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Abstract

Understanding communication and information processing among brain regions
of interest (ROIs) is highly dependent on long-range connectivity, which plays a
crucial role in facilitating diverse functional neural integration across the entire
brain. However, previous studies generally focused on the short-range dependen-
cies within brain networks while neglecting the long-range dependencies, limiting
an integrated understanding of brain-wide communication. To address this limi-
tation, we propose Adaptive Long-range aware TransformER (ALTER), a brain
graph transformer to capture long-range dependencies between brain ROIs utilizing
biased random walk. Specifically, we present a novel long-range aware strategy
to explicitly capture long-range dependencies between brain ROIs. By guiding
the walker towards the next hop with higher correlation value, our strategy simu-
lates the real-world brain-wide communication. Furthermore, by employing the
transformer framework, ALERT adaptively integrates both short- and long-range
dependencies between brain ROIs, enabling an integrated understanding of multi-
level communication across the entire brain. Extensive experiments on ABIDE
and ADNI datasets demonstrate that ALTER consistently outperforms generalized
state-of-the-art graph learning methods (including SAN, Graphormer, GraphTrans,
and LRGNN) and other graph learning based brain network analysis methods
(including FBNETGEN, BrainNetGNN, BrainGNN, and BrainNETTF) in neuro-
logical disease diagnosis. Cases of long-range dependencies are also presented to
further illustrate the effectiveness of ALTER. The implementation is available at
https://github.com/yushuowiki/ALTER|

1 Introduction

Brain networks represent a blueprint of communication and information processing across different
regions of interest (ROIs) [[1;2]]. The interaction between anatomically connected ROIs within brain
networks is the foundation of brain network analysis tasks [3]. As shown in Figure 1| numerous
studies have shown that brain networks exhibit not only short-range connectivity (i.e., short-range
dependencies) but also extensive long-range connectivity (i.e., long-range dependencies) [4} 15,16, [7].
Short-range dependencies rely on the neighbourhood space, whereas long-range dependencies
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reflect long distance communication among ROIs. Such long-range dependencies play a vital
role in theoretical analyses of brain function [8]], dysfunction [9], organization [10], dynamics [3]],
and evolution [L1]. Therefore, it is necessary to capture long-range dependencies within brain
networks to better represent communication connectivity and facilitate brain network analysis tasks to
extract valuable insights. The communication connectivity is also known as functional connectivity,
representing the interaction between brain ROIs.

Several existing studies have been devoted to representing communication connectivity within brain
networks via graph learning methods for network analysis tasks [[12, [13] [14} [15]. However, as
previously mentioned, they generally focus on the aggregation of neighborhood information, i.e.,
short-range dependencies, which still limits their effectiveness by neglecting the crucial long-range
dependencies. Most of the studies build models to analyze node (ROIs) features and structures (inter-
ROI connectivity) using Graph Neural Networks (GNNs) with message-passing mechanism. The
limited expressiveness of GNNss fails to capture the long-range dependencies in brain networks. While
the group-based graph pooling operations cluster ROIs, these are still limited to regional similarities
and are not sufficient to represent long-range communication connectivities.

To address this limitation of solely consid-
ering the short-range dependencies, we aim
to develop a solution that leverages long-
range dependencies to enhance brain net-
work analysis tasks. Currently, the cap-
turing the long-range dependencies has
been addressed in different network analy-
sis tasks outside the scope of brain studies,
such as those related to social networks
and molecular networks [[16, (17, |18, [19].

Among these, random walk methods are  Ejgyre 1: An illustration of long-range dependencies

widely adopted, as they can explicitly cap-  4nd short-range dependencies within human brain.
ture long-range dependencies by aggregat-

ing structure information across the entire

random walk sequence [20} 21} 22| [23]]. In conventional random walk methods, the transition proba-
bility from a node to one of its neighbors is typically uniform. However, several studies have observed
that different pairs of ROIs typically demonstrate varying communication strengths in brain activity,
where stronger communication indicates greater dependencies among ROIs [24, 25| 26]]. Therefore,
employing conventional random walk methods to sample the next hop with uniform probability
renders it impossible to capture the long-range dependencies within brain networks.

\_ Short-range Dependencies

Human brain Brain graph

Based on the above observation, we are dedicated to capturing long-range dependencies in brain
networks under the varying communication strengths among ROIs. In this paper, we propose
Adaptive Long-range aware TransformER (ALTER), a brain graph transformer to capture long-range
dependencies between brain ROIs extracted from biased random walk. Specifically, in order to
capture long-range dependencies within brain networks, we firstly present an Adaptive Long-ranGe
Aware (ALGA) strategy based on random walk in Section which explicitly samples random
walk sequences based on varying communication strengths among ROIs. In this strategy, we initially
calculate the inter-ROI correlations as adaptive factors to evaluate their communication strengths.
Subsequently, the use of random walk is biased, subject to the next hop with a higher correlation
value, thus explicitly encoding long-range dependencies as long-range embeddings through random
walk sampling. Furthermore, given the significance of both short-range and long-range dependencies
in brain network analysis tasks, we introduce an effective brain graph transformer in Section [3.2}
which can capture different levels of communication connectivities in human brains. Specifically, we
inject the long-range embeddings into a transformer framework and integrate both short-range and
long-range dependencies between ROIs using the self-attention mechanism.

The contributions of the paper are summarized as follows: 1) pioneering the explicit emphasis on the
significance and challenges of capturing long-range dependencies in brain network analysis tasks, we
propose a novel solution for capturing long-range dependencies within brain networks; 2) to address
the limitations of previous studies that overlook long-range dependencies within brain networks, we
introduce a novel brain graph transformer with adaptive long-range awareness, which leverages the
communication strengths between ROIs to guide the capturing of long-range dependencies, enabling
an integrated understanding of multi-level communication across the entire brain; 3) extensive



experiments on ABIDE and ADNI datasets demonstrate that ALTER consistently outperforms
generalized graph learning methods and other graph learning-based brain network analysis methods.

