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ABSTRACT

Transfer learning is devised to leverage knowledge from pre-trained models to
solve new tasks with limited data and computational resources. Meanwhile,
dataset distillation has emerged to synthesize a compact dataset that preserves
critical information from the original large dataset. Therefore, a combination of
transfer learning and dataset distillation offers promising performance in evalua-
tions. However, a non-negligible security threat remains undiscovered in trans-
fer learning using synthetic datasets generated by dataset distillation methods,
where an adversary can perform a model hijacking attack with only a few poi-
soned samples in the synthetic dataset. To reveal this threat, we propose Osmo-
sis Distillation (OD) attack, a novel model hijacking strategy that targets deep
learning models using the fewest samples. The adversary aims to stealthily in-
corporate a hijacking task into the victim model, forcing it to perform malicious
functions without alerting the victim. OD attack focuses on efficiency and stealth-
iness by using the fewest synthetic samples to complete the attack. To achieve
this, we devise a Transporter that employs a U-Net-based encoder-decoder ar-
chitecture. The Transporter generates osmosis samples by optimizing visual and
semantic losses to ensure that the hijacking task is difficult to detect. The os-
mosis samples are then distilled into a distilled osmosis set using our specifi-
cally designed key patch selection, label reconstruction, and training trajectory
matching, ensuring that the distilled osmosis samples retain the properties of the
osmosis samples. The model trained on the distilled osmosis dataset can per-
form the original and hijacking tasks seamlessly. Comprehensive evaluations on
various datasets demonstrate that the OD attack attains high attack success rates
in hidden tasks while preserving high model utility in original tasks. Further-
more, the distilled osmosis set enables model hijacking across diverse model ar-
chitectures, allowing model hijacking in transfer learning with considerable at-
tack performance and model utility. We argue that awareness of using third-party
synthetic datasets in transfer learning must be raised. Our code is available at
https://anonymous.4open.science/r/OD-7236/.

1 INTRODUCTION

Deep learning relies on large datasets to train models with high predictive accuracy and strong
generalization ability. However, using large datasets usually poses significant challenges due to
high computational costs and a long training time. To alleviate those issues, methods such as dataset
distillation and transfer learning have been proposed.

Dataset distillation is a process that extracts essential information from a large dataset to create a
much smaller synthetic dataset. This distilled dataset retains the key characteristics of the original,
enabling models trained on it to achieve performance comparable to those trained on the full dataset
(Lei & Tao, 2024). Meanwhile, transfer learning allows models to adapt knowledge acquired from
a source domain to a different target domain by leveraging shared latent structures such as features
(Lu et al., 2015; Pan & Yang, 2010).

To enhance training efficiency and mitigate computational resource consumption, users are opting
to use third-party distilled datasets for fine-tuning pre-trained models obtained from open-source
repositories. However, this introduces novel security and privacy vulnerabilities in the real world,
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Figure 1: The overview of our work. Different from backdoor attacks, OD attack incorporates
a hijacking task into the original task by generating a distilled osmosis dataset that achieves the
hijacking task with the fewest samples.

particularly when faced with model hijacking attacks. These attacks make the model that is fine-
tuned on the synthetic dataset execute hijacking tasks unwittingly while preserving performance on
the original tasks. Notably, the hijacking task defined by the adversary may involve serious illegal
activities. Consequently, model hijacking poses risks of parasitic computation and stealthy crimi-
nality (Salem et al., 2022a). Moreover, existing model hijacking attacks still require many hijacking
samples to compromise the victim model, and there is relatively little exploration of distilled datasets
in mounting such attacks.

Our Work. To reveal this undiscovered threat of using dataset distillation in transfer learning,
we aim to combine model hijacking and dataset distillation to enable such attacks with a minimal
number of hijacking samples and explore the feasibility of achieving them via distilled datasets. As
shown in Fig. 1, unlike typical backdoor attacks, our method does not need triggers or intend to
induce misclassifications in machine learning models. Instead, it aims to force the model to execute
the hijacking task specified by the adversary. The proposed attack method comprises two important
steps: Osmosis and Distillation. Therefore, we call this method OD attack.

