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ABSTRACT

A lasting critique of deep learning as a model for biological intelligence and learn-
ing is the biological implausibility of backpropagation. Backpropagation requires
caching local outputs and propagating a global error via derivatives, neither of
which are known to be implemented by biological neurons. In reinforcement
learning, building more biologically plausible agents would allow us to better
model human cognition and social behavior, and improve computational efficiency.
We propose Local-Forward, a new temporal-difference learning algorithm (and
associated architecture) that trains neural networks to predict Q-values. Rather
than backpropagating error derivatives, we rely on updates that are local to each
layer of the architecture and additionally use forward connections in time to pass
information from upper layers to lower layers via activations. Our approach builds
on the recently proposed Forward-Forward algorithm, as well as recurrence and
attention in neural architectures. This approach no longer suffer the aforementioned
contradictions with biology. Furthermore, as a proof-of-concept, we train reinforce-
ment learning agents with Local-Forward to solve control tasks in the MinAtar
environments, and show that our method’s potential warrants further investigation
because it opens avenues for more computational efficient training.

1 INTRODUCTION

Computer science and neuroscience have long had a reciprocal and mutually beneficial relationship.
Indeed, artificial neural networks were inspired by biologically neural networks and foundational RL
algorithms have close analogues to neurological processes [31]. Although artificial neural networks
share many similarities to biological neural networks, they also differ in many potentially important
ways. One such difference is how training occurs. Biological neural networks are trained through
activation differences [18]. Instead, backpropagation [29] has been the gold standard technique
for training artificial neural networks. Yet, backpropagation computes derivatives of the model
prediction errors via automatic differentiation to update the model parameters and requires backwards
connections in the computational graph, which contradicts known biology.

A recent proposal introduces a more biologically-plausible alternative to training artificial neural
networks – the Forward-Forward algorithm [13]. In training algorithm, each layer of a neural network
is greedily trained to separate positive and negative data using only the activations of that layer.
This local, layer-wise loss still enables layers to learn useful representations for subsequent layers;
Forward-Forward achieves comparable performance to backpropagation at training a fully-connected
network on MNIST [8] and CIFAR-10 [17].

We propose a novel algorithm, Local-Forward, which builds on the Forward-Forward method and
applies it to reinforcement learning [34]. Because Forward-Forward computes local updates rather
than error derivatives (as would be the case in backpropagation), the approach has several potential
advantages. First, it may more readily model human cognition. This has implications for areas of
reinforcement learning; for instance, it allows us to better model interactions between humans and
MARL-agent based models. Second, humans are able to solve many tasks that remain out of reach of
artificial neural networks. Hence, biological plausibility has the potential to uncover new techniques
for training and deploying reinforcement learning agents. Third, limitations of backpropagation make
it computationally-expensive to scale training to increasingly larger models, or take advantage of more
efficient neuromorphic hardware [15]. An algorithm like Forward-Forward may lead to significantly
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Figure 1: Network architecture of a 3-layer Local-Forward network. h[l]
t represents the activations of

layer l at time t, and st the input state. The blocks are Local-Forward cells, whose inner workings are
shown in Figure 2. Unlike backpropagation, loss signals do not propagate across layers or timesteps;
each layer computes its own loss. To relay information, upper layers send their activations to lower
layers in the next timestep. For example, red shows all active connections at t = 1.

more efficient computational graphs for training larger models. As reinforcement learning can be
very compute intense, this is highly desirable.

Local-Forward builds on two ideas from Forward-Forward to design a novel architecture and training
algorithm for deep Q-learning. The first is the local losses to replace the backpropagation of a global
error, and the second is the forward 1 connections in time for sending information to lower layers;
hence, the name Local-Forward. Figure 1 outlines the architecture of a Local-Forward network,
unfolded in time. The structure of the network is similar to a recurrent network, except the forward
connections are downwards, and each layer is a Local-Forward cell (see Figure 2), which contains
additional components for computing the local Q-prediction and TD loss.

To test the capabilities of Local-Forward, we evaluate it in the MinAtar testbed [38], which are
miniaturized implementations of Atari games, and compare its performance against a Deep Q
Network (DQN) [24] trained via backpropagation. The MinAtar environments reflects many of the
challenges faced in deep RL [4], while remaining sufficiently tractable that a simpler architecture
like a fully-connected double DQN can reach good performance, making it ideal for exploring an
alternative to the well-established backpropagation. Our results in Figure 3 show that Local-Forward
achieves close performance to DQN in 4 of the 5 environments, and outperforms the DQN baseline in
one of the environments. To further demonstrate that our algorithm is applicable across environments,
we also performed experiments on several classic RL control environments, as well as MNIST and
CIFAR-10, and show the results in Appendix C and Appendix D.

To summarize our core contributions:

• We propose an alternative to backpropagation for reinforcement learning that suffer less
contradictions with known biology.

