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Abstract

Learning a nonparametric system of ordinary differential equations from trajectories in a
d-dimensional state space requires learning d functions of d variables. Explicit formulations
often scale quadratically in d unless additional knowledge about system properties, such
as sparsity and symmetries, is available. In this work, we propose a linear approach, the
multivariate occupation kernel method (MOCK), using the implicit formulation provided by
vector-valued reproducing kernel Hilbert spaces. The solution for the vector field relies on
multivariate occupation kernel functions associated with the trajectories and scales linearly
with the dimension of the state space. We validate through experiments on a variety of
simulated and real datasets ranging from 2 to 1024 dimensions. MOCK outperforms all
other comparators on 3 of the 9 datasets on full trajectory prediction and 4 out of the 9
datasets on next-point prediction.

1 Introduction

1.1 Description of the problem

The task of learning dynamical systems derived from ordinary differential equations (ODEs) has garnered
a lot of interest in the past couple of decades. In this framework, we are often provided noisy data from
trajectories representative of the dynamics we wish to learn, and we provide a candidate model to describe
the dynamics. We present a learning algorithm for the vector field guiding the dynamical system that scales
linearly with the dimensionality of the dynamical system’s state space.

1.2 State of the art

We compare MOCK to various dynamical systems learning methods, including sparse identification of
nonlinear dynamics, reduced order models, deep learning methods, and neural ODEs. These methods learn
system dynamics from trajectories in the state space with good accuracy, scale to tens, hundreds, or thousands
of state dimensions, and are robust to noise. A detailed description of the comparators is presented in section
4.4 and in appendix G.

1.3 Main contributions

We propose to use MOCK to learn dynamical systems. This method scales linearly with the number of
dimensions of the state space. Building upon Rosenfeld et al. (2019a;b); Russo et al. (2021), we provide a
derivation with the help of vector-valued Reproducing Kernel Hilbert spaces (vvRKHSs) which allows for a
reduction in computational complexity in special cases and extensions to physics informed kernels. We also
emphasize the simplicity of the algorithm and demonstrate competitive performance on high-dimensional
data, as well as noisy data. Finally, in section 5 we craft a vvRKHS for learning divergence-free vector fields,
demonstrating the versatility of the MOCK method.

Rosenfeld and Russo extend the setting of ridge regression to the case of learning a vector field us-
ing snapshots of trajectories, as presented in the paper Rosenfeld et al. (2019a) and the follow-up paper
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Rosenfeld et al. (2024). In both papers, a finite basis set of vector-valued functions was used to learn the
unknown slope field. The provided solution is equivalent to optimizing in a vvRKHS with an explicit kernel.
Using an I-separable kernel, we allow our parameter count to increase linearly with the state space dimension
(d) while maintaining computational complexity that increases only linearly in d. In contrast, the model
proposed by Rosenfeld and Russo requires computational complexity to increase cubically with the number
of parameters of the learned model.

In addition, we generalize this work to arbitrary matrix-valued kernels. Note that we keep the least square
setting of ridge regression while in Rosenfeld et al. (2024), Rosenfeld and Russo used a more general weak
formulation with Liouville operators. We create a benchmark and compare MOCK against the state-of-the-art
algorithms. We also benchmark several kernels, including Gaussian, Laplace, Matérn, and random Fourier
features. Lastly, in section 5, we present an application where the vvRKHS is made of divergence-free kernels.
Using simulated data, we present an experiment in which the use of a divergence-free kernel improved the
recovery of the vector field compared to an ordinary kernel.

Without any restriction on the vvRKHS, learning a vector field with MOCK requires solving an (Nd,Nd)
system, where N is the total number of snapshots and d is the dimension of the state space. Improvements
can be obtained when the kernel is a tensor product of univariate kernels. In this case, one needs to solve d
(N,N) linear systems. When the univariate kernel is explicit, one can instead solve d (q, q) linear systems.
By contrast, Russo and Rosenfeld considered a loss equivalent to the case of an arbitrary explicit vvRKHS
without the Kronecker product structure. This has the drawback of requiring a runtime that scales cubically
with the total number of parameters in the model (requires solving a dq × dq linear system). This is also
shared by SINDy and the explicit forms of DMD.

