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Abstract

We present a three-dimensional framework for automated dataset creativity assess-1

ment that decomposes creativity into measurable components: attribute novelty,2

recombination novelty, and feature addition. Our method treats data points as col-3

lections of categorized artifacts, evaluating universal and unique attributes through4

semantic embedding comparison. Attribute novelty measures semantic diver-5

sity using pairwise cosine similarity of CLIP embeddings, recombination novelty6

quantifies unique attribute co-occurrences via hierarchical clustering, and feature7

addition assesses unique embellishment distribution. Validation on three 100-image8

datasets shows significant statistical differences across metrics (p < .001), with9

forced creativity datasets achieving the highest attribute novelty and prompted10

creativity datasets demonstrating superior recombination patterns. Strong posi-11

tive correlations between metrics (r = 0.43 − 0.55) support construct validity.12

This modality-agnostic, embedding-based evaluation framework enables system-13

atic assessment of generated image data quality beyond traditional performance14

benchmarks, with direct implications for foundation model training in high-stakes15

applications. The three 100-image datasets are publicly available1.16

1 Introduction17

Operational deployment of computer vision systems for ground vehicle recognition and overhead18

imagery analysis [1–3] requires training datasets with sufficient diversity/creativity to ensure robust19

performance across varied conditions [4–6]. Current dataset evaluation methodologies rely on single-20

metric assessments that fail to capture the multifaceted nature of visual creativity required for reliable21

model performance. This limitation becomes critical when synthetic data generation augments limited22

real-world imagery collections [7], where inadequate creativity assessment results in models that23

perform well on benchmarks [8, 9] but fail during deployment [10–12].24

We introduce a novel three-dimensional framework for automated dataset creativity assessment25

through artifact-based decomposition. Our approach treats data points as collections of categorized in-26

formation artifacts, evaluating universal attributes essential for task performance and unique attributes27

providing contextual detail. The framework decomposes creativity into attribute novelty (semantic di-28

versity using embedding similarity), recombination novelty (unique attribute co-occurrences through29

hierarchical clustering), and feature addition (proportion and distribution of unique embellishments).30

Key contributions include: (1) a modality-agnostic framework enabling creativity assessment for31

ground-based and overhead imagery datasets, (2) decomposition into interpretable components relat-32

ing to operational performance requirements, (3) validation demonstrating statistical differentiation33

between datasets, and (4) correlation analysis supporting construct validity. This framework en-34

ables practitioners to systematically assess training data quality for mission-critical computer vision35

applications beyond traditional performance benchmarks.36

1Datasets available at [Anonymized GitHub URL]
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2 Related work37

There are two dominant taxonomies of creativity evaluation: subjective evaluation and mathematical38

evaluation. Subjective evaluation is when a judge (either human or a VLM) provides a subjective39

creativity score to generated content (typically a single image or a set of images). Human creativity40

assessment [13, 14] is considered the gold standard, but it is incredibly time-intensive and costly. In41

contrast, using a VLM trained on human-annotated datasets as a judge [15] may not be as widely42

accepted, but the automated nature allows for much better scaling as evaluation quantity increases.43

While the subjective evaluation taxonomy is more readily translatable to the human evaluation44

experience (which is inherently subjective), mathematical evaluation techniques allow for a much45

more transparent evaluation procedure. There are two primary mathematical approaches to the46

measurement of creativity: the comprehensive approach and the decomposition approach. The47

comprehensive approach uses a single score and method to measure creativity as a whole. This can48

involve running the generator through a set of tests and scoring the outputs [16] or using a single49

measure line semantic similarity to comprehensively operationalize creativity [17]. Despite the50

ease of calculation, the comprehensive approach risks oversimplifying creativity. In contrast, the51

decomposition approach breaks creativity down into several dimensions, like value, novelty, surprise,52

and cohesion, and scores each dimension [18, 19]. Despite the differences between the decomposition53

and comprehensive approaches, most mathematical methodologies leverage the same fundamental54

principle: artifact analysis. In many of these evaluation approaches, the image is broken down into55

parts called artifacts, each artifact is evaluated for semantic meaning using an embedder like CLIP56

