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Abstract

We present a three-dimensional framework for automated dataset creativity assess-
ment that decomposes creativity into measurable components: attribute novelty,
recombination novelty, and feature addition. Our method treats data points as col-
lections of categorized artifacts, evaluating universal and unique attributes through
semantic embedding comparison. Attribute novelty measures semantic diver-
sity using pairwise cosine similarity of CLIP embeddings, recombination novelty
quantifies unique attribute co-occurrences via hierarchical clustering, and feature
addition assesses unique embellishment distribution. Validation on three 100-image
datasets shows significant statistical differences across metrics (p < .001), with
forced creativity datasets achieving the highest attribute novelty and prompted
creativity datasets demonstrating superior recombination patterns. Strong posi-
tive correlations between metrics (r = 0.43 — 0.55) support construct validity.
This modality-agnostic, embedding-based evaluation framework enables system-
atic assessment of generated image data quality beyond traditional performance
benchmarks, with direct implications for foundation model training in high-stakes
applications. The three 100-image datasets are publicly availabl

1 Introduction

Operational deployment of computer vision systems for ground vehicle recognition and overhead
imagery analysis [1H3] requires training datasets with sufficient diversity/creativity to ensure robust
performance across varied conditions [4H6]. Current dataset evaluation methodologies rely on single-
metric assessments that fail to capture the multifaceted nature of visual creativity required for reliable
model performance. This limitation becomes critical when synthetic data generation augments limited
real-world imagery collections [[7]], where inadequate creativity assessment results in models that
perform well on benchmarks [8, O] but fail during deployment [10512].

We introduce a novel three-dimensional framework for automated dataset creativity assessment
through artifact-based decomposition. Our approach treats data points as collections of categorized in-
formation artifacts, evaluating universal attributes essential for task performance and unique attributes
providing contextual detail. The framework decomposes creativity into attribute novelty (semantic di-
versity using embedding similarity), recombination novelty (unique attribute co-occurrences through
hierarchical clustering), and feature addition (proportion and distribution of unique embellishments).

Key contributions include: (1) a modality-agnostic framework enabling creativity assessment for
ground-based and overhead imagery datasets, (2) decomposition into interpretable components relat-
ing to operational performance requirements, (3) validation demonstrating statistical differentiation
between datasets, and (4) correlation analysis supporting construct validity. This framework en-
ables practitioners to systematically assess training data quality for mission-critical computer vision
applications beyond traditional performance benchmarks.

"Datasets available at [Anonymized GitHub URL]
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2 Related work

There are two dominant taxonomies of creativity evaluation: subjective evaluation and mathematical
evaluation. Subjective evaluation is when a judge (either human or a VLM) provides a subjective
creativity score to generated content (typically a single image or a set of images). Human creativity
assessment [131[14] is considered the gold standard, but it is incredibly time-intensive and costly. In
contrast, using a VLM trained on human-annotated datasets as a judge [15] may not be as widely
accepted, but the automated nature allows for much better scaling as evaluation quantity increases.
While the subjective evaluation taxonomy is more readily translatable to the human evaluation
experience (which is inherently subjective), mathematical evaluation techniques allow for a much
more transparent evaluation procedure. There are two primary mathematical approaches to the
measurement of creativity: the comprehensive approach and the decomposition approach. The
comprehensive approach uses a single score and method to measure creativity as a whole. This can
involve running the generator through a set of tests and scoring the outputs [[16] or using a single
measure line semantic similarity to comprehensively operationalize creativity [17]. Despite the
ease of calculation, the comprehensive approach risks oversimplifying creativity. In contrast, the
decomposition approach breaks creativity down into several dimensions, like value, novelty, surprise,
and cohesion, and scores each dimension [18,[19]. Despite the differences between the decomposition
and comprehensive approaches, most mathematical methodologies leverage the same fundamental
principle: artifact analysis. In many of these evaluation approaches, the image is broken down into
parts called artifacts, each artifact is evaluated for semantic meaning using an embedder like CLIP
[20], and the semantic meanings are compared to extract a difference or similarity score. The goal of
the following study is to leverage some of the text-to-image evaluation tools and the decomposition
approach to mathematical creativity evaluation to develop a novel multi-dimensional dataset creativity
evaluation methodology based on artifact analysis.

