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ABSTRACT

E(3)-equivariant neural networks have achieved remarkable performance in
molecular modeling. However, the equivariance constraint limits the model’s ef-
fectiveness in learning tasks involving symmetry breaking, particularly those that
violate the celebrated Curie principle. Relaxing the equivariance constraint is es-
sential for addressing these challenges. In this paper, we explore the intricate sym-
metry relationships between an object and its spontaneously symmetry-broken
outcomes. We introduce a relaxed equivariance based on the molecule’s inher-
ent symmetries. Additionally, we develop SANN — a symmetry-adapted neural
network architecture that learns symmetry breaking through equivalence classes
of atoms. SANN decomposes the molecular point cloud into sets of symmetry-
equivalent atoms and performs message-passing both within and across these
classes. We demonstrate the advantages of our method over invariant and equiv-
ariant models through synthetic tasks and show that SANN effectively learns both
equivariance and symmetry breaking in various benchmark molecular modeling
tasks.

1 INTRODUCTION

Molecular modeling — including tasks such as material and drug design, protein structure pre-
diction, and analyzing protein structure-function relationships — is one of the foremost scien-
tific challenges (Moult, [2005; [Lavecchia, [2019; [Tibbitt et al., 2015). Recently, significant strides
have been made in machine learning (ML)-assisted molecular modeling (Duvenaud et al.| 2015;
Gilmer et al., [2017; Jumper et al., |2021; Merchant et al., 2023; Wang et al., |2023aj [Zhang et al.,
2023). Equivariant models are especially promising — they ensure their output transforms ap-
propriately when the input data undergoes a transformation, such as a rotation or translation.
Euclidean-equivariant graph neural networks (GNNs), es-

pecially, the E(n)-equivariant GNN (EGNN) (Satorras
et al |2021), have been the backbone of many molecular ég
predictive and generative models. Indeed, these equivari-

ant models have achieved appealing results in molecular
properties prediction (Schiitt et al., 2021; [Zhang et al.| L\ ‘ v Hisher svime .
2024), molecular dynamics simulation (Batzner et al, O = >YMmety Heher ”yl.mm“'\ ]
2022), crystal design (Xie et al, 2022; [Luo et al., 2023), Flf%ufe 1: An IIh%Str_aXon of ? trlariglé w1§h
protein-docking (Ganea et al 2022 [Yim et al., [2024), different symmetries: An equilateral triangle
. . . = (marked in red) exhibits the highest symme-
and protein design (Lin & AlQuraishi, 2023 Watson . : . .
1.P023) B forci h ciple of Buchid try, while an isosceles triangle (marked in
et a.., - )- y enforcing the prlnCl.p €o . 1_10 1dean yellow) has lower symmetry, and a scalene
equivariance, the'se models ensure their predlgtlons are riangle (marked in green) has no symmetry.
transformed equivariantly to rotations, reflections, and
translations of their input data. This equivariance property serves as a crucial inductive bias, guiding
the learning process toward models that are accurate and generalizable to unseen data.

Despite being a cornerstone of many successful molecular modeling applications, the adherence of
Euclidean equivariance to the Curie principle (see e.g., (Curie| 1894} |Smidt et al., [2021))) can limit
equivariant models’ capability to capture certain physical phenomena. This principle asserts that the
output of an equivariant function cannot have a lower symmet than the input. However, many
physical processes described by order-disorder and structural transitions (Kivelson et al., [2024),

'Symmetry in a system is characterized by the group actions that do not change its configuration.
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Figure 2: Symmetry breaking occurs in the QM7-X dataset. These molecules are conformers of methoxy-
methane (CH3OCHs3). The Hirshfeld dipole moment vectors on the left respect molecular symmetries, unlike
those on the right. This is apparent when viewing the contribution from the carbons (gray atoms), where on the
left, they contribute along the oxygen (red atom) bond directions — but on the right, they deviate significantly.

such as protein self-assembly (La Rosa et al.,[2020) and cell polarization (Miller et al., 2022)) exhibit
spontaneous symmetry breaking (SSB) (Castellan1 & Dardashti, 2021; [Wang et al., [2024). During
SSB, a system transitions from a state with higher symmetry to another state with lower symmetry.
The concept of symmetry breaking (SB) is illustrated in Fig. [T} an equilateral triangle (marked
in red) exhibits the highest symmetry, while an isosceles triangle (marked in yellow) has lower
symmetry, and a scalene triangle (marked in green) has no symmetry. Though equivariant models
can learn the transformation from an isosceles triangle to an equilateral triangle (an increase in
symmetry), they cannot learn SB transformations from an isosceles triangle to a scalene triangle (a
decrease in symmetry).

While SB has been explored in various ML contexts, to the best of our knowledge, none have ad-
dressed SB in molecules. Figure[2]shows an example of such SB in conformers of methoxymethane
(CH30CH3) — an organic compound. Specifically, the blue arrows represent the Hirshfeld dipole
moment vectors of each atom. On the left, these vectors align with molecular symmetries, par-
ticularly the blue arrows from the carbon atoms (gray), which symmetrically contribute along the
bond directions of the oxygen atom (red). In contrast, on the right, the vectors deviate significantly,
pointing away from the oxygen atoms and breaking one of the molecule’s planes of reflectional
symmetry.

It is worth noting that SSB often involves ambiguity, where Square
multiple equivalent outcomes are possible, making the task

non-functionaﬂ Figure 3| shows a classic SSB task — trans- R RN
forming a square into a rectangle (Wang et al.l [2023bj v a

2024)). A square has higher symmetry than a rectangle, so
this transformation breaks some symmetry of the square.
Consider the transformation that stretches the square hori-
zontally or vertically, resulting in two different rectangles,
A and B, respectively. Despite their different appearances,
these rectangles should be considered equivalent from the
perspective of the input square; this is because the two 4, gray arrows represent indistinguish-.
stretching directions (marked as internal gray arrows) are e stretching directions of the square,
indistinguishable from the input’s (square) perspective. SO, showing A and B are equivalent outputs.
from the square’s point of view, both stretching directions

are “identical” ways to become a rectangle. The non-functional nature of SB hinders the models’
capability to learn and generalize. We provide a detailed discussion on SSB in Section 3]

Rectangle A

Rectangle B

Figure 3: An example of SSB, trans-
forming a square into Rectangle A or B.