[20], and the semantic meanings are compared to extract a difference or similarity score. The goal of57

the following study is to leverage some of the text-to-image evaluation tools and the decomposition58

approach to mathematical creativity evaluation to develop a novel multi-dimensional dataset creativity59

evaluation methodology based on artifact analysis.60

3 Evaluation metric definition61

In 2010, Maher proposed the following dimensions for evaluating the creativity of a generator while62

in the process of generation: value, novelty, and surprise [21]. In 2025, Ramaswamy and colleagues63

expanded on Maher’s work by proposing their own set of generator creativity dimensions: prompt64

requirement satisfaction, cohesion, and diversity [19]. When evaluating generated dataset creativity65

instead of generator creativity, there are key differences that need to be accounted for. Dimensions66

representing quality should be discarded, because there is a typically a value threshold for inclusion67

in the dataset. Furthermore, surprise becomes no longer relevant as expectation cannot be measured68

for a dataset where all the data is presented at once. This leaves only the dimensions of novelty, which69

should be specified to capture the different facets of dataset creativity. In our evaluation approach,70

we focus on three key dimensions of novelty: attribute novelty, which measures differences between71

individual artifacts; recombination novelty, which accounts for differences in co-occurring artifacts;72

and addition novelty, which accounts for the addition of unique artifacts.73

Task formulation Evaluation dimensions are highly dependent on the downstream task. The two74

key task parameters are two sets of artifacts that define the downstream task: universal attributes and75

unique attributes. The set of universal attributes, U , is a set of categories for artifacts that should76

appear in every generated image and be essential for image understanding. In contrast, the set of77

unique attributes, Q, is a set of categories for non-essential artifacts that add detail and are expected78

to only appear in some images.79

Consider an image dataset D = {I1, I2, . . . , IN} where N is the number of images in the dataset. For80

each image Ii in the dataset, the artifact extractor extracts the artifact instance set {ai,1, . . . , ai,Li}81

where Li is the number of artifacts identified in image Ii. Each artifact instance ai,l = (ci,l, pi,l, ei,l)82

is a tuple where: ci,l ∈ C = U ∪Q is the predicted category of the artifact instance, pi,l ∈ [0, 1] is the83

confidence score associated with category assignment, and ei,l ∈ [0, 1]512 is the semantic embedding84

of the artifact instance.85

Attribute novelty Attribute novelty is the measure of the difference between artifacts of the same86

category C within a single dataset D, and it only accounts for universal attributes. Consider J sets of87

embeddings EA
j , where each embedding corresponds to an artifact categorized as universal attribute88
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j and nA
j = |EA

j |. Attribute-wise attribute novelty score Aj is calculated by taking the average89

pairwise cosine similarity score of all the embeddings in set EA
j following Eq. 1. Total attribute90

novelty score A is calculated by taking the average of the attribute-wise attribute novelty scores:91

Aj =
2

nA
j (n

A
j − 1)

∑
1≤x<y≤nA

j

EA
j,x · EA

j,y

∥EA
j,x∥ ∥EA

j,y∥
(1)

Recombination novelty Recombination novelty is the measure of the frequency with which92

different pairs of attributes from different attribute categories occur in a single dataset D. Similar93

to attribute novelty, recombination novelty only accounts for unique attributes. Consider the same94

J sets of embeddings, now notated as ER
j where nR

j = |ER
j |. Each set of embeddings is clustered95

using a hierarchical method where the optimal set of clusters is returned.96

Following the clustering of the J sets, each artifact ai,l where ci,l ∈ U has a newly associated group97

classification gi,l based on the clustering. For each pair of universal attributes (us, ut ∈ U , s ̸= t) all98

of the appropriate pairs of artifact groupings (gi,s′ , gi,t′) where ci,s′ = us and ci,t′ = ut are extracted99

from the images in the dataset. For each pair (us, ut), the proportion of unique pairs is calculated,100

and the recombination novelty score is calculated according to Eq. 2.101

R =
2

J(J − 1)