2 Background

2.1 vvRKHS for modeling vector fields

Scalar RKHSs are spaces of real-valued functions made popular for their use in constructing the kernelized
support vector machine classifier Schölkopf & Smola (2002) chapter III. Scalar RKHSs generalize to vvRKHSs
and provide simple nonparametric models for vector fields. A matrix-valued kernel fully characterizes a
vvRKHS. The choice of this kernel is left to the user and allows for encoding various properties of the
functions in the corresponding vvRKHS. Choosing a kernel with Lipschitz continuous diagonal elements
guarantees that all functions in the vvRKHS H are Lipschitz continuous. This, in turn, guarantees the local
existence and uniqueness of the solutions to the associated ordinary differential equation ẋ = f(x) where
f ∈ H, see Lahouel et al. (2022). Furthermore, one may allow the inclusion of physics-inspired constraints
into the function space by appropriately choosing the kernel, and an example of a divergence-free vvRKHS is
provided in section 5. Kernels come in two forms: implicit and explicit. The former implicitly characterizes a
mapping from Rd to a Hilbert space, which can be of infinite dimension. Examples include the family of
Matérn kernels, which contain the familiar Gaussian and Laplace kernels. The latter explicitly characterizes
a mapping from Rd to Rp for some p. Examples include polynomial kernels and random Fourier features.
Both kernel types will be used in the experiments in section 4. We now provide a mathematical presentation
of kernels and vvRKHSs.

2.2 Vector-Valued RKHS (vvRKHSs)

Definition 1. Let M(d,d) be the set of (d, d) matrices, d ≥ 1. A positive definite matrix-valued kernel K is a
mapping: X × X 7→M(d,d), such that

1. symmetric: K(x, x′) = K(x′, x)T , for any x, x′ ∈ X ; MT denotes the transpose of the matrix M .

2. positive definite: for any x1, . . . , xn in X , and for any w1, . . . , wn in Rd,∑
i,j

wT
i K(xi, xj)wj ≥ 0 (1)
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The simplest kernels are the separable kernels

K(x, x′) = k(x, x′)A (2)

where k is a positive definite scalar kernel and A is a positive semi-definite (PSD) matrix. When A = I, H is
made of d copies of the RKHS of k. We call such a kernel I-separable. If the kernel k(x, x′) is an explicit
kernel (can be written as ϕ(x)Tϕ(x′) for some function ϕ : Rd → Rq) it has the additional properties:

K(x, x′) = ϕ(x)Tϕ(x′)I (3)
=
(
ϕ(x)Tϕ(x′)

)
⊗
(
IT I

)
(4)

= (ϕ(x)⊗ I)T (ϕ(x′)⊗ I) (5)

where ⊗ denotes the Kronecker product. Defining Ψ(x) : Rd → Rqd×d by

Ψ(x) = ϕ(x)⊗ I, (6)

we see that the matrix-valued explicit kernel is

K(x, x′) = Ψ(x)T Ψ(x′) (7)

All kernels used in our experiments in section 4 are of the I-separable form, while the divergence-free kernel
in section 5 is not an I-separable kernel. There are three ways to characterize a vvRKHS. They are presented
in appendix D for completeness. Here, we briefly present the construction using the Riesz representation
theorem, which is critical in developing the MOCK algorithm.
Definition 2. Let H be a Hilbert space of functions X → Rd. We denote by ⟨·, ·⟩ the inner product in H and
∥·∥H or simply ∥·∥ the associated norm. Critically, we assume that for any x ∈ X , the evaluation functional
f 7→ f(x) is continuous, that is, there is a constant Mx ∈ R, such that

∥f(x)∥Rd ≤Mx ∥f∥H (8)

for all f ∈ H. Then, using the Riesz representation theorem, for any direction v ∈ Rd, there exists a unique
function in H denoted ϕ∗

x,v such that
vT f(x) =

〈
f, ϕ∗

x,v

〉
(9)

Define the matrix-valued kernel K such that

Kij(x, x′) =
〈
ϕ∗

x,ei
, ϕ∗

x′,ej

〉
, i, j = 1 . . . d (10)

where e1, . . . , ed is the natural basis of Rd. Then K is a kernel, H is the vvRKHS of K and ϕ∗
x,v(·) = K(·, x)v.

The reproducing property of the kernel is, for any f ∈ H, x ∈ X , and v ∈ Rd,

vT f(x) = ⟨f,K(·, x)v⟩ (11)

.

