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Abstract
Segmenting curvilinear structures like blood vessels and roads poses significant challenges

due to their intricate geometry and weak signals. To expedite large scale annotation, it
is essential to adopt semi-automatic methods such as proofreading by human experts. In
this abstract, we focus on estimating uncertainty for such tasks, so that highly uncertain,
and thus error-prone structures can be identified for human annotators to verify. Unlike
prior work that generate pixel-wise uncertainty maps, we believe it is essential to measure
uncertainty in the units of topological structures, e.g., small pieces of connections and
branches. To realize this, we employ tools from topological data analysis, specifically
discrete Morse theory (DMT), to first extract the structures and then reason about their
uncertainties. On multiple 2D and 3D datasets, our methodology generates superior
structure-wise uncertainty maps compared to existing models. Code available at https:
//github.com/Saumya-Gupta-26/struct-uncertainty
Keywords: Topological Representation, Discrete Morse Theory, Structural Uncertainty,
Image Segmentation, Curvilinear Structures

1. Introduction

Curvilinear segmentation is an essential initial step in various medical and non-medical
applications, involving the precise extraction of fine-scale structures, such as blood vessels,
nerves, and other elongated objects (González-Hidalgo, 2016; Kv et al., 2023). For example,
extraction of retinal vasculature is an essential precursor to understanding disease progression
and assessing therapeutic effects (Fraz et al., 2012). In civil engineering, road network
and railway track segmentation can support urban planning and transportation system
optimization (Mnih and Hinton, 2010). Despite the success of deep learning (Chen et al.,
2014, 2017; He et al., 2017; Long et al., 2015), automatic segmentation methods still struggle
with the segmentation of these intricate structures due to their complexity and low visibility.
They often make topological errors such as broken connections or missing branches.

To address this, many turn to semi-automatic techniques, e.g., iterative proofreading by
human annotators (Haehn et al., 2018), which can be time-consuming (Peng et al., 2011).
This necessitates a better strategy to direct the annotators’ attention towards locations that
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Figure 1: Motivating examples for structure-wise uncertainty. In the segmentation result (c),
orange highlights a false positive structure, and pink highlights a false negative. Methods
(d)-(f) are uncertainty estimates of the prediction in (c). PHiSeg (Baumgartner et al., 2019)
assigns pixels along boundaries as uncertain. Hu et al. (Hu et al., 2023) captures uncertainty
at a structural level, but produces overconfident maps (assigns zero uncertainty to many
structures). Ours produces better structure-wise uncertainty estimates: both the highlighted
false positive/negative structures have high uncertainty.

are more error-prone. By estimating the uncertainty (Gal et al., 2016), one can concentrate
on the locations where a neural network is the least certain.

Despite many existing studies on segmentation uncertainty (Eaton-Rosen et al., 2018;
Nair et al., 2020; Seeböck et al., 2019), most existing uncertainty estimation methods
typically generate pixel-wise uncertainty maps which highlight pixels along the boundary
of all structures as uncertain (see Fig. 1(d)). This offers limited information for human
annotators; a desirable uncertainty map should instead highlight the error-prone “structures”,
e.g., small vessels/branches or short stretches of roads that tend to be disconnected or missed.

In this paper, we propose a new topology-aware uncertainty estimation method that
highlights error-prone structures as a whole (such as in Fig. 1(f)). Highlighting structures
with high uncertainty empowers annotators to accept or reject/correct structural proposals
efficiently, thus streamlining the proofreading process. To capture the uncertainty of a given
segmentation network’s prediction at a structural level, we require the realization of two key
components: a) decompose the prediction into a set of constituent structures, and b) estimate
uncertainties of all the structures. We need to consider two types of structural uncertainty,
intra-structural and inter-structural. The intra-structural uncertainty of a structure is
due to its intrinsic composition, e.g., geometry, intensity, and the segmentation network’s
confidence. The inter-structural uncertainty is more contextual; it is due to interactions
between neighboring structures. Our method explicitly models the two types of uncertainty.

We note that the method in Hu et al. (2023) (which we refer to as Hu et al.) also used DMT
to decompose structures and estimate their uncertainty. However, their method employed
coarse pruning, resulting in suboptimal uncertainty estimation. As illustrated in Fig. 1(e),
Hu et al. produces overconfident maps; most structures, including many false negatives and
false positives, are assigned zero uncertainty. In contrast, our method produces much better
uncertainty estimates (Fig. 1(f)), owing to the proper modeling of both intra-structural and
inter-structural uncertainties.

2. Related work

Topology-guided image segmentation. Several works focus on maintaining the correct
connectivity or topology of thin structures. Topology-aware loss functions Mosinska et al.
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(2018); Shit et al. (2021); Clough et al. (2020); Hu et al. (2019); Yang et al. (2021); Gupta et al.
(2022); Hu (2022) impose per-pixel constraints to improve topological integrity. Discrete
Morse theory has also been used to improve the topological awareness of segmentation
networks Hu et al. (2021); Delgado-Friedrichs et al. (2014); Dey et al. (2019); Robins et al.
(2011); Wang et al. (2015); Banerjee et al. (2020). These approaches use topological tools to
improve segmentation at a pixel level, which is a weaker constraint compared to the structural
level. In contrast, our method performs joint reasoning directly over the structures.
Uncertainty quantification. In recent years, there has been significant work on uncertainty
quantification (UQ) of deep neural networks Abdar et al. (2021); Gawlikowski et al. (2021);
Li et al. (2023). Here we review UQ techniques tailored for semantic segmentation. Pixel-
wise uncertainty: Semantic segmentation is a per-pixel classification task and naturally
most UQ methods produce per-pixel uncertainty estimates. In Kendall and Gal (2017),
the authors propose a Bayesian framework using MC dropout Gal and Ghahramani (2015)
and a learned loss attenuation to respectively capture model and data uncertainty. Recent
methods have turned to generative models to generate multiple hypotheses, and the per-pixel
variance across the hypotheses is treated as uncertainty. Some works in this direction are
an ensemble of M networks Lakshminarayanan et al. (2017), a single network with M
heads Rupprecht et al. (2017), Prob.-UNet Kohl et al. (2018), and PHiSeg Baumgartner
et al. (2019). Prob.-UNet integrates a conditional variational autoencoder Sohn et al. (2015)
with UNet Ronneberger et al. (2015), generating multiple hypotheses via latent variable
sampling. PHiSeg extends this by introducing latent variables at every UNet level, thereby
producing more diverse samples. Structure-wise uncertainty: Methods such as McClure et al.
(2019); Seeböck et al. (2019) compute structure (volume) uncertainty by averaging over the
pixel-wise uncertainty estimates. The method closest to ours is Hu et al. Hu et al. (2023).
It is a generative model derived from Prob.-UNet where the latent variable has meaning
in topology (specifically, a global persistence threshold). This threshold severely limits the
structure space, overlooking several false positive/negative structures. Thus they tend to
produce overconfident uncertainty estimates.

3. Method

Given a trained segmentation network, our goal is to capture the uncertainty of its prediction
at a structural level. Note that we do not modify the network in any way; instead, we propose
an external module that reasons the uncertainty of each structure in the segmentation.

Fig. 2 provides an overview of our method. Let Fθ denote the trained segmentation
network, and Mϕ denote our proposed external uncertainty quantification framework. Mϕ

takes as input the likelihood map of Fθ and the input image. It generates a set of structures,
and estimates an uncertainty value for each of them. During training, Mϕ is trained by
comparing with the ground truth (GT) annotation.