• We propose a new architecture and training scheme for Q-learning that builds upon Forward-
Forward. Our algorithm trains a neural network that minimizes TD error using only local
updates, with no gradients propagating between layers. To send information to lower layers,
upper layers utilize connections that send activations forward in time.

• We empirically show that Local-Forward achieves comparable performance with a similar-
sized DQN in our experiments on the MinAtar environments. We further show that the
forward connections are critical to performance. Our proof of concept demonstrate the
learning potential of our Local-Forward approach and architecture.

1"Forward" and "backward" are widely used both to describe direction in time and in the order of layers.
This can be confusing. For the remainder of this paper, we use "forward/backward" when describing time, and
"upper/lower" when describing position among layers.
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2 BACKGROUND

2.1 TEMPORAL DIFFERENCE LEARNING

Formally, we consider a standard discounted infinite horizon Markov Decision Process (MDP) setting
with states S, actions A, a transition kernel p(s′|s, a), a reward function r : S × A → R and a
discount factor γ ∈ [0, 1]. The goal of learning is to obtain a policy π(a|s) that maximizes the
discounted future sum of rewards. The value function Q : S × A → R measures how valuable a
given action a ∈ A is in a given state s ∈ S, and can be used to directly compute a policy. It is
defined via a recursive formula Q(s, a) = r(s, a) + γ

∑
s′ p(s

′|s, a)
∑

a′ π(a′|s′)Q(s′, a′) which
means classic supervised learning methods are insufficient to directly estimate it.

Temporal difference learning (TD learning) methods are a well established family of approaches that
aim to solve the problem of estimating the recursively defined Q function [33]. In their most basic
form, they can be implemented as lookup tables, where an estimate of the Q function is kept for each
state-action pair. When experience in the form of s, a, r, s′ tuples becomes available from interaction
with the MDP, the Q function estimates are updated using the TD error δ(s, a, s′) = r(s, a) +
γ
∑

a′ π(a′|s′)Q(s′, a′)−Q(s, a). The update rule is Qk+1(s, a)← Qk(s, a) + αkδ(s, a, s
′).

In many practical applications, especially real-world interaction like those the human brain is
capable of dealing with, a tabular representation of the Q values for all distinct state-action pairs is
computationally infeasible. In these cases, function approximation, for example via linear regression
or neural networks, is necessary to obtain an estimate of the Q function. These methods, called Fitted
Q Iteration [1] or Deep Q Learning [23], use the squared temporal difference error as a regression
loss L(s, a, s′) = δ(s, a, s′)2 and update a parametric Q function approximation via gradient descent.
To prevent the double sampling bias and other instabilities, only Q(s, a) is updated and the next
states value is estimated with an independent copy Q̄ that is not updated. This is commonly called
the bootstrapped Q loss and can be written down as:

L(s, a, s′, θ) =
(
Qθ(s, a)−

[
r(s, a) + γmax

a′
Q̄θ(s

′, a′)
])2

.

We are particularly interested in exploring methods to progress the biological plausibility of TD
learning algorithms, because TD learning is widely studied as an explanatory model in neuroscience
for biological learning [32; 6]. Empirical evidence suggests that the phasic activity of dopamine
neurons in the midbrain correlates with prediction errors, which can be formalized via TD, and
provides a global learning signal for synaptic modification [10].

2.2 FORWARD-FORWARD LEARNING

The Forward-Forward (FF) algorithm [13] is a greedy multi-layer learning algorithm that replaces the
forward and backward passes of backpropagation with two identical forward passes, positive and
negative. These passes differ only in the data fed through the network and the objective they optimize.
For a positive pass, the update increases the goodness g of that layer. In the case of a negative pass,
the update decreases goodness. While Hinton [13] proposes several measures of goodness, the de
facto measure used is the sum of each squared hidden activation hi of the layer minus a threshold θ,
i.e. g =

∑
i h

2
i − θ. The positive data are real examples while the negative data is ‘fake.’ One way to

generate the fake data is by masking and overlaying real examples. For the MNIST dataset, this could
be combining the top half of a 7 with the bottom of a 6. The goal of the model is to correctly classify
an input as either positive (real) or negative (fake). To optimize each layer’s weights, FF minimizes
the binary cross-entropy loss between the sigmoid of the goodness σ(g) and the ground truth.

Each of the positive and negative pass performs a local update on every layer. Whereas backpropa-
gation is a global algorithm that requires the entire network to be updated at once, the FF is a local
algorithm that updates each layer independently through the use of layer-wise local losses. For a
feed-forward architecture, one glaring issue with this approach is that representations are learned one
layer at a time with no way for later layers to influence earlier ones. One way to address this is to use
a multi-layer recurrent architecture, where for each layer ℓ in the network, the input is determined
by output of the layers above ℓ+ 1 and below ℓ− 1 at the previous time step t− 1. This allows the
network to learn representations in a greedy fashion, but also allows for top-to-bottom information
flow throughout the network.
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Figure 2: Inner workings of our proposed Local-Forward cell (i.e., hidden layer). h[l]
t is the activations

of the cell l at time t, and Q̂
[l]
t is the Q-value prediction. We compute the cell’s activations h[l]

t using
a ReLU weight layer, then use an attention-like mechanism to compute Q̂

[l]
t . Specifically, we obtain

Q̂
[l]
t by having the cell’s tanh weight layers, one for each action, compute attention weights that are

then applied to h
[l]
t . Each cell computes its own error.