3 Evaluation metric definition

In 2010, Maher proposed the following dimensions for evaluating the creativity of a generator while
in the process of generation: value, novelty, and surprise [21]. In 2025, Ramaswamy and colleagues
expanded on Maher’s work by proposing their own set of generator creativity dimensions: prompt
requirement satisfaction, cohesion, and diversity [19]. When evaluating generated dataset creativity
instead of generator creativity, there are key differences that need to be accounted for. Dimensions
representing quality should be discarded, because there is a typically a value threshold for inclusion
in the dataset. Furthermore, surprise becomes no longer relevant as expectation cannot be measured
for a dataset where all the data is presented at once. This leaves only the dimensions of novelty, which
should be specified to capture the different facets of dataset creativity. In our evaluation approach,
we focus on three key dimensions of novelty: attribute novelty, which measures differences between
individual artifacts; recombination novelty, which accounts for differences in co-occurring artifacts;
and addition novelty, which accounts for the addition of unique artifacts.

Task formulation Evaluation dimensions are highly dependent on the downstream task. The two
key task parameters are two sets of artifacts that define the downstream task: universal attributes and
unique attributes. The set of universal attributes, I/, is a set of categories for artifacts that should
appear in every generated image and be essential for image understanding. In contrast, the set of
unique attributes, Q, is a set of categories for non-essential artifacts that add detail and are expected
to only appear in some images.

Consider an image dataset D = {I, I, ..., I} where N is the number of images in the dataset. For
each image I; in the dataset, the artifact extractor extracts the artifact instance set {a;1,...,a; r,}
where L; is the number of artifacts identified in image I;. Each artifact instance a;; = (i1, Di, €i1)
is a tuple where: ¢;; € C' = U U Q is the predicted category of the artifact instance, p; ; € [0, 1] is the
confidence score associated with category assignment, and ¢, ; € [0, 1]512 is the semantic embedding
of the artifact instance.

Attribute novelty Attribute novelty is the measure of the difference between artifacts of the same
category C' within a single dataset D, and it only accounts for universal attributes. Consider .J sets of
embeddings £, where each embedding corresponds to an artifact categorized as universal attribute
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7 and nj‘ = |E34| Attribute-wise attribute novelty score A; is calculated by taking the average

pairwise cosine similarity score of all the embeddings in set Ef following Eq.|1] Total attribute
novelty score A is calculated by taking the average of the attribute-wise attribute novelty scores:

A A
Aj= i > = .Ejff
i =1) | S NSNS

ey

Recombination novelty Recombination novelty is the measure of the frequency with which
different pairs of attributes from different attribute categories occur in a single dataset D. Similar
to attribute novelty, recombination novelty only accounts for unique attributes. Consider the same
J sets of embeddings, now notated as E]R where nj |EJR| Each set of embeddings is clustered
using a hierarchical method where the optimal set of clusters is returned.

Following the clustering of the J sets, each artifact a;; where ¢; ; € U has a newly associated group
classification g; ; based on the clustering. For each pair of universal attributes (us,u; € U, s # t) all
of the appropriate pairs of artifact groupings (g; s/, ¢; +) Where ¢; o = u, and ¢; ;» = wy are extracted
from the images in the dataset. For each pair (us, us), the proportion of unique pairs is calculated,
and the recombination novelty score is calculated according to Eq.[2]