Mϕ consists of two primary modules to capture intra-structural and inter-structural
uncertainty. The first module, Probabilistic DMT (Prob. DMT), generates structures based
on the likelihood map. For each structure, it samples a set of skeletons representing different
variations. The second module jointly predicts the uncertainties of all the structures. At
each training iteration, it takes one sample skeleton for each structure, plus the likelihood
map and input image, as input. More details of our method are described in Appendix A.
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Figure 2: An overview of the proposed method Mϕ. The given segmentation network Fθ has
frozen weights. Probabilistic DMT decomposes the likelihood into structures, and samples
skeleton representations of each. A graph is then constructed over the structures to perform
joint reasoning of their uncertainty. The training is supervised by comparing with the GT.

Input image UNet PHiSeg Hu et al. OursGT

UNet Hu et al. OursGT

Figure 3: Qualitative results compared to the uncertainty baselines. We show uncertainty
estimates in the form of a heatmap. Green highlights false negatives and yellow highlights
false positives. Row 1: DRIVE; Row 2: PARSE (3D render).

4. Experiments

We broadly split our comparison baselines into two types: a) Pixel-wise uncertainty estimation
methods: Prob.-UNet (Kohl et al., 2018), and PHiSeg (Baumgartner et al., 2019); b)
Structure-wise uncertainty estimation method: Hu et al. (Hu et al., 2023). We evaluate our
method on three datasets: DRIVE (Staal et al., 2004), ROSE (Ma et al., 2020), and PARSE
2022 Grand Challenge (Luo et al., 2023; Wang et al., 2022). To evaluate the uncertainty, we
use Expected Calibration Error (ECE) (Naeini et al., 2015) and Reliability Diagrams
(RD) (DeGroot and Fienberg, 1983). We also evaluate on segmentation and topological
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Table 1: Comparison against uncertainty baselines on DRIVE (Staal et al., 2004) (all use
UNet (Ronneberger et al., 2015) as the backbone)

Method ECE (%)↓ Dice↑ clDice↑ ARI↑ VOI↓
Prob.-UNet 8.3316 ± 0.0043 0.7779 ± 0.0219 0.7663 ± 0.0492 0.7759 ± 0.0532 0.3560 ± 0.0203

PHiSeg 7.9316 ± 0.0032 0.7851 ± 0.0295 0.7712 ± 0.0497 0.7767 ± 0.0497 0.3527 ± 0.0308
Hu et al. 8.0883 ± 0.0036 0.7866 ± 0.0141 0.7725 ± 0.0392 0.7768 ± 0.0403 0.3489 ± 0.0286

Ours 4.1633 ± 0.0043 0.7976 ± 0.0195 0.7974 ± 0.0372 0.7996 ± 0.0301 0.3322 ± 0.0229

metrics such as DICE (Zou et al., 2004), clDice (Shit et al., 2021), ARI (Arganda-Carreras
et al., 2015), and VOI (Meilă, 2007). More experimental details are in Appendix B.

5. Results

Tab. 1 shows the quantitative results against uncertainty methods, and Fig. 3 shows the
respective qualitative results for the DRIVE dataset. Complete results can be found in
Appendix C. Each table reports the mean and standard deviations for every metric, with
statistically significant (Student, 1908) better performances in bold and numerically better
(but not significant) performances in italics.
Performance of uncertainty estimation: Tab. 1 shows that our method outperforms
others on both ECE and segmentation metrics. This is because we explicitly model the
distribution of the structures, thereby quantifying the uncertainty of the segmentation
network. In Fig. 3, we also see that our method generates better fidelity structure-wise
uncertainty maps compared to Hu et al.

Figure 4: Proofreading.

Performance of proofreading: One of the motivations of
this work is to streamline the proofreading process. Structure-
wise uncertainty can be used as a guide, with a user having
to simply accept/reject a structure. We conduct experiments
on the ROSE dataset and simulate user interaction with our
method and Hu et al.’s. The user is given each method’s
final segmentation map, and inspects structures in decreasing
order of uncertainty (till 0.5). Each uncertain structure is then
subjected to a yes/no decision, which is denoted as one ‘click’.
The results are in Fig. 4. Our findings are consistent with the
observation that Hu et al. assigns zero uncertainty to many
structures; thus their margin of improvement is limited and saturates quickly.

6. Conclusion

In this abstract, we propose to quantify the structure-wise uncertainty of a given segmentation
network. Our framework explicitly incorporates both intra-structural and inter-structural
uncertainty, resulting in better fidelity uncertainty estimates. Our structure-wise uncertainty
quantification can streamline the proofreading process by reducing the time spent finding
and correcting errors. Extensive experiments show the practical applicability of our method
over different segmentation backbones and datasets.

5



Gupta Hu Chen

References

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana Rezazadegan, Li Liu, Mohammad
Ghavamzadeh, Paul Fieguth, Xiaochun Cao, Abbas Khosravi, U Rajendra Acharya, et al.
A review of uncertainty quantification in deep learning: Techniques, applications and
challenges. Information Fusion, 2021.

Ignacio Arganda-Carreras, Srinivas C Turaga, Daniel R Berger, Dan Cireşan, Alessandro
Giusti, Luca M Gambardella, Jürgen Schmidhuber, Dmitry Laptev, Sarvesh Dwivedi,
Joachim M Buhmann, et al. Crowdsourcing the creation of image segmentation algorithms
for connectomics. Frontiers in neuroanatomy, 2015.

Samik Banerjee, Lucas Magee, Dingkang Wang, Xu Li, Bing-Xing Huo, Jaikishan Jayakumar,
Katherine Matho, Meng-Kuan Lin, Keerthi Ram, Mohanasankar Sivaprakasam, et al.
Semantic segmentation of microscopic neuroanatomical data by combining topological
priors with encoder–decoder deep networks. Nature machine intelligence, 2020.

Christian F Baumgartner, Kerem C Tezcan, Krishna Chaitanya, Andreas M Hötker, Urs J
Muehlematter, Khoschy Schawkat, Anton S Becker, Olivio Donati, and Ender Konukoglu.
Phiseg: Capturing uncertainty in medical image segmentation. In MICCAI, 2019.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv
preprint arXiv:1412.7062, 2014.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected crfs. TPAMI, 2017.

James R Clough, Nicholas Byrne, Ilkay Oksuz, Veronika A Zimmer, Julia A Schnabel, and
Andrew P King. A topological loss function for deep-learning based image segmentation
using persistent homology. TPAMI, 2020.

Morris H DeGroot and Stephen E Fienberg. The comparison and evaluation of forecasters.
Journal of the Royal Statistical Society: Series D (The Statistician), 1983.

Olaf Delgado-Friedrichs, Vanessa Robins, and Adrian Sheppard. Skeletonization and parti-
tioning of digital images using discrete morse theory. TPAMI, 2014.

Tamal K Dey, Jiayuan Wang, and Yusu Wang. Road network reconstruction from satellite
images with machine learning supported by topological methods. In Proceedings of the
27th ACM SIGSPATIAL International Conference on Advances in Geographic Information
Systems, 2019.

Zach Eaton-Rosen, Felix Bragman, Sotirios Bisdas, Sébastien Ourselin, and M Jorge Cardoso.
Towards safe deep learning: accurately quantifying biomarker uncertainty in neural network
predictions. In MICCAI, 2018.

6



Structure-wise Uncertainty

Muhammad Moazam Fraz, Paolo Remagnino, Andreas Hoppe, Bunyarit Uyyanonvara,
Alicja R Rudnicka, Christopher G Owen, and Sarah A Barman. Blood vessel segmentation
methodologies in retinal images–a survey. Computer methods and programs in biomedicine,
2012.

Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with bernoulli
approximate variational inference. arXiv preprint arXiv:1506.02158, 2015.

Yarin Gal et al. Uncertainty in deep learning. 2016.

Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias
Humt, Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al.
A survey of uncertainty in deep neural networks. arXiv preprint arXiv:2107.03342, 2021.

M González-Hidalgo. A survey on curvilinear object segmentation in multiple applications.
Pattern Recognition, 2016.

Saumya Gupta, Xiaoling Hu, James Kaan, Michael Jin, Mutshipay Mpoy, Katherine Chung,
Gagandeep Singh, Mary Saltz, Tahsin Kurc, Joel Saltz, et al. Learning topological
interactions for multi-class medical image segmentation. In ECCV, 2022.

Daniel Haehn, Verena Kaynig, James Tompkin, Jeff W Lichtman, and Hanspeter Pfister.
Guided proofreading of automatic segmentations for connectomics. In CVPR, 2018.

Tamir Hazan and Tommi Jaakkola. On the partition function and random maximum
a-posteriori perturbations. In ICML, 2012.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.

Xiaoling Hu. Structure-aware image segmentation with homotopy warping. NeurIPS, 2022.

Xiaoling Hu, Fuxin Li, Dimitris Samaras, and Chao Chen. Topology-preserving deep image
segmentation. In NeurIPS, 2019.

Xiaoling Hu, Yusu Wang, Li Fuxin, Dimitris Samaras, and Chao Chen. Topology-aware
segmentation using discrete morse theory. In ICLR, 2021.

Xiaoling Hu, Dimitris Samaras, and Chao Chen. Learning probabilistic topological represen-
tations using discrete morse theory. In ICLR, 2023.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? In NeurIPS, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer, Jeffrey De Fauw, Joseph R
Ledsam, Klaus Maier-Hein, SM Eslami, Danilo Jimenez Rezende, and Olaf Ronneberger.
A probabilistic u-net for segmentation of ambiguous images. In NeurIPS, 2018.

7



Gupta Hu Chen

Rajitha Kv, Keerthana Prasad, and Prakash Peralam Yegneswaran. Segmentation and
classification approaches of clinically relevant curvilinear structures: A review. Journal of
Medical Systems, 2023.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. In NeurIPS, 2017.

Miguel Lazaro-Gredilla, Antoine Dedieu, and Dileep George. Perturb-and-max-product:
Sampling and learning in discrete energy-based models. In NeurIPS, 2021.

Chen Li, Xiaoling Hu, and Chao Chen. Confidence estimation using unlabeled data. In
ICLR, 2023.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for
semantic segmentation. In CVPR, 2015.

László Lovász. Random walks on graphs. Combinatorics, Paul erdos is eighty, 1993.

Gongning Luo, Kuanquan Wang, Jun Liu, Shuo Li, Xinjie Liang, Xiangyu Li, Shaowei Gan,
Wei Wang, Suyu Dong, Wenyi Wang, et al. Efficient automatic segmentation for multi-level
pulmonary arteries: The parse challenge. arXiv preprint arXiv:2304.03708, 2023.

Yuhui Ma, Huaying Hao, Jianyang Xie, Huazhu Fu, Jiong Zhang, Jianlong Yang, Zhen
Wang, Jiang Liu, Yalin Zheng, and Yitian Zhao. Rose: a retinal oct-angiography vessel
segmentation dataset and new model. TMI, 2020.

Patrick McClure, Nao Rho, John A Lee, Jakub R Kaczmarzyk, Charles Y Zheng, Satrajit S
Ghosh, Dylan M Nielson, Adam G Thomas, Peter Bandettini, and Francisco Pereira.
Knowing what you know in brain segmentation using bayesian deep neural networks.
Frontiers in neuroinformatics, 2019.

Marina Meilă. Comparing clusterings—an information based distance. Journal of multivariate
analysis, 2007.

Volodymyr Mnih and Geoffrey E Hinton. Learning to detect roads in high-resolution aerial
images. In ECCV, 2010.

Agata Mosinska, Pablo Marquez-Neila, Mateusz Koziński, and Pascal Fua. Beyond the
pixel-wise loss for topology-aware delineation. In CVPR, 2018.

Lei Mou, Li Chen, Jun Cheng, Zaiwang Gu, Yitian Zhao, and Jiang Liu. Dense dilated
network with probability regularized walk for vessel detection. TMI, 2019.

Lei Mou, Yitian Zhao, Huazhu Fu, Yonghuai Liu, Jun Cheng, Yalin Zheng, Pan Su, Jianlong
Yang, Li Chen, Alejandro F Frangi, et al. Cs2-net: Deep learning segmentation of
curvilinear structures in medical imaging. MedIA, 2021.

Kevin P Murphy. Conjugate bayesian analysis of the gaussian distribution. def, (2σ2), 2007.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In AAAI, 2015.

8



Structure-wise Uncertainty

Tanya Nair, Doina Precup, Douglas L Arnold, and Tal Arbel. Exploring uncertainty measures
in deep networks for multiple sclerosis lesion detection and segmentation. MedIA, 2020.

George Papandreou and Alan L Yuille. Perturb-and-map random fields: Using discrete
optimization to learn and sample from energy models. In ICCV, 2011.

Hanchuan Peng, Fuhui Long, Ting Zhao, and Eugene Myers. Proof-editing is the bottleneck
of 3d neuron reconstruction: the problem and solutions. Neuroinformatics, 2011.

William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the
American Statistical association, 1971.

Vanessa Robins, Peter John Wood, and Adrian P Sheppard. Theory and algorithms for
constructing discrete morse complexes from grayscale digital images. TPAMI, 2011.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In MICCAI, 2015.

Christian Rupprecht, Iro Laina, Robert DiPietro, Maximilian Baust, Federico Tombari, Nassir
Navab, and Gregory D Hager. Learning in an uncertain world: Representing ambiguity
through multiple hypotheses. In ICCV, 2017.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 2008.

Philipp Seeböck, José Ignacio Orlando, Thomas Schlegl, Sebastian M Waldstein, Hrvoje
Bogunović, Sophie Klimscha, Georg Langs, and Ursula Schmidt-Erfurth. Exploiting
epistemic uncertainty of anatomy segmentation for anomaly detection in retinal oct. TMI,
2019.

Suprosanna Shit, Johannes C Paetzold, Anjany Sekuboyina, Ivan Ezhov, Alexander Unger,
Andrey Zhylka, Josien PW Pluim, Ulrich Bauer, and Bjoern H Menze. cldice-a novel
topology-preserving loss function for tubular structure segmentation. In CVPR, 2021.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation
using deep conditional generative models. 2015.

Joes Staal, Michael D Abràmoff, Meindert Niemeijer, Max A Viergever, and Bram Van Gin-
neken. Ridge-based vessel segmentation in color images of the retina. TMI, 2004.

Student. The probable error of a mean. Biometrika, 1908.

Giles Tetteh, Velizar Efremov, Nils D Forkert, Matthias Schneider, Jan Kirschke, Bruno
Weber, Claus Zimmer, Marie Piraud, and Bjoern H Menze. Deepvesselnet: Vessel seg-
mentation, centerline prediction, and bifurcation detection in 3-d angiographic volumes.
Frontiers in Neuroscience, 2020.

Kuanquan Wang, Zhaowen Qiu, Wei Wang, Tao Song, Shaodong Cao, Yi Zhao, Jun Liu,
Yingte He, Shaowei Gan, Xinjie Liang, Mingwang Xu, and Ziyu Guo. Pulmonary artery
segmentation challenge 2022, March 2022. URL https://doi.org/10.5281/zenodo.
6361906.

9

https://doi.org/10.5281/zenodo.6361906
https://doi.org/10.5281/zenodo.6361906


Gupta Hu Chen

Suyi Wang, Yusu Wang, and Yanjie Li. Efficient map reconstruction and augmentation via
topological methods. In Proceedings of the 23rd SIGSPATIAL international conference on
advances in geographic information systems, 2015.