∑
s̸=t∈U

∑
i 1{(gi,s′ , gi,t′) are unique}∑
i 1{(gi,s′ , gi,t′) both exist}

(2)

Feature addition Feature addition is a measure of both the proportion of added features that are102

unique (aka unique score) and the proportion of images with an added feature in a dataset D (aka103

incidence score). Feature addition only accounts for unique attribute categories because the unique104

attributes are meant to be inconsequential to the interpretation of the image and added for decoration.105

Consider the K sets of embeddings where EF
k is the set with size nF

k . Similar to recombination106

novelty, the embeddings of each unique attribute category should be hierarchically clustered into a107

set of Gk clusters according to a strict distance threshold τ , where feature addition unique score is108

calculated according to Eq. 3.109

Funique =

∑K
k=1 |Gk|∑N

i=1

∑Li

l=1 1{ci,l ∈ Q}
(3)

The feature addition incidence score is simply the proportion of images with a unique feature and can110

be calculated following Eq. 4.111

Fincidence =

∑N
i=1 1{∃ l : ci,l ∈ Q}

N
(4)

4 Methodology112

In this study, we validated the proposed metrics for creativity evaluation on three 100-image datasets,113

which were generated for the simulated task of object recognition (see Appendix A for dataset114

generation details). We performed statistical analysis to evaluate the difference in creativity measures115

between the three generated datasets. To enable statistical analysis, each of the three datasets was sub-116

sampled 100 times, taking a random sample of size 50 from each of the datasets and running it through117

each evaluator. Differences between dataset creativity scores (see Appendix B for programmatic118

creativity scoring details) were analyzed using standard statistical techniques: MANOVA, ANOVA,119

and t-tests. To test the validity of the novel evaluation method, we conducted a correlation analysis120

with all four dependent variables. Finally, we performed factor analysis with the hypothesis of a121

single underlying factor, as all four primary variables are meant to measure the same construct:122

creativity.123

5 Results124

Attribute novelty evaluation We found a significant multivariate effect of condition on the com-125

bined individual attribute novelty scores, Pillai’s Trace = 1.656, F (8, 590) = 354.96, p < .001,126
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η2p = .022. There was also a significant effect of condition on average attribute novelty score:127

F (2, 297) = 601.5, p < .001, η2 = .802 (see Figure 1a). Follow-up pair-wise t-tests indicated that128

the low creativity condition scored significantly lower than both the prompted and forced creativity129

conditions (both p < .001), and the prompted creativity condition was significantly lower than the130

forced creativity condition (p = .011).131

Recombination novelty evaluation We found a significant effect of condition on recombination132

novelty score: F (2, 297) = 76.35, p < .001, η2 = .340 (see Figure 1b). Follow-up pair-wise t-tests133

showed that prompted creativity had a significantly higher recombination novelty score than both the134

forced creativity and the low creativity conditions (both p < .001). Furthermore, the low creativity135

condition had a significantly lower recombination novelty score as compared to the forced creativity136

condition (p = .0086).137

(a) (b) (c)

Figure 1: Evaluation results measuring the effect of condition on: (a) the average attribute novelty
score; (b) the recombination novelty score; (c) two feature addition measures.

Feature addition We found a significant multivariate effect of condition on both feature addition138

outcomes, Pillai’s Trace = 1.656, F (8, 590) = 354.96, p < .001, η2p = .022. Significant univariate139

effects of condition were also observed where there was a significant effect of condition on unique140

score (F (2, 297) = 1084, p < .001, η2 = .880) and a significant effect of condition on incidence141

score (F (2, 297) = 313.5, p < .001, η2p = .679), see Figure 1c. For the incidence score, post-hoc142

t-tests showed that all conditions differed significantly, with forced creativity > low creativity >143

prompted creativity (all p < .001). Similarly, for the unique score, the three conditions differed144

significantly with prompted creativity > forced creativity > low creativity (all p < .001).145

Inter-metric correlation Pearson correlations revealed significant positive associations between146

the following dependent variables: average attribute novelty score, recombination novelty score, and147

unique score (all r > .43, all p < .001). Interestingly, the incidence score was negatively correlated148

with the unique score (r = −.67, p < .001) and with the novelty score of the recombination149