2.3 Occupation kernel functions for vvRKHS

The notion of occupation kernel functions, introduced in Rosenfeld et al. (2019a), is central to this work. Let
H be a vvRKHS of functions Rd → Rd with kernel K. Consider a parametric curve x : [a, b]→ Rd, t 7→ x(t)
and define the operator Lx from H to Rd, Lx(f) =

´ b

a
f(x(t))dt. Lx is linear. If x 7→ Kii(x, x) is continuous

for each i = 1 . . . d, then Lx is also continuous1. For each v ∈ Rd, the occupation kernel function of the curve
x in the direction v, denoted L∗

x,v is then defined as the element in H such that vTLx(f) =
〈
f, L∗

x,v

〉
for all

f ∈ H. By the Riesz representation theorem, this element exists and is unique.
1A derivation is provided in appendix D.1
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Let us now provide a useful characterization of L∗
x,v in terms of the curve x, the vector v and the kernel

matrix K. Note that for any w ∈ Rd

wTL∗
x,v(y) =

〈
L∗

x,v,K(·, y)w
〉

=
〈
K(·, y)w,L∗

x,v

〉
= vTLx(K(·, y)w)

= vT

ˆ b

a

K(x(t), y)wdt

= wT

[ˆ b

a

K(y, x(t))dt
]
v (12)

thus

L∗
x,v(·) =

[ˆ b

a

K(·, x(t))dt
]
v (13)

Here, we used the reproducing property equation 11, the symmetry of the inner product, the definition of the
occupation kernel and the functional Lx, and the symmetry of the kernel K. It is convenient to notate the
matrix of functions

Mx(·) =
ˆ b

a

K(·, x(t))dt (14)

so that the L∗
x,v(·) = Mx(·)v. When K is an I-separable kernel, this reduces to L∗

x,v(·) =
(´ b

a
k(·, x(t))dt

)
v

Using the same arguments (see appendix D.2), we find

〈
L∗

x,v, L
∗
y,w

〉
= vT

[ˆ b

a

ˆ b

a

K(x(s), y(t))dsdt
]
w (15)

It is also convenient to use the notation

Mx,y =
ˆ b

a

ˆ b

a

K(x(s), y(t))dsdt (16)

so that 〈
L∗

x,v, L
∗
y,w

〉
= vTMx,yw. (17)

Note that when K is I-separable,〈
L∗

x,v, L
∗
y,w

〉
=
(ˆ b

a

ˆ b

a

k(x(s), y(t))dsdt
)
vTw. (18)

3 Methods

Consider the ODE
ẋ = f0(x), x ∈ Rd (19)

where f0 : Rd → Rd is a fixed, unknown vector field. Consider also n curves

x1(t), . . . , xn(t), [ai, bi]→ Rd, i ∈ {1, . . . , n} (20)

3.1 The multivariate occupation kernel (MOCK) algorithm

We describe the MOCK algorithm in two steps. In the first step, we assume that we observe the curves in
equation 20. We aim to recover the vector field f0 driving the ODE in equation 19. Assuming that this
vector field belongs to a vvRKHS, and under a penalized least square loss, we provide a solution expressed in
terms of occupation kernel functions. In the second step, we relax the hypothesis and assume that snapshots
along these trajectories are provided in place of the trajectories. Rearranging these trajectories and replacing
the integrals with numerical quadratures makes the problem tractable.
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3.2 The occupation kernel algorithm from curves

Let us design an optimization setting, an inverse problem, for recovering f0 from these trajectories. Let H be
a vvRKHS of continuous vector-valued functions Rd → Rd, λ > 0 a constant, and let us define the functional,

J(f) = 1
n

n∑
i=1

∥∥∥∥∥
ˆ bi

ai

f(xi(t))dt− xi(bi) + xi(ai)

∥∥∥∥∥
2

Rd

+ λ ∥f∥2
H (21)

The first term is minimized when f = f0. This is a consequence of the fundamental theorem of calculus.
However, aside from degenerate cases, this minimizer is not unique. Thus, the second term is a regularization
term. The problem of minimizing equation 21 over H is well-posed. It has a unique solution that can be
expressed using the occupation kernel functions as follows:
Theorem 1. The unique minimizer of J over the vvRKHS H with kernel K is

f∗(·) =
n∑

i=1
L∗

xi,αi
(·) =

n∑
i=1

Mxi
(·)αi, αi ∈ Rd (22)

where L∗
xi,αi

is the occupation kernel function of the curve xi along the interval [ai, bi] in the direction αi,
that is

L∗
xi,αi

(·) =
[ˆ bi

ai

K(·, xi(t))dt
]
αi = Mxi

(·)αi (23)

and where the vector α = (αT
1 , . . . , α

T
n )T is the solution of

(M + λnI)α = x(b)− x(a),

x(a) =
(
x1(a1)T , . . . , xn(an)T

)T
,

x(b) =
(
x1(b1)T , . . . , xn(bn)T

)T (24)

and M is the (nd, nd) matrix made of (d, d) blocks, each defined by

Mij = Mxi,xj =
ˆ bj

t=aj

ˆ bi

s=ai

K (xi(s), xj(t)) dsdt (25)

To build some intuition about how the ridge penalty term ensures well-posedness of the minimization problem,
suppose that many vector fields can generate trajectories perfectly fitting the data, making the first term
in the cost function equal to zero. Occam’s razor dictates choosing the simplest such vector field. Here,
simplicity corresponds to the smallest vvRKHS norm as measured by the second term. The strict convexity
of the squared vvRKHS norm ensures that no two solutions can have the same minimal norm. Indeed, any
convex combination of such solutions would yield a smaller norm, contradicting the minimality assumption.
Therefore, the minimizer is unique.