Jiaqi Yang, Xiaoling Hu, Chao Chen, and Chialing Tsai. A topological-attention convlstm
network and its application to em images. In MICCAI, 2021.

Kelly H Zou, Simon K Warfield, Aditya Bharatha, Clare MC Tempany, Michael R Kaus,
Steven J Haker, William M Wells III, Ferenc A Jolesz, and Ron Kikinis. Statistical
validation of image segmentation quality based on a spatial overlap index1: scientific
reports. Academic radiology, 2004.

10



Structure-wise Uncertainty

— Appendix —

Appendix A provides more details about our method.

Appendix B provides experimental details such as dataset description, evaluation
metrics, and implementation details.

Appendix C provides comprehensive qualitative and quantitative results of our method.

Appendix D provides details about the ablation study.

Appendix E discusses the broader impact and limitations of this work.

Appendix A. Method Details

Given a trained segmentation network, our goal is to capture the uncertainty of its prediction
at a structural level. Note that we do not modify the network in any way; instead, we propose
an external module that reasons the uncertainty of each structure in the segmentation.

Fig. 2 provides an overview of our method. Let Fθ denote the trained segmentation
network, and Mϕ denote our proposed external uncertainty quantification framework. Mϕ

takes as input the likelihood map of Fθ and the input image. It generates a set of structures,
and estimates an uncertainty value for each of them. During training, Mϕ is trained by
comparing with the ground truth (GT) annotation.

Mϕ consists of two primary modules to capture intra-structural and inter-structural
uncertainty. The first module, Probabilistic DMT (Prob. DMT), generates structures based
on the likelihood map. For each structure, it samples a set of skeletons representing different
variations. Details are provided in Appendix A.1. The second module jointly predicts the
uncertainties of all the structures. At each training iteration, it takes one sample skeleton
for each structure, plus the likelihood map and input image, as input. Details are described
in Appendix A.3. Throughout the sections, we consider one data sample (x, y) where x is an
input image and y is the segmentation GT. The likelihood map is f = Fθ(x).

A.1. Modelling the structural space

In this section, we first describe how DMT obtains the constituent structures of a likelihood
map. Then we propose our Prob. DMT formulation to capture intra-structural uncertainty.
Discrete Morse theory. Consider the likelihood map f generated from the segmentation
network Fθ. We wish to decompose f into a set of structures, capturing not only the salient
structures but also the faint ones. In the segmentation map, salient and faint structures
broadly correspond to true positive and false negative structures. In Fig. 5(b), we highlight
the false negative (FN) structures. These structures are missed in the segmentation, but will
be captured by DMT (Fig. 5(d)).

DMT treats the likelihood map f as a terrain function, decomposing it into a Morse
complex consisting of critical points, paths connecting them, patches in between paths, and
volumes enclosed by patches (for 3D images). Critical points are locations w with zero
gradients (∇f(w) = 0), i.e., minima, maxima, or saddle points.
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Paths, called V-paths, are routes connecting critical points via the non-critical ones. A
V-path connecting a saddle point to a maxima is called a stable manifold. These stable
manifolds are the underlying terrain’s mountain ridges, and delineate structures of interest.

a) Likelihood map b) Seg. map

d) Morse skeletonc) Critical points

Figure 5: Orange indicates
FN structures; (c) shows
saddle points (red) and max-
imas (blue), and omits mini-
mas; (d) shows the union of
the stable manifolds of the
saddle points.

In Fig. 5(c) we show the locations of saddles and maximas
in the Morse complex, and in Fig. 5(d) we show the union of all
the stable manifolds connecting them. In this paper, we only
focus on the zero- and one-dimensional Morse structures, i.e.,
the union of all stable manifolds and their associated saddle
and maxima. We call the collection of such structures the
Morse skeleton.

By default, DMT generates stable manifolds in a completely
deterministic manner, failing to take into account the intra-
structural uncertainty in the likelihood f . Therefore, these
stable manifolds may fail to correctly delineate the true struc-
ture, as shown in Fig. 6.
Probabilistic DMT.

To account for the inherent uncertainty, we explicitly model
the structure as a collection of samples from an underlying
generative process. The skeleton from the original DMT is
just one possibility out of many. The method is achieved via
a perturb-and-walk algorithm, in which we iteratively perturb
the likelihood map, and regenerate the skeleton.

The rationale is that the likelihood map is a weighted aggregation of all possible skeleton
representations. To inverse the aggregation and recover these skeletons is challenging. Instead,
we follow the classic perturb-and-map principle, which was used to efficiently sample from
a complex discrete graphical model distribution Papandreou and Yuille (2011); Hazan and
Jaakkola (2012); Lazaro-Gredilla et al. (2021). We randomly perturb the likelihood function.
For each perturbed likelihood, we compute a skeleton as a sample. See Fig. 6 for an
illustration.

GT

DMT: Prob. DMT:

region of
structural

uncertainty

Likelihood Prob. DMT:

cm

cs

intermediate steps

(#1) (#2)

Figure 6: Structures (#1,#2) sampled from
the distribution. Green arrow is path chosen
using Q(c′); red arrow is next step w/o consid-
ering Qd(c

′).

The sampled skeletons will reflect the un-
certainty properly. For a structure that is
less salient in the likelihood map, the sam-
ple skeletons will have large variations, gen-
erating a large uncertainty. For a salient
structure in the likelihood map, the sample
skeletons will be less variant, resulting in a
low uncertainty.

Assume a given likelihood function f and
one of its structures, represented by a V-path
e connecting a saddle-maximum pair (cs, cm).
We generate a sample skeleton of the struc-
ture by first perturbing the likelihood with
random noise. Next, we generate a path
connecting cs and cm. Recall in the original
DMT, the skeleton is generated by following the mountain ridge. In other words, we start
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from the saddle point, and “walk” towards the maximum. At every step, we always walk to
the neighboring pixel with the highest likelihood value. In Prob. DMT, we follow the same
principle on the perturbed likelihood. However, the noisy perturbation of likelihood can
cause the path to grow astray. Therefore, we additionally apply a distance-based regularizer
to guide the walk towards the target cm. We describe the process in detail below.

Let e denote the structure obtained by following the V-path between (cs, cm) in the
original DMT. In order to generate its sample skeleton ê, we first draw a likelihood fn from
a distribution centered on f as fn ∼ f + r. This process is independent of the perturbation
model r used, and we use a Gaussian model in this work. As the variance of the Gaussian
model is unknown, we use Bayesian probability theory to sample the variance from the
Inverse Gamma distribution (its conjugate prior (Murphy, 2007)).

Once we obtain fn, we regenerate the path between (cs, cm). We take inspiration from
random walk (Lovász, 1993) as well as probability regularized walk (Mou et al., 2019) to
generate the variant structure ê from fn. Our walk algorithm continuously grows ê starting
from cs and ending at cm, one pixel at a time. The algorithm considers both the terrain
fn and the distance to the destination cm to ensure path completeness. During the walk,
given the current pixel location c, the next location c′ ∈ neighborhood(c)1 is chosen as
c′ = argmax(Q(c′)), where, Q(c′) = γQd(c

′) + (1 − γ)fn(c
′), and, Qd(c

′) = 1
∥cm−c′∥2 . We

begin with c := cs and continue in this manner till we reach cm
2. In Fig. 6, we show a

deterministic structure obtained from DMT along with sample variations produced by our
method. We demonstrate the intermediate steps in the algorithm: the red arrow denotes the
next step without considering the distance regularizer Qd, while the green arrow denotes the
next step using our formulation Q. Notice how only considering fn without Qd can prevent
the path from reaching cm. We thus require Qd to guide the path to completeness.