(r = −.31, p < .001) and had no significant association with the novelty score of the average150

attribute (r = .07, p = .214). Finally, a factor analysis was conducted on these four key variables,151

and the factor loading scores for average attribute novelty score, recombination novelty score, and the152

unique score were .43, .55, and 1.00, respectively, while the factor loading score for the incidence153

score was −.67.154

6 Summary and operational implications155

The proposed framework addresses critical challenges in generating training data for vision systems156

in ground vehicle recognition and overhead imagery analysis. The three-dimensional metric de-157

composition enables systematic and automated assessment of dataset creativity for object detection158

tasks in operational environments. For ground-based applications, attribute novelty ensures adequate159

environmental variability representation across terrain, lighting, and seasonal conditions that impact160

model robustness. Recombination novelty captures realistic co-occurrence patterns between environ-161

mental attributes, preventing artificial attribute pairings that degrade real-world performance. This162

modality-agnostic methodology enables practitioners to identify specific deficiencies in synthetic data163

generation pipelines and systematically improve dataset quality for high-stakes deployment scenarios164

where model failure carries operational consequences.165
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A Synthetic dataset generation244

Three 100-image datasets were generated in this study to analyze our proposed measures of dataset245

creativity. Each of the three datasets was generated with different image generation prompts, leading246

to varying levels of creativity in each of the datasets. All of the images in the three datasets were247

generated using the Kandinsky 2.2 image generation model [22]. For the generation of each image,248

the Kandinsky model was initialized with the negative prompt of “low quality, bad quality,” the prior249

guidance scale set to 2, and the generated image dimensions set to 900x900 pixels.250

A.1 Low creativity dataset251

The low-creativity dataset was generated by passing pre-generated, low-creativity image generation252

prompts into the image generator. The image generator prompts contained two parts: the subject,253

which was always “An image of a silver-grey open-bed present-day pickup truck driving in” and254

the context, which varied by image. The image generation prompt contexts were generated using255

TinyLlama-1.1B [23], which followed text generation prompts meant to inhibit creativity. The256

creativity-inhibiting prompts for TinyLlama were as follows:257

"role": "system",258

"content": "You have the goal of creating concise scenery descriptions for259

image captions."260

"role": "system",261

"content": "You generate mountainous environment scenery descriptions262

varying season and weather conditions."263

"role": "user",264

"content": "Generate 10 concise, less than 20-word, scenery descriptions265

of mountainous environments. Include the word ’mountains’."266

TinyLlama began to hallucinate when generating more than 10 contexts at a time, so contexts were267

generated in sets of 10. Only contexts from completed generation runs were included in the final268

dataset, and contexts containing nonsense text or failing to comply with the prompt were manually269

removed. 100 generated contexts were appended to the subject to create 100 image generation270

prompts. Example image generation prompts include “An image of a silver-grey open-bed present-271

day pickup truck driving in a snow-covered mountain ridge with a waterfall cascading down the rocks,”272

“An image of a silver-grey open-bed present-day pickup truck driving in a winter wonderland with273

snow-capped mountains in the background,” and “An image of a silver-grey open-bed present-day274

pickup truck driving in a deep, snow-covered valley surrounded by jagged peaks and the sky blue275

above.” The 100 image generation prompts were passed into the Kandinsky model, and 100 images276

were generated. Images were manually screened and regenerated when the image generator failed to277

generate a semi-realistic image that adhered to the prompt.278

A.2 Prompted creativity dataset279

The prompted creativity dataset was generated in much the same way as the low creativity dataset.280

Again, the image generation prompts were split into a subject (“An image of a silver-grey open-bed281

present-day pickup truck driving in”) and a context, which was again generated using TinyLlama.282

