLoff
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height, respectively. The equation of its inscribed ellipse can be
represented as

)2 —u,)?
(x élx) + (y gy) -1 )
oy oy

where (i, piy) represents the center coordinates of the ellipse,
where iy = cx, py = cy, and the semi-axes lengths along x and y

axes are given by ox = ¥, 0y = % The probability density function
of a 2D Gaussian distribution is:

exp (~10x- = (x - p)

1
21|X|2
where x, g and X denote the coordinate (x, y), the mean vector and
the co-variance matrix of Gaussian distribution as:

x-m' 2 (x-p) =1 (11)

According to Optimal Transport Theory, the Wasserstein dis-
tance between two distributions y and v can be computed as:

fxlw®) = (10)

(12)

Given two 2D Gaussian distributions N (u1,X1) and N (u2,X2),
the Wasserstein distance is:

1/2
W(g;v) = infE (||x - Y||§)

& = ||y - |+ T (21 +3p -2 (21/22221/2)1/2) (13)
Note in particular we have:

Tr ((21/22221/2)1/2) T ((Z;/Z&Z;/Z)I/Z)

Since the detection task uses horizontal bounding boxes as the

ground truth, we have X1X2 = ¥2¥1. Then Eq.(13) can be rewritten
as follows [36]:

(14)

2
& =y -l + 21 - 337

I w1 h1 T w2 hz T (15)
= lp-norm X1, s T T s> | X25 s T o
2 1L,Y1 2° 9 2 Y2 2 9

where ||||f is the Frobenius norm.
The loss defined in Eq.(15) may be overly sensitive to large errors.
To address this, a nonlinear function is introduced, transforming the

loss into an affinity measure W The resulting GWD-based
loss is expressed as [36]:
1
Lywg=1-———, 121 (16)
r+f (dz)

where f(-) is the non-linear function to make the Wasserstein
distance more smooth and expressive. 7 is a modulated hyperpa-
rameter, which is empirically set as 1.

The smooth L; distance of the five points from the predicted
point set and ground-truth bounding box is calculated using L0014
which is defined in Eq.17.

0.5¢2
[t] = 0.5

if|t] <1
otherwise

Lsmoorh () = { (17)
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Table 1: Comparison in terms of AP (%), Latency, and FLOPs on VisDrone. o, ca, aug respectively stand for the original validation

"_n

set, cluster-aware cropped images, and augmented images.

indicates that the result is not reported.

Model backbone  imgsz  test | AP*4l  APZAl  APidl | APYal APSA AP | Latency(ms) FLOPs(G)
QueryDet ResNet50 800 o 19.6 35.7 19.0 - - - 288 -
RetinaNet ResNet50 800 o 20.2 36.9 19.5 - - - 14.7 210

Faster-RCNN ResNet50 800 o 21.4 40.7 19.9 11.7 33.9 54.7 21.2 285
RTMDet-L CSPNeXt-L 640 o 23.7 37.4 25.5 12.5 38.7 50.4 13.9 50.4
CenterNet Hourglass104 800 o 27.8 47.9 27.6 213 42.1 49.8 95.2 1855

HRDNet HRDNet 1333 o 28.3 49.3 28.2 - - - - 421

GFLV1 ResNet50 1333 o 28.4 50.0 27.8 - - - 525 -

CEASC ResNet50 1333 o 28.7 50.7 28.4 - - - 43.8 150
RACDet RACNet 1024 o 35.6 60.0 36.0 27.1 47.7 57.4 175 104

ClusDet ResNet50 1000 o+ca 26.7 50.6 24.7 17.6 38.9 51.4 273 -

DMNet ResNet50 1500 o+ca 28.2 47.6 28.9 19.9 39.6 55.8 290 -
CDMNet ResNet50 1000 o 29.2 49.5 29.8 20.8 40.7 41.6 - -

GLASN ResNet50 600 o+ca 30.7 55.4 30.0 - - - - -
AMRNet ResNet50 1500  o+aug 31.7 - - 23.0 43.4 58.1 - -

YOLC HRNet 1024 o+ca 31.8 55.0 31.7 24.7 42.3 45.0 441 151

CZDet ResNet50 1200 o+ca 33.2 58.3 33.2 26.0 42.6 43.4 - -

UFPMP-Det ResNet50 1333 o+ca 36.6 62.4 36.7 - - - 152 205
RACDet RACNet 1024 o+ca 38.3 62.5 40.1 31.6 47.9 52.5 402 155

Table 2: The detection performance of each class on VisDrone validation set. Ped. and Awn. are short for Pedestrian and

Awning-tricycle. RS is short for random sampler.