The proof of theorem 1 is a natural generalization of the representer theorem in RKHSs. It is presented
in appendix E. Figure 1 illustrates the result of the theorem. In the case of an implicit I-separable kernel,
the linear system in equation 24 decouples into d linear systems, each of size n× n where n is the number
of trajectories. This allows for an algorithm linear in d. If the I-separable kernel derives from an explicit
scalar-valued kernel, the linear systems are q × q where q is the number of dimensions of the scalar-valued
kernel. The experiments in section 4 exploit this remarkable situation. The experiments in section 5 use
non-separable kernels. This is a tractable design when d is not too large.

3.3 The occupation kernel algorithm from data

Let us now assume that instead of observing n curves that are solutions of equation 19, we observe m+ 1
snapshots, sometimes noisy, zi =

(
z

(0)
i , . . . , z

(m)
i

)
at time-points t0, . . . , tm coming from a true trajectory xi,
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Figure 1: Illustration of the MOCK algorithm with the Gaussian separable kernel. We observe the red
and blue trajectories, respectively x1 and x2 (running counterclockwise). The horizontal and vertical red
vector fields correspond respectively to the occupation kernel functions L∗

x1,e1
and L∗

x1,e2
and similarly for

the horizontal and vertical blue vector fields x2. The influence of each trajectory is local. The grey vector
field is the MOCK algorithm solution, a linear combination of the red and blue vector fields.

i = 1 . . . n. Firstly, we reshape this data into observations coming from N = mn trajectories, each made of
two samples. This is done by viewing every couple of consecutive observations as two observations associated
with a single trajectory. In other words, we assume that we observe (possibly with noise) the initial and final
points of N trajectories xi, i = 1 . . . N , that we denote by zi = (z(0)

i , z
(1)
i ), the times at which z

(0)
i and z

(1)
i

are sampled are denoted by t(0)
i and t

(1)
i . zi is a matrix of dimensions d by 2.

Secondly, we replace the integral in equation 23 by an integral quadrature, noted
¸

, and the double integral in
equation 25 by a double integral quadrature, noted

‚
. Observations zi are used to compute the quadrature

involving the trajectory xi. In both cases, we use the trapezoidal rule, providing

˛
K(·, xi(t))dt = (t(1)

i − t
(0)
i )

2

(
K(·, z(0)

i ) +K(·, z(1)
i )
)

(26)

and

‹
K (xi(s), xj(t)) dsdt =

(t(1)
i − t

(0)
i )(t(1)

j − t
(0)
j )

4

(
K(z(0)

i , z
(0)
j ) +K(z(0)

i , z
(1)
j )

+K(z(1)
i , z

(0)
j ) +K(z(1)

i , z
(1)
j )
)

(27)

The resulting algorithms for learning the vector field and predicting a trajectory given an initial condition
are presented in Alg. 1 and Alg. 2 respectively. Alg. 1 and Alg. 2 are simplified and do not contain the
optimizations implemented to reduce the computational complexity (see section 3.4). The linear system in
line 5: of Algorithm 1 is solved using numpy.linalg.solve from NumPy v1.26.4
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Algorithm 1 MOCK learning: Estimate the parameters defining the vector field.
Require: Training data. zi, i = 1 . . . N (N matrices of dimension (d, 2))

1: Compute δ =
(
z

(1)
1 − z(0)

1 , . . . , z
(1)
N − z(0)

N

)T

∈ RN×d

2: for i = 1 . . . N, j = 1 . . . N do
3: Mij ←

‚
K (xi(s), xj(t)) dsdt

4: end for
5: Solve the linear system (M + λNI)α = δ for α
6: Return: α

Algorithm 2 MOCK inference: Generate trajectories given initial conditions.
Require: Training data. zi, i = 1 . . . N . (N matrices of dimension (d, 2))
Require: Output of algorithm 1: α = (α1, . . . , αn)T .
Require: Initial conditions. p vectors :(y0

1 , . . . , y
0
p)

1: for j = 1 . . . p do
2: Using a numerical integrator, generate the solution of:{

ẏj = f∗(yj)
yj(0) = y0

j

3: f∗(yj) =
∑N

i=1
[¸
K(yj , xi(t))dt

]
αi

4: end for

3.4 Computational complexity

We specialize to the separable kernels case with A = I, see section 2.2. In such a case, the linear system
in equation 24 becomes equivalent to solving an N ×N linear system where the right-hand side is N × d.
Therefore, this requires O

(
dN2) to construct the kernel matrix, O

(
N2) to estimate the integrals, and

O
(
dN3) to solve the linear system. Overall, the MOCK algorithm is thus linear in d. The space complexity

is O
(
N2).