The structure ê is a different realization of e, making each run of the Prob. DMT a
stochastic one. We are thus able to explicitly model the structures as samples from a
probability distribution. We also note that DMT is a special case of Prob. DMT when r = 0
and γ = 0. In practice, with some probability, we consider the original structure e from
DMT over generating its variant ê. Specifically, following a Bernoulli distribution, with a
small probability u we retain e, while with probability 1−u we sample its variant ê using the
perturb-and-walk algorithm outlined above. This process is done separately and in parallel
for every structure. The structures taken together form a Morse skeleton. The output of
Prob. DMT is effectively one sample skeleton from the space of Morse skeletons.

A.2. Pseudocode of Probabilistic DMT

In Algo. 1, we provide a pseudocode of our Probabilistic DMT module proposed in Sec. A.1.
We set max_step as 50 in our implementation. The terminologies used are: f c denotes the
likelihood map from Fθ centered on structure e; (cs, cm) are critical points between which
the path e is generated: cs denotes the saddle point and cm denotes the maxima. IG denotes
the Inverse Gamma distribution, and N denotes the Gaussian distribution.

1. For neighborhood, we use 8-connectivity for 2D, and 26-connectivity for 3D in this work.
2. If the path does not reach cm, we impose a maximum limit on the update steps to prevent an infinite

loop.
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Algorithm 1 Probabilistic DMT pseudocode
1: procedure Prob_DMT(f c, e, cs, cm)
2: û ∼ Bernoulli(u) if û is True then
3:

end
ê← e else

4:
end
ê← Generate_Path(f c, cs, cm)

5:
6: return ê
7: end procedure
8: procedure Generate_Path(f, cs, cm)
9: initialize m← 0 ▷ m has same spatial dimension as f

10: initialize c← cs
11: initialize m[c]← 1
12: initialize step← 0
13: σ2 ∼ IG(α, β)
14: fn ∼ f +N (0, σ)

while c ̸= cm and step < max_step do
15:

end
val← 0 for c′ ∈ Neighborhood(c) do

16:
end
val[c′]← γ ∗ 1

∥cm−c′∥2 + (1− γ) ∗ fn[c′]
17:
18: c← argmax(val) ▷ Update current step
19: m[c]← 1
20: step← step+ 1
21:
22: return m
23: end procedure
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Channel-wise
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Figure 7: Construction of the input feature vector for each node (structure) in the GNN.

A.3. Joint estimation of structural uncertainty

The Prob. DMT module gives us a set E of structures. Our final step is to jointly reason
about the uncertainty of all of them. To achieve this, we use a regression network that takes
as input each structure e ∈ E, and outputs whether it is a true positive and the uncertainty
of Fθ in predicting it.
Details of the network. Structures interact with each other in the image space and are not
independent. During uncertainty estimation, it is therefore crucial to consider their spatial
context, i.e., inter-structural uncertainty. Hence, we use Graph Neural Networks (Scarselli
et al., 2008), specifically Graph Convolution Networks (GCN) (Kipf and Welling, 2016), to
jointly reason about the structures and capture the high-order spatial interactions. In the
graph, each node represents a structure, and edges between nodes exist when corresponding
structures have non-zero overlaps (typically at endpoints). The input feature vector for each
node is constructed as shown in Fig. 7. For every structure, we first concatenate [xc, f c,m],
where xc comes from the original input x; f c from the likelihood map f (not fn); and
m is a binary map indicating the presence of the structure. These xc, f c,m are smaller
crops/bounding boxes centered on the structure. After passing them through convolution
blocks, we apply channel-wise pooling to obtain a fixed-length feature vector for training.
We further concatenate the persistence value of the saddle point associated with the original
DMT structure (aka stable manifold). Note that we do not use the perturbed fn from the
Prob. DMT method when constructing the feature vector.
Training the network. We train the regression network using the attenuation loss proposed
in (Kendall and Gal, 2017). As there are no labels to learn uncertainty, it is implicitly learned
during regression optimization. We fix a Gaussian likelihood, and so variance δ̂2 is used as a
measure of uncertainty. The network’s head is split into two — to predict p̂(e) of being a
true positive structure and its associated uncertainty δ̂2e . For numerical stability, we actually
predict the log variance se = log δ̂2e . The training loss is given in Eq. 1. The structures that
we obtain from Prob. DMT may not always fully overlap with the true GT structures, that is,
some structures may only have partial overlap. We thus do not impose any hard constraints
in Eq. 1, instead, ze is a soft label, and is given by: ze = (

∑
y ⊙m)/(

∑
m), where y is the

GT and ⊙ is the Hadamard product. This value simply represents the proportion of the
structure that overlaps with the GT, i.e., the fraction of the structure that is a true positive.

LUQ(ϕ) =
1

|E|
∑
∀e∈E

(
1

2

∥p̂(e)− ze∥2

exp (se)
+

1

2
se

)
(1)

In (Kendall and Gal, 2017), δ̂2 denoted the pixel-wise uncertainty of the framework’s input.
In our setting, the input to our framework is f = Fθ(x), and so δ̂2 is modeled to capture
the structure-wise uncertainty inherent in data x and model Fθ. Training δ̂2 in this manner
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ensures that the network does not trivially predict high or low uncertainty, rather, predicts
an uncertainty estimate that is dependent on the input.

A.4. Proposed module Mϕ

For Eq. 1 to hold, we require Mϕ to be a probabilistic network. We already show in
Appendix A.1 our formulation for Prob. DMT. Additionally, the regression network is also
probabilistic as we use MC dropout (Gal and Ghahramani, 2015).
Inference procedure. We take T runs of Mϕ and compute the uncertainty as the mean
δ̄2e = 1

T

∑T
t=1(δ̂

2
e)t. We similarly obtain p̄(e) from p̂(e). In Fig. 8, we illustrate the post-

processing steps to obtain the structure-wise uncertainty heatmap. First, we obtain maps
p̄ = ∪p̄e and δ̄2 = ∪δ̄2e having the same spatial resolution as the input x. We then binarize p̄,
and overlay it onto the segmentation map obtained from Fθ. We do this because Prob. DMT
gives us one-pixel wide skeleton structures but we need to recover the structure thickness.
Next, we use shortest distance to assign uncertainty values from δ̄2 to the pixels in the
overlaid map. The shortest distance uses paths only along the foreground pixels.

as
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from

+

final uncertainty
heatmap

overlaid map

Figure 8: Post-processing procedure.

In Fig. 8 we show how we obtain the final uncer-
tainty heatmap from the skeleton heatmap. We also
note that the overlaid map is an additional output
of our method: it is an improved segmentation map
that can be used instead of the one obtained by Fθ.

We illustrate the inference procedure in Fig. 9.
There are two outcomes of our framework Mϕ, namely,
the structure-wise uncertainty heatmap as well as an
improved discrete segmentation map that can be used
instead of the one obtained by Fθ.

For each structure e, we obtain p̂(e) (the regression
output) and δ̂2e (the uncertainty) from Mϕ. We take
T runs of Mϕ and then for each structure e, we compute the mean across T runs as
δ̄2e = 1

T

∑T
t=1(δ̂

2
e)t, and, p̄(e) = 1

T

∑T
t=1 p̂(e)t. Next, we consider only those structures e for

which p̄(e) ≥ 0.5, i.e., e has a minimum probability of 50% of being a true positive. This is
the threshold step in Fig. 9. We do this so as to consider only the true positive, false positive,
and false negative structures in the final outcomes. We use these structures to create a
skeletal discrete segmentation map (see Fig. 9(c)) which has the same spatial resolution as
Fig. 9(a). As we want to recover the thickness of each structure, we overlay the two maps to
get the final discrete segmentation map (see Fig. 9(e)).