2 Related Work

2.1 Brain Network Analysis

Several studies have developed graph learning-based methods for brain network analysis tasks, such
as neurological disease diagnosis and biological sex prediction [[12} 14} 15 27, 28]. The majority of
studies have utilized GNNs to learn the information of ROIs and inter-ROI connectivity. For instance,
Li et al. [12] utilized GNNs with ROI-aware and ROI-selection to perform community detection
while retaining critical nodes. Kan et al. [28]] dynamically optimized a learnable brain network.
Additionally, a few models based on specific graph pooling operations were also proposed to retain
the communication information of brain networks. Specifically, Yan et al. [14] designed group-based
graph pooling operations to enable explainable brain network analysis. Kan et al. [15] considered the
similarity property among brain ROIs and designed a graph pooling function based on clustering.
However, these approaches are generally limited to the aggregation of neighborhood information,
while neglecting the long-range connectivity that plays a key role in brain network analysis tasks [5].

2.2 Graph Transformer

Several existing studies have focused on developing the transformer variants for graph representa-
tion learning [29} 30, 31 132} [33]. Transformers have demonstrated competitive or even superior
performance over GNNs. Dwivedi et al. [29] were the first to extend the transformer to graphs,
defining the eigenvectors as positional embeddings. Kreuzer et al. [30] improved the positional
embeddings and enhanced the transformer model by learning from the full Laplacian spectrum. Ying
et al. [31] embedded the structural information of graph into a transformer, yielding effective results.
Moreover, some studies have applied transformers to address unique issues in general graphs or
domain-specific graphs. Wu et al. [32] utilized global attention to capture long-range dependencies
within general graphs. Tao et al. [33]] employed the transformer model to integrate both temporal and
spatial information in social networks for disease detection.

3 Method

Within the brain graph, the collection of brain ROIs serves as the node set, and the features of these
ROIs serve as the node features. The connectivity among brain ROIs is generally represented by the
adjacency matrix. In this paper, we focus on analyzing these brain graphs for neurological disease
diagnosis. Formally, consider a set of subjects’ brain network {G; ... G} C G and their disease
state labels {y1 ...y} C Y, where L is the total number of individuals (size of the dataset). Each
brain graph G contains N ROIs, defined as G = (V, X, A), where V is node set, X € RNV are node
features with dimension d, and A € R™V*¥ is an adjacency matrix. We aim to learn a representation
vector h¢ that will allow us to predict the disease state of brain graph G, i.e., yg = f (hg) where f
is prediction function. Notably, the proposed method can also deal with other brain network analysis
tasks such as biological sex prediction.

The overall framework of ALTER is illustrated in Figure Briefly, we first extract the node
features X and adjacency matrix Ag from the fMRI data. Subsequently, adaptive factors F; are
calculated using the temporal features of the fMRI data. Next, using the adaptive factors Fig and
the adjacency matrix A, the long-range embedding F¢ representing the long-range dependencies
is obtained through adaptive long-range encoding. The encoding is utilized by our Adaptive Long-
ranGe Aware (ALGA) strategy to explicitly encapsulate the long-range dependencies among ROIs as
long-range embedding E;. Finally, the long-range embedding E is injected into the self-attention
module, and a graph-level representation of the brain network is generated using the readout function
to the downstream tasks. The complete training process is supervised by the cross-entropy loss.

Detailed description of these steps are discussed in the upcoming sections.
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Figure 2: The overall framework of the proposed ALTER.

3.1 Adaptive Long-range Aware (ALGA) Strategy

As previously mentioned, previous studies primarily focus on aggregating information from neigh-
boring ROIs, generally neglecting their long-range connectivity. In light of this, our goal is to design
an efficient strategy to capture long-range dependencies among the ROIs. We now explain how the
adaptive long-range aware strategy achieves this through the computation of adaptive factors and the
adaptive long-range encoding.

3.1.1 Adaptive Factors

The correlation between ROIs reflects their communication strength within specific time frames,
which is crucial for comprehending the functional organization, dysfunctions, and information
propagation in the brain [2,|34]. Neuroscientific investigations have unveiled the existence of phase
synchrony in neural oscillations among distinct ROISs, closely associated with the occurrence of
perceptual motor behaviors and the integration of brain functional organization [24, 25 26]. The
degree of phase synchrony indicates the strength of connectivity between ROIs, whereby higher
phase synchrony signifies stronger communication and consequently higher correlation values among
the respective ROIs. This manner simulates real-world brain-wide communication.

Considering the above observation, we first calculate the correlation between ROIs as adaptive factors
Fg € RNVXN to evaluate the communication strengths between ROIs. Specifically, the adaptive
factor f;;, denoting the communication strength between node ¢ and node j within the brain graph G,
is defined as:

Cov(t;,t;) .
() if v; and v; are connected,

fis =41, if 1 = j, (H
0, otherwise,

where t,. denotes the raw feature of the brain ROI v, (e.g., temporal feature of fMRI data). Cov (-) and
o (+) denote covariance and variance operations, respectively. The adaptive factors F(; will influence
the exploration mechanism of the random walk in the adaptive long-range encoding (Section [3.1.2).
Specifically, ROIs with stronger connectivities exhibit higher transfer probabilities of the next hop
compared to ROIs with weaker connectivities in the random walk. Note that for simplicity, we choose
Pearson correlation coefficient to define the adaptive factors, without any modification.

3.1.2 Adaptive Long-range Encoding

The adaptive factors between ROIs, computed in the preceding step, are crucial for effectively
capturing long-range dependencies between brain ROIs. Motivated by the random walk methods [16,
17, 135]], we approach the problem of capturing long-range dependencies as a structural encoding
task. By sampling and encoding node sequences into embeddings, we effectively capture long-range



communication between brain ROIs. Hence, we compute a long-range embedding using the walker
sampling of node sequences under the constraint of adaptive factors.