In OD attack, we design a model named Transporter that is built upon an encoder-decoder archi-
tecture. The Transporter is used to disguise osmosis samples as benign samples. To ensure that
osmosis samples are visually similar to benign samples in the original dataset and semantically sim-
ilar to osmosis samples in the hijacking dataset, the Transporter is trained using two loss functions:
visual loss and semantic loss. The visual loss ensures that the osmosis samples visually resemble
the benign samples, while the semantic loss ensures that they maintain semantic similarity to the hi-
jacking samples. After the generation of the osmosis samples, the distillation stage starts. Initially,
each osmosis sample is cropped into multiple patches of equal size. We then compute a realism
score for each of the patches, and select the patch with the highest score as the key patch. These
key patches are subsequently used to reconstruct a complete synthetic image. Following this, we
perform label reconstruction, employing soft labels and training trajectory matching to guarantee
that the distilled osmosis samples maintain the characteristics of the hijacking samples. The target
model that is trained on such a distilled osmosis dataset (DOD) eventually possesses the ability to
perform both the original task and the hijacking task specified by the adversary with high accuracy.

Our contributions are summarized as follows:

• To the best of our knowledge, our work is the first to reveal potential risks in transfer
learning using synthetic datasets generated by dataset distillation.

• Our proposed OD attack uses distilled osmosis samples for the hijacking task, ensuring
that the adversary can use the fewest samples to launch model hijacking attacks. This
approach also ensures that the synthetic samples are difficult to detect, which guarantees
the stealthiness of the attack.
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• Experimental results indicate that a distilled osmosis dataset with only fifty samples in each
class can effectively ensure the attack success rate and model utility of model hijacking
attacks.

2 PRELIMINARIES AND RELATED WORK

All notations used in this work are listed in Table 1.

2.1 TRANSFER LEARNING

The primary objective of transfer learning is to leverage tasks and knowledge from the source domain
(DS = {(xS1, yS1), . . . , (xSnS

, ySnS
)}) to improve the target predictive function (fT (·)) in the

target domain (DT = {(xT1, yT1), . . . , (xTnT
, yTnT

)}). Transfer learning is often used in cases
where the source domain and the target domain feature spaces or marginal distributions are different.
Transfer learning uses source tasks that contain abundant data to obtain features and knowledge, so
as to reduce the amount of labeled data required for the target task to improve training efficiency
and model performance (Pan & Yang, 2010; Lu et al., 2015).

2.2 DATASET DISTILLATION

Dataset distillation aims to compress a large-scale dataset (Dreal) into a smaller synthetic dataset
(Dsyn) (Wang et al., 2018). Its objective can be formulated as Eq. 1:

D∗
syn = arg min

Dsyn

L(Dsyn,Dreal). (1)

To improve efficiency, Zhao et al. (Zhao et al., 2021; Zhao & Bilen, 2023) introduced the first-
order gradient matching and later distribution matching techniques. Cazenavette et al. (Cazenavette
et al., 2022) proposed the trajectory matching technique, aligning optimization paths between real
and synthetic data. Other approaches include patch-based image and soft label reconstruction (Sun
et al., 2024), neural tangent kernel regression (Nguyen et al., 2021a;b), and final-layer regression
(Zhou et al., 2022).

2.3 BACKDOOR ATTACK

In backdoor attacks, the adversary manipulates the training process of the victim model to implant
backdoors. Most commonly, the adversary designs a trigger and injects it into the training data,
causing the model to predict a specified label upon encountering inputs containing the trigger. Gu et
al. (Gu et al., 2017) first proposed BadNets, a method to backdoor machine learning models using
a blank pixel as a trigger to misclassify backdoor inputs as target labels. Salem et al. (Salem et al.,
2022b) proposed using dynamic trigger to execute backdoor attacks. Further, various backdoor at-
tack methods have been proposed for dataset distillation (Liu et al., 2023), diffusion models (Chou
et al., 2023; Chen et al., 2023), image classification (Doan et al., 2021a;b), natural language pro-
cessing models (Schuster et al., 2021), transfer learning (Yao et al., 2019), and others (Saha et al.,
2020; Li et al., 2021; Rakin et al., 2020; Wang et al., 2020; Zhao et al., 2020).