The uncertainty heatmap that we obtain from Mϕ is also skeletal (see Fig. 9(d)). We
recover the structure thickness to get the final uncertainty heatmap (see Fig. 9(f)). We use
shortest distance to do this. Shortest distance is used to assign uncertainty values from
Fig. 9(d) to the pixels in Fig. 9(e). The shortest distance uses paths only along the foreground
pixels and not along the background ones. This ensures that pixels within a structure are
not assigned uncertainty values from other nearby structures. We provide a zoomed-in view
in Fig. 10.
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Figure 9: Inference procedure. Stars (⋆) denote the final outcomes of our framework Mϕ.
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Figure 10: Zoomed-in views of Fig. 9.

We note that generating the Morse complex is computationally heavy, however, it needs
to be computed only once across the T runs. As described in Appendix A.1, the sampled
structures are between (cs, cm), and so the Morse complex is generated only in the first run.

A.5. Discussion of hyperparameters

The main hyperparameters in this work are u, α, β, γ. We describe the importance of each
below:

• u: This is the parameter for the Bernoulli distribution. In our Prob. DMT module,
for every structure, we have a choice to either retain the structure as obtained from
DMT, or, generate a sample skeleton using the perturb-and-walk algorithm. We model
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this choice using the Bernoulli distribution. Essentially, in some runs we would like the
original DMT structures to also interact with the others. Thus a low value of u works
best. We found u = 0.3 to give the best performance, that is, for every structure there
is a 30% chance that it’s DMT form is used and a 70% chance that a sample variant is
used. We find that 0.15 ≤ u ≤ 0.3 have comparable performance.

• γ: This hyperparameter is used in the weighted combination of distance Qd and
likelihood fn to obtain Q(c′), which is used to determine the next pixel location. It
maintains a tradeoff between the distance regularizer Qd and the perturbed likelihood
fn. The higher the value of γ, the greater the distance regularizer, and consequently
the generated path will become closer to that of a straight line. This is not desirable,
as a straight line would lose the original composition of the structure. Additionally,
because of the perturbation in the likelihood, we do not want the path to go astray.
To ensure path completeness, we require γ to be non-zero. Through experiments, we
obtain the best performance when γ = 0.2.

• α, β: These are prior hyperparameters of the Inverse Gamma (IG) distribution. We
perturb the likelihood using a Gaussian model. As the variance of the Gaussian model
is unknown, we use Bayesian probability theory to sample the variance from the IG
distribution (its conjugate prior). And so, α is the shape parameter and β is the scale
parameter of this IG distribution. Ideally we would like a small perturbation of the
likelihood and not a strong one. This is because a strong perturbation would corrupt
wholly and we would not be able to sample a reasonable skeleton. At the same time,
the perturbation should not be too small, otherwise we will not obtain a significant
variant. The mean of the IG distribution is β

α−1 (when α > 1, β > 0), which on average
is the value of the sampled variance for the Gaussian distribution. We achieve the
best performance when α = 2.0 and β = 0.01. The resulting sampled variance for the
Gaussian model thus generates reasonable perturbation.

Appendix B. Experiment Details

B.1. Dataset Details

In this abstract, we validate our results on three segmentation datasets: DRIVE (Staal et al.,
2004), ROSE (Ma et al., 2020), and PARSE 2022 Grand Challenge (Wang et al., 2022).
DRIVE. The DRIVE dataset is a 2D retinal vessel dataset with 40 images. Each image has
a resolution of 584× 565. We use the dataset’s predetermined split of 20 training images
and 20 test images. For training, we keep aside four randomly-chosen samples as validation,
and train on the remaining 16 samples.
ROSE. The ROSE dataset is a 2D retinal OCTA (Optical Coherence Tomography Angiog-
raphy) segmentation dataset. We use ROSE-1 (SVC) in this work. It has a predetermined
split of 30 train and 9 test samples, with each sample having a resolution of 304 × 304.
For training, we keep aside four randomly-chosen samples as validation, and train on the
remaining 26 samples.
PARSE. The PARSE dataset is a 3D CT dataset containing pulmonary artery segmentations.
The dataset contains 100 volumes and their sizes vary from 512×512×228 to 512×512×376.
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As there is no predetermined train/test split, we use 4-fold cross-validation and report the
average performance.

B.2. Evaluation Metrics

We use both segmentation and uncertainty metrics to evaluate our method. We describe the
metrics in detail below.

B.2.1. Uncertainty metrics

We use Reliability diagrams (DeGroot and Fienberg, 1983) and Expected calibration error
(ECE) (Naeini et al., 2015) to evaluate the quality of uncertainty. As both the metrics
were originally designed for classification, we adapt from the classification task to semantic
segmentation by treating each pixel as an independent sample. For both metrics, we first
divide the probability interval [0, 1] into N equal-sized probability intervals (each of size 1

N ).
We use N = 20 bins in this work. We then calculate the accuracy and confidence of each bin.
Reliability diagrams (RD). Reliability diagrams (DeGroot and Fienberg, 1983) are a
visual representation of model calibration by plotting the expected accuracy as a function of
confidence (confidence = 1− uncertainty). Perfect calibration corresponds to an identity
function in the RD, i.e., the model is not over/under-confident. Consider the set of pix-
els/structures whose predicted probabilities fall into the bin Bi. The accuracy and confidence
are given by:

acc(Bi) =
1

|Bi|
∑

∀x∈Bi

1
(
Ŷ (x) = Y (x)

)
conf(Bi) =

1

|Bi|
∑

∀x∈Bi

P̂ (x)

where, Y is the discrete segmentation ground truth (GT), and Ŷ is the discrete segmen-
tation map outputted by the model. In our method, Ŷ is as shown in Fig. 9(c). Additionally,
P̂ is the pixel-wise probability (likelihood) outputted by the model, whereas in our case, it
is the structure-wise uncertainty δ̄2 (Fig.9(d)). For our method and Hu et al., the x ∈ Bi

denotes structures, while in the other methods, it denotes pixels.
Expected calibration error (ECE). RDs are only a visual cue, and so we also use
ECE (Naeini et al., 2015): a scalar to summarize the calibration performance. RDs do not
take into account the number of pixels/structures in each bin. Thus, to account for such
variations of the number of samples in a bin, we use ECE. It is given by:

ECE =
N∑
i=1

|Bi|
n
|acc(Bi)− conf(Bi)|

where n =
∑N

i |Bi| is the total number of pixels/structures. The difference between acc
and conf for a given bin represents the calibration gap. When there is perfect calibration,
ECE is zero.