3 METHOD

The core purpose of the method is to obtain a TD-learning algorithm that works via purely local
updates; we do not propagate any loss signals between layers of the network. To achieve this, the
network is composed of individual layers that each solve the TD regression problem individually.
We refer to each of these layers as a cell. The cells are connected via their activations, which they
provide as inputs to the next cell (i.e., layer). The whole architecture is summarized in Figure 1.

3.1 CELL INTERNALS

Our network architecture is designed around individual cells which perform local computations with
the squared TD loss. Unlike FF, which separates positive from negative data during training, a binary
classification task, predicting the Q-value is a regression task and requires more precision. Inside
the Local-Forward cells, we use an attention-like mechanism [2] that learns a weighted sum of the
layer’s hidden activations to predict the Q-value. The hidden activations are passed to other cells, but
the attention weights and Q-value are withheld.

The concept of a cell is reminiscent of the design of a recurrent neural network. In our case, there is a
single cell per layer – so we may use the terms interchangeably for clarity of exposition. The vital
difference is that no loss information is propagated between cells via backpropagation, i.e. there is no
backpropagation in time, and the same activations are passed to the cell (i.e., hidden layer) above,
which happens in the same timestep, and the layer below, at the next timestep. In the absence of
backpropagation, these activations provide a pathway for upper cells to communicate information to
lower cells. We discuss in more detail how these connections operate in Section 3.2.

The cell design is presented in Figure 2. Recall that each cell corresponds to a ‘layer’ in a typical
network architecture. Each cell is mechanistically identical and takes in two inputs: the hidden
activations of the cell below at the current timestep (or the observation if at the lowest cell), and the
hidden activations of the cell above at the previous timestep. They produce two identical outputs,
sent to the cell above immediately, and the cell below at the next time step. At the start of an episode,
the activations from the previous timestep are zero. The top cell only receives one input and produces
one output. Our design currently only admits one-dimensional representations. Hence, we leave
extensions to convolutional 2D and 3D networks to future work.

We introduce an attention mechanism [2] to compute the Q-value prediction. Each cell first computes
its hidden activation, h[l]

t , using the layer above’s hidden activations from the previous timestep,
h
[l+1]
t−1 , and the layer below’s hidden activations at the current timestep, h[l−1]

t . Specifically, it passes
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the concatenation of h[l+1]
t−1 and h

[l−1]
t through a ReLU weight layer (shown in Figure 2) to get h[l]

t .
The ReLU weight layer multiplies the concatenated input [h[l−1]

t , h
[l+1]
t−1 ] by its learned weight matrix

W
[l]
in , then applies the ReLU nonlinearity function. Next, the cell passes h[l]

t through the tanh weight
layers, each corresponding to an action a, which multiplies h[l]

t by its learned weight matrix W
[l]
query,

then applies the tanh function. The output of the tanh layers plays a role akin to attention weights,
although they do not have to sum to 1. Finally, the cell takes the inner product between the output of
the tanh layers, tanh(W [l]

query · h[l]
t ), and the hidden activations h[l]

t , to compute the cell’s Q-value
prediction Q̂[l](st, a). This structure is heavily inspired by the successful attention architecture [2],
and allows each cell to attend to the incoming information dynamically per action.

Again, recall that each cell corresponds to a layer of our neural network. Each cell reuses its internal
weights over time, meaning for instance that the matrix W

[1]
in is used at each timestep in the first cell.

However, across cells, weight matrices are independent, meaning W
[1]
in ̸= W

[2]
in .

To summarize, the full computation performed by the cell is:

h
[0]
t = st, h

[L+1]
t = 0, h

[l]
−1 = 0

h
[l]
t = relu

(
W

[l]
in ·

[
h
[l−1]
t , h

[l+1]
t−1

])
Q̂[l](st, a) = tanh

(
W [l]

query · h
[l]
t

)⊺
h
[l]
t

3.2 NETWORK CONNECTIONS

As shown in Figure 1, each cell passes its state to the cell l + 1 above at the current timestep t, and
to the cell l − 1 below in the next timestep t + 1. The information flow is strictly uni-directional
to account for the causal sequence of RL environments. This is necessary as interacting with the
environment happens sequentially, meaning future information will not be available when acting.

Although we do not backpropagate gradients across cells, information does flow from upper layers to
lower layers via the temporal connection. The upper layers use the connections to communicate with
lower layers via activations, which is more biologically plausible [25]. Our results in Section 3 suggest
that these connections can greatly increase network performance in the absence of backpropagation.