On the other hand, if we let ψ(x) ∈ Rd×q, then K(x, y) = ψ(x)Tψ(y) ∈ Rd×d is an explicit kernel. In such
a case, a q × q linear system is solved to find f , requiring N , d× q by q × d matrix-matrix multiplications
to construct the system. This provides a computational complexity of O(dNq2 + q3). Further details are
provided in appendix F.

4 Experiments

(a) FHN oscillator (b) Lorenz63 (c) Lorenz96 128 dimensions

Figure 2: The grey points are the training data. The black curves are the test trajectories. The red curves
are the predictions on the test set. For data in dimensions higher than two, only the first two dimensions are
shown.
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4.1 Datasets

We test the methods on a diverse set of synthetic and real-world datasets that reflect the challenges of
learning systems of ODEs. Table 1 provides the dimension of the state space, the number of trajectories, and
the average number of snapshots per trajectory for each of the 9 datasets considered. In each data set, the
trajectories were partitioned into training (60%), validation (20%), and testing (20%) sets.

Name Type d n m
NFHN Synthetic 2 150 201

Lorenz63 Synthetic 3 150 201
Lorenz96-16 Synthetic 16 100 243
Lorenz96-32 Synthetic 32 100 243

Lorenz96-128 Synthetic 128 100 243
Lorenz96-1024 Synthetic 1024 100 100

CMU Real 50 75 106.7
Plasma Real 6 425 2.95

Imaging Real 117 231 2.26

Table 1: For each dataset, d is the number of dimensions of the system, which is the dimension of the
state-space, n is the total number of trajectories, and m is the average number of samples per trajectory. In
each data set, the trajectories were partitioned into training (60%), validation (20%), and testing (20%) sets.

Noisy FitzHugh-Nagumo (NFHN) The FitzHugh-Nagumo oscillator FitzHugh (1961) is a nonlinear 2D
dynamical system that models the basic behavior of excitable cells, such as neurons and cardiac cells2. We
add considerable noise to this otherwise simple dataset (see figure 3).

Noisy Lorenz63 (Lorenz63) The Lorenz63 system Lorenz (1963) is a 3D system provided as a simplified
model of atmospheric convection.

Lorenz96 The Lorenz96 data arises from Lorenz (1995) in which a system of equations is proposed that may
be chosen to have any dimension greater than 3. (Lorenz96-16) has 16 dimensions, etc.

CMU Walking (CMU) The Carnegie Mellon University (CMU) Walking data is a repository of publicly
available data. It can be found at http://mocap.cs.cmu.edu/.

Plasma This dataset includes imaging and plasma biomarkers from the WRAP study, see Johnson et al.
(2018).

Imaging This dataset includes regional imaging biomarkers from the WRAP study, see Johnson et al. (2018).

4.2 Data format

Each dataset is stored as a rectangular matrix. Each row corresponds to a data point. The columns include
the id of the trajectory, the time, the features, and three binary columns indicating whether the row is to be
used for training, validation, or testing.

4.3 Kernels, regularization, and hyperparameter tuning for the MOCK algorithm

We train the MOCK models using the scalar-valued Matérn kernels, including the Gaussian, Laplace, and
C10 kernels Fuselier et al. (2016). The analytic expressions are provided in Appendix C.2. We also train an
explicit kernel with 200 Fourier Random features Rahimi & Recht (2007). We use Bayesian optimization
for hyperparameter tuning of the regularization parameter λ and bandwidth parameter σ. λ controls the
smoothness of the solution, while σ controls the relevant scale for the input data. Specifically, we use the
gp_minimize function from the Scikit-Optimize (skopt) package, version 0.10.2, which implements
Gaussian Process optimization.

2Further details of the all datasets are provided in appendix B.
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4.4 Comparable methods

We select competitive methods covering various categories.

Sparse Identification of Nonlinear Dynamics (SINDy) SINDy is a well-developed class of data-driven
methods for identifying dynamical systems models from trajectories. Brunton et al. (2016) These methods
rely on sparse regression techniques to isolate the most relevant terms in the governing equations from a set
of candidate functions. SINDy demonstrates robustness for sparse and limited data Kaheman et al. (2020);
Fasel et al. (2022).