The definition of acc and conf remains the same as defined for RDs.
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Table 2: Training configuration

Dataset Model Patch Size; Batch Size Learning rate (LR); Optimizer
UNet 128× 128; 8 1e-3 with LR scheduler3; Adam4 with weight decay 3e-5

DeepVesselNet 128× 128; 8 1e-3 with LR scheduler; Adam with weight decay 3e-5
CS2-Net 128× 128; 8 1e-3 with LR scheduler; Adam with weight decay 3e-5

Prob.-UNet 128× 128; 8 1e-3; Adam with weight decay 0
PhiSeg 128× 128; 8 1e-4 with LR scheduler; Adam with weight decay 1e-5

Hu et al. 128× 128; 8 1e-3; Adam with weight decay 0
Ours 128× 128; 8 1e-3; Adam with weight decay 0
UNet 128× 128; 6 1e-3 with LR scheduler; Adam with weight decay 3e-5

DeepVesselNet 128× 128; 6 1e-3 with LR scheduler; Adam with weight decay 3e-5
CS2-Net 128× 128; 6 1e-3 with LR scheduler; Adam with weight decay 3e-5

Prob.-UNet 128× 128; 6 1e-3; Adam with weight decay 0
PhiSeg 128× 128; 6 1e-4 with LR scheduler; Adam with weight decay 1e-5

Hu et al. 128× 128; 6 1e-3; Adam with weight decay 0
Ours 128× 128; 6 1e-3; Adam with weight decay 0
UNet 128× 128; 8 1e-3 with LR scheduler; Adam with weight decay 3e-5

DeepVesselNet 128× 128; 8 1e-3 with LR scheduler; Adam with weight decay 3e-5
CS2-Net 128× 128; 8 1e-3 with LR scheduler; Adam with weight decay 3e-5

Prob.-UNet 128× 128; 8 1e-3; Adam with weight decay 0
PhiSeg 128× 128; 8 1e-4 with LR scheduler; Adam with weight decay 1e-5

Hu et al. 128× 128; 8 1e-3; Adam with weight decay 0
Ours 128× 128; 8 1e-3; Adam with weight decay 0
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B.2.2. Segmentation metrics

DICE. DICE (Zou et al., 2004) score is a popular metric which measures the area/volumetric
overlap between the predicted and ground truth discrete masks. It overcomes the class
imbalance problem in the pixel-wise accuracy metric by considering only the foreground
classes for measuring the overlap. The higher the DICE, the better the segmentation.
clDice. clDice (Shit et al., 2021) is derived from DICE, however, clDice uses the skeleton of
the predictions. This makes it sensitive to the performance of thin structures like vessels which
is important in curvilinear segmentation. The higher the value, the better the segmentation.
ARI. The Rand index (Rand, 1971) computes similarity between two clustering. This raw
score is “adjusted for chance" to get ARI (Adjusted Rand Index) (Arganda-Carreras et al.,
2015). The ARI takes into account the fact that some agreement between the two clusterings
can occur by chance, and it adjusts the Rand index to account for this possibility. The higher
the value, the better the segmentation.
VOI. The VOI (Meilă, 2007) metric is defined as the sum of the conditional entropies between
two segmentations. A lower VOI value indicates better segmentation.

B.3. Implementation Details

We use the PyTorch framework, a single NVIDIA Tesla V100-SXM2 GPU (32G Memory)
and a Dual Intel Xeon Silver 4216 CPU@2.1Ghz (16 cores) for all the experiments. The
training hyperparameters for our method as well as the baselines are as tabulated in Tab. 2.
Note that although PARSE is a 3D dataset, all the segmentation networks (backbones) Fθ

are 2D, that is, the networks are trained on 2D slices of the dataset. This was done to

3. https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.
html

4. https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
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maintain a fair comparison across all baselines, as methods such as Prob.-UNet and PhiSeg
only had 2D implementations available.

B.3.1. Baselines

We use the publicly available codes for the baselines:

• UNet (Ronneberger et al., 2015): https://github.com/johschmidt42/PyTorch-2D-3D-UNet-Tutorial

• Prob.-UNet (Kohl et al., 2018): https://github.com/stefanknegt/Probabilistic-Unet-Pytorch

• PhiSeg (Baumgartner et al., 2019): https://github.com/gigantenbein/UNet-Zoo

• Hu et al. (Hu et al., 2023): https://github.com/HuXiaoling/Structural_Uncertainty

• DeepVesselNet (Tetteh et al., 2020): https://github.com/dhavalshah18/deepvesselnet

• CS2-Net (Mou et al., 2021): https://github.com/iMED-Lab/CS-Net

B.3.2. Our method

We plan to release our code upon acceptance. For reproducibility, we provide the architecture
details as follows. The ‘Joint reasoning’ module in our framework is a Graph Neural Network
(GNN) (Scarselli et al., 2008), specifically Graph Convolution Network (GCN) (Kipf and
Welling, 2016). As per Fig. 7, the input feature vector for each graph node is constructed
by passing [xc, f c,m] through the following architecture: C(3, 24) → ReLU → D(0.2) →
C(3, 32) → ReLU → D(0.2) → MaxPool → Concat(pers), where, C(a, b) denotes a
convolution layer having kernel size a and number of output channels b; D(p) denotes a
Dropout layer with probability p; MaxPool denotes the adaptive maxpool layer5 returning
a 1× 1 output for each channel; and pers is a scalar value denoting the persistence of the
structure. Furthermore, the bounding box size of [xc, f c,m] is 32 × 32 centered at each
structure.

The aforementioned layers generate the input feature vector for each graph node. They
are then passed through the GNN which contains the following layers: GCN(32)→ ReLU →
D(0.2)→ GCN(64)→ ReLU → D(0.2)→ GCN(32)→ ReLU → D(0.2), where GCN(a)
denotes a GCNConv layer 6 having a number of output channels. The output from this
sequence of layers is then fed to two separate GCN(1) layers to output the regression
likelihood p̂(e) and the uncertainty δ̂2e . As per GNN fashion, the weights of the layers are
shared across all the nodes.

Appendix C. Results

Tab. 3 shows the quantitative results against uncertainty methods, and Tab. 4 shows the
quantitative results on different backbone architectures. We show the respective qualitative
results in Fig. 11 and Fig. 12. We also perform the unpaired t-test (Student, 1908) (95%

5. https://pytorch.org/docs/stable/generated/torch.nn.AdaptiveMaxPool2d.html
6. https://pytorch-geometric.readthedocs.io/en/latest/generated/torch_geometric.nn.conv.

GCNConv.html#torch_geometric.nn.conv.GCNConv
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Input image UNet PHiSeg Hu et al. OursGT

UNet Hu et al. OursGT

Figure 11: Qualitative results compared to the uncertainty baselines. We show reliability
diagrams of the samples, and uncertainty estimates in the form of a heatmap. Green highlights
false negatives and yellow highlights false positives. Row 1: DRIVE; Row 2: ROSE; Row 3:
PARSE (3D render).

confidence interval) to determine the statistical significance. Each table reports the mean
and standard deviations for every metric, with statistically significant better performances
in bold and numerically better (but not significant) performances in italics. For all the
probabilistic methods, the average of five runs was used. For our method, we generated
the structure-wise uncertainty estimates and the segmentation map by following the steps
outlined in the ‘Inference procedure’ in Appendix A.4. We discuss the performances below.
Performance of uncertainty estimation. Tab. 3 shows that our method outperforms
others on both ECE and segmentation metrics. Fig. 11 displays RDs, with our method
following the ideal line much closely compared to others. This is because we explicitly model
the distribution of the structures, thereby quantifying the uncertainty of the segmentation
network. In Fig. 11, we also see that our method generates better fidelity structure-wise
uncertainty maps compared to Hu et al. Our heatmaps assign non-zero uncertainty to several
false positives/negatives in the backbone UNet’s outputs. This is because we reason about
every structure while Hu et al. limits the structure space via pruning.
Performance over different backbones. Tab. 4 and Fig. 12 show that our method is
backbone-agnostic. It consistently improves the segmentation quality and produces high
fidelity uncertainty maps for each of the underlying networks. This validates the practical
applicability of our method. Results using the UNet backbone can be found in Tab. 3.
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Input image CS2-Net CS2-Net+Ours Ours (uncertainty)GT UNet UNet+Ours Ours (uncertainty)

Figure 12: Qualitative results over different segmentation backbones. Green highlights false
negatives. Row 1: DRIVE; Row 2: ROSE; Row 3: PARSE.