2.4 MODEL HIJACKING ATTACKS

Salem et al. first proposed model hijacking attacks (Salem et al., 2022a) as a training-time attack
strategy. The goal of model hijacking is to covertly redirect the functionality of a victim model from
its intended task to an adversary-specified task, while preserving the victim model’s performance
on the original task to avoid detection. The model hijacking method proposed by Salem et al. uti-
lizes a Camouflager based on an encoder-decoder architecture to embed hijacking samples (xh) into
original samples (xo), thereby generating camouflaged samples (xc). In this procedure, visual and
semantic losses are employed to ensure that camouflaged samples closely resemble original samples
in appearance while maintaining similarity to the hijacking samples. The objective is formulated as
follows:

3
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Figure 2: The workflow of OD attack. In stage (a), a Transporter is utilized to embed the hijacking
task into the original task, producing osmosis samples, which are then distilled using image recon-
struction, label reconstruction and training trajectory matching. In this stage (b), we solely use the
distilled osmosis dataset for training the target model. The trained model executes either the original
task or hijacking task based on varying queries.

L(xo, xh, xc) = min (∥xc − xo∥+ ∥F(xc)−F(xh)∥) (2)

Then, a large number of camouflaged samples form the camouflaged dataset. Together with the
original dataset, they constitutes the poisoned dataset. The poisoned dataset is used to train the
victim model to incorporate the hijacking task into the original task.

Furthermore, (Si et al., 2023) extended model hijacking attacks to text generation and classification
models, thereby broadening the scope of such assaults. Additionally, other relevant work focus on
federated learning etc.(Chow et al., 2023; Zhang et al., 2024; He et al., 2025).

3 PROBLEM FORMULATION

In our study, we consider two parties: an adversary and a victim.

• Adversary: An adversary is defined as a malicious entity that actively manipulates the
training process, potentially acting as the provider of third-party synthetic datasets gener-
ated by some dataset distillation algorithm. Its objectives encompass exploiting the victim’s
computational resources to execute proprietary tasks and imposing legal or ethical risks on
the victim through the enforcement of illicit activities.

• Victim: A victim could be an individual model owner or a company that wants to use
synthetic datasets to speed up model fine-tuning. They are likely to choose third-party
distilled datasets from open-source platforms. As the victim model has high performance
on the original task, the victim is less likely to notice the hijacking task. Consequently, the
victim faces the risk of delivering unauthorized services and parasitic computation.

3.1 THREAT MODEL

Adversary’s Goals. The goal of the adversary is to incorporate a hijacking task defined by the
adversary into a victim model. The victim model preserves its utility with regard to its original
task, while having considerable performance on the hijacking task. The victim must not notice the
existence of the hijacking task. To this end, OD attack must have the following four properties:
P1: Effectiveness. Effectiveness requires the victim model to have high performance in both the
original task and the hijacking task. Furthermore, the existence of the hijacking task should not
affect the performance of the original task. P2: Efficiency. It is expected that OD attack will be
effective with the fewest samples to accelerate the fine-tuning process. P3: Stealthiness. Distilled
osmosis samples are expected to exhibit a high degree of visual similarity to original samples. P4:
Transferability. Distilled osmosis datasets should support transfer learning regardless of model
architectures or optimization algorithms.

4
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Adversary’s Knowledge. The adversary’s knowledge is strictly limited. The victim model’s archi-
tecture, training algorithm and parameters are unknown to the adversary. Nonetheless, the adversary
has knowledge about all existing public datasets, dataset distillation algorithms, and platforms for
dataset providers.

Adversary’s Capability. The adversary cannot interfere with the training process of the victim
model. However, the adversary can control the original dataset and the hijacking dataset that are
used to generate the DOD. All accessible online datasets are available to the adversary for collection.
The adversary is also allowed to produce private datasets. Furthermore, the adversary can determine
the algorithm that is used to generate the DOD. The adversary can select online platforms to release
the DOD.