In a network, a random walk involves transitioning from one node to another. Specifically, when a
walker moves from node i, the probability of the walker moving to node j in the next step depends
solely on the conditions of nodes ¢ and j. This characteristic, where the probability of reaching node
7 is independent of the preceding step at node ¢, defines a Markov process. Thus, the random walk
process inherently embodies a Markovian nature.

Let p;; represent the probability that the walker walks from node 7 to node j in brain graph G, then
p;;j can be represented in the following matrix form:
P11 ... DPin
P = e

n
1 O0<py <L)y piy=1, @
DPn1 s Pnn
where matrix P is the transfer matrix of brain graph G. Then the state vector is defined as:

T (k) = (b (k) t2 ()t (R), Dty (R) =1, 3)

where k is denoted as the number of hops in random walks. t; (k) is the probability of the walker
stops at node j after k times walk. ¢; (k) is called & steps state probability. According to the total
probability formula, we get:

ti(k+1)=> t;(k)pij,k=0,1,2,... . K. )
j=1

where K represents the total number of hops in random walk. So, we get the general recursive formula
as T'(k) = T (0) PE. Nevertheless, brain networks deviate from general networks as pairwise ROIs
typically exhibit distinct communication strengths, indicative of the collaborative nature of ROIs
in brain activity. Falsely treating pairs of ROIs with varying communication strengths equally may
disrupt the collaborative dynamics within brain activity. Given this fact, the transfer probability of
the walker in a brain network can be fine-tuned using the adaptive factors, i.e., PG = Fq ©® Pg,
where ® denotes the dot product operation. Formally, considering the adjacency matrix Ag and
the corresponding diagonal degree matrix D¢ of a brain graph G, along with the obtained adaptive
factors F, we define the random walk kernel R for adaptive long-range encoding as follows:

R=(Fg® Ag) Dg ™. )

In particular, The introduction of degree matrix can help to obtain richer information about brain-wide
communication and is very commonly used in network analytics [36]. Since the degree matrix
provides the number of degrees for each ROI, its ability to reflect the active state of the ROI in
communication is important in determining which ROIs play a key role in information propagation.
Hence, a degree matrix determines the transfer probability of a node to its neighboring nodes and
highly influences the behavior of walker [37]].

In the K-step random walk, the long-range embedding E initialized by the adaptive long-range
encoding is defined as:

ei=[I,R,R* ..., RK7']eRK, (6)
where I denotes the identity matrix. e; denotes a long-range embedding associated with the i-th node,
encapsulating the long-range dependency asscoiated with ¢-th node. Through adaptive long-range
encoding, we can explicitly capture long-range dependencies among ROIs in the brain graph G and
encode them into the form of long-range embeddings Eg.

3.2 Long-range Brain Graph Transformer

In Section[3.1.2] we obtained the long-range embedding E; that explicitly encode the long-range
connectivities within the brain network G. As short-range dependencies are also significant, we aim
to present an effective brain graph transformer by first injecting long-range embeddings into brain
network representation learning and then integrate both long-range and short-range dependencies for
learning a more comprehensive representation. To achieve this objective, we begin by describing
the process of injecting long-range embeddings E¢ into the brain graph transformer. Later, we
explain how the self-attention mechanism can be utilized to integrate long-range and short-range
dependencies among brain ROIs.



Injecting Long-range Embedding. The computed long-range embeddings Es should be injected
into the brain network transformer in a manner that enhances its utility. To acheive this, we introduce
a fine-tuning procedure aimed at enhancing long-range embeddings E¢ and injecting them into the
brain graph transformer. Specifically, we utilize a linear layer as a remapping function for long-range
embeddings F¢, facilitating the injection of long-range dependencies within the brain network. This
process enables the acquisition of trainable long-range embeddings FE¢ with dimension &' Formally,
this procedure is defined as:

EG = LL(Eg; Wg) =WagFEqg + bg € RNXk/7 7)

where W¢ € R *F and b; € R¥’ denote learnable weight matrix and bias vector, respectively.

Self-attention Module. Transformer-based models generally surpass conventional representation
learning methods in their ability to capture pairwise token correlations and the influence of individual
tokens. This stems from the self-attention mechanism’s capability to allow inter-token communication.
Nonetheless, employing initial node features as input tokens is insufficient for Transformer-based
models to effectively capture complex inter-dependencies within brain networks. Furthermore,
pairwise ROIs often exhibit varying degrees of short- and long-range dependencies across various
brain network analysis tasks [38, [39} 40, l41]. Hence, we need to integrate both long-range and
short-range communication among ROIs through a self-attention module. To model this mechanism,
we begin by constructing tokens through the combination of learnable long-range embeddings Eq
and initial node features X . Then, we utilize a vanilla transformer encoder as the framework for the
self-attention module.

Formally, we concatenate learnable long-range embeddings E¢ and initial node features X as

tokens X, and then utilize a transformer encoder with L-layer nonlinear mapping and M attention
head to learn comprehensive node features Zg:

Xo=|Xo| Bg| € RN (444, ®)
m,le,lT m
Za =W, (I 28" ) € RYdowt, 220 — softma QUET — |yt e RV (9)
I

T
. _ T _ _ i
with Q™! = Wquf’l L gmtt = (WngL’l 1) ,and V™ol = WUng’l ! are the query matrix,

the key matrix, and the value matrix, where Z% = X, || and [-| -] both indicate the concentrate
m,l anL,lfl

operation, [ and m denote the layer index and the head index, W, Wy, W, € R%out Xdout — and
W, € Réout*dous are learnable projection matrices. In the representation learning procedure, the
employed Transformer framework enables the learned Z to integrate both short-range and long-
range dependencies between brain ROIs by introducing long-range embedding. This design allows
our method to adaptively represent the communication connectivities in human brains.