Reduced Order Models (ROMs) ROMs are a class of methods for simplifying high-dimensional
dynamical systems by projecting them onto a lower-dimensional space. Dynamic mode decomposition (DMD)
is a data-driven method for extracting spatiotemporal patterns and coherent structures from high-dimensional
data generated by dynamical systems Tu (2013). eDMD extends DMD to handle nonlinear dynamics by
working in a higher-dimensional feature space. Williams et al. (2015). We benchmark with eDMD-RFF Lew
et al. (2023), eDMD-Poly Williams et al. (2015), and eDMD-Deep Yeung et al. (2019)

Deep Learning Methods Deep learning methods can be used in conjunction with ROMs to learn
transformations to lower-dimensional spaces. These methods use deep learning to construct an efficient
representation of the dynamical system and to capture nonlinear dynamics Lusch et al. (2018); Yeung et al.
(2019); Li et al. (2019). Deep learning methods can also be incorporated into the SINDy framework to identify
sparse, interpretable, and predictive models from data Champion et al. (2019); Bakarji et al. (2022). We
benchmark with ResNet He et al. (2016) Lu et al. (2021)

Latent ODEs for Irregularly-Sampled Time Series The Latent ODE method (also a deep learning
method Rubanova et al. (2019)) is an update of the Neural ODEs model introduced in Chen et al. (2018).
The core idea is to represent the hidden dynamics of time series data in a continuous latent space using ODEs.
Given the latent trajectory, the observations of the time series are assumed to be independent. The latent
trajectory dymanics are governed by a neural ODE model. The model uses an encoder-decoder framework
where the encoder maps observed data to a latent initial value via an RNN architecture. The hidden states
are then carried through neural ODEs between times of observations. Finally, the decoder generates the
latent trajectory forward in time and predicts future observations.3

The hyperparameters for each method are shown in Table 4 in appendix G. All experiments are run in
Google Colab using the default settings. The GPU was only enabled (A100, High-RAM) for the deep learning
techniques. Lastly, to get an idea of the difficulty of each problem, we compare all methods against the null
model, which predicts no change, that is x(t) = x0 for all t ∈ [a, b]. Datasets for which no models are able to
do much better than this null model are difficult datasets to learn and perhaps less useful for benchmarking
learning methods.

4.5 Evaluation Method

For each dataset, the trajectories were partitioned into training, validation, and testing. At test time,
we integrated the predicted trajectories starting at the given initial conditions and compared to the true
trajectories. To measure the performance of each method, we define two types of errors for each trajectory of
the test set. We define:

Err =

√√√√ m∑
i=2

(ti − ti−1)∥yi − ŷi∥2 (28)

where yi and ŷi are the observed and predicted trajectory samples at time ti, respectively. Additionally, we
define 1-Err by setting m = 2 in equation 28. All the methods were trained, validated, and tested on the
same data. Table 2 provides the average Err and 1-Err errors across the trajectories of the test set. To test

3Latent ODEs was implemented using the Github repository: https://github.com/YuliaRubanova/latent_ode. The subsam-
pling was disabled for the Plasma and Imaging datasets because the training trajectories were too short in these datasets.
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(a) 25 randomly sampled trajectories in the NFHN (Noisy FHN) training set.

True
eDMD-deep
eDMD-poly
eDMD-rff
SINDy-poly
ResNet
latent-ODE
ockL

(b) 25 randomly sampled trajectories in the test set for NFHN. Black: true
trajectory, red: eDMD-deep, green: eDMD-poly, purple: eDMD-rff, yellow: SINDy-
poly, orange: ResNet, brown:latent-ODE, and blue:ockL.

Figure 3: NFHN dataset
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whether the MOCK methods are (statistically) significantly better than comparable methods and vice versa,
we first generated a Wilcoxon test p-value for every MOCK method (four different kernels) against the other
comparable methods. The pairs of observations used in the test are the errors of the two compared methods
for every trajectory in the test set. Finally, to generate a p-value comparing all MOCK methods together
against another comparable method, we used Fisher’s method Mosteller & Fisher (1948) to combine the four
p-values of the MOCK methods. We report a ∗ in Table 2 if the group of MOCK methods is significantly
better (p < 0.01) and † if the compared method outperforms MOCK with statistical significance (p < 0.01).
Otherwise, no method is significantly better than the other.
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Figure 4: MOCK Predicted Biomarker Values from the imaging dataset.