1.1 OUR CONTRIBUTION

While SB has been explored in various ML contexts, its application to ML-assisted molecular mod-
eling problems remains largely unexplored. Moreover, existing techniques for molecular structure
representation often focus on equivariance, which is not applicable when SB occurs. These tech-
niques also fail to incorporate the inherent molecular symmetries, limiting their ability to effectively
capture SB phenomena, especially the ambiguity of SB outcomes. In this paper, we aim to address
these limitations by introducing the first explicit construction of equivariant neural networks that

Here, non-functional means one input can correspond to multiple different outputs.
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enable learning SB using GNNs that directly leverage molecular inherent symmetries. In particular,
we summarize our main contributions in this paper as follows:

1. We propose to achieve relaxed equivariance using the canonicalization of functions leverag-
ing molecule’s inherent symmetries. The relaxed equivariance efficiently replaces the tradi-
tional equivariance constraint to accommodate SSB.

2. We analyze molecular symmetries by examining the symmetries of its constituent atoms.
Based on these insights, we propose performing message passing within and across sets of
symmetry-equivalent classes. This approach is implemented in our symmetry-adapted neural
network (SANN) architecture, which learns features under varying symmetry conditions,
including invariant, equivariant, and symmetry-broken features.

3. We develop an algorithm to explicitly construct the stabilizers for molecular structures en-
abling the broad use of a SB measure. This algorithm utilizes successive symmetry checking
to compute and construct the stabilizers for a given point cloud.

We substantiate the effectiveness of the proposed SANN architecture using both synthetic tasks and
molecular modeling benchmarks.

1.2 ORGANIZATION

In Section 2] we provide a review of some necessary background materials. We present the proposed
relaxed equivariance through molecular symmetries in Section[3} We analyze molecular symmetries
by examining the symmetries of its constituent atoms and introduce our proposed SANN architec-
ture in Sections f|and[5] respectively. In Section[6] we verify the efficacy of the proposed algorithms
using a few molecular modeling benchmarks. We discuss some additional related works in[7] Miss-
ing proofs and additional details are provided in the appendix.

2 BACKGROUND AND SOME RELATED WORKS

In this section, we aim to provide a brief review of some crucial concepts that serve as the pillar of
our work. In particular, we recall some concepts of molecular symmetries, equivariance relation and
the Curie principle, and atomic and molecular orbitals.

Molecular representation and symmetries. A molecule can be represented as a set of tuples,
denoted as M = {(x;, a;)}, where each tuple (x;,a;) represents an atom with the atomic number
a; located at x; € R3. A spatial transformation g (e.g., rotation) on the molecule is defined as
g- M ={(g-x;,a;)}. The (inherent) symmetry of a molecule M = {(x;, a;)} is characterized by
its point group, denoted by Sym (M), consisting of transformations in O(3) that preserve both atom
types and atoms’ spatial arrangement. Formally, g € Sym (M) C O(3) if and only if applying g to
molecule M results in the same geometric configuration of atoms, that is, g - M = M

The point group Sym (M) induces an equivalent relation: (x;,a;) ~ (xj,a;) if (x;,q;) =
(g9 - x4, a;) for some g € Sym (M). This equivalence relation partitions M into mutually exclu-
sive subsets, called equivalence classes. We denote the equivalence class that consists of atoms
equivalent to (x;,a;) as [(z;,a;)] = {(9-%i,a;) | g € Sym(M)}. The quotient set — con-
tains all equivalence classes — is then defined as M/ Sym (M) = {[(z;, a;)] | (zs,a;) € M}.
Moreover, notice that M is a disjoint union of all equivalence classes in M /Sym (M), ie.,
M = i@ a)jemy symm) (@i a)]-

Equivariance and Curie principle. The equivariance of a function f : X — Y with respect to the
action of a group G is defined as follows:

flg-z)=g- f(x), forallge G.

In particular, if the action on Y is trivial, this reduces to f(g-x) = f(x), which defines an invariant
function. Equivariant functions obey the Curie principle, i.e., the symmetries of the input must be
contained in the symmetries of the output. In other words, we have the following relationship:

Sym (z) C Sym (f(z)).

Atomic orbitals and molecular orbitals. Here, we provide a brief review of atomic orbitals and
molecular orbitals, we refer readers to (Tsaparlis, [1997; |Ching & Rulis, 2012) for details. Atomic
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orbitals describe the probability distribution of finding an electron around an atom’s nucleus, and
these atomic orbitals are often approximated as linear combinations of basis functions, such as
Slater-type orbitals (STOs) or Gaussian-type orbitals (GTOs). These basis functions are typically
expressed in terms of radial and angular components, following a radial-angular decomposition

®(z) = Ri(r)Y}, (0, 9), (1)

where * = (r,0,¢) are spherical coordinates and Y}, is a spherical harmonics and R;(r) is the
radial part, [ and m are the orbital angular momentum and its z component. To better understand
the molecular structure, bonding, and reactivity of a molecule M = {(x;,a;)}, a well-known
technique called linear combination of atomic orbitals (LCAO) is often used. In this method, the
basis of molecular orbitals is expressed as a linear combination of atomic orbitals, which helps us to
describe whether atomic orbitals combine to form bonds or antibonds in a molecule. The expression
for the k'" basis of the molecular orbital is written as follows:

(I)kM(:C) = Z cqu)(acj,aj)(m)v (2)
(zj,a;)EM

where @ 5. 4,y (%) = ®(z —x;) denotes the atomic orbital centered at the nucleus of atom (z;, a;).

3 SPONTANEOUS SYMMETRY BREAKING AND RELAXED EQUIVARIANCE

In this section, we begin by reviewing the concept of SSB. Then we formally characterize the in-
herent ambiguity associated with multiple equivalent outcomes of SSB; in particular, we employ
the recently proposed loss function by Xie & Smidt (2024) to measure this inherent ambiguity. We
further delve into the notion of relaxed equivariance through canonicalization introduced in (Kaba
et al.| 2023} Baker et al.,[2024). This approach allows for a more flexible utilization of symmetries,
especially in situations where strict equivariance may be overly restrictive. We explore how relaxed
equivariance can enhance the learning of SB in terms of data efficiency.