For the generation of this dataset, however, the text generation prompts passed into TinyLlama were283

designed to promote rather than inhibit creativity. The creativity-promoting prompts for TinyLlama284

were as follows:285

"role": "system",286

"content": "You have the goal of creating concise scenery descriptions for287

image captions."288

"role": "system",289

"content": "You generate scenery descriptions by varying biome, landforms,290

season, and weather conditions. You should also randomly include291

inconsequential details like animals, infrastructure, or plants."292
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"role": "user",293

"content": "Generate 10 concise, less than 20-word, scenery descriptions294

for varying natural environments"295

Following the same procedure as with the low creativity dataset, contexts were generated in sets of296

10, and only contexts from complete generation runs were included. Also, contexts were manually297

inspected, and nonsense/noncompliant contexts were eliminated. Following the same procedure,298

contexts were appended to the subject to create 100 image generation prompts. Example prompts299

include “An image of a silver-grey open-bed present-day pickup truck driving in a vast open field,300

with rolling hills and patches of wildflowers, a herd of cattle grazing peacefully in the distance,” “An301

image of a silver-grey open-bed present-day pickup truck driving in a dense jungle with towering trees302

and a lush undergrowth,” and “An image of a silver-grey open-bed present-day pickup truck driving303

in a desert oasis with palm trees and crystal-clear water.” The same image generation procedure was304

used, where the prompts were passed into the Kandinsky model, the generated images were manually305

screened to ensure realism, and select images were regenerated.306

A.3 Forced creativity dataset307

The forced creativity data set followed a unique procedure for image prompt generation. Instead of308

following a subject-context model where an LLM was used to generate the context, various context309

variables were predefined, and permutations of those variables were used to generate the different310

prompts. All of the image generation prompts followed the same general structure:311

“An image of a silver-grey open-bed present-day pickup truck driving in [biome] environment with312

[landform] in the background in the [season] on a [weather] day. Including appropriate details like313

plants, animals, and buildings.”314

Lists of different biomes, landforms, times of day, and weather conditions were created, and permuta-315

tions were used to generate image prompts. The four lists were as follows:316

biomes = ["a beach", "a desert", "a forest", "a grassland", "a jungle",317

"an urban", "a rocky"]318

319

landforms = ["a mountain", "a river", "an open sky", "hills", "a lake"]320

321

season = ["fall", "winter", "spring", "summer"]322

323

weather = ["windy", "rainy", "cloudy", "foggy", "partly cloudy", "snowy",324

"sunny"]325

Of the 630 possible permutations, 100 permutations were randomly selected to be turned into image326

generation prompts. Example image generation prompts include “An image of a silver-grey open-bed327

present-day pickup truck driving in a rocky environment with a river in the background in the winter328

on a rainy day. Including appropriate details such as plants, animals, and buildings,” “An image of329

a silver-gray open-bed present-day pickup truck driving in a desert environment with a river in the330

background in the spring on a sunny day. Including appropriate details such as plants, animals, and331

buildings,” and “An image of a silver-grey open-bed present-day pickup truck driving in a jungle332

environment with a river in the background in the fall on a windy day. Including appropriate details333

such as plants, animals, and buildings.” The same image generation procedure was used, where the334

prompts were passed into the Kandinsky model, the generated images were manually screened to335

ensure realism, and select images were regenerated.336

A.4 Generation results337

Three image datasets, each containing 100 images of trucks in natural environments, were successfully338

generated. Representative images from the low creativity, prompted creativity, and forced creativity339

datasets are included in Figures 2, 3, and 4, respectively. Most images in the low creativity dataset340

included mountains as prompted, but despite the context generation prompting, there was very little341

diversity in context, as most had snow on the ground with sun in the sky. The prompted creativity342

and forced creativity conditions had fairly similar images. Both sets of images had strong diversity in343

landform and ecosystem, but both fell short in weather/season diversity, both tending toward sunny344
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days regardless of the image prompt. The image generator used in this study is fairly outdated, and as345

a result, there are hallucinatory artifacts and nonsense geometry included in many generated images.346

Figure 2: Representative examples from the low creativity dataset.

Figure 3: Representative examples from the prompted creativity dataset.