Table 3: Comparison against uncertainty baselines (all use UNet (Ronneberger et al., 2015)
as the backbone)

Dataset Method ECE (%)↓ Dice↑ clDice↑ ARI↑ VOI↓

D
R

IV
E Prob.-UNet 8.3316 ± 0.0043 0.7779 ± 0.0219 0.7663 ± 0.0492 0.7759 ± 0.0532 0.3560 ± 0.0203

PHiSeg 7.9316 ± 0.0032 0.7851 ± 0.0295 0.7712 ± 0.0497 0.7767 ± 0.0497 0.3527 ± 0.0308
Hu et al. 8.0883 ± 0.0036 0.7866 ± 0.0141 0.7725 ± 0.0392 0.7768 ± 0.0403 0.3489 ± 0.0286

Ours 4.1633 ± 0.0043 0.7976 ± 0.0195 0.7974 ± 0.0372 0.7996 ± 0.0301 0.3322 ± 0.0229

R
O

S
E Prob.-UNet 7.2795 ± 0.0022 0.7378 ± 0.0284 0.6485 ± 0.0258 0.7219 ± 0.0538 0.7769 ± 0.0146

PHiSeg 7.0875 ± 0.0036 0.7415 ± 0.0267 0.6552 ± 0.0236 0.7309 ± 0.0425 0.7638 ± 0.0128
Hu et al. 6.9243 ± 0.0033 0.7429 ± 0.0132 0.6598 ± 0.0172 0.7506 ± 0.0302 0.7616 ± 0.0123

Ours 3.9904 ± 0.0041 0.7593 ± 0.0171 0.6782 ± 0.0119 0.7837 ± 0.0314 0.7403 ± 0.0239

P
A

R
S
E Prob.-UNet 9.9918 ± 0.0069 0.6002 ± 5.7751 0.6179 ± 0.0804 0.6523 ± 0.0654 0.8923 ± 0.0417

PHiSeg 9.9280 ± 0.0077 0.5910 ± 3.0858 0.6080 ± 0.0743 0.6512 ± 0.0521 0.8839 ± 0.0297
Hu et al. 7.7891 ± 0.0075 0.6044 ± 2.3583 0.6153 ± 0.0724 0.6537 ± 0.0363 0.8803 ± 0.0318

Ours 4.0289 ± 0.0073 0.6190 ± 3.0826 0.6221 ± 0.0613 0.6658 ± 0.0461 0.8701 ± 0.0332

Table 4: Comparison against different segmentation backbones

Dataset Method Dice↑ clDice↑ ARI↑ VOI↓

D
R

IV
E DeepVesselNet 0.8015 ± 0.0260 0.7997 ± 0.0431 0.7729 ± 0.0457 0.3413 ± 0.0256

DeepVesselNet + Ours 0.8173 ± 0.0190 0.8285 ± 0.0361 0.8037 ± 0.0361 0.3238 ± 0.0192
CS2-Net 0.8189 ± 0.0176 0.8125 ± 0.0413 0.8204 ± 0.0495 0.3417 ± 0.0203

CS2-Net + Ours 0.8301 ± 0.0172 0.8367 ± 0.0305 0.8495 ± 0.0301 0.3243 ± 0.0258

R
O

S
E DeepVesselNet 0.7653 ± 0.0101 0.6634 ± 0.0192 0.7622 ± 0.0302 0.7426 ± 0.0163

DeepVesselNet + Ours 0.7795 ± 0.0205 0.6873 ± 0.0195 0.7936 ± 0.0282 0.7164 ± 0.0226
CS2-Net 0.7623 ± 0.0285 0.6799 ± 0.0127 0.7702 ± 0.0322 0.7236 ± 0.0157

CS2-Net + Ours 0.7886 ± 0.0208 0.6968 ± 0.0149 0.7981 ± 0.0211 0.7072 ± 0.0168

P
A

R
S
E DeepVesselNet 0.7208 ± 3.0452 0.6801 ± 0.0554 0.6923 ± 0.0524 0.4907 ± 0.0701

DeepVesselNet + Ours 0.7376 ± 3.1863 0.6983 ± 0.0622 0.7098 ± 0.0613 0.4711 ± 0.0613
CS2-Net 0.7630 ± 3.9415 0.6918 ± 0.0695 0.7138 ± 0.0695 0.4273 ± 0.0521

CS2-Net + Ours 0.7720 ± 2.8109 0.7113 ± 0.0689 0.7343 ± 0.0733 0.4078 ± 0.0642
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Appendix D. Ablation Study

Table 5: Ablation of different modules

DMT Reg. Net ECE (%)↓ clDice↑
DMT GNN 6.3481 ± 0.0082 0.7729 ± 0.0304

Prob. DMT MLP 4.8202 ± 0.0046 0.7745 ± 0.0305
Prob. DMT GNN 4.1633 ± 0.0043 0.7974 ± 0.0372

To demonstrate the efficacy of the
proposed method, we conduct abla-
tion studies of the different com-
ponents in our pipeline, as well
as check the effect of changing hy-
perparameter values. We perform
these analyses on the DRIVE dataset using UNet (Ronneberger et al., 2015) as the backbone.
Ablation of different modules. We conduct ablation studies on both parts of our
framework: structure generation (DMT vs Prob. DMT), and regression network (GNN vs
Multi-layer Perceptron (MLP)). The results are in Tab. 5.

Figure 13: Effect of hyperparameters.

Prob. DMT results in a sharp improvement in
ECE compared to the original DMT; this supports
our assertion that Prob. DMT models intra-structural
uncertainty. Similarly, using GNN over MLP results in
improvement. The message-passing in GNNs accounts
for inter-structural uncertainty, thus yielding higher
fidelity uncertainty estimates.
Effect of hyperparameters. We check the effect
of the different hyperparameters in our work by con-
ducting experiments on the DRIVE dataset using
UNet as the backbone. Our main hyperparameters
are u, α, β, γ, with u used in the Bernoulli distribu-
tion, γ in the path-generation algorithm, and (α, β)7

as prior hyperparameters of the Inverse Gamma dis-
tribution. We test different values and report the
ECE (the lower the better) in Fig. 13. For all the
experiments, we set u = 0.3. We achieve the best
ECE when γ = 0.2, α = 2.0, β = 0.01, however, a
reasonable range always yields improvement (notice
how non-zero γ results in a sharp improvement). This
demonstrates the robustness of our proposed method.

Appendix E. Broader impact and Limitations

Broader impact In this work, we aim to capture structure-wise uncertainty of a given
network, where a structure is defined to be a coherent set of pixels a user can intuitively
understand, e.g., small vessels/branches, short stretches of road etc. Fine-scale structures
such as vessels, neurons, and membranes often consist of interconnected branches or structures
that form a cohesive entity. Thus structure-wise uncertainty maps can highlight uncertain
instances or branches as a whole, providing a more accurate indication of regions where the
segmentation may be inaccurate or uncertain. This is beneficial for proofreading or error-
correction tasks as they can direct the focus of human annotators to uncertain structures that

7. α is the shape parameter; β is the scale parameter.
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require further attention. This can save time and effort compared to pixel-wise uncertainty
maps that highlight numerous pixels as uncertain, many of which do not require correction.
Thus structure-wise uncertainty can provide more interpretable estimates and is a desirable
approach for improving segmentation accuracy and supporting downstream analysis tasks.
This can go a long way as the benefit of proofreading is twofold: it improves segmentation
quality, and it also helps expand the body of labeled data that can be further used to train
automatic segmentation methods. Our work is thus a useful tool in streamlining the process
of scalable annotation. At the present stage, we do not foresee any potential negative societal
impacts.
Limitations Our method currently fits in the context of curvilinear segmentation. In general,
large object segmentation could also benefit from structure-wise uncertainty (structures in
this case would be smaller patches/volumes). Discrete Morse theory can be used in this
setting, however, we would need to make use of topological features other than the stable
manifold. In its present form, our proposed solution is currently not applicable in a setting
beyond curvilinear segmentation.
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