3.1 SPONTANEOUS SYMMETRY BREAKING

While the Curie principle applies to many physical systems, there are real-world phenomena that
do not strictly adhere to it. SSB is a notable exception (Beekman et al., [2019; (Castellani & Dar-
dashti, 2021), where the input exhibits a higher symmetry than the output. In SSB, the input can
spontaneously lose its symmetry and transition to one of several equivalent outputs, denoted by
SSB(z) = {g-y | g € Sym (z)}, with lower symmetry. These outputs differ only by the symmetries
of the input =, meaning they share the same type of reduced symmetries, with their symmetry groups
related by conjugation. To be more specific, for each possible output y; € {g-y | g € Sym (x)},
we have
Sym (y;) € Sym (z), indicating that y; has lower symmetry than z.

Additionally, since two valid outputs y;,y; € {g-vy | g € Sym (z)} differ only by a symmetry op-
eration of , say y; = g¢;; - y; for some g;; € Sym (z), it follows that Sym (y;) = gigl Sym (;) gij5
implying that these outputs shared the same reduced symmetry. An example of SSB is the transfor-
mation of a square into rectangles, as illustrated in Fig.|[3] We can observe that the two rectangles
differ only by the rotational symmetry of the square and share the same type of symmetries. More-
over, these two rectangles are equivalent SSB outcomes of the square, as the two different stretching
directions are indistinguishable from the perspective of the square itself.

3.2 SYMMETRY BREAKING MEASURE

Mathematically, SSB can be expressed as a set-valued function, mapping x to the set of equivalent
outputs SSB(x). However, it’s important to note that while an input may transition to different
outcomes at different times, it can only occupy one output state at a specific moment. Following
(Xie & Smidt, [2024)), we define a single-valued function f : X — Y as learning the SSB of v € X
if f(x) lies in the set of equivalent outputs SSB(z), i.e., f(x) € SSB(z).

Consider a learnable function fy. Suppose the training data includes only one possible outcome
of SSB for a given input z, says y € SSB(x). If the function predicts a different valid output
fo(x) = v € SSB(x), traditional loss functions like mean squared error (MSE) or cross-entropy
will report a non-zero value, even though both y and ¢’ are valid. Moreover, if the training data
contains multiple equivalent outcomes y, y’ € SSB(x) for , traditional loss functions might confuse
the model, leading it to associate the incorrect output with the input. To address these challenges
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and ensure accurate loss measurement, we employ the symmetry breaking measure (SBM) proposed
by Xie & Smidt (2024), which is given by

1 K

SBM (f, {(xkayk)}i-(zl) =% kﬂgggggxk)m(fe(xk),g “Yk)s 3)

where {(z, yk)},i{:l is the set of observed SSB data and m(y’,y) > 0 is a suitable metric that
is 0 if and only if y' = y. Note that all the possible outcomes of the SSB for x; must lie in
{9y | Sym (zx)} = SSB(zy). Therefore, the function fy learns the SSB for x, if and only if
MiNgesym(ay) |fo(2k) — 9 - yrll = 0. In conclusion, the SBM calculates the minimum across the
distance between the predicted output fy () and any equivalent output g -y, effectively addressing
the ambiguity associated with SB.

Remark 3.1. When the input xj, does not exhibit any symmetry, i.e., Sym (z;) = {e} where e
is the identity element in O(3), or when the relationship between x; and yy, is equivariant, mean-
ing Sym (z1) € Sym (yx), the measure mingegym(a,) M (fo(zx), g - yx) on the data pair (2, yx)
simplifies to the standard loss m(fo(xr), Y )-

Remark 3.2. The work of (Xie & Smidt, 2024) is limited by prior knowledge of the symmetries
in the input and the output. The canonicalization algorithm introduced in (Baker et al.| [2024)
can be improved to provide an explicit method for determining the symmetries and generating
{9 -y | Sym (zx)} for any point cloud. A detailed description of this algorithm is provided in
Appendix [B] We also provide analysis for the computational complexity, and an ablation study of
this measure with and without SANN architectures, in Section[3]

3.3 RELAXED EQUIVARIANCE AND CANONICALIZATION
As discussed in Section[T] strict equivariance, which

adheres to Curie’s principle, can be too restrictive 9

for SSB tasks (see Fig. [3). To maintain the data effi- S H ’

ciency advantages of equivariance while accommo- ' i
dating the inherent ambiguity of SSB outcomes, we f i if

propose relaxing the strict equivariance requirement.
Consider the scenario depicted in Fig. Given a
square z (in the upper left corner) and its rotated . ” g ?

version g - x where g is some rotation. Both un-

dergo SSB characterized by a function f, producing Figure 4: Tllustration of relaxed equivariance.
rectangles. However, the resulting rectangles do not

simply differ by g because there are multiple valid outputs for SB (see Fig[3). If we examine another
possible output o - f(x) for the input square z, we observe that it only differs from f(g - x) by
g. Therefore, we conclude that f(g-x) = g - o - f(x), where o accounts for the SB ambiguity.
Based on this observation, we introduce the following notion of relaxed equivariance in (Kaba et al.,
2023), which is well-suited for modeling SSB scenarios and accurately characterizes the weaker
equivariant relationships involved:

Definition 3.3. Let f : X — Y be a function between spaces X, Y where a group action of O(3)
is defined on both spaces. We say a function is relaxed equivariant with respect to O(3) if, for any
x € X and g € O(3), there is an element o € Sym () such that

flg-z)=g-0-f(z) “)
or equivalently, g~1 - f(g - =) differs from f(x) only by o —a symmetry operation of z.
Remark 3.4. Notice that g~ - f(g - x) and f(x) are the same for a strictly equivariant function.

To achieve relaxed equivariance, we propose canonicalizing the learnable model as presented in
(Baker et al.,|2024). Canonicalization allows the model to focus on learning from a single represen-
tative instance of each data class and automatically generalizes to transformed input through relaxed
equivariance. We summarize the notion of canonicalization and its properties in the following:

Definition 3.5. Let X be the set where the group O(3) acts. A frame on X is a relaxed equivariant
function from X to O(3), which induces an O(3)-invariant function ¢ : X — X, called a canonical-
ization, by c(z) == F(x)~! - 2. The output of c at z, denoted by c(), is referred to as the canonical
representative of 2. For any function f : X — Y between spaces where O(3) acts, we define the
canonicalization of f through the frame F as follows:

fcanonical('r) = .F(.I‘) : f(]:(‘r)il : 33) (5)
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Proposition 3.6. Let F : X — O(3) be a frame on X. Then for any function f : X — Y
between spaces with group actions, the canonicalization feanonical is relaxed equivariant to O(3).
In particular, fcanonical is equivariant at x € X if f is equivariant on x.