Z > 1{(9i,s', gi,i') are unique} ®
> H{(gi,s» 9i1r) both exist}

R =
s;ﬁteu

Feature addition Feature addition is a measure of both the proportion of added features that are
unique (aka unique score) and the proportion of images with an added feature in a dataset D (aka
incidence score). Feature addition only accounts for unique attribute categories because the unique
attributes are meant to be inconsequential to the interpretation of the image and added for decoration.
Consider the K sets of embeddings where E[ is the set with size nf . Similar to recombination
novelty, the embeddings of each unique attribute category should be hierarchically clustered into a
set of G, clusters according to a strict distance threshold 7, where feature addition unique score is
calculated according to Eq.[3]

Zszl |Gk‘
Zf\;1 ZlL:71 1{Ci,l €9}

The feature addition incidence score is simply the proportion of images with a unique feature and can
be calculated following Eq. 4]

3

F unique —

N
i 1{31: Ci,l € Q
Fincidence = Z — { N l } (4)

4 Methodology

In this study, we validated the proposed metrics for creativity evaluation on three 100-image datasets,
which were generated for the simulated task of object recognition (see Appendix [A] for dataset
generation details). We performed statistical analysis to evaluate the difference in creativity measures
between the three generated datasets. To enable statistical analysis, each of the three datasets was sub-
sampled 100 times, taking a random sample of size 50 from each of the datasets and running it through
each evaluator. Differences between dataset creativity scores (see Appendix [B|for programmatic
creativity scoring details) were analyzed using standard statistical techniques: MANOVA, ANOVA,
and t-tests. To test the validity of the novel evaluation method, we conducted a correlation analysis
with all four dependent variables. Finally, we performed factor analysis with the hypothesis of a
single underlying factor, as all four primary variables are meant to measure the same construct:
creativity.

5 Results

Attribute novelty evaluation We found a significant multivariate effect of condition on the com-
bined individual attribute novelty scores, Pillai’s Trace = 1.656, F'(8,590) = 354.96, p < .001,
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7712, = .022. There was also a significant effect of condition on average attribute novelty score:
F(2,297) = 601.5, p < .001, n* = .802 (see Figure@. Follow-up pair-wise t-tests indicated that
the low creativity condition scored significantly lower than both the prompted and forced creativity
conditions (both p < .001), and the prompted creativity condition was significantly lower than the
forced creativity condition (p = .011).

Recombination novelty evaluation We found a significant effect of condition on recombination
novelty score: F(2,297) = 76.35, p < .001, n? = .340 (see Figure . Follow-up pair-wise t-tests
showed that prompted creativity had a significantly higher recombination novelty score than both the
forced creativity and the low creativity conditions (both p < .001). Furthermore, the low creativity
condition had a significantly lower recombination novelty score as compared to the forced creativity
condition (p = .0086).

Condition

050 Low Creatity
B Prompted Greativy
Forced Creativy
025 -
0.00 - 0.00

Low Creativity ~ Prompted Creativity ~ Forced Creativity Low Creativity ~ Prompted Creativity ~ Forced Creativity ‘Score.
Condition Condition Measure

() (b) (©

Figure 1: Evaluation results measuring the effect of condition on: (a) the average attribute novelty
score; (b) the recombination novelty score; (c) two feature addition measures.

Attribute Novelty Score
Score

Recombination Novelty Score

Feature addition We found a significant multivariate effect of condition on both feature addition
outcomes, Pillai’s Trace = 1.656, F'(8,590) = 354.96, p < .001, 773 = .022. Significant univariate
effects of condition were also observed where there was a significant effect of condition on unique
score (F'(2,297) = 1084, p < .001, n? = .880) and a significant effect of condition on incidence
score (F'(2,297) = 313.5, p < .001, 77127 = .679), see Figure For the incidence score, post-hoc
t-tests showed that all conditions differed significantly, with forced creativity > low creativity >
prompted creativity (all p < .001). Similarly, for the unique score, the three conditions differed
significantly with prompted creativity > forced creativity > low creativity (all p < .001).