3.3 LEARNING ALGORITHM

We formally describe our learning algorithm in Algorithm 1.

Each cell is updated using the Double Q-learning algorithm [36]. This is a simple and robust extension
to the Q-learning algorithm [23] presented in Section 2. In Double Q-learning, the maximization
problem defined to find the optimal next state action is solved over the online network, but the evalua-
tion of that action uses a separate target network. This alleviates overestimation problems commonly
plaguing deep Q-learning, as different networks are used to estimate and evaluate the optimal action.

The loss itself needs not change to be adaptable to our setup. The target network is produced, as in
double DQN implementations, by replicating the proposed network structure per cell and periodically
copying the learned parameters. Different from standard deep Q-learning however, each layer of the
network computes its own local loss and update using a global reward signal. Specifically, the reward
is broadcasted to all cells, and each cell computes their own Q-value prediction, TD-target, and
TD-loss for learning. Globally broadcasting the reward signal to enable local learning is biologically
motivated, imitating reward-learning processes in the striatum, which globally broadcasts reward
signals via dopamine release that induces local updates [19] (see Appendix E for more details).
During inference, the network uses the average Q-values across the layers to produce a final
prediction. This can also be interpreted as a bagging method, in which several weaker regression
models work jointly to compute a prediction.

During training, we use a standard replay buffer which stores every transition observed from the
environment. We replay sequences of short length, similar to how other recurrent architectures are
trained, and compute the local updates for each cell sequentially according to the network graph.
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Algorithm 1 Local-Forward Q-Learning
Initialize replay memory D to capacity N
Initialize action-value functions Q[1], . . . , Q[L] with random weights θ[1], . . . , θ[L]

Initialize target function Q̂[1], . . . , Q̂[L] with weights θ[i]
′
= θ[i] for every i ∈ {1, . . . , L}

for episode 1, M do
Initialize s1 = initial state
for t = 1, T do

With probability ε select a random action at
otherwise select at ∈ argmaxa

1
L

∑L
l=1 Q

[l](st, a; θ
[l])

Execute action at in emulator and observe reward rt+1 and next state st+1

Store experience (st, at, rt+1, st+1) in D
Sample minibatch of K-sized episodic sub-trajectories

(sj−K , aj−K , rj−K+1, sj−K+1), . . . , (sj , aj , rj+1, sj+1)

from D with uniform randomness
Replay states sj−K , . . . , sj−1 through online network to obtain layer activations
h
[1]
j−1, . . . , h

[L]
j−1

Set current layer input x← sj
for layer l = 1, . . . , L do

Set TD target Y [l]
j =

{
rj+1 if episode terminates at step j + 1

rj+1 + γmaxa Q̂
[l]
(
sj+1, Q

[l](sj+1, a; θ
[l]); θ[l]

′
)

otherwise

Set prediction yj ← Q[l](st, aj ; θ
[l]) using x and last activations h[l−1]

t and h
[l+1]
t−1

Perform a gradient descent step on (Y
[l]
j − yj)

2 with respect to the layer parameters θ[l]

Set input for next layer x← h
[ℓ]
j (x)

end for
Every C steps reset θ[i]

′
= θ[i] for every i ∈ {1, . . . , L}

end for
end for

To use the network for environment interaction, we simply keep the recurrent state for each cell and
run the computation again, choosing the maximum action according to the aggregated Q function at
each timestep. We also found it valuable to use ϵ-greedy exploration to obtain more diverse data.

4 EXPERIMENTS

As our main purpose is to demonstrate the potential of a novel architecture and learning algorithm,
rather than achieve state-of-the-art performance, we opt for a simple implementation with few ex-
tensions. Our experiments are designed to support our claim that Local-Forward architecture and
algorithm is a promising alternative to backpropagation – and addresses the latter’s biological im-
plausibility. In particular, we empirically show that Local-Forward cells are able to learn meaningful
representations by optimizing their local TD error. This setup is similar to the evaluation presented
by Hinton [13]. However, we do not use a convolutional network, and the only extension we employ
is Double Q-learning [36] to improve learning stability.

Environments. We run our experiments in the MinAtar [38] environment suite. MinAtar is an
simplified implementation of 5 Atari 2600 games: Seaquest, Breakout, Asterix, Freeway, and Space
Invaders. We use version 1 for all environments. The input frame size is 10× 10, and the n different
objects in each game are placed on separate frames, resulting in a 10× 10× n input observation. All
tasks have discrete action spaces with up to 6 actions.

We select this set of environments because they reflect challenges in solving control tasks with high-
dimensional observations [4], where neural networks are widely adopted, while still remaining simple
enough that convolutional layers are not critical. Although the DQN baselines published by [38]
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Figure 3: Episodic returns of Local-Forward, DQN, Local-Forward without forward connections, and
single layer Local-Forward cells on the MinAtar environments. Lines show the mean episode reward
over 10 seeds and the shaded area conforms to 3 standard errors of the mean.

are obtained using a convolutional neural network (CNN), a larger DQN with only fully-connected
layers can solve all tasks with comparable or stronger performance.