Victim’s Goal. The victim’s goal is to swiftly train a model and execute the original task precisely.

Victim’s Knowledge. The victim has knowledge about all existing model architectures, training
algorithms, and publicly accessible datasets. The victim does not know whether the dataset that is
used to fine-tune the victim model contains harmful contents or not.

Victim’s Capability. The victim can select any model architectures, training algorithms to train
the victim model. The third-party dataset for training the victim model is assumed to be the DOD
generated by the adversary, but the victim can still locally manipulate the DOD.

3.2 OSMOSIS AND DISTILLATION STAGE

3.2.1 TRANSPORTER

To embed the information of hijacking samples (xh) into original samples (xo), we devise the Trans-
porter based on the encoder-decoder framework grounded in the U-Net architecture. In OD attack,
the structure comprises two encoders and a single decoder. The first encoder process the original
samples, while the second handles the hijacking samples. Outputs from both encoders are then con-
catenated to form the decoder’s input. The resulting decoder outputs are osmosis samples, which
exhibit visual resemblance to the original samples and semantically similar hijacking samples.

To ensure that the osmosis samples visually resemble the original samples while semantically align-
ing with the hijacking samples, we design the visual and semantic loss functions in the training stage
of the Transporter.

Visual loss. The visual loss function computes the L1 distance between the osmosis samples gener-
ated by the Transporter and the original samples. This loss function serves to ensure that the osmosis
samples exhibit a visual resemblance to the original samples. The visual loss is defined as

Lvisual = min ∥xc − xo∥ . (3)

Semantic loss. The semantic loss operates at the feature level rather than the visual level, a feature
extractor is required to capture the characteristics of the hijacking samples. This extractor can be
formed by intermediate layers from any classifier model. Given our assumption that the adversary
lacks access to any information about the victim model, we opt for a pre-trained model as the feature
extractor. Subsequently, the extracted features of the osmosis samples (F(xc)) and those of the
hijacking samples (F(xh)) are utilized to compute the L1 distance. The semantic loss is defined as

Lsemantic = min
∥∥F(xc) −F(xh)

∥∥ . (4)

3.2.2 OSMOSIS

Prior to initiating the Transporter, the adversary must define a mapping function that associates each
label in the original dataset with a corresponding label in the hijacking dataset. A straightforward
approach is to map the ith label from the original dataset to the ith label in the hijacking dataset,
without considering the underlying semantic differences between the labels. It is important to note
that the OD attack is independent of the mapping method, the adversary is capable of creating the
mapping freely.

After determining the mapping relationship, the adversary can proceed to the osmosis stage. At
this stage, the visual loss and semantic loss functions previously mentioned are employed to train

5
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Algorithm 1 OD Attack–Osmosis
Input:Original dataset Do = {(xo, yo)}, Hijacking dataset Dh = {(xh, yh)}, Label mapping m :
yo → yh, transporter T
Parameters: λv , λs N
Output: Osmosis samples xc

1: for each epoch do
2: label mapping yh = m(yo)
3: Generate osmosis sample xc = T (xo, xh)
4: Optimize: L = λvLvisual + λsLsemantic
5: end for
6: return Osmosis samples xc

the Transporter. To balance the trade-off between the visual loss and the semantic loss, and thus
regulate the interplay between the original task and the hijacking task, we introduce two parameters,
denoted as λv and λs, which function as weighting coefficients. The entire loss function for training
the Transporter is defined as

L(xc, xo, xh) = λv∥xc − xo∥+ λs∥F(xc)−F(xh)∥ (5)

3.2.3 DISTILL OSMOSIS SAMPLES

Having obtained the osmosis samples, we proceed to the distillation stage. The purpose of this
stage is to significantly reduce the number of osmosis samples, and to ensure that the hijacking task
remains effective. To guarantee the realism of the osmosis samples after distillation, we first crop
each osmosis sample to create patches. Then, we calculate the realism score for each patch using
Eq. 6 and select the patch with the highest score as the key patch for image synthesis. The realism
score is defined as

S = −ℓ(ϕθT
(xc), ϕh(xc))− ℓ(ϕθT

(xc), y), (6)
where, ϕθT

is a pre-trained observer model and ϕh is a human observer.