Inter-metric correlation Pearson correlations revealed significant positive associations between
the following dependent variables: average attribute novelty score, recombination novelty score, and
unique score (all » > .43, all p < .001). Interestingly, the incidence score was negatively correlated
with the unique score (r = —.67, p < .001) and with the novelty score of the recombination
(r = —.31, p < .001) and had no significant association with the novelty score of the average
attribute (r = .07, p = .214). Finally, a factor analysis was conducted on these four key variables,
and the factor loading scores for average attribute novelty score, recombination novelty score, and the
unique score were .43, .55, and 1.00, respectively, while the factor loading score for the incidence
score was —.67.

6 Summary and operational implications

The proposed framework addresses critical challenges in generating training data for vision systems
in ground vehicle recognition and overhead imagery analysis. The three-dimensional metric de-
composition enables systematic and automated assessment of dataset creativity for object detection
tasks in operational environments. For ground-based applications, attribute novelty ensures adequate
environmental variability representation across terrain, lighting, and seasonal conditions that impact
model robustness. Recombination novelty captures realistic co-occurrence patterns between environ-
mental attributes, preventing artificial attribute pairings that degrade real-world performance. This
modality-agnostic methodology enables practitioners to identify specific deficiencies in synthetic data
generation pipelines and systematically improve dataset quality for high-stakes deployment scenarios
where model failure carries operational consequences.
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A Synthetic dataset generation

Three 100-image datasets were generated in this study to analyze our proposed measures of dataset
creativity. Each of the three datasets was generated with different image generation prompts, leading
to varying levels of creativity in each of the datasets. All of the images in the three datasets were
generated using the Kandinsky 2.2 image generation model [22]. For the generation of each image,
the Kandinsky model was initialized with the negative prompt of “low quality, bad quality,” the prior
guidance scale set to 2, and the generated image dimensions set to 9002900 pixels.

A.1 Low creativity dataset

The low-creativity dataset was generated by passing pre-generated, low-creativity image generation
prompts into the image generator. The image generator prompts contained two parts: the subject,
which was always “An image of a silver-grey open-bed present-day pickup truck driving in” and
the context, which varied by image. The image generation prompt contexts were generated using
TinyLlama-1.1B [23], which followed text generation prompts meant to inhibit creativity. The
creativity-inhibiting prompts for TinyLlama were as follows:

"role": "system",
"content": "You have the goal of creating concise scenery descriptions for
image captions."

"role": "system",
"content": "You generate mountainous environment scenery descriptions
varying season and weather conditions."

"role": "user",
"content": "Generate 10 concise, less than 20-word, scenery descriptions
of mountainous environments. Include the word ’mountains’."”

TinyLlama began to hallucinate when generating more than 10 contexts at a time, so contexts were
generated in sets of 10. Only contexts from completed generation runs were included in the final
dataset, and contexts containing nonsense text or failing to comply with the prompt were manually
removed. 100 generated contexts were appended to the subject to create 100 image generation
prompts. Example image generation prompts include “An image of a silver-grey open-bed present-
day pickup truck driving in a snow-covered mountain ridge with a waterfall cascading down the rocks,”
“An image of a silver-grey open-bed present-day pickup truck driving in a winter wonderland with
snow-capped mountains in the background,” and “An image of a silver-grey open-bed present-day
pickup truck driving in a deep, snow-covered valley surrounded by jagged peaks and the sky blue
above.” The 100 image generation prompts were passed into the Kandinsky model, and 100 images
were generated. Images were manually screened and regenerated when the image generator failed to
generate a semi-realistic image that adhered to the prompt.

A.2 Prompted creativity dataset

The prompted creativity dataset was generated in much the same way as the low creativity dataset.
Again, the image generation prompts were split into a subject (“An image of a silver-grey open-bed
present-day pickup truck driving in”) and a context, which was again generated using TinyLlama.
For the generation of this dataset, however, the text generation prompts passed into TinyLlama were
designed to promote rather than inhibit creativity. The creativity-promoting prompts for TinyLlama
were as follows:

"role": "system",
"content": "You have the goal of creating concise scenery descriptions for
image captions."