As we can see from Definition [3.3] the canonicalization of a function is only evaluated on the canon-
ical representatives in the image ¢(X). Importantly, canonicalization does not compromise the
universality of the learning framework (Baker et al., 2024)). Hence, it suffices to consider learning
SB for these canonical representatives. The prediction will then be automatically generalized to the
entire c(X) due to the relaxed equivariance proved in Proposition 3.6

4 SYMMETRY-ADAPTED LINEAR COMBINATIONS

To effectively learn SB, we explore the intricate composition of symmetries within the data. We
begin by formalizing the relationship between the symmetry of the entire molecule M and the
symmetries of its individual equivalence classes in M/ Sym (M):

Proposition 4.1. The point group of a molecule M is the intersection of the point groups of its
equivalence classes. In particular, we have:

smM)= (] Sy((@a). ©
[(®i,a:;)]€EM/ Sym(M)

In simpler terms, the symmetry of the entire molecule is determined by the symmetries present
within the sets of its equivalent atoms. This implies that when SB occurs, it must manifest in at least
one of these equivalence classes. We summarize this implication below:

Corollary 4.2. If a symmetry breaking [ occurs for a molecule M, resulting in (M), then any
broken symmetry must occur in at least one of the equivalence classes in f(M).

Based on the insights from Proposition[&.T]and Corollary [.2] especially when the molecule exhibits
symmetry, we propose a new framework that first learns features at the level of equivalence classes,
rather than directly from neighboring nodes in the graph. This approach effectively captures SB,
as it is directly tied to symmetry breaking within a class of equivalent atoms. We then aggregate
the learned features across equivalence classes to retain the overall symmetry of the molecule, as
inspired by the intersection described in Proposition .1} This framework enables a more targeted
and efficient detection of symmetry breaking within the molecular structure. In particular, we refine
the linear combination expression in equation[2]to capture SB in molecules. For a class of equivalent
atoms [(x;, a;)] € M/ Sym (M), we consider the linear combinations of their orbitals

o () = > (@), a5)P(z;.0;) (T), (7)
(®5,a5)€[(®i,a:i)]
where the sum is taken over all atoms in the symmetry-equivalence class. By combining these linear
combinations across all equivalence classes, we can express the basis of molecular orbitals as:

o (z) = 3 o@l(g). 8)
[(®4,a:)]€M/ Sym(M)
Combining these two summations, we have:

() = > > Chj (@5, 05)P (a0 () ©)

[(zi,a:)]eM/ Sym(M) (zj,a;)€[(:,ai)]

Note that the decomposition of molecular orbitals proposed in equation [J] closely resembles the
real symmetry-adapted linear combinations (SALCs) used in quantum chemistry. However, in our
approach, the coefficients ci;(x;, a;) are learned rather than determined by group representations.
For a more in-depth discussion of SALCs, please refer to (Kiml [1999). For convenience, we will
refer to the proposed decomposition in equation 9] by the same name.

This decomposition aligns with the insights from Proposition .1 and Corollary 4.2] allowing us to
infer the symmetries or SB of the entire molecule from the symmetries or SB of equivalent atoms.
Specifically, we can determine when the molecular orbitals preserve symmetries:

Proposition 4.3. The global molecule feature learned by @2\’1 (), as defined in equation@l is equiv-

ariant if cj(x;, a;) are invariant and the atomic orbitals ® 5, ,.)(x) are equivariant.
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5 SYMMETRY-ADAPTED NEURAL NETWORK

In this section, we present constitutions of our proposed symmetry-adapted neural network (SANN)),
a new GNN architecture inspired by the concept of SALCs. SANN is designed to achieve relaxed
equivariance for learning spontaneous symmetry-broken features while compatible with the learning
of invariant and equivariant features. This flexibility allows SANN to serve as a powerful tool for
understanding molecular properties under varying symmetry constraints and SSB scenarios.

To effectively leverage molecular symmetries, SANN employs a new message-passing approach.
This approach involves passing messages within and across sets of symmetry-equivalent atoms,
respectively, followed by aggregation of information to capture the global features of molecules.
In this section, we will introduce the key components of our model: the canonicalization and the
construction of equivalence classes, the graph structures within and across equivalence classes, the
design of symmetry-adapted message-passing mechanisms, and the loss function for learning SSB.

Setup. Let M = {(x;, a;)} be a molecular data. In particular, each atom a; might be associated
with a vector of features provided by the dataset, denoted by a;.

Canonicalization and equivalence class construction. SANN achieves the relaxed equivariance
by leveraging canonicalization through a frame F (see Definition [3.5). Additionally, SANN relies
on the construction of quotient set M/ Sym (M) from each molecular structure M.

To simultaneously perform canonicalization and construct the quotient set, we adopt the asymmetric
unit normalization (ASUN) framework proposed by Baker et al.| (2024). Notably, the quotient set
M/ Sym (M) and the asymmetric unit are closely related, with the latter being a minimal represen-
tative of the entire molecule selected from the former. Specifically, the asymmetric unit, ASU(M),
is defined as the smallest subset of M such that applying the symmetry operations of Sym (M) to
ASU(M) will recover the entire molecule M, i.e. Uycsym(ar) 9 - ASU(M). It can be shown that
ASU(M) is constructed by selecting a single representative element from each equivalence class
in M/ Sym (M). In particular, we can express ASU(M) as a subset {(z;,,a;,)} C M where
(@i, ai,)] # [(®i,,,a5,)] for any distinct k, k. We report the details of our canonicalization in
Appendix [B]

Graph structures within and across equivalence classes. We use the elements within ASU(M)
to build a graph structure across equivalence classes. For example, we can construct a graph using
traditional radial cutoff or a fully connected graph on the set ASU(M) = {(x,,,a;,,)}. Then
we obtain a graph G/ sym(m) = (M/ Sym (M), £), where each node represents an equivalence
class and two classes are connected if their representatives in ASU are connected by the graph con-
struction. Similarly, for each set of equivalent atoms [(x;, a;)] € M/ Sym (M), we can construct
a graph using radial cutoff or a fully connected on the set [(x;,a;)]. We denote the resulting as
Gl(wia0)-