Method Backbone ‘ Ped. Person  Bicycle Car Van  Truck  Tricycle Awn. Bus  Motor
Comparison with other detectors

RetinaNet+RS ResNet50 13.0 7.9 1.4 45.5 19.9 11.5 6.3 4.2 17.8 11.8

FRCNN+RS ResNet50 21.4 15.6 6.7 51.7 29.5 19.0 13.1 7.7 31.4 20.7

FRCNN+DSHNet ResNet50 22.5 16.5 10.1 52.8 32.6 22.1 17.5 8.8 39.5 23.7

CenterNet Hourglass104 28.7 18.5 12.7 57.9 37.6 29.6 17.4 11.4 43.2 20.9

YOLC HRNet 37.4 243 21.3 64.3 43.8 34.0 26.5 17.9 53.2 33.6

RACDet RACNet 39.7 26.4 23.7 66.3 46.2 36.8 29.6 20.3 59.0 36.3
During the early stages of model training, we observed that 4.1.1 VisDrone. This dataset comprises 7,019 images captured by

the Wasserstein distance d is typically high when handling large
objects, while the L; loss tends to be overly sensitive to small objects.
To address these issues, we propose an improved strategy that
combines the GWD loss, L; loss, and Lgyo0th 10ss. The final loss
function is formulated as follows:

(18)

Lger = Ly + Agdegwd + AL+ AlsLsmooth

where we set Ag,,4 to 2, 4j; to 0.5 and 4, to 0.1.

4 Experiment

4.1 Datasets and Evaluation Metrics

We evaluate our approach on two publicly available aerial image
datasets: VisDrone 2019 [8] and UAVDT [7]. The details of these
datasets are as follows:
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drones, with 6,471 images designated for training and 548 images
for validation. It includes annotations across ten categories: bicycle,
awning tricycle, tricycle, van, bus, truck, motor, pedestrian, person,
and car. The images have an approximate resolution of 2000 x 1500
pixels, we use the validation set for evaluation.

4.1.2 UAVDT. The dataset consists of 38,327 images with an aver-
age resolution of 1,080x540 pixels. It includes three categories: car,
bus, and truck. The dataset is split into 23,258 images for training
and 15,069 images for testing.

4.2 Implementation Details

Using PyTorch and MMDetection, we trained models from scratch
on the VisDrone [8] and UAVDT [7] datasets for 120 epochs, The
model is trained for 160 epochs using the SGD optimizer with a
momentum of 0.9 and weight decay of 0.0001 ,and applied data
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Figure 3: Visualization of the detection results and heatmaps on VisDrone. The highlighted areas represent the regions that the
network is focusing on. The yellow box indicates the superiority of our method compared to the base model.

augmentation techniques such as mixup and Mosaic. It is run on
the NVIDIA RTX 4090 GPUs platform with a batch size of 2. The
initial learning rate is set to 0.0025 with a linear warm-up. The
input resolution is configured as 1024 X 640 for both datasets, and
inference is conducted using a single 4090 GPU.

4.3 Evaluation Measures

Following the evaluation protocol of the MS COCO [18] dataset, we
utilize AP, APsg, and AP35 as evaluation metrics. Here, AP refers
to the average precision across all categories, while AP5y and AP75
indicate the average precision at IoU thresholds of 0.5 and 0.75,
respectively. Additionally, we report the average precision for each
object category to assess class-specific performance. To evaluate
performance across different object scales, we adopt three metrics:
APsmaits APmediums and APjgyg.. Finally, the efficiency of our ap-
proach is measured by calculating the processing time for a single
original image per GPU.

4.4 Comparison with SOTA on Aerial Datasets

4.4.1 Results on VisDrone Dataset. The proposed detector demon-
strates significant improvements in the key evaluation metric, mean
Average Precision (mAP), on the VisDrone dataset compared to ex-
isting models. To further emphasize the balance between detection
accuracy and efficiency on aerial images, we conduct comparisons
with general object detectors. Evaluations are performed on both
the original dataset and a cluster-aware cropped version, following
the YOLC [19] approach.

On the original validation set, the results in Table 1 show that our
proposed RACDet detector outperforms existing models, achieving
a 7.8% improvement in AP over CenterNet. RACDet also surpasses
the previous state-of-the-art lightweight detector CEASC [6] by
0.8%, and improves detection accuracy by 15.4% compared to the
mainstream backbone RetinaNet [17]. It should be noted that on
a single RTX 4090 GPU (without applying any model acceleration
techniques), our model achieves an inference latency of 175 ms
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while significantly reducing FLOPs. After incorporating the cluster-
aware Crops method, RACDet achieves the best performance to
date with an mAP of 38.3%, representing a 5.1% improvement over
AMRNet [31] and a 1.7% improvement over UFPMP-Det [37]. As
shown in Table 2, our method attains the best performance across
all object categories on the VisDrone validation set.

Table 3: Comparison in terms of AP (%) on UAVDT.