DQN baseline. We compare our results against a fully-connected DQN to make performance
comparisons more direct and informative. As the original baselines by Young & Tian [38] used
a CNN, for fairness of comparison, we replaced the CNN with fully-connected layers, and tuned
hyper-parameters for the new architecture. We find that the new architecture is consistently as good
or better than the one presented by Young & Tian [38]. In particular, we use a double DQN with
3 hidden layers of 1024, 512, and 512 hidden units with ReLU activations. This baseline achieves
strong performance and has a similar number of trainable parameters as our networks.

Network architecture and hyperparameters. We use a 3 hidden layer network with forward
activation connections. The cell output sizes are 400, 200 and 200. Because we have additional
connections within cells, and from upper cells to lower cells, this yields a similar number of trainable
parameters as the DQN (see Appendix B). To study the performance effects of the forward connections
to lower layers, we also run experiments using the same network without these connections.

We train agents in each environment for 5 million time steps, with a data-to-update ratio of 4.
We use a learning rate of 10−4, Adam optimization with a warmup scheduler and annealing, an
exploration fraction of 0.1, and ϵ-greedy exploration that anneals from 1.0 to 0.01. For more details,
see Appendix A. We use the same network and hyperparameters for all 5 environments to test the
robustness of our architecture and learning algorithm across similar environments.

5 RESULTS

We present the results of Local-Forward on MinAtar environments in Figure 3, and compare its
performance against DQN, Local-Forward without the forward connections to lower layers, and a
single layer Local-Forward cell.

Comparison against DQN baseline. We find that the Local-Forward algorithm is able to learn
stable policies reliably in all test environments. Our agent achieves comparable performance to DQN
on MinAtar’s Breakout, Asterix and Freeway, slightly surpassing DQN’s performance on Asterix and
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Freeway, while DQN shows stronger performance in Seaquest and Space Invaders. Our findings here
are slightly surprising as our DQN baseline strongly outperforms the results presented by Young &
Tian [38], which leads us to believe that the exact network architecture and hyper-parameter tuning
method might be important to consider for future experiments with this benchmark suite.

However, it is promising that Local-Forward matches or outperforms benchmark DQN MinAtar
results presented by both Young & Tian [38] and [4], which leads us to believe that the method can be
a viable alternative approach to backpropagation in deep reinforcement learning if further explored.

Forward connections to lower layers. To further measure the performance impact of the forward
connections in time, we compared the temporal forward version of the network with the performance
of a 3-layer Local network using only upward connections and no forward connections. All other
hyper-parameters are the same as the recurrent 3-layer Local-Forward network. This results in a
moderate drop in performance in SpaceInvaders and Breakout, but devastating drops in Seaquest
and Asterix. This strongly suggests that the information channels from the upper to lower layers is
vital for performance for many tasks. On this same note, Local-Forward’s ability to achieve similar
performance to DQN when the forward connections are added suggest that forward connections may
be an effective replacement for backpropagation in certain environments.

In Seaquest, where the performance gap is most apparent, the agent’s struggle may be attributed
to the failure of learning the resurfacing mechanism, which traps it at a local minima. In this
environment, the agent must regularly resurface while carrying a diver to replenish oxygen. In
the short term, the agent can acquire more reward if it prioritized attacking enemies, rather than
managing oxygen, but if it runs out of oxygen the episode ends. We observed that the Local-Forward
agent without forward connections and the single layer agent both struggled to manage oxygen, often
resurfacing randomly or without first acquiring a diver. In contrast, the Local-Forward agent with
the forward connections learns to manage their oxygen more optimally, and often sacrifice short-term
rewards to maintain higher oxygen. In fact, during some trials the Local-Forward agent became
ultraconservative with oxygen, which led to the agent surviving on average over 1500 timesteps per
episode over several thousand episodes before it changed strategy. Interestingly, this same behavior
was not observed in DQN agents, whose average episode lengths are consistently under 800. This
suggests that Local-Forward has the potential to learn completely different policies from DQN.

Similarly, in Asterix, we observed that the agent without forward connections struggles to adapt
to increased difficulties as the game progresses and the enemies increase. As training progresses, the
agent’s performance decreases as it unsuccessfully tries to find a strategy for later stages of the game.

However, in Freeway the forward connections seem to have minimal impact on the Local-Forward
agent’s performance. This is likely a result of the relative simplicity of the environment, and its
fixed-episode length format. Unlike the other environments, the episode length of Freeway is fixed
at 2500 timesteps, and agents receive reward each time they successfully cross a road during the
episode. Once the agent nears an episodic return of 60, it cannot further increase performance,
because there is no time to earn more reward even with a near optimal policy. This is reflected in
the steep increases in returns in the early phase of learning, followed by rapid flattening. Therefore,
both the DQN and Local-Forward agent has no room to pull ahead in performance from the others.