Symmetry-adapted message-passing mechanism. We denote the frame and the canonicalization
of M constructed by ASUN as F(M) € O(3) and c(M) = {(z5™°"i q,)}, respectively, where
agionical represents the coordinates of each atom after canonicalization. In particular, the initial
feature f{ = (xgmonical q,) is formed by concatenating the spatial feature 25! with atomic fea-
ture a;. This combined feature is then fed into the subsequent symmetry-adapted message-passing

mechanism, which is defined as follows:
.f[l(mi’ai)] = UPD (AGG ({lev fgl | (Zaj) € g[(wz,az)]}))

g' = UPD (AGG ({F{io, 0 ey oy | (@ir0)],[(5,05))) € Gagysymian}))

fil+1 = Attention( ila f[l(ml,al)] ) gl)
where UPD and AGG are approximated by multilayer perceptrons (MLPs), f[l(mi ai)] denotes the

feature learned within the equivalence class [(x;, a;)], and Attention denotes a self-attention MLP.
Notably, the first equation defines message-passing within equivalence classes, the second defines
message-passing across equivalence classes, and the third can be interpreted as an attention mecha-
nism learning atomic features from the features within and across equivalence classes.

Loss function. To accurately measure the performance of our model on both symmetry-preserving
(equivariant) and symmetry-breaking tasks, we employ the SBM defined in equation |3| with the
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Chamfer distance (CD) — a faster proxy for the earth mover’s distance (EMD) (Villani et al.| 2009)
— as our metric m. CD is a popular measure between point clouds for ML (Kusner et al.} 2015} [Wan
let all, 2019} [Bakshi et al} [2024). For point clouds X,Y € R™, CD is defined as follows:

m(X,Y) =) min |z =y}
rzeX

CD is particularly effective for applications involving shape and spatial comparison. In contrast,
mean absolute error (MAE) and mean squared error (MSE) operate on a strict element-wise cor-
respondence, assuming perfect alignment between the compared sets. This limitation makes MAE
and MSE less suitable for tasks where point order or arrangement may vary, and CD is a more robust
measure of similarity in terms of structure and spatial proximity. We will refer to equation [3| using
CD as SBCD.

6 EXPERIMENTAL RESULTS

We systematically test the efficacy of our approach. First, we demonstrate the theoretical limi-
tations of equivariant neural networks and the advantages of our techniques. We then study the
effects of the symmetry-breaking metric. Finally, we compare SANN to foundational invariant
and equivariant GNNs on the benchmark QM7-X (Hoja et al 2021) dataset. Through this se-
quence of studies, we observe that SANN makes significant advancements for symmetry-breaking
tasks. We compare our method against other foundational methods. SchNet (Schiitt et al., 2018),
and DimeNet++ (Gasteiger et all, 2020) are chosen as invariant architectures, and EGNN (Sator-
2021)), and PaiNN [Schiitt et al.| (2021) are chosen as and equivariant architectures. This
provides a baseline for foundational architectures and state-of-the-art architectures for both invari-
ant and equivariant models. Furthermore, to assess approximate equivariance we equip EGNN and
PaiNN with noise injectivity into the positional data and label these models +Noise. We consider a
noise parameter with a standard deviation between 0.001 and 0.1 and report the best results. We also
enable symmetry breaking on all architectures using a two-layer multi-layer perceptron as an output
layer and denote these architectures +MLP. Additional dataset, model, training, and hyperparameter
optimization details are listed in Appendix [C}

6.1 SPONTANEOUS SYMMETRY BREAKING

First we construct a dataset to determine the effects of incorporating SBM for disambiguation. The
dataset is comprised of two identical square graphs with opposing orientations based on Fig.[3] The
train, validate, and test sets are kept identical to eliminate generalizability as a limiting factor. Each
model is trained for 100 epochs using the AdamW optimizer and a scheduled learning rate with a
maximum value of le-4. We train separate models with CD and SBCD loss functions. The results
are reported in Table [I] The optimal distance without deforming the square is 0.25. We use this
distance as a threshold to highlight models with smaller mean test loss over 10-fold cross validation.

SBCD ablation study. This task is an ablation study

on SANN, which demonstrates that SBM is crucial for CD SBCD
disambiguation. There are two areas where SSB limits SchNet  0.250 0.250
model applicability. First, noisy or unclean datasets may DimeNet++ 0.252  0.251
contain re-occurring input with differing labels. This EGNN  0.251  0.251
breaks the assumption of injectivity necessary for learn- PaiNN _ 1.766 1.776
ing and leads to learning bottlenecks and inference er- EGNN+Noise  0.271  0.238
rors. Second, clean data introduces training bias to- PaiNN+Noise  3.225 3.178

SchNet+MLP  3.877 3.921
DimeNet+MLP  1.911 2.000

EGNN+MLP 0.748 0.381

PaiNN+MLP 1.394 1.243
Broken versus approximate equivariance. This task SANN (Ours) 0.250  0.132
also serves as a comparison between approximate equiv-
ariance, standard symmetry breaking, and the symmetry Table 1: The mean test metric over 10-fold
breaking measure. We observe that all models are inca- cross-validation on the SSB dataset. The min-
pable of learning without the equipped SBCD. Despite imum square to rectangle distance is 0.250,
the ability of approximate equivariance to break sym- and highlighted results achieve lower loss.
metries, it cannot resolve SSB without SBCD.

ward a particular symmetry-breaking orientation, sig-
nificantly degrading the practical applicability of the
model.
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6.2 NORMAL MODES OF H>O

To demonstrate the limitations of strict equivariance constraints, we construct a set of synthetic
experiments. Molecules are in a state of constant motion, where the possible motions are called
the normal modes. Figure [5] shows the normal modes of H,O. The symmetries are shared by the
symmetric stretching and bending motions in Fig. 5] (a) and (b), respectively. Although the asym-
metric stretching motion in Fig. [5] (¢) does not share any symmetry with the molecule, there is an
inextricable relationship between the orientation of the motion and the molecular symmetries.

@) @) O
o o, 0O, 0 ©o O

(a) Symmetric Stretch  (b) Bending Motion  (c) Asymmetric Stretch

Figure 5: The three normal modes of the HoO molecule. Arrows depict the motions, with oxygen and its
motion in red, hydrogen in blue, and the bonds in gray. The molecular symmetries are shared by the (a)
symmetric and (b) bending motion, but not by the (c) asymmetric stretching motions.