4.6 Evaluation Performance

Examples of the output of the MOCK algorithm are presented visually in figures 2 and 4. Table 2 summarizes
the prediction errors for each experiment. While no single method outperforms other methods over all
datasets, MOCK outperforms all other methods in 3 of the 9 datasets (on the task of full trajectory prediction,
denoted Err), and outperforms all other methods on 4 of the 9 datasets on the task of predicting the next
sample (denoted 1-Err). It also performs competitively on the remaining datasets on both tasks. Notably,
eDMD-Deep yielded the best results for the CMU experiments. Deep learning models and DMD methods
learn the dynamics in a feature space and therefore have less stringent constraints on the dynamics. We
believe this is why they outperform with datasets such as the CMU dataset as our model assumes the
dynamics arises from a homogeneous system, and this is not the case with the CMU dataset. See Appendix
B.2.

The differences observed in table 2 are not always significant. Recall that we use the sign † when a method is
better than all the MOCK methods. We count 5 models out of 9 with at least one † for Err and only 2 out
of 9 for the 1-Err. Note that the MOCK algorithm is optimized for the 1-Err since the trajectories of the
training set are systematically reshaped into trajectories of two observations. Thus it is not surprising that it
performs better for this metric.

When comparing the kernels used for the MOCK method, the Laplace kernel performs the best overall,
consistent with other analyses of this kernel (Geifman et al. (2020)). Note also that the random Fourier
features kernel, which approximates the Gaussian kernel, performs well for all datasets, allowing for linear
implementations in N , which is the number of examples in the training set. Moreover, we use the same
number of features (200) in all cases, leading to models with parameter sizes of 200 · d for Fourier random

11



Under review as submission to TMLR

Table 2: Dynamical System Estimation Results

Lorenz63

Err 1-Err

ResNet 2.07∗ .014∗

eDMD-Deep 2.91∗ .009∗

eDMD-Poly 2.22∗ .012∗

eDMD-RFF 1.93∗ .011∗

null 2.56∗ .011∗

SINDy-Poly .99∗ .002
ockG .66 .002
ockL .65 .002
ockM 2.52 .012
ockF 2.52 .012
Lode 1.49∗ .092∗

NFHN

Err 1-Err

ResNet 5.94∗ .064∗

eDMD-Deep 4.54∗ .036∗

eDMD-Poly 4.10∗ .037∗

eDMD-RFF 4.01∗ .037∗

null 9.69∗ .043∗

SINDy-Poly 1.68∗ .022†

ockG 1.40 .029
ockL 1.11 .030
ockM 1.41 .029
ockF 1.38 .028
Lode .64† .131∗

Lorenz96-16

Err 1-Err

ResNet 6.42∗ .010∗

eDMD-Deep 5.93∗ .040∗

eDMD-Poly 6.91∗ .036∗

eDMD-RFF 6.22∗ .029∗

null 7.50∗ .039∗

SINDy-Poly .40∗ .0003∗

ockG .69 .0007
ockL .22 .0001
ockM .22 .0001
ockF .22 .0001
Lode 3.82∗ .138∗

Lorenz96-32

Err 1-Err

ResNet 11.56∗ .020∗

eDMD-Deep 8.79∗ .057∗

eDMD-Poly 9.67∗ .051∗

eDMD-RFF 8.10∗ .028∗

null 10.49∗ .056∗

SINDy-Poly 8.56∗ .037∗

ockG .47 .0001
ockL .48 .0001
ockM .49 .0001
ockF .47 .0001
Lode 6.06∗ .217∗

Lorenz96-128

Err 1-Err

ResNet 24∗ 2.64∗

eDMD-Deep 17∗ .089∗

eDMD-Poly 19∗ .109∗

eDMD-RFF 16† .201∗

null 21∗ .112∗

SINDy-Poly 19∗ .066∗

ockG 17 .064
ockL 16 .035
ockM 16 .040
ockF 16 .036
Lode 15† .342∗

Lorenz96 -1024

Err 1-Err

ResNet 66.1∗ 6.48∗

eDMD-Deep 26.9∗ .41∗

eDMD-Poly 61.5∗ .42∗

eDMD-RFF 54.2∗ .38∗

null 67.0∗ .16∗

SINDy-Poly∗∗ NA NA
ockG 18.0 .013
ockL 17.8 .014
ockM 17.9 .013
ockF 18.0 .015
Lode 15.8† 1.04∗

Plasma

Err 1-Err

ResNet 4.93∗ 2.89∗

eDMD-Deep 4.09 2.42
eDMD-Poly 4.01 2.39
eDMD-RFF 4.07 2.43
null 4.00∗ 2.41
SINDy-Poly 3.95 2.40
ockG 3.96 2.41
ockL 3.96 2.41
ockM 3.96 2.41
ockF 3.96 2.41
Lode 4.28∗ 2.68∗