After obtaining the key patches, we select N key patches for each class and concatenate them into
a synthetic image. The synthetic image matches the resolution of the original image. Further, we
use soft labels to relabel the synthetic images. The model learns from these reconstructed labels,
eventually generating osmosis samples composed of N patches. These samples possess high realism
and have reconstructed labels.

Distillation is a double-edged sword. To ensure that the distilled osmosis samples retain the features
of the osmosis samples, a weight trajectory loss is introduced. By minimizing the differences in
training trajectories between the distilled osmosis samples and the osmosis samples, this process
makes models trained on the DOD produce training weight trajectories that are similar to those of
models trained on the set of the osmosis samples. The weight trajectory loss is defined as

Ltrajectory(Dc syn,Dc) =

∥∥∥θ̂t+i − θ∗t+g

∥∥∥2
2∥∥θ∗t − θ∗t+g

∥∥2
2

, (7)

where θ∗t is training trajectory of the set of the osmosis samples and θ̂t is that of the distilled osmosis
dataset.

3.3 HIJACKING STAGE

After completing the distillation process, the distilled osmosis samples form a compact DOD. The
DOD is used to fine-tune a pre-trained model. Since the distilled osmosis samples encapsulate in-
formation from both the original samples and the hijacking samples, the victim model trained on
this distilled dataset can not only perform the original task but also perform the adversary-defined
hijacking task. Consequently, the hijacking task is covertly integrated into the victim model, trans-
forming it into a victim model. When deployed, the victim model can perform the original task well
and accurately for benign inputs. However, when exposed to malicious input, the model triggers the
adversary-specified hijacking task.

6
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Algorithm 2 OD Attack–Distillation
Input:Original dataset Do = {(xo, yo)}, The set of osmosis samples Dc = {(xh, yh)}, Observer
models ϕop , ϕhp

Parameters: Epoch N Output: Distilled osmosis samples oc syn

1: for each class c in hijacking task do
2: Select osmosis samples {(xc, yh)} where yh corresponds to class c
3: for each xc do
4: Crop xc into patches {pi}
5: Compute S = −ℓ(ϕop(xo), ϕhp

(xc))− ℓ(ϕop(xc), yh)
6: end for
7: Select top N patches for class c
8: Reconstruct image xc by concatenating patches
9: end for

10: Minimize Ltrajectory(Dc syn,Dc) for distilled samples
11: return Distilled osmosis samples oc syn

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

4.1.1 SETTINGS

For datasets, we select CIFAR-10, CIFAR-100, MNIST, SVHN and Tiny-ImageNet. The pre-trained
MobileNetV2 (Sandler et al., 2018) is employed as the feature extractor. ResNet18 (He et al., 2016)
and VGG16 (Simonyan & Zisserman, 2015) are employed as the architectures of the victim models.
The Adam optimizer is used for training the victim model. During training, the label mapping
was defined by random pairing of original and hijacking samples. We set 100 epochs for training
Transporter and 300 epochs for distilling the osmosis samples. Additionally, the learning rate was
set to 0.01, with a batch size of 64.

4.1.2 EVALUATION METRICS

• Utility: The utility of the victim model is its test accuracy on the original test set. The
higher the utility, the closer the performance of the victim model is to that of the clean
model on the original task. This suggests greater stealthiness of the hijacking task embed-
ded in the OD-attacked distilled dataset. Consequently, this increases the likelihood of the
distilled dataset being used.

• Attack Success Rate (ASR): The ASR is calculated by its accuracy on the hijacking test
set. The higher the ASR, the stronger the attack, underscoring the model’s capability to
precisely execute the hijacking task as designed by the adversary.