Single layer performance. Another important question about the presented architecture is whether
the majority of the learning is accomplished by the lowest cell which is directly supplied with the
state. In that case, the inner attention mechanism of the cell can function like a shallow, two layer
fully-connected network, which can perform well in simpler RL environments.

Our ablation study of a single layered cell shows that it is insufficient to achieve strong performance on
any of the benchmarking tasks. In all environments, including the simpler Freeway, there are notable
gaps between the performance of the single layered cell and the 3-layer Local-Forward network, show-
ing that the multi-layer architecture with forward connections provide crucial performance benefits.

Additionally, like the Local-Forward network without forward connection, the single layer cell also
struggles at Seaquest and Asterix, while the Local-Forward network with the connections thrive.
This also provides circumstantial evidence to support the hypothesis that both the multi-layered
architecture and the forward connections are essential, and that the forward connections can convey
meaningful information to lower layers directly via activations for coordinating learning.
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6 LIMITATIONS

We make progress towards biologically plausible deep RL by replacing backpropagation with local-
only losses and forward connections in time. The latter allow us to pass information to lower layers.
However, our model does not capture all aspects of biological neural networks.

For example, biological neural networks have backward connections that allow for hierarchical
predictive coding and the updating of weights through the comparison of pre- and post- synaptic
weights [5]. The additional loss function that captures this comparison minimizes the difference
between predicted and actual activations. Instead, the model we propose analyzes local losses based
on TD errors alone. Additional work will be required to consider other aspects of biological cognition,
such as Hebbian learning [12]. Doing so may affect local losses. For instance, a tension between
the Hebbian (contrastive) loss and error driven loss could arise within different components of the
architecture, which would make it difficult to scale to larger models. Careful consideration will thus
be required as to the choice of specific error that each component is sensitive to.

While we do not propagate any loss signal between cells, within each cell we use an attention-like
mechanism [2] to compute the Q-value predictions. This attention-like mechanism is trained via
backpropagation, albeit we only propagate through one layer: the loss signal for the ReLU weight
layer is propagated through the tanh weight layer. Given that the architecture of this mechanism
is very simple, it is likely possible to replace backpropagation as the training algorithm for this
mechanism with a more biologically plausible alternative, such as Difference Target Propagation [9]
or Equilibrium Propagation [30]. We plan to explore this direction in future work.

We present this work as an alternative pathway into finding learning architectures and algorithms.
In this sense, the paper serves a both an investigation into components that are closer to biological
structures, as well as a proof-of-concept that shows this learning paradigm can perform at least as
well as established algorithms as DQN. We do not claim state-of-the-art performance over more
recent algorithms, as this is a radically departure from established algorithms and more time would
be needed to match the performance of algorithms like Rainbow or MuZero. But we believe that our
results show that this alternative is feasible and promising.

7 RELATED WORK

While many early RL algorithms are strongly inspired by neuroscience [37; 7], the machine learning
literature has since diverged from these roots and focused strongly on combining reinforcement
learning with modern neural networks to produce competitive algorithms [22; 21; 11] for benchmark
suits like the Arcade Learning Environment [3] or the DeepMind Control Suite [35].

Biologically inspired learning algorithms seek to reconnect machine learning with neurobiology.
Similar to our work, [28] proposes an alternative to backpropagation for deep Q-learning that is
more biologically plausible, based on the Neural Generative Coding framework [27]. Other related
approaches for more plausible deep learning include Feedback Alignment [20], which addresses the
weight transport problem of backpropagation [20], target propagation [18], which generates local
errors, and SoftHebb [16], which uses Hebbian learning.

8 CONCLUSION

We proposed Local-Forward, a deep Q-learning algorithm and architecture that alleviates several
contradictions between deep RL and biological learning, particularly due to the biological implausi-
bility of backpropagation. Each Local-Forward cell computes its own local TD error, based on the
difference between its prediction and the TD target. The TD target is provided to all cells; in parts
of the brain this could be achieved by a global signal via dopamine neurons. To send information
to lower layers, upper layers send their activations forward in time to the layer below, hence the
name Local-Forward. We empirically showed that Local-Forward can learn control tasks in the
MinAtar environments, and even surpasses a similar-sized DQN in performance in 2 environments.
Thus, we believe it warrants further investigation. We outline some areas for investigating potential
improvements in our limitations.
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A MODEL HYPERPARAMETERS

We show the hyperparameters of the Local Forward networks and DQN used in our MinAtar
experiments.

Hyperparameter Local Forward DQN
Learning rate 10−4 10−4

Exploration fraction 0.1 0.1
Final epsilon at end of exploration 0.01 0.01
Loss function Mean squared error Mean squared error
Max gradient norm 1.0 1.0
Batch size 512 512
Gamma 0.99 0.99
Training frequency 4 4
Replay buffer size 5× 106 5× 106

Target network update frequency 1000 1000

We also use a learning rate scheduler for both networks, which linearly increase learning rate
to 10−4 in 500000 steps, then cosine decay until 3 × 10−5 over remaining training steps. These
hyperparameters were jointly tuned and shared by both the baseline DQN and Local-Forward network.