Readout Module. To accomplish brain network analysis tasks, we take the output Zs of the
self-attention module as the criterion, and then utilize an efficient readout function to derive the entire
brain graph representation to further enhance the performance. In addition, we train an additional
classifier for downstream tasks. The final classification basis is obtained as follows:

Y& = Softmax (MLP (Readout (Z¢))) . (10)
In Section 4.2 we evaluate the performance of various pooling methods. Ultimately, we employ

clustering-based pooling as the readout function in the proposed method.

4 Experiments

In this section, we analyzed the following aspects to demonstrate the effectiveness of the proposed
method and its capability to capture long-range dependencies within brain networks.

Q1. Does ALTER outperform other state-of-the-art models?



Q2. How does the proposed adaptive long-range aware strategy perform in different model architec-
tures accompanied by various readout functions?

Q3. Does ALTER capture long-range dependencies within brain networks, and is ALGA strategy
considered a key component?

4.1 Experimental Settings

Datasets and Preprocessing. We evaluate the proposed method using two brain network analysis-
related fMRI datasets. 1) Autism Brain Imaging Data Exchange (ABIDEﬂ which contains 519
Autism spectrum disorder (ASD) samples and 493 normal controls. 2) Alzheimer’s Disease Neu-
roimaging Initiative (ADNIﬂ which contains 54 Alzheimer’s disease (AD) samples and 76 normal
controls. During the construction of the brain graph, we first preprocess the fMRI data using the
Data Processing Assistant for Resting-State Function (DPARSF) MRI toolkit. Next, we define brain
ROIs based on predefined atlases from preprocessed fMRI data and calculate the average time-series
feature for individual brain ROL Finally, we formalize the brain graph G = (V, X, A) for each
sample according to the average time-series features of brain ROIs. Specifically, node features X
are functional connectivity matrix calculated by Pearson correlation, the adjacency matrix A is the
thresholded functional connectivity matrix to generate binary matrix of Os or 1s, where the threshold
is 0.3. The details of datasets and preprocessing can be found in Appendix

Baselines. The selected baselines correspond to two categories. The first category is general-
ized graph learning methods (Generalized - not specifies to brain networks), including SAN [30],
Graphormer [31]], GraphTrans [32], and LRGNN [42]. The second category (Specialized) is the
brain graph-based methods , including BrainNetGNN [15], FBNETGEN [28]], BrainGNN [12],
BrainNETTF [15], A-GCL [43]], and ContrastPool [44]. Note that the original code shared by the
authors of these baselines is used for the comparative analysis. Please refer to the Appendix [A]for the
details.

Metrics. Given the medical application of neurological disease classification tasks, we utilize
both machine learning and medical diagnostic-specific metrics to evaluate the performance of the
proposed method. These include classification Accuracy (ACC), Area Under the Receiver Operating
Characteristic Curve (AUC), F1-Score, Sensitivity (SEN), and Specificity (SPE). In the experimental
results, we report the mean and standard deviation across 10 random runs on the test dataset.

Implementation Details. In the proposed method, we set the number of steps K for adaptive
random walk to 16. The number of nonlinear mapping layers L and attention heads M of the
self-attention module are set to 2 and 4, respectively. For all datasets, we randomly divide the training
set, evaluation set and test set by the ratio of 7 : 1 : 2. In the train processing, we adopt Adam as
optimizer and CosLR as scheduler by a initial learning rate of 10~* and a weight decay of 10~
The batch size is set to 16 and the epoch is set to 200. All experiments are implemented using the
PyTorch framework, and computations are performed on one Tesla V100.

4.2 Performance Comparison

In this sections, we evaluate the performance of ALTER by comparison with existing baselines to
address Q1.

Results. Table|l|reports the comparison results between the proposed and the baseline methods.
ALTER is able to significantly outperform the two categories of baseline methods for both datasets.
In comparison to generalized graph learning methods, the proposed ALTER exhibits a significant
improvement in terms of the ACC metric (10.9% improvement on the ABIDE dataset and 6.8%
improvement on the ADNI dataset). For the case specialized graph learning methods, we again
demonstrated superiority on both datasets in terms of the ACC metric (6.0% improvement on the
ABIDE dataset and 5.1% improvement on the ADNI dataset). The reason for this performance
improvement is that our method takes into account the communication strengths among brain ROIs

"http://preprocessed-connectomes-project.org/abide/
*https://adni.loni.usc.edu/



Table 1: Performance comparison with two categories of baselines on the two chosen datasets (%).
The best results are marked in bold and the standard deviations are in parentheses.

Category Method ABIDE ADNI
AUC ACC SEN SPE AUC ACC SEN SPE
SAN 71.3(2.1) 653(29) 554(09.2) 68.3(7.5) 68.1(3.4) 62.6(52) 524(6.2) 63.3(8.5)
Graphormer 63.5(3.7) 60.8(2.7) 78.7(22.3) 36.7(23.5) 60.6(5.2) 55.7(3.1) 60.1(11.3) 47.7(13.5)
Generalized GraphTrans 60.1(6.7) 57.8(4.7) 65.7(10.3) 49.7(11.5) 61.2(3.7) 583(5.1) 66.2(7.2) 49.3(3.1)
LRGNN 703 (4.1) 66.1(2.5) 58.4(9.2) 652(6.8) 71.5(64) 67.3(2.1) 59.6(1.2) 49.7(2.3)
FBNETGEN  75.6(1.2) 68.0(1.4) 64.7(8.7) 624(9.2) 735(3.9) 65.02.6) 61.3(2.1) 59.7(1.2)
BrainNetGNN ~ 55.3(1.9) 51.2(54) 67.7(37.5) 33.9(34.2) 53.7(72) 50.1(2.1) 64.2(6.8) 43.8(8.0)
Specialized BrainGNN 71.6(1.6) 75.1(32) 69.4(52) 63.4(7.1) 63.5(2.5) 61.5(3.2) 65.1(34) 535(.1)
P BrainNETTF  80.2(1.0) 71.0(1.2) 725(5.2) 69.3(6.5) 76.5(24) 69.02.7) 64.7(7.1) 75.0(8.1)
A-GCL 53.8(0.5) 53.8(0.6) 62.3(5.0) 54.5(6.3) 57.2(1.1) 52.2(0.8) 57.6(42.4) 52.6(38.2)
ContrastPool ~ 57.3(0.8) 57.4(0.6) 57.6(6.8) 57.0(7.7) 68.5(3.2) 69.2(3.9) 61.5(17.2) 75.4(21.3)
Ours ALTER 82.8(1.1) 77.01.0) 774(34) 76.6(4.6) 78.8(2.1) 741(2.5) 76.5(6.1) 70.0(6.5)

and utilizes this characteristic to guide the capture of long-range dependencies within the brain
network.