We design a set of synthetic tasks, one for each mode. Each dataset contains two HoO molecules,
with the atomic numbers and position information as node features and featureless fully connected
edges. The node labels are the directional vectors of the motions and differ by task. Finally, we apply
arandom rotation to each molecule and then center its point cloud at the origin. To assess a method’s
performance on a given motion, we train individual models on each task. The train, validate, and test
sets are kept identical to eliminate generalizability as a limiting factor. Each model is trained for 100
epochs using the AdamW optimizer and a scheduled learning rate with a maximum value of le-4.
The loss and accuracy are measured in terms of SBCD. We perform 10-fold cross-validation on each
task and report the results in Table 2] We cluster the results based on the architectures invariance
(Invar.), equivariance (Equivar.), approximate equivariance (Appr. Equivar.) and symmetry breaking
outputs. In invariant architectures, we predict a global invariant property and regress it with respect
to the initial positions to make an equivariant prediction.

Symmetric Bending Motion Asymmetric
£ SchNet 0.907 £ 0.092 0.924 £ 0.101 0.852 £ 0.000
5 DimeNet 0.954 £ 0.095 1.016 £ 0.093 0.863 £ 0.009
§ EGNN 0.000 £ 0.000 0.142 £ 0.317 0.852 £ 0.000
& PaiNN* 0.011 £+ 0.010 0.012 £+ 0.010 0.008 £ 0.009
5§ EGNN+Noise 0.002 £ 0.000 0.002 £ 0.001 0.806 £ 0.027
<&  PaiNN+Noise 0.119 £0.104 0.087 £+ 0.068 0.079 £ 0.019
SchNet+MLP 0.801 £ 0.144 0.479 £ 0.225 0.571 £+ 0.290
%\é‘) DimeNet+MLP  0.626 £ 0.125 0.134 £0.123 0.167 £ 0.092
gg EGNN+MLP 0.011 £0.019 0.002 £ 0.004 0.004 £+ 0.010
PaiNN+MLP 0.006 £ 0.004 0.002 £ 0.000 0.008 £ 0.009
SANN (Ours) 0.003 £ 0.002 0.002 £ 0.002 0.041 £ 0.079

Table 2: Mean =+ std. of the test SBCD for each model with 10-fold cross validation. Highlighting indicates a
model’s capability to learn consistently or its inability to learn at all: green shows that over all folds no SBCD
is > 107"; red shows that over all folds the minimum SBCD> 10~".

>

Table [2] highlights our important findings. In particular, red highlighting denotes a model’s inca-
pacity to learn measured by the minimum SBCD over the 10-folds. We observe that invariant,
approximate equivariant and symmetry breaking architectures are insufficient for producing accu-
rate predictions. We also observe some unexpected results, namely that PaiNN performs well alone
and without noise. Upon further investigation, we find that the vibrational modes can be recovered
from the eigenvectors of the Hessian of the energy with respect to the position. This means that
tensor-valued equivariant predictions are capable of learning normal modes. We have provided an
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additional experiment in Table [7] of Appendix [C] empirically validating that PaiNN without higher
order tensor predictions performs poorly.

6.3 QM7-X

To benchmark our results on real-world datasets, Model CD

we consider a subset of the QM7-X dataset (Hoja SchNet 0.0170 £ 0.0078
et al., [2021), which contains many extended prop- SchNet+MLP 0.749 + 0.454
erties of small organic molecules, including the EGNN 0.0538 - 0.0149
Hirshfeld dipole moments. These moments are EGNN+MLP 0.0027 + 0.0007
symmetry-breaking but provide critical insight into SANN 0.0012 £0.00003

inter-molecular charge transfer and polarization. A
visualization of this SB is shown in Fig.[2] Our sub- Taple 3: QM7-X Hoja et al (2021) benchmark
set contains 225 molecules with five or fewer heavy on 225 molecules, restricted to the set of conform-
atoms with details discussed in Table 3l Due to the ers of a molecule with symmetry breaking. We
small size of the dataset, we perform 10-fold cross- split into 60/20/20% training, validation and test-
validation over random splits to account for gener- ing 10-fold cross-validation of random splits.
alizability. Table [3| reports the mean and standard

deviation CD over the test data. We observe that SANN outperforms all other models. In addition,
the force predictions for SchNet significantly beat the SchNet+MLP. However, we observe that the
EGNN+MLP significantly outperforms the EGNN model, indicating some benefit from SB.

7 ADDITIONAL RELATED WORKS

We discuss some of the additional related works along two directions in the machine learning liter-
ature: relaxed equivariance and spontaneous symmetry breaking.

Relaxed equivariance. Relaxed equivariance has been studied in various papers. For instance,
Kaba et al.| (2023) introduce relaxed equivariance to ease the learning of invariant feature embed-
dings, which avoids using distinct homogeneous spaces in the framework of (Winter et al.| [2022).
Pertigkiozoglou et al.[ (2024) relax the hard equivariance constraint to ease the training of neural
networks. These existing relaxed equivariance approaches typically involve relaxing constraints on
specific layers of a neural network or learning canonicalization functions. This differs significantly
from our proposed work, which leverages the canonicalization approach introduced in Baker et al.
(2024) and avoids the need for additional learning processes. Moreover, these approaches are not ap-
plicable to learning symmetry-breaking. Besides relaxed equivariance, approximated equivariance
has also been studied in various works; see, e.g., (Huang et al., 2024} [Samudre et al., [2024).

Symmetry breaking. SB has been explored in various ML contexts, including physical systems
(Wang et al,, 2023bj Xie & Smidt, 2024; |[Lawrence et al.l |2024) and the generation process of
diffusion models; see, e.g., (Raya & Ambrogioni, 2023; |Ambrogioni, 2023 L1 & Chen, [2024)).
However, to the best of our knowledge, this paper is the first to investigate SB in ML-assisted
molecular modeling. By applying canonicalization to address the ambiguity of SSB and developing
a symmetry-adapted learning method, we effectively learn both symmetry-preserving and SB tasks
simultaneously.

8 CONCLUSION

In this work, we have introduced SANN, a symmetry-adapted neural network for enhanced represen-
tation of molecular structures. SANN is capable of learning SSB via relaxed equivariance and our
newly proposed SB measure. Our work highlights the existing limitations of symmetry-preserving
neural networks using both synthetic tasks and real-world applications. Our work is limited by the
scale of existing real-world molecular datasets with SB molecular properties, and the lack of ac-
cessible existing SB benchmarks. Our theoretical foundation for SB models pave the way for the
construction of a multitude of SB architectures. We leave it to future work to further explore optimal
SB mechanisms.