Figure 4: Representative examples from the forced creativity dataset.
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B Creativity measures347

B.1 Evaluator Initialization348

Before running the evaluation, the creativity evaluator was initialized to reflect the downstream task349

of object recognition for pickup trucks in a variety of images of different natural environments. The350

universal attributes were set to “weather”, “ecosystem”, “landform”, and “season” to reflect and351

capture the many different environments that the trucks will be depicted in. The unique attributes352

were set to “animal”, “plant”, and “infrastructure” to capture common image embellishments like353

small structures and plant/animal life. Both the universal and unique attributes are also explicitly354

prompted in the generation of the low creativity and the prompted creativity datasets. Finally, the355

evaluator included a new distractor attribute of “path”, which captures artifacts like “road,” “street,”356

and “trail.” These artifacts are referencing the surface that the depicted truck is driving on and should357

be excluded from analysis.358

B.2 Artifact Extraction359

To generate an analyzable list of artifacts for each image, every image in the dataset followed the360

same artifact extraction protocol. First, we employed BLIP-2 [24], using Salesforce’s OPT-2.7b361

implementation [25] to generate a mid-length caption for each image with the maximum generation362

length set to 65 tokens and the minimum set to 55. Following caption generation, the noun phrases363

(artifacts) were extracted from each caption using spaCy [26] and categorized into one of the pre-364

defined attributes using BERT MNLI [27] with a corresponding probability score for that classification.365

For attributes like “season,” which are unlikely to be included in a descriptive caption, Salesforce’s366

Flan-T5-xl BLIP-2 implementation [28] was used for question answering, where the outcome of the367

query “Question: what is the season? Your options are winter, summer, spring, or fall. Answer with368

one word:” is used and labeled as a “season” artifact. Finally, CLIP [29] was used to calculate the369

semantic embedding, a 512-dimensional vector that represents the semantic meaning of the text, for370

each of the artifacts.371

B.3 Attribute Novelty Metric372

Attribute novelty was calculated for all three datasets at the same time, following Eq. 1 described in373

Section 3. First, the artifact sets were cleaned so all artifacts were eliminated except for those with374

the highest probability scores for each attribute in each image. Then, a list of artifacts was created for375

each universal attribute, where the list contained all of the artifacts categorized as the given universal376

attribute across the entire dataset. To ensure equal-sized comparisons between datasets, the datasets377

were sampled 100 times, where the sub-sample size was equal to half of the size of the smallest378

artifact list between the three datasets. Following the calculation of the sub-sample size for each of379

the universal attributes, the attribute novelty score was calculated for each of the unique attributes380

individually. The attribute novelty score was calculated by taking the average distance between the381

semantic embeddings of the artifacts in each sub-sampled dataset and averaging over all sub-sampled382

datasets. Finally, the total attribute novelty score was calculated by averaging over each of the unique383

attribute novelty scores.384

B.4 Recombination Novelty Metric385

Recombination novelty was calculated for each dataset individually following Eq. 2 in Section 3.386

Again, the datasets were cleaned so only the artifacts with the highest probability score in each387

classification category are retained. Then the embeddings which each attribute category were388

clustered using agglomerative clustering, where the optimal number of clusters was determined389

according to the silhouette score using cosine similarity as the similarity metric.390

After all of the artifacts across every attribute classification were given cluster groups, the novelty of391

recombination was calculated. A list was generated of all the possible pairs of universal attributes,392

and for each pair, all of the pair instances were identified and counted across the dataset. Then, using393

the clustering group numbers, the total number of unique pairs was calculated. This was done for394

each of the pairs, and the average ratio of unique pairs was returned as the recombination novelty395

score.396
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B.5 Feature Addition Metric397

Recombination novelty was calculated for each dataset individually following Eq. 3 and 4 in Section 3.398

A similar agglomerative clustering method was employed; however, a threshold rule was used instead399

of an optimization rule in determining the total number of clusters. The embeddings for each of the400

unique attributes were clustered with a cosine similarity threshold of .85. The uniqueness of added401

features was calculated as the ratio of unique clusters to total added features, and the frequency of402

added features was calculated as the number of images with artifacts that were classified as unique403

attributes.404
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