Vairous Readout Function. In the experimental setups with and without the ALGA strategy, we
compare the results of ALTER using various readout functions, including max pooling, sum pooling,
average pooling, sort pooling [45]], and clustering-based pooling [15]. As illustrated in Table [2]and
Figure [3(a), our method employing the ALGA strategy consistently achieved superior performance
across all readout function settings. Particularly, the combination of clustering-based pooling and the
ALGA strategy yielded the best results. This phenomenon also addresses Q2.

4.3 Ablation Study

In order to assess the performance of the model from the Q2 perspective, we conduct ablation studies
on the ALGA strategy. This included performing evaluations with different architectures and readout
functions.

Adaptive Long-range Aware with Varying Architectures. To verify the generalisability and
effectiveness of the ALGA strategy, we implement it within different architectures, including SAN
and Graphormer on the two selected datasets. As shown in Table[2] we find that the ALGA strategy
can be adapted to different architectures, where this adaptation effectively improves the predictive
power of models. This result demonstrates the effectiveness of this strategy in capturing long-range
dependencies within brain networks. It should be noted that this analysis could only be performed on
the generalized graph learning methods.

Table 2: Performance comparison with varying architectures on the two chosen datasets (%). The
best results are indicated by underlining and the standard deviations are in parentheses.

Method ABIDE ADNI
AUC ACC SEN SPE AUC ACC SEN SPE

Graphormer 63.5(3.7) 60.8(27) 78.7(22.3) 36.7(23.5) 60.6(52) 557(3.1) 60.1(11.3) 47.7(13.5)
Graphormer+ALGA 67.2(25) 64.1(1.9) 82.3(10.3) 45.9(12.7) 629 (4.1) 60.5(2.9) 635(4.1) 654(2.9)
SAN 71321) 653(29) 554(92) 683(7.5) 63.1(34) 62.6(52) 524(62) 63.3(8.5)

SAN +ALGA 725(1.9) 67.8(3.1) 58.9(6.5) 70.8(4.1) 70.1 (23) 65.8(3.7) 559 (4.8) 68.3(6.2)
ALTER w/o ALGA 802(1.0) 71.0(12) 725(52) 69.3(65) 765(24) 69.0(27) 64.7(7.1) 75.0(8.1)
ALTER 828 (L.1) 77.0(1.0) 77.4(34) 76.6(4.6) 78.8(2.1) 74.1(2.5) 765(6.1) 70.0(6.5)

Adaptive Long-range Aware with Varying Readout Functions. To further demonstrate that the
ALGA strategy plays a key role in the proposed method, we take the ABIDE dataset as a benchmark
and attempt to vary the readout function under varying architectures (only the AUC metric is shown,
the full result can be referred to the Appendix [A). Specifically, we first take the proposed method,
SAN, and Graphormer as the basic framework, then employ five approaches including max pooling,
sum pooling, average pooling, sort pooling, and clustering-based pooling as the readout functions.
This analysis will reveal the prediction ability of the frameworks with varying readout functions in
the presence and absence of ALGA strategy. The results of different readout functions under various



architectures are shown in Figure[3] We observe that, for any arbitrary readout function, the ALGA

strategy enhances the performance of downstream tasks for various architectures compared to those
without ALGA.

[ wio ALGA [ wio ALGA - w/o ALGA
[T ALGA [ETTALGA IALGA

45 ! ! ! = 55 ! ! 1,
wA\/IZRA(EIZ MAX SUM SORT CLUSTERING AVERAGE ~ MAX SUM SORT CLUSTERING

AVERAGE ~ MAX SUM SORT CLUSTERING

(a) Our (b) Graphormer (c) SAN

Figure 3: Performance comparison with varying readout functions (%).

4.4 In-depth Analysis of ALTER and ALGA Strategy

Here, we delve into the analysis of ALGA strategy and present cases to evaluate long-range depen-
dencies to demonstrate the effectiveness of ALTER to assess Q3.

First, we investigate the impact of key hyperparameter of ALGA strategy of ALTER, which is the
number of hops. In this experiment, we set the number of hops of ALGA to 2, 4, 8, 16, 32 for both
selected datasets (only the AUC is shown here, the full result can be found in Appendix [A)). Figure[]a)
clearly shows that for both datasets, the predictive power of the proposed method generally increases
as the number of hops increases. This phenomenon can be attributed to the presence of long-range
connectivity in communication and information processing within human brains, which our model
effectively captures. Ignoring this characteristic will adversely affect the predictive power of graph
learning methods in brain network analysis tasks.

Next, we investigate the impact of the adaptive factors in the ALGA strategy. Specifically, we remove
the adaptive factors and observe the change in the predictive ability of the proposed method. The
experimental results demonstrate (Figure [d[a)) the performance of the proposed method is degraded
when adaptive factors are not used to adjust the adaptive long-range encoding. The underlying
reason for this result is that inter-ROI correlations play a crucial role in reflecting the communication
strengths among brain ROIs. Treating pairwise ROI connectivity equally could potentially have a
detrimental effect on brain network analysis tasks that depend on inter-ROI communication.