10
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9 ETHICS STATEMENT

In this paper, we have proposed a new notion of relaxed equivariance informed by molecular inherent
symmetries. The new symmetric-relaxation further motivates us to propose a new neural network
model — named SLACNet. Our work aims to address some fundamental challenges in learning
molecules and beyond, especially learning processes involving spontaneous symmetry breaking.
Our work is purely methodological, and we validate our proposed approaches on the benchmark
datasets. We do not expect to cause negative societal problems. To the best of our knowledge, we do
not see any issues with potential conflicts of interest and sponsorship, discrimination/bias/fairness
concerns, privacy and security issues, legal compliance, and research integrity issues (e.g., IRB,
documentation, research ethics.

10 REPRODUCIBILITY STATEMENT

We are committed to conducting reproducible research, and we are achieving this through several av-
enues: (1) Comparing the novelty of our work against the literature. (2) Provide detailed derivations
of the proposed approaches and theoretical results. (3) Conducting experiments using benchmark
datasets. (3) Report experimental details. (4) Submitting the codes for all experiments with detailed
documentation to ensure all experimental results are fully reproducible. All codes will be made
publicly available.
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Appendix

A MISSING PROOFS

Proof of Proposition[3.6] Recall that the canonicalization feanonical is defined as:
fcanonical(l‘) = .7:(@‘) . f(]:(x)71 . x)

Since F(x)~! - x is invariant, the relaxed equivariance of feanonical is directly inherited from the
transformation the frame F (). In particular, when f is equivariant, we have

fcanonical(x) - f(l’) : f(./_'.(ZL')71 . l‘) = .F(SC) . fcanonical - ‘/_'.(l’)f(./.'.(l')il . J:) : f(l’) = f(x)

This shows that feanonical (%) reduces to f(x) when f is equivariant. In other words, fcanonical iS
equivariant.

Proof of Proposition.1] Suppose g € Sym (M). By the definition of equivalence classes, we
have g - [(z;, a;)] = [(x;, a;)]. This show that Sym (M) € (N4, 4.)1eMm/ sym(am) Sym ([(2i, ai)]).
Conversely, suppose g € [z, a;)jem symam) SYm ([(i; a;)]).  Then for any [(z;,a:)] €
M/ Sym (M), we have g - [(x;,a;)] = [(xi,a;)]. Since M is a disjoint union of all the equiv-
alence classes in M/ Sym (M), we see that g - M = g [[{4, ai)jem) symm) [(Tirai)] =
i:,aem) symn 9 (@i ai)] = T, aiyjemy symmy [(Ti, ai)] = M. This completes the
proof. O

Proof of Corollaryd.2] Let g € Sym (M) be a symmetry that is broken in f(M). According to
Proposition .1} we have

g ¢ Sym (f(M)) = N Sym ([(@i, ai)]) -
[(@o,a:)]€F(M)/ Sym(F (M)

This implies that g does not lie in the point group of some equivalence class [(x;, a;)]. Thus, the
proof is complete. O

Proof of Proposition .3} For any g € O(3), we need to show that ®M (g~ 1z) = g - ®M(z).
Indeed,
ol (g ') = > g (@5, 07)P(;,0,) (97 )

(m.f 10‘J)€[(zi7a1‘,)]
[(=i,ai)]EM/ Sym(M)

= Z ij(mj’aj)g ’ (I)(mj,aj)(-’z)

(zj,a;)€[(2i,a:)] (10)
[(®s,a:)]€M/ Sym(M)
=g > e (2,0)) R (a; 0, (@) = g - 21" ().
(z5.a;)€[(xi,ai)]
[(x4,a:)]€M/ Sym(M)
O

B ROBUST GRAPH AND FEATURE CONSTRUCTION

The reliable development of our architecture requires significant improvement of existing methods.
We outline our adjustments in this section.

Equivalence class construction. The classical approach is to determine the point group of a
molecule via guess-and-check and then construct the classes of symmetry-equivalent atoms. The
minimal deterministic finite automata (DFA) (Hopcroft, |1971) constructed by the ASUN algorithm
of [Baker et al.|(2024)), exactly consists of the classes of symmetry-equivalent atoms. While ASUN
provides a lightweight technique for handling noisy data, our theoretical results are reliant on a
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robust construction of the equivalence classes. As a result, we enhance the tolerance mechanisms
of ASUN for handling angular, co-linear, and co-planar symmetries. Our enhancements denoted
ASUN+ achieve state-of-the-art results for canonicalizing QM9. Table [] reports the mean earth
movers distance (EMD) between the initial canonical representation and 16 folds for all molecular
structures.

Stabilizer construction. The point groups are nicely characterized in (Harris & Bertoluccil [1989),
and an algorithm for point group detection is discussed. We follow this approach using the equiva-
lence class construction from above to construct the stabilizers for the point cloud. We denote linear
and planar structures as rank 1 and rank 2 respectively, following notation from 2024).
In Figure[6] we outline the algorithm for stabilizer construction. The starting point in each rank is to
fix an axis of rotation. In rank 1 and rank 2 structures, this is already fixed by the nature of the data.
In rank 3 it requires a slightly more expensive process of checking subsequently larger equivalence
classes to determine if they have a mean which is not identically the origin. If they do then this point
and the origin form an axis of possible rotation. Planar reflections that lie along the axis of rotation
can be determined from the given axis of rotation.

Check
Reflections

mallest
Equivalence
lass Size

D{ Return [E, i](Docy)

Return [E](Coon)

(a) Rank 1 (b) Rank 2

Fixed Axis of Yes
Ye
©8 1> Check Inversion >

Rotation from Stab « [i]
Equivalence
Classes? <
No
Y
>

Check
Improper
Rotations

Yes Check

heck Platonics) > Retun Stab(PG) Reflections Stab « [Sy]

(c) Rank 3

Figure 6: Decision diagram for constructing the set of stabilizers from the equivalence class.

Notice that the set of molecular point groups which are infinite is Cooy, Doon, Kp
(1989). Kj, represents perfect spherical symmetry which is not observed in practice.
Coov, Doon are linear molecules with or without a center of inversion, respectively. Because the
data is aligned, the stabilizers are fixed to the z-axis and thus the relaxed metric only penalizes for
discrepancies from the z-axis, and hence can be implemented as a finite summation.