Model | AP%el  APZal  APZal | APPal APAL APV
R-FCN 70 175 39 | 44 147 121
FRCNN+FPN | 110 234 84 | 81 202 265
CenterNet | 132 267 118 | 7.8 266 139
ClusDet | 137 265 125 | 91 251  31.2
DMNet 147 246 163 | 93 262 352
CDMNet | 168 291 185 | 119 290 157
GLSAN | 170 281 188 | - - -
CEASC 171 309 178 | - - -
AMRNet | 182 304 198 | 103 313 335
RACDet | 190 330 202 | 133 321 184

4.4.2  Results on UAVDT Dataset. The performance evaluation on
the UAVDT dataset [7] leads to conclusions similar to those ob-
tained from the VisDrone dataset. This indicates that general object
detectors fail to achieve satisfactory detection results. Based on
the experimental results using the UAVDT dataset (as shown in
Table 3), we demonstrate that the proposed method outperforms the
current state-of-the-art model AMRNet [31], achieving the highest
detection accuracy with an mAP of 19.0%. Furthermore, compared
to other methods, our approach significantly improves the accuracy
of small and medium object detection, despite exhibiting relatively
poorer performance for large objects. These findings further vali-
date the effectiveness of our proposed detector.
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Figure 4: Comparing the enhanced heatmap (left) with the
original (right), highlighting the keypoint regions within
dense areas.

4.5 Ablation Study

To validate the effectiveness of the components in our detector, we
conducted ablation experiments on the VisDrone dataset. In our
detector, RACNet serves as a key component, demonstrating the
most significant improvement in overall performance. Furthermore,
the performance is further enhanced by designing a more efficient
loss function.

4.5.1 Ablation of Backbones. To evaluate the effectiveness of our
proposed backbone design, we conduct ablation studies by replacing
the original Hourglass104 backbone in CenterNet [9] with RACNet
and ResNet50 [11], a widely adopted backbone in many state-of-the-
art detectors.In order to ensure a fair comparison, only the backbone
is substituted, while other components such as the loss functions
remain unchanged. Experimental results on the VisDrone validation
set demonstrate that RACNet improves AP by 7.7%, AP5y by 10.6%,
and AP75 by 8.6% compared to Hourglass104. Furthermore, RACNet
consistently outperforms ResNet50 in all evaluation metrics. As
shown in Table 5, these results validate that the proposed RACNet
can significantly enhance the detection performance of existing
architectures.

Table 4: Ablation study of different backbones.

Backbone | AP*al Apgal APl | Apral appal Appal

Hourglass104 | 28.5 49.5 29.2 21.5 43.5 50.1
ResNet50 29.3 51.5 28.2 20.2 41.8 47.5
RACNet(ours) | 36.0 60.4 36.7 27.7 47.9 57.0

4.5.2  Ablation of Loss function. To further optimize the proposed
RACDet, we made modifications to the regression loss. Specifically,
we replaced the original loss with Ly, and Lg,,q. These losses
were chosen to address the sensitivity to scale variations and the
inconsistency between metrics and losses. The results of these ex-
periments are shown in Table 5. When using the regression loss
with L1 + Lgp,00¢hs We Observed an improvement in detection perfor-
mance, with AP increasing to 29.5%. When Ly + Ly,,q was used, the
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performance improved further, reaching 35.5% for AP. Combining
both Lgy00¢n and Ly,,q with Ly resulted in the highest performance,
achieving AP of 36.0%, as shown in Table 5.

This demonstrates the impact of the modified loss functions on
performance. When we finally combined Ly,,,50:, we found that
the detection performance showed only a slight improvement of
0.5%, which we attribute to small objects already obtaining global
contextual information during the forward pass. During backpropa-
gation, we typically only need to consider the loss between objects
of different resolutions. Additionally, we tested IoU-based losses
such as GIoU [24] and DIoU [41], and we also modified the GIoU
loss to adapt it to our RACDet. These loss functions were chosen
to address the sensitivity between different objects. However, after
replacing the original regression loss, compared to the best perfor-
mance, we observed a decrease of 1.8% in AP, 2.3% in APs(, and
0.9% in AP75. As shown in Fig. 3, the effectiveness of the smooth
GWD loss in reducing background interference is validated.

Table 5: Ablation study of the loss function.

Method Apval apgal apzal| apeal Apgal Appel
Li+Lgnoorh | 330 583 335 | 263 430 500

Ly + Lya 355 585 362 | 27.1 475 556

L1+ Lgrou 342 581 356 | 260 467 549

Lt + Lymooth + Lgwa | 360 604 367 | 27.7 479 57.0

4.5.3 Design of the Heatmap Branch. In CenterNet [9], each object
is modeled as a point representing the center of its bounding box,
depicted by a Gaussian kernel in the heatmap. However, the sam-
pling rate of the heatmap is reduced by a factor of 4x compared
to the input image. To address this issue, RACDet focuses on high-
resolution representations of objects and employs higher-resolution
heatmaps for prediction. We enhance the heatmap branch by ap-
plying two transpositions, ensuring that the heatmap resolution
matches that of the input image. We refer to this process as heatmap
enhancement. As shown in Fig. 4 , the enhanced heatmap makes
the keypoint regions more prominent compared to the original
heatmap, leading to improved detection accuracy, particularly in
densely packed areas.

5 Conclusions

This paper presents RACDet, an anchor-free object detection detec-
tor for high-resolution aerial images. We propose RACNet, which
uses an improved self-attention mechanism to capture long-range
dependencies and contextual information for small objects, while
maintaining a lightweight structure. Experiments on two datasets
show that our method outperforms state-of-the-art approaches. We
hope that this work will inspire future research in aerial image
detectors.
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