4.2 PERFORMANCE EVALUATION

4.2.1 EFFECTIVENESS OF OD

In this section, we compare the OD attack with the state-of-the-art (SOTA) model hijacking attack
CAMH (He et al., 2025). We also include a baseline clean model to assess the impact of the OD
attack on model utility under unattacked and attacked conditions. To ensure a fair comparison,
we set the number of images per class (IPC) to 50 for all training samples in this experiment. The
training sets for the original model and CAMH are obtained through random sampling. Additionally,
following the configuration in CAMH, we set the training data volume to 50%.

According to Fig. 3, the utility across all datasets and models achieves performance levels com-
parable to those of the clean model, although CAMH suffers from degradation under such limited
samples. This shows that models subjected to the OD attack retain high efficacy on the original
tasks, indicating that hijacking does not induce significant damage to the original tasks. Further-
more, it also shows the stealthiness of the attack, as victims are unlikely to detect the hijacking task

7
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Figure 3: The results between our method, the clean model, and the CAMH (He et al., 2025) ap-
proach under IPC = 50. The first row presents results using the ResNet18 architecture, while the
second row displays results obtained with VGG16. Each figure is labeled in the sequence of the
original dataset followed by the hijacking dataset. These results show that the OD attack preserves
high hijacking performance even with limited samples, while delivering considerable utility.

Figure 4: The results of OD attack. The X-axis represents different IPC settings, and the Y-axis
represents the percentage (%). The first row presents results using the ResNet18 architecture, while
the second row displays results obtained with VGG16.

with the utility metric alone. Meanwhile, the ASR captures the model’s efficacy in performing the
hijacking task. Compared to CAMH, under IPC = 50, the ASR for simple datasets in our OD ap-
proach surpasses 95%, whereas CAMH achieves only approximately 40%, highlighting the superior
hijacking effectiveness of the OD attack. However, as illustrated in Figure 3(c) and 3(f), when the
hijacking dataset is Tiny-ImageNet, the ASR declines markedly for both OD and CAMH, yet our
method still yields over 60%.

4.2.2 IMPACT OF IPC

To assess whether OD Attack can effectively reduce the number of required osmosis samples, we set
the IPC to 1, 10, 25 and 50. To evaluate the performance of the OD attack, we train a clean model
just using the clean dataset with IPC = 50, which serves as the experimental control.

Fig. 4 (a,b,d,e) illustrates the utility and the ASR performance for both the original and hijacking
datasets with 10 classes, evaluated under different model architectures and IPC settings. Fig. 4 (c,f)
presents results using datasets with 100 classes as an example. As shown in the figures, the utility

8
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performance of all datasets on their original tasks after the OD attack closely approximates that of the
clean model, with differences that are negligible for distilled datasets. Furthermore, the ASR reflects
the model’s performance in executing the hijacking task. For all datasets with 10 classes, the ASR
exceeds 96% when IPC = 50 (as shown in Fig. 4), demonstrating the robust capability of the OD
attack. However, for datasets with 100 classes, the ASR decreases but still surpasses 60%. Fig. 4 (a-
c) presents the experimental results of the OD attack under the ResNet18 architecture, while Fig. 4
(d-f) shows the results under VGG16. A vertical comparison reveals that, even when the victim
model is changed, the OD attack maintains strong ASR and utility performance, demonstrating its
robustness across different model architectures.

4.2.3 IMPACT OF DATASET CORRELATION

To investigate the impact of dataset differences on the OD attack, we designed two groups of ex-
periments. The first group is set under the condition where the original dataset and the hijacking
dataset are unrelated, using CIFAR-10 as original task and SVHN as the hijacking task. The second
group is set under the condition where the original dataset and the hijacking dataset are related, us-
ing CIFAR-100 as the original task and CIFAR-10 as the hijacking task. Moreover, both groups is
set to IPC = 50.