Graph Construction. For symmetric structures, the underlying graphs are computed by connect-
ing the symmetry elements. Then select a set of representatives from the symmetry elements. The
first representative is chosen without loss of generality. Each subsequent representative is selected
from the subsequent set of symmetry elements by choosing the one with the minimum distance to
the existing set of representatives. Again using the global symmetry of the molecule if there are
multiple choices then the entire set of symmetry elements must be selectable and we choose without
loss of generality. For non-symmetric structures, rather than constructing a fully connected graph,
we use a radial cutoff with distance 8.
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Figure 7: A diagram of the model architecture.

Symmetry Breaking
Measure

Geometric feature construction. We utilize the geometric feature construction from (Wang et al.,

2022) to equip each edge with a set of geometrlc features. The Bessel basis function ¢(z) = m
is not well-defined for when x = 0. The primary limitation here is that there can be no self- loops
However, our methodology requires self-loops in both graphs. We improve the numerical stability
of this geometric feature construction by considering the Taylor series expansion about . We also
improve the numerical stability of the use of tan ™! (%) by similar means.

C DATASETS AND METHODS

C.1 MODEL ARCHITECTURE

In Figure[7]we provide a diagram of the model architecture and its key components for construction.

C.2 QM7-X

The QM7-X data was curated to restrict to molecules and conformers where there is a lower state
of symmetry between the Hirshfeld dipoles moment vectors and the initial structure. This is up to a
tolerance parameter, which was selected to be large at .2 Angstroms. Because the QM7-X dataset
contains multiple conformers, we have selected the conformers of these structures in addition to the
structures with broken symmetry. In total, this is restricted to 255 molecular structures from the
original dataset. To the best of our knowledge, there are no existing works applying graph neural
networks to the entire dataset.

The QM?7-X dataset contains small organic
molecules with up to 7 heavy atoms and hy-
drogen. The dataset consists of 4 million Rank 1 Rank 2 Rank 3
molecules, with 42 molecular properties per PCA 0.00014 0.01793  0.82758
molecule. For training on the QM7-X dataset, AE 1.15122 0.037539 0.03178
we follow the training procedures outlined by ASUN  0.00014  0.00008  0.02826
Satorras et al.| (2021) for training EGNN on ASUN+ 0.00000 0.00000 0.00009
QM9. QMO is a related dataset with up to 9
heavy atoms. Another key feature of QM7-X  Table 4: Mean (EMD) for QM9 canonicaliza-
is that it contains duplicate molecules. While tjon categorized by rank. Our adaptation ASUN+

we do not specifically investigate the dupli- achieves significantly improved results.
cate molecules in this work, we outline the ad-

vantage of our approach for handling duplicate
molecules.
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C.3 HYPERPARAMETER OPTIMIZATION

For the foundational model hyperparameter optimization, we perform a grid search over a small set
of hyperparameters. All other hyperparameters are taken from the best-reported model for the QM9
dataset.

Hyperparameter Options
Layers {1,2,3,5,7}
Hidden Features {32, 64, 128}

Table 5: Hyperparameter tuning range for EGNN on synthetic tasks.

For SANN, we also perform a grid search over a small set of hyperparameters.

Hyperparameter ~ Options
Layers {1,2,3}
Spherical Basis ~ {3,4,6}
Radial Basis ~ {3,4,6}

Table 6: Hyperparameter tuning range for SANN on all tasks.

C.4 INSUFFICIENCIES IN EXISTING DATASETS

The aim of this call for expanded datasets is to encourage additional datasets analyzing order-
disorder and structural transitions Kivelson et al.|(2024). In particular, we identify the cahllenges of
incorporating two types of datasets, trajectory and interaction datasets.

Trajectories. Trajectory datasets like MD17 contain snapshots of structures during relaxation with
the aim of predicting forces and energies from each snapshot. This equivariant task is marginal
compared to predicting the relaxed structure from the initial structure, which requires symmetry
breaking. Relaxed structure prediction is critical in drug design [4]. Initial trajectory datasets are
under development [6] and we leave this to future work.

Trajectories. Trajectory datasets like MD17 contain snapshots of structures during relaxation with
the aim of predicting forces and energies from each snapshot. This equivariant task is marginal
compared to predicting the relaxed structure from the initial structure, which requires symmetry
breaking. Relaxed structure prediction is critical in drug design [4]. Initial trajectory datasets are
under development [6] and we leave this to future work.

Interactions. Interaction datasets, the most prominent being the open catalyst project, contains
interactions between adsorbates and catalysts. The adsorbates are small molecules that are ideally
suited to our architecture. However, the catalysts are crystalline structures with permutation group
symmetries that are not directly addressed by our approach. Therefore, we leave this to future work.

C.5 HIGHER-ORDER TENSORS FOR NORMAL MODES

We assess the ability of PaiNN to learn without the tensor-valued predictive output. The two types of
models are denoted tensor-valued and vector-valued, respectively. The tensor-valued model utilizes
the gated equivariant output. The vector-valued model predicts a global invariant feature and then
regresses the value onto the original positions. We compare each type with +Noise and +MLP in
Table I We observe that the tensor-valued PaiNN can learn the normal modes while the vector-
valued PaiNN is not. This supports our conjecture that the normal modes, while ideal for symmetry
breaking of vector-valued equivariant predictions, fail for higher-order representations.
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Symmetric Bending Motion Asymmetric
573 PaiNN 0.011 4+ 0.010 0.012 £ 0.010 0.008 £ 0.009
£ 2 PaiNN+Noise 0.119+0.104 0.087 + 0.068 0.079 + 0.019
©7  PaiNN+MLP 0.006 £ 0.004 0.002 = 0.000 0.008 £ 0.009
59 PaiNN 3.470 £ 1.300 7.381 £ 0.000 11.19 + 14.51
§ § PaiNN+Noise  6.782 £ 0.920 9.017 £+ 5.855 22.13 + 16.86
PaiNN+MLP 6.240 £+ 2.260 10.28 £ 4.690 4.826 £1.170

Table 7: Mean =+ std. of the test SBCD for PaiNN variants with 10-fold cross validation. Highlighting
indicates a model’s capability to learn consistently or its inability to learn at all: green shows that over all
folds no SBCD is > 10~'; ‘red shows that over all folds the minimum SBCD> 10~?.
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