Finally, we present the cases to demonstrate ALTER’s ability to capture long-range dependencies
within brain networks. In this experiment, we randomly sample an example brain graph from the
ABIDE test set and used it to train our model to learn the corresponding node features without pooling
operation, and thus compute the attention scores among the node features. Figure [[c) illustrates one
example graph and the corresponding attention heatmap (Figure [b)). More sample-level and group-
level examples can be found in Appendix [A] The attention heatmap demonstrates the communication
patterns necessary for brain network analysis tasks. Specifically, certain ROIs receive higher attention
scores from multiple other ROISs, irrespective of the distance between them. In particular, ROI 6
and ROI 19 present higher attention score, despite the fact that these two ROIs are 5 hops apart

(Figure fc)).

5 Discussions and Conclusion

Limitations. On one hand, while utilizing the brain graph transformer to integrate both short-range
and long-range dependencies among brain ROIs, we still cannot ensure an optimal balance between
them. In future research, we will explore how to achieve a better balance between short-range and
long-range dependencies in brain network analysis, with the aim of achieving better research results.
On the other hand, the experimental data we currently employ is limited to fMRI data. Although
utilizing these data can demonstrate the crucial role of long-range dependencies in brain network
analysis tasks, other forms of data, such as DTI data, are also worthy of exploration. In future
work, we will delve into alternative forms of data and propose corresponding methods for capturing
long-range dependencies within brain networks.
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Figure 4: In-depth analysis of ALTER and adaptive long-range aware strategy.

Conclusion. In summary, we present the ALTER model for brain network analysis, a novel brain
graph transformer that explicitly captures long-range dependencies in brain networks and adaptively
integrates them with short-range dependencies. Extensive experiments on ABIDE and ADNI datasets
demonstrate that ALTER consistently outperforms generalized and specialized (specific to brain
network analysis method) graph learning methods. This study presents an initial attempt to capture
long-distance dependencies within brain networks and provides a new insight into understanding
brain-wide communication and information processing.
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A Additional Experiments

Due to page limitations, only the experimental results for the AUC metric are included in the main
text. For a more comprehensive study, the full results of the comparison experiments are provided in
this appendix.

Datasets. We preprocess the fMRI using the Data Processing Assistant for Resting-State Function
(DPARSF) MRI toolkit. Specifically, we removed the first 10 time points from the downloaded nii
data according to the default mode and chose slice timing, where the middle layer was the reference
slice. meanwhile, we set the head motion correction to ‘Friston 24°, and selected automask and
Nuisance covariates regression. the others were basically set according to the default mode. Then,
considering individual differences, we choose to perform ‘Normalize by DARTEL’, and for the
definition of ROIs, we adopt the altas already available in DPARSF. Finally, we construct brain
networks for each fMRI. For parcellation, we utilize the Craddock 200 atlas, which defines 200 ROIs,
for the ABIDE dataset. For the ADNI dataset, we apply the AAL atlas, comprising 90 cortical ROIs
and 26 cerebellar ROIs.

Baselines. The selected baselines correspond to two categories. The first category is generalized
graph learning methods, including SAN [30]], Graphormer [31], GraphTrans [32], and LRGNN [42].
SAN and Graphormer are two more popular Transformer-based graph learning methods. GraphTrans
is capable of capturing long-range dependencies within general graphs. LRGNN combines neural
architecture search to extract the long-range dependencies. The second category is the brain graph-
based methods, including BrainNetGNN [[15], FBNETGEN [28]], BrainGNN [12], BrainNETTF [15]],
A-GCL [43]], and ContrastPool [44]]. BrainNetGNN utilized attention-based GNN to learn the rep-
resentation of brain networks. FBNETGEN employed task-aware GNN, and BrainGNN adopted
GNNs with ROI-aware and ROI-selection. BrainNETTF modeled a specific Transformer and readout
function for brain network analysis. A-GCL utilizes adversarial graph contrastive learning to extract
invariant features from brain networks. ContrastPool is capable of generating task-relevant, inter-
pretable brain network representations. Although these methods show advantages in brain network
analysis tasks, none of them analyzed and captured long-range dependencies within brain networks.

To ensure a fair comparison, we use the open-source codes of BrainGNN [12], BrainNETTF [15], FB-
NETGEN [28]], A-GCL [43]], and ContrastPool [44]. For SAN [30]], Graphormer [31]], LRGNN [42],
and GraphTrans [32], we adapt their open-source codes and modify them to suit the brain network
datasets. For BrainNetGNN, we implemente it ourselves following the settings described in the
paper. During the parameter tuning, we follow the tuning of BrainNETTF [15] for SAN, BrainGNN,
FBNETGEN, Graphormer, and BrainNETTF. For BrainNetGNN, we search the number of GRU
layers 1, 2, 3. For LRGNN, we vary the aggregation operations 8, 12 with the number of cell 1, 3.
For GraphTrans, we search the number of GNN layers 1, 2, 3, 4 with the hidden dimension of 100.
Regarding the construction of brain graphs for these baselines, we utilized functional connectivity
matrix to compute a brain graph for BrainNETTEF, which is computed by calculating the correlation
between brain ROIs using the processed fMRI. The details of computing these correlation matrices
is also incorporated to the revised paper. For BrainNetGNN and FBNETGEN, the models required
the processed fMRI as input. ContrastPool, A-GCL, BrainGNN, SAN, Graphormer, LRGNN, and
GraphTrans required the correlation matrix and adjacency matrix. As mentioned in the paper, the
adjacency matrix is obtained by thresholding (> 0.3) the correlation matrix.

Adaptive Long-range Aware with Varying Readout Functions. The full results of the ablation
study on the three frameworks, VanillaTF, Graphormer, and SAN, are presented in Table and E}
Based on the results from the three tables, it is evident that, with the aid of the ALGA strategy, each
framework employing various readout functions demonstrates superior performance across AUC,
ACC, and SPE metrics. Furthermore, we observe that each framework based on clustering-based
pooling exhibits significantly lower standard deviation in performance metrics when utilizing the
ALGA strategy compared to those without it.