To provide a more intuitive illustration of the differences among the CIFAR-10, CIFAR-100 and
SVHN datasets, we visualize the distribution variations across these datasets using t-SNE (as shown
in Fig. 7). It is evident that, in the first group of experiments, SVHN and CIFAR-10 exhibit larger
distribution differences, whereas in the second group, CIFAR-10 and CIFAR-100 show similar dis-
tributions. Furthermore, Fig. 8 presents the results under the two different settings. Fig. 8 (a) corre-
sponds to the case where the datasets are unrelated, while Fig. 8 (b) corresponds to the case where
the datasets are related. In both groups the ASR exceeds 97%, and the utility is comparable to that of
the clean model. Notably, the ASR in Fig. 8 (b) is slightly higher than Fig. 8 (a), which is attributed
to the high similarity between the CIFAR-10 and CIFAR-100 datasets. Through our experiments,
we demonstrate that the OD attack exhibits strong attack performance regardless of whether the hi-
jacking dataset is related to the original dataset, highlighting the generalization capability of the OD
attack.

5 DISCUSSION

In realistic scenarios, victims could employ third-party distilled datasets from open-source platforms
(e.g., Hugging Face 1, Kaggle 2) or purchased from external providers to train or fine-tune models.
However, these victims are typically unaware that such datasets could contain embedded malicious
tasks. This issue is especially pronounced following an OD attack, as the distilled datasets preserve
the visual characteristics of the original task, making the presence of hijacking much harder to detect.
Consequently, while distilled datasets can lower training costs, they also introduce risks of model
hijacking and, more critically, potential legal liabilities.

6 CONCLUSION

In this paper, we introduce OD attack, a novel model hijacking attack method. OD attack integrates
model hijacking with dataset distillation, leveraging distilled osmosis samples to significantly reduce
the requirement of poisoned samples. We evaluate the OD attack across multiple datasets and model
architectures. The experimental results demonstrate that OD attack can successfully execute the
hijacking task while minimizing the impact on the performance of the original task. We hope that
the OD attack serves as a cautionary example to emphasize the security risks that model hijacking
poses to dataset distillation and urge caution in using third-party or unverified synthetic datasets.

1https://huggingface.co/datasets/devrim/dmd cifar10 edm distillation dataset/tree/main
2https://www.kaggle.com/datasets/ericdeuber/nhl-2nd-period-and-final-scores
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A APPENDIX

A.1 THE USE OF LLMS STATEMENT

We declare that in the preparation of this manuscript we only used LLM to refine grammar and
phrasing, as well as to generate suggestions for potential revisions. All content and conclusions
presented in this paper were independently determined by the authors and have been verified by all
authors. Furthermore, all outputs generated by the LLM were carefully reviewed by the authors. In
addition, we did not provide any third-party confidential information or materials intended solely
for review purposes to any models.

A.1.1 IMPACT OF THE TRAJECTORY LOSS.

During the distillation process, we employed a training trajectory matching method to ensure that the
distilled osmosis samples retained the features of the hijacking samples. To verify the necessity of
incorporating this training trajectory matching approach and its potential to enhance the performance
of the OD attack, we conducted ablation experiments. In these experiments, we selected CIFAR-10
as the original dataset and MNIST as the hijacking dataset. The results in Fig. 6 clearly demonstrate
that the ASR of the model trained with samples that have the training trajectory information is
significantly higher than that of the model trained without it. This indicates that adopting training
trajectory matching is crucial for the OD attack. Furthermore, as shown in Fig. 6, incorporating
training trajectory matching does not influence the model’s utility, suggesting that our attack imposes
negligible effects on the original task while demonstrating exceptional stealth capabilities.

Figure 5: Visualization of the output of OD attack. Figure (a) shows the samples of the Original
dataset, figure (b) shows the samples of the hijacking dataset, and figure (c) shows the distilled
osmosis samples.
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Table 1: Notations

Symbols Definitions

xo Original samples
xh Hijacking samples
xc Osmosis samples

xc syn Distilled osmosis samples
Do Original dataset
Dh Hijacking dataset

Dc syn Distilled osmosis dataset
F(xc) Feature extractor for osmosis samples
F(xh) Feature extractor for hijacking samples

Figure 6: The results of the ablation study on whether training trajectory matching is used during
the distillation stage, with CIFAR-10 as the original dataset, MNIST as the hijacking dataset, and
IPC = 50.
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Figure 7: Visualization of comparing different datasets using t-distributed Stochastic Neighbor Em-
bedding (t-SNE)

Figure 8: Experimental results on dataset correlation
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