B NUMBER OF TRAINABLE PARAMETERS

In Section 4, we stated that we used a 3-layer Local-Forward network with output sizes 400, 200 and
200 respectively, and that we chose these sizes to yield a similar number of trainable parameters as the
DQN with 1024, 512 and 512 units for fairer comparison. Here we provide the detailed calculations.

Since each MinAtar environment differs slightly in number of input channels and size of action space,
the the number of parameters also vary slightly across environments. Assuming an environment with
4 input channels and 3 actions, the number of trainable parameters for the DQN is 10× 10× 4 (input
size) ×1024 (first layer weights) +1024 (first layer biases) +1024× 512 (second layer weights, etc.)
+512 + 512× 512 + 512 + 512× 3 (actions) +3 = 1, 199, 619.

The number of trainable parameters for the Local-Forward (LF) network is (10 × 10 × 4 + 200)
(input size + size of hidden activations of second layer from last time step) ×400 (first layer LF cell
ReLU weight layer weights) +400 (first layer LF cell ReLU weight layer biases) +3× 400× 400
(first layer LF cell tanh weight layer weights) +3 × 400 (first layer LF cell tanh weight layer
biases) +(400 + 200) (first layer output size + size of hidden activations of third layer from last time
step) ×200 (second layer LF cell ReLU weight layer weights, etc.) +200 + 3× 200× 200 + 3×
400 + 200× 200 + 200 + 3× 200× 200 + 3× 200 = 1, 123, 200.

C EXPERIMENTS ON CLASSIC CONTROL ENVIRONMENTS

Beyond the MinAtar testbed, we also evaluate Local-Forward on 4 classic control environments: Cart
Pole (also known as inverted pendulum), Mountain Car, Lunar Lander, and Acrobot, and compare its
performance against DQN. We show our results in Figure 4.

The main purpose of these experiments is to further support Local-Forward’s robustness across
different RL environments, and indirectly compare its performance against Active Neural Generative
Coding (ANGC) [28], another biologically-inspired deep RL algorithm that provides a more plausible
alternative to backpropagation. [28] evaluates ANGC in 4 environments: Cart Pole, Mountain Car,
Lunar Lander, and a custom robot-arm-reaching environment. As [28] has yet to publicly release
the code for their ANGC agent, we are unable to directly evaluate ANGC on the MinAtar testbed to
compare performance; thus, we instead evaluate Local-Forward on ANGC’s environments.

In addition, we implement 2 DQNs with different hyperparameters as baselines for comparison: first
is CleanRL’s reference DQN for classic control problems [14], and second is the DQN tuned by [28]
for comparison against their ANGC agent, which we refer to as ANGC’s DQN. The CleanRL DQN
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Figure 4: Episodic returns of Local-Forward, CleanRL’s DQN, and ANGC’s DQN. Lines show the
mean episode reward over 10 seeds and the shaded area conforms to 3 standard errors of the mean.

provides a well-established, publicly-vetted baseline, whereas ANGC’s DQN serves as a reference
point for us to indirectly compare Local-Forward’s performance with ANGC.

To better demonstrate Local-Forward’s robustness across environments, we use the same set of
hyperparameters for each of the environments. Specifically, we use a 2-layer Local-Forward network,
with output sizes 128 and 96, a fixed learning rate of 2.5e−4 with Adam optimization, an exploration
fraction of 0.2, and final epsilon of 0.05. All other hyperparameters are the same as our network
for MinAtar, shown in Appendix A. As neither CleanRL nor ANGC’s DQN uses a learning rate
scheduler, we also removed ours for better comparison. CleanRL’s DQN is a 2-layer network with
120 and 84 units; the same DQN is used for all 4 environments. ANGC uses different 2-layer DQNs
for each of their environments, which they tuned for environment-specific performance. Their Cart
Pole DQN has 256, 256 hidden units; Mountain Car has 256, 192, and Lunar Lander 512, 384.
For Acrobot, we used the same hyperparameters as the Cart Pole DQN, given the similarity of the
environments, which worked well. For more hyperparameter details, we refer the reader to [14]
and [28]; both works present excellent detail.

We made two adjustments when reproducing CleanRL and ANGC’s DQNs. First, since Local-
Forward utilizes double Q-learning to improve its learning stability, for better comparison, we also
enhanced both DQNs with double Q-learning, given that it is a simple enhancement without additional
computational costs. Second, specific to ANGC’s Cart Pole DQN, we found that the agent’s learning
has very high variance with the given hyperparameters, and the agent does not consistently achieve
high performance. To counter this, we decreased the learning rate from the provided 5e−4 to 2.5e−4,
and increased the target network update frequency (referred to as C in [28]) from 128 to 500, which
is CleanRL’s value. This improved both the agent’s stability and average return.