The Impact of Hops and Adaptive Factors. In Table [ and [7] we present the results of four
metrics under different hops and with/without adaptive factors. Based on the results from the both
tables, we observe that the proposed method typically achieves better performance on AUC and ACC
metrics when using adaptive factors. Besides, we observe that, across both datasets, the proposed
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Table 3: Performance comparison with varying readout functions on the VanillaTF framework (%).
The overall best results are highlighted in bold, while better results with/without ALGA are indicated
by underlining. Standard deviations are presented in parentheses.

w/o ALGA ALGA
Readout
AUC ACC SEN SPE AUC ACC SEN SPE

MEAN 73.4(1.4) 67.4(1.2) 68.3(1.2) 66.7(1.2) 75.6(1.6) 71.6(1.3) 70.8(1.2) 69.4(1.2)

MAX 75.6(1.4) 68.4(1.3) 69.5(1.4) 67.7(1.2) 76.4(1.7) 72.6(1.4) 71.7(1.3) 70.7(1.1)

SUM 70.3(1.6) 62.4(1.3) 63.6(1.4) 67.6(1.2) 72.0(1.2) 68.3(1.3) 68.6(1.2) 67.5(1.3)

SORT 72.4(1.3) 65.2(1.2) 66.0(1.2) 65.3(1.3) 74.4(1.4) 69.8(1.2) 69.9(1.3) 69.1(1.2)
CLUSTERING 80.2(1.0) 71.0(1.2) 72.5(5.2) 69.3(6.5) 82.8(1.1) 77.0(1.0) 77.4(3.4) 76.6(4.6)

Table 4: Performance comparison with varying readout functions on the Graphormer framework (%).
The overall best results are highlighted in bold, while better results with/without ALGA are indicated
by underlining. Standard deviations are presented in parentheses.

w/o ALGA ALGA
Readout
AUC ACC SEN SPE AUC ACC SEN SPE
MEAN 50.1(1.1) 48.6(2.2) 69.1(5.7) 39.6(6.2) 52.4(1.4) 51.8(1.4) 72.7(5.2) 43.6(4.4)
MAX 54.5(3.6) 53.3(2.1) 74.7(5.2) 40.4(24.2) 56.1(1.4) 55.8(1.3) 73.9(6.2) 43.9(14.5)
SUM 54.1(1.3) 53.9(1.4) 74.6(4.4) 39.7(12.2) 55.7(1.6) 57.8(2.1) 73.3(5.2) 50.7(10.2)
SORT 50.5(4.7) 49.6(5.2) 76.5(6.4) 40.6(19.3) 52.9(5.3) 53.9(5.4) 80.7(11.3)44.6(9.3)

CLUSTERING 64.92.7) 60.3(3.3) 79.4(12.5) 41.7(20.1)

67.2(2.5) 64.1(1.9)

82.3(10.3) 45.9(12.7)

method generally performs exceptionally well with a hop count of 16. Hence, we set the number of

hop to 16 in our comparison experiments.

The Sensitivity of ALTER. We present experimental results on the ABIDE dataset for hop counts
k ranging from 2 to 16 to analyze the sensitivity of ALTER. As shown in Table |8} we observe that as
the number of hops increases, ALTER generally exhibits improved performance, achieving the best
results at 16 hops. This indicates that our method is influenced by the number of hops k, as ALTER
relies on random walk sampling to capture long-range dependencies. Additionally, this phenomenon
demonstrates the capability of the proposed method to capture long-range dependencies.
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Table 5: Performance comparison with varying readout functions on the SAN framework (%). The
overall best results are highlighted in bold, while better results with/without ALGA are indicated by
underlining. Standard deviations are presented in parentheses.

w/o ALGA ALGA
Readout
AUC ACC SEN SPE AUC ACC SEN SPE
MEAN 63.7(2.4) 60.7(3.3) 56.7(1.3) 58.6(2.4) 64.4(1.6) 62.8(2.5) 57.6(1.5) 63.4(3.6)
MAX 61.9(2.5) 56.9(2.9) 54.2(3.1) 52.4(4.2) 63.1(1.7) 59.4(1.2) 54.1(3.4) 59.9(3.1)
SUM 62.0(2.3) 57.8(2.6) 55.7(3.2) 60.7(4.7) 63.5(1.2) 60.7(1.4) 57.8(2.4) 61.6(5.2)
SORT 57.4(5.2) 55.6(5.2) 53.7(4.3) 56.7(3.2) 60.2(1.4) 58.9(4.7) 56.5(4.5) 59.8(3.6)

CLUSTERING 70.6(2.4) 67.3(3.4) 56.7(7.5) 67.6(12.4) 72.5(1.9) 67.8(3.1) 58.9(6.5) 70.8(4.1)

Table 6: The Impact of Hops and Adaptive Factors on the ABIDE dataset (%). The overall best
results are highlighted in bold, while better results with/without adaptive factors are indicated by
underlining. Standard deviations are presented in parentheses.

Hops w/o adaptive factors adaptive factors
AUC ACC SEN SPE AUC ACC SEN SPE
2 76.6(3.9) 69.0(2.5) 70.1(3.5) 69.2(5.1) 78.7(3.9) 72.0(2.0) 71.9(3.1) 72.2(3.1)
4 77.4(3.1) 71.03.0) 72.5(2.5) 71.1(4.5) 79.1(2.4) 73.0(2.5) 73.2(1.9) 72.9(3.8)
8 78.9(2.2) 73.0(2.0) 74.2(2.9) 75.4(5.9) 80.4(1.9) 72.0(4.0) 75.6(2.1) 74.8(5.6)
16 81.2(2.6) 75.0(1.5) 75.8(3.1) 75.1(4.2) 82.8(1.1) 77.0(1.0) 77.4(3.4) 76.6(4.6)
32 78.8(1.9) 74.0(1.2) 76.4(2.2) 73.8(5.9) 79.6(2.1) 75.0(1.3) 76.3(2.7) 74.3(5.1)

The Cases of the ALTER. To further illustrate the ability of the proposed method to capture
long-range dependencies within brain networks, we perform sample-level and group-level analyses,
respectively. For the sample-level analysis, we present four additional cases in the Figure[5] From the
Figure[5(d), we observe that despite being separated by 6 hops, ALTER is still able to capture the
dependency between nodes 6 and 12. For the group-level analysis, we have computed the average
across individuals to perform group-level analysis, as this approach aligns with the methodologies
commonly adopted in similar studies [46]]. The average graph and the corresponding attention
heatmap are illustrated in Figure [6(b)&(c) of the global response. We can observe that ALTER
captures group-level long-distance dependence, but it is not very significant relative to the individual-
level. This may be due to certain individual differences in patients, including age and gender, which
can affect the brain-wide communication [1].