"role": "system",

"content": "You generate scenery descriptions by varying biome, landforms,
season, and weather conditions. You should also randomly include
inconsequential details like animals, infrastructure, or plants."
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"role": "user",
"content": "Generate 10 concise, less than 20-word, scenery descriptions
for varying natural environments"

Following the same procedure as with the low creativity dataset, contexts were generated in sets of
10, and only contexts from complete generation runs were included. Also, contexts were manually
inspected, and nonsense/noncompliant contexts were eliminated. Following the same procedure,
contexts were appended to the subject to create 100 image generation prompts. Example prompts
include “An image of a silver-grey open-bed present-day pickup truck driving in a vast open field,
with rolling hills and patches of wildflowers, a herd of cattle grazing peacefully in the distance,” “An
image of a silver-grey open-bed present-day pickup truck driving in a dense jungle with towering trees
and a lush undergrowth,” and “An image of a silver-grey open-bed present-day pickup truck driving
in a desert oasis with palm trees and crystal-clear water.” The same image generation procedure was
used, where the prompts were passed into the Kandinsky model, the generated images were manually
screened to ensure realism, and select images were regenerated.

A.3 Forced creativity dataset

The forced creativity data set followed a unique procedure for image prompt generation. Instead of
following a subject-context model where an LLM was used to generate the context, various context
variables were predefined, and permutations of those variables were used to generate the different
prompts. All of the image generation prompts followed the same general structure:

“An image of a silver-grey open-bed present-day pickup truck driving in [biome] environment with
[landform] in the background in the [season] on a [weather] day. Including appropriate details like
plants, animals, and buildings.”

Lists of different biomes, landforms, times of day, and weather conditions were created, and permuta-
tions were used to generate image prompts. The four lists were as follows:

biomes = ["a beach", "a desert", "a forest", "a grassland", "a jungle",
"an urban", "a rocky"]

landforms = ["a mountain", "a river", "an open sky", "hills", "a lake"]
season = ["fall", "winter", "spring", "summer"]

weather = ["windy", "rainy", "cloudy", "foggy", "partly cloudy", "snowy",
"SllIlIly"]

Of the 630 possible permutations, 100 permutations were randomly selected to be turned into image
generation prompts. Example image generation prompts include “An image of a silver-grey open-bed
present-day pickup truck driving in a rocky environment with a river in the background in the winter
on a rainy day. Including appropriate details such as plants, animals, and buildings,” “An image of
a silver-gray open-bed present-day pickup truck driving in a desert environment with a river in the
background in the spring on a sunny day. Including appropriate details such as plants, animals, and
buildings,” and “An image of a silver-grey open-bed present-day pickup truck driving in a jungle
environment with a river in the background in the fall on a windy day. Including appropriate details
such as plants, animals, and buildings.” The same image generation procedure was used, where the
prompts were passed into the Kandinsky model, the generated images were manually screened to
ensure realism, and select images were regenerated.

A.4 Generation results

Three image datasets, each containing 100 images of trucks in natural environments, were successfully
generated. Representative images from the low creativity, prompted creativity, and forced creativity
datasets are included in Figures and 4] respectively. Most images in the low creativity dataset
included mountains as prompted, but despite the context generation prompting, there was very little
diversity in context, as most had snow on the ground with sun in the sky. The prompted creativity
and forced creativity conditions had fairly similar images. Both sets of images had strong diversity in
landform and ecosystem, but both fell short in weather/season diversity, both tending toward sunny



a45 days regardless of the image prompt. The image generator used in this study is fairly outdated, and as
a46  a result, there are hallucinatory artifacts and nonsense geometry included in many generated images.