Our results in Figure 4 show that Local-Forward achieves strong performance across all 4 tasks,
learning more stably and achieving higher average episodic return than the DQNs in all environments.
Most notably, in comparison to DQN, Local-Forward more consistently reaches the maximum 500
return in Cart Pole, and achieves significantly higher return in Mountain Car. It also surpasses DQN’s
performance slightly in both Lunar Lander and Acrobot. These results suggest that Local-Forward is
highly competitive against ANGC in these tasks.

We are in contact with the authors of [28], and look forward to performing more direct comparisons
between Local-Forward and ANGC once their code is publicly released. As ANGC and Local-
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Dataset Hidden activations Layer 1 Layer 2 Layer 3 Layer 4
MNIST 500 0.9848 0.9862 0.9865 0.9867

MNIST 1000 0.9834 0.9860 0.9866 0.9870

MNIST 2000 0.9834 0.9862 0.9878 0.9874

CIFAR-10 500 0.4715 0.5234 0.5394 0.5501

CIFAR-10 1000 0.4750 0.5358 0.5496 0.5588

CIFAR-10 2000 0.4841 0.5440 0.5610 0.5725

Table 1: Test accuracy of each layer of 4-layer Local-Forward networks trained on MNIST and
CIFAR-10. Each layer has the same number of hidden activations; for example, the first row refers to
a Local-Forward network with layers of 500, 500, 500, and 500 activations. Since each layer makes
its own prediction, we can easily see how performance increases per layer.

Forward learn with different signals, they are not competing approaches, and may possibly be
integrated to achieve greater performance– we also look forward to exploring this potential.

D EXPERIMENTS ON MNIST AND CIFAR-10

To further investigate the generalizability of Local-Forward across different learning tasks, we also
evaluate Local-Forward on two supervised learning datasets, MNIST and CIFAR-10, and present our
results here. Q-learning is a regression problem; to adapt our architecture to solve these classification
problems, we simply change the loss function to cross entropy, and make each of the tanh weight
layers correspond to a class, instead of an action. Using a 4-layer Local-Forward network with output
sizes 2000, 2000, 2000 and 2000, we achieved 98.74% test accuracy on MNIST, and 57.25% test
accuracy on CIFAR-10. These results are in line with the results achieved by Forward Forward in [13].

We show our results with different sized networks in Table 1. As each layer in the network makes its
own prediction, we additionally show the test accuracy of every layer. Remarkably, for almost every
network size, the test accuracy steadily increases per layer. Like our experiments in RL, this supports
that Local-Forward cells can learn to coordinate with each other for better performance without the
need to backpropagate error signals across layers.

For clarity, we want to note that these experiments are performed simply to add another perspective
to evaluate the robustness of Local-Forward’s learning across tasks. Local-Forward is intentionally
designed for Q-learning, rather than supervised learning, as it imitates biological processes of
reward-based learning.

E BIOLOGICAL INSPIRATION OF LOCAL-FORWARD

Here we elaborate on the connections between neurobiology and Local-Forward. Local-Forward
is heavily biologically inspired. We saw a potential connection between the design principles of
Forward-Forward (FF) [13] and biological reward-based learning via striatic dopamine release;
Local-Forward is our attempt to synthesize the two to improve deep Q-learning.

FF provides an alternative to backpropagation that is more biologically plausible and computationally
efficient, because it does not suffer from weight transport [20] or update locking [28]. Like Local-
Forward, FF globally broadcasts the target to each layer of the network, which each computes their
own local loss and updates. However, FF does not provide a biologically plausible explanation
on how the target signal can be globally broadcasted in the brain. Interestingly, recent research
in neuroscience by [19] found that in the striatum, dopamine release can be a global signal that
induces local changes to reward stimulation, providing a potential answer in the case of reward-based
learning. Additionally, biological reward-based learning has close ties with TD-learning, which is
used as an explanatory model for dopamine-induced synaptic modifications in the striatum [32]. The
alignment between FF’s principle of globally-induced local learning, and evidence of biological
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globally-induced local modifications for reward-based learning in the brain, is the central biological
insight that motivated us to develop Local-Forward as a Q-learning algorithm.

To be clear, we do not believe that Local-Forward plausibly represents the complete reward-learning
process in the striatum. Unlike backpropagation, the brain likely utilizes multiple types of learning
in conjunction, both supervised and unsupervised, using local and global signals [26]. Local-Forward
only models one type of learning, i.e. error-driven learning using global reward signals to induce local
updates. Other biologically plausible algorithms, such as ANGC [28], may provide explanations to
other types of biological learning. Indeed, aspects of Hebbian learning or active inference are likely
critical to achieving a full biologically plausible, efficient, and powerful learning system. In that
light, we examine Local-Forward here not to replace other methods, but to demonstrate that this one
principle alone is sufficient to be able to solve some complex RL tasks nearly as well as backprop. We
believe that a key to achieving general, human-like intelligence will be the integration of these different
learning methods and learning signals; this is an exciting direction we aim to explore in future work.
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