The Interpretability of ALTER. We use the SHAP model for interpretability analysis on the
ADNI dataset. We calculate the SHAP values of the attention matrix. From the Figure [6fa), it can be
observed that the hippocampal regions of AD cases have positive SHAP values and the Top-10 ROIs
with the highest SHAP values are almost always correlated with ADNI prediction, which is generally
consistent with the results in [47].
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Figure 6: The interpretability analysis and group-level analysis.
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Table 7: The Impact of Hops and Adaptive Factors on the ADNI dataset (%). The overall best results
are highlighted in bold, while better results with/without adaptive factors are indicated by underlining.
Standard deviations are presented in parentheses.

Hops w/o adaptive factors adaptive factors
AUC ACC SEN SPE AUC ACC SEN SPE
2 76.5(3.2) 71.5(2.5) 73.9(5.3) 69.1(5.8) 77.1(2.9) 71.8(1.8) 71.2(6.2) 67.7(6.6)
4 76.93.4) 72.1(2.9) 74.0(5.2) 68.4(6.1) 77.3(3.2) 73.3(2.3) 74.6(6.9) 68.9(7.3)
8 77.6(2.5) 72.5(3.1) 75.6(6.5) 68.9(6.8) 78.2(2.8) 73.6(2.7) 75.4(7.2) 69.2(5.8)
16 78.1(2.9) 73.0(2.1) 75.4(5.9) 71.2(6.2) 78.8 (2.1) 74.1 (2.5) 76.5 (6.1) 70.0(6.5)
32 76.2(2.9) 73.0(1.2) 74.0(4.5) 70.7(5.5) 77.9(2.6) 73.5(2.6) 74.9(5.2) 70.3(6.1)

Table 8: The sensitivity of ALTER on the ABIDE dataset. The best results are highlighted in bold,
while standard deviations are presented in parentheses.

ABIDE
Hops
AUC ACC SEN SPE
2 78.7(3.9) 72.0(2.0) 71.9(3.1) 72.2(3.1)
3 77.4(4.8) 70.4(2.2) 70.34.7) 7T1.3(5.1)
4 79.12.4) 73.0(2.5) 73.2(1.9) 72.9(3.8)
5 78.6(4.9) 70.2(4.1) 72.3(3.2) 72.2(4.8)
6 76.6(4.3) 71.5(3.5) 72.0(2.2) 69.5(6.8)
7 78.0(3.2) 69.2(2.0) 72.9(2.1) 70.0(2.6)
8 80.4(1.9) 72.0(4.0) 75.6(2.1) 74.8(5.6)
9 79.8(2.9) 74.2(3.1) 76.02.8) 71.7(3.4)
10 81.1(2.1) 73.429) 71.7(6.2) 73.7(5.8)
11 77.43.6) 71.03.0) 76.4(3.2) 71.4(6.3)
12 80.9(2.1) 74.0(3.5) 74.53.6) 72.2(4.2)
13 80.7(3.1) 73.2(3.2) 74.8(5.1) 73.4(5.2)
14 80.8(1.6) 75.0(2.0) 72.7(4.5) 70.5(6.5)
15 79.3(3.2) 75.5(2.5) 72.2(4.6) 69.6(6.1)
16 82.8(1.1) 77.0(1.0) 77.434) 76.6(4.6)

B Further Discussion

Possible Negative Societal Impacts. Given that the research in this paper involves neurological
disease diagnosis, it is essential to declare the potential negative societal impacts of this study, even
though it is currently in the research phase and has not yet been applied in practice. Specifically, in
the process of Al-assisted disease diagnosis, erroneous results are inevitable. Such errors can have
severe consequences for patients and society. Therefore, in real-world medical diagnostic scenarios,
the final decision should always rest with the physician’s diagnosis.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction accurately reflect the paper’s contributions and
scope, namely our endeavor to address the limitation of overlooking long-range dependencies
in brain network analysis tasks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of ALTER in Appendix
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

 The proofs can either appear in the main paper or the supplemental ALTERTrial, but if
they appear in the supplemental ALTERrial, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental ALTERrial.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the paper, we provide comprehensive details of all information necessary
for reproducing the experimental results, including the experimental datasets, baselines,
evaluation metrics, and relevant experimental settings, ensuring the reproducibility of the
research.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
ALTERrial?

Answer: [Yes]

Justification: We offer links to the code and datasets to ensure the reproducibility of the
experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental ALTERrial (appended to
the paper) is recommended, but including URLs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We elucidate the training and testing details required for understanding the
results in Section .11

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
ALTERrial.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are the average of 10 random runs on test sets with the standard
deviation. See metrics in Section [4.1]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

20


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources can be referred to in the experimental setup outlined
in Section .11

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as esiALTER the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our research is conducted in compliance with the NeurIPS Code of Ethics.
Our experiments do not involve human subjects and potential harmful consequences for
society.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Given that our study involves disease diagnosis, we have outlined its potential
negative societal impacts in practical applications in Appendix
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitiALTER
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The code uesd in the paper, we all explicitly cite original papers.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental ALTERTrial is fine, but if the main
contribution of the paper involves human subjects, then as much detail as possible
should be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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