- T ——

Figure 4: Representative examples from the forced creativity dataset.
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B Creativity measures

B.1 Evaluator Initialization

Before running the evaluation, the creativity evaluator was initialized to reflect the downstream task
of object recognition for pickup trucks in a variety of images of different natural environments. The
universal attributes were set to “weather”, “ecosystem”, “landform”, and “season” to reflect and
capture the many different environments that the trucks will be depicted in. The unique attributes
were set to “animal”, “plant”, and “infrastructure” to capture common image embellishments like
small structures and plant/animal life. Both the universal and unique attributes are also explicitly
prompted in the generation of the low creativity and the prompted creativity datasets. Finally, the
evaluator included a new distractor attribute of “path”, which captures artifacts like “road,” “street,”
and “trail.” These artifacts are referencing the surface that the depicted truck is driving on and should
be excluded from analysis.

B.2 Artifact Extraction

To generate an analyzable list of artifacts for each image, every image in the dataset followed the
same artifact extraction protocol. First, we employed BLIP-2 [24]], using Salesforce’s OPT-2.7b
implementation [25] to generate a mid-length caption for each image with the maximum generation
length set to 65 tokens and the minimum set to 55. Following caption generation, the noun phrases
(artifacts) were extracted from each caption using spaCy [26] and categorized into one of the pre-
defined attributes using BERT MNLI [27]] with a corresponding probability score for that classification.
For attributes like “season,” which are unlikely to be included in a descriptive caption, Salesforce’s
Flan-T5-x1 BLIP-2 implementation [28] was used for question answering, where the outcome of the
query “Question: what is the season? Your options are winter, summer, spring, or fall. Answer with
one word:” is used and labeled as a “season” artifact. Finally, CLIP [29] was used to calculate the
semantic embedding, a 512-dimensional vector that represents the semantic meaning of the text, for
each of the artifacts.

B.3 Attribute Novelty Metric

Attribute novelty was calculated for all three datasets at the same time, following Eq. [I|described in
Section 3] First, the artifact sets were cleaned so all artifacts were eliminated except for those with
the highest probability scores for each attribute in each image. Then, a list of artifacts was created for
each universal attribute, where the list contained all of the artifacts categorized as the given universal
attribute across the entire dataset. To ensure equal-sized comparisons between datasets, the datasets
were sampled 100 times, where the sub-sample size was equal to half of the size of the smallest
artifact list between the three datasets. Following the calculation of the sub-sample size for each of
the universal attributes, the attribute novelty score was calculated for each of the unique attributes
individually. The attribute novelty score was calculated by taking the average distance between the
semantic embeddings of the artifacts in each sub-sampled dataset and averaging over all sub-sampled
datasets. Finally, the total attribute novelty score was calculated by averaging over each of the unique
attribute novelty scores.

B.4 Recombination Novelty Metric

Recombination novelty was calculated for each dataset individually following Eq. [2]in Section 3]
Again, the datasets were cleaned so only the artifacts with the highest probability score in each
classification category are retained. Then the embeddings which each attribute category were
clustered using agglomerative clustering, where the optimal number of clusters was determined
according to the silhouette score using cosine similarity as the similarity metric.

After all of the artifacts across every attribute classification were given cluster groups, the novelty of
recombination was calculated. A list was generated of all the possible pairs of universal attributes,
and for each pair, all of the pair instances were identified and counted across the dataset. Then, using
the clustering group numbers, the total number of unique pairs was calculated. This was done for
each of the pairs, and the average ratio of unique pairs was returned as the recombination novelty
score.

10
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B.5 Feature Addition Metric

Recombination novelty was calculated for each dataset individually following Eq. [3Jand[]in Section[3]
A similar agglomerative clustering method was employed; however, a threshold rule was used instead
of an optimization rule in determining the total number of clusters. The embeddings for each of the
unique attributes were clustered with a cosine similarity threshold of .85. The uniqueness of added
features was calculated as the ratio of unique clusters to total added features, and the frequency of
added features was calculated as the number of images with artifacts that were classified as unique
attributes.
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