Imaging

Err 1-Err

ResNet 27.4∗ 19.4∗

eDMD-Deep 15.6∗ 12.5
eDMD-Poly 15.7 12.5
eDMD-RFF 27.9∗ 19.3∗

null 16.2∗ 12.6∗

SINDy-Poly 96.1∗ 53.7∗

ockG 15.6 12.3
ockL 15.6 12.3
ockM 15.7 12.3
ockF 15.8 12.4
Lode 14.8† 11.7

CMU

Err 1-Err

ResNet 22.6∗ .86†

eDMD-Deep 15.7† 2.03∗

eDMD-Poly 14.9† .78†

eDMD-RFF 14.9† .76†

null 21.6∗ 1.01∗

SINDy-Poly 33.8∗ .91∗

ockG 21 .89
ockL 19.6 .93
ockM 21.5 1.01
ockF 21.6 1.01
Lode 14.9† 1.88∗

Description: Minimum values are in bold. A ∗ indicates a significant (Fisher’s method) p-value (< 0.01)
in favor of the ock methods in the comparison. A † indicates a significant p-value in favor of the method
compared with all ock methods. There is no statistically significant difference otherwise. Our models are
labelled as ockG - occupation kernel method with Gaussian kernel, ockM - occupation kernel method with
Matérn kernel, ockF - occupation kernel method with Random Fourier Features (RFF), and ockL - occupation
kernel with Laplace kernel (See section 4.2). We compare against SINDy-Poly, eDMD-Deep, eDMD-Poly,
eDMD-RFF, ResNet and Latent Ode (Lode) (See section 4.3). ∗∗ No result could be obtained for SINDy-Poly
for this dataset due to computational complexity issues.
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feature implementations. Importantly, because our model size scales linearly with d we do not need to increase
the number of Fourier random features for higher dimensional problems.

The trajectories predicted by ockL for NFHN (in blue in figure 3b) are visually close to the ground truth
(in black) in all but the last case. SINDy-poly (in yellow) is competitive. ResNet provides very irregular
trajectories. Latent ODE provides good long-term predictions. However, the initial points do not coincide
with the initial points of the ground truth provided for all the algorithms. In other words, while Latent-ODE
performs very well on the task of predicting full trajectories, it performs very poorly on the next sample
prediction task which is an inherent limitation of some deep learning models like Latent-ODE and Resnet.

We tested MOCK with a dataset of 1024 dimensions to show how well it scales. The implementation of
SINDy-Poly that we used did not provide a result for this data due to runtime issues; see NA in the table 2.

4.7 Comparative computational complexity

The computational complexities are compared in table 3. The MOCK algorithm with implicit and explicit
kernel is linear in d, the dimension of the state space. Resnet and Lode are quadratic in d. In principle,
SINDy-Poly, eDMD-Poly, eDMD-RFF, and eDMD-Deep are linear in d. However, q, the number of parameters
in the learned model, needs to increase with d to obtain acceptable performances. This means the complexity
is, in practice, more than linear in d. In the case of SINDy-Poly with quadratic basis functions, q is O(d2).
On the contrary, in the case of MOCK explicit, q is the number of features per dimension, and thus, it does
not increase with d.

MOCK implicit MOCK explicit ResNet eDMD-Deep
O(dN3) O(dNq2 + dq3) O

(
kd2TN

)
O(TN(Ldq + q2) + dq2 + q3)

eDMD-Poly eDMD-RFF Lode SINDy-Poly
O((N + d)q2 +N2q + q3) O((N + d)q2 + q3) O

(
nT
(
k1d

2 + k2q
2)) O(T (qd+ q3 + dNq2))

Table 3: Runtimes of training for each method, excluding hyper-parameters validation. d is the dimension of
the state-space. N is the total number of samples in all the trajectories. q is the number of features. T is the
number of epochs. k1 and k2 are constant.

5 Learning vector fields with constraints

Divergence-free (∇ · v = 0) and curl-free (∇ × v = 0) vector fields appear in a diverse set of applications
including fluid dynamics Wendland (2009); Fuselier et al. (2016), magnetohydrodynamics McNally (2011)
and modeling magnetic fields Wahlström et al. (2013), image processing Polthier & Preuß (2003), and
surface reconstruction Drake et al. (2022). Accordingly, a significant amount of research has been devoted
to the development of curl-free and divergence-free kernel methods Narcowich & Ward (1994); Lowitzsch
(2005); Narcowich et al. (2007); Fuselier (2008); Fuselier & Wright (2009); Gao et al. (2022); Scheuerer &
Schlather (2012), as well to the development of Gaussian processes constrained by PDEs Harkonen et al.
(2023); Henderson et al. (2023) in recent years. We will demonstrate how the occupation kernel method
can be adapted to ensure that the recovered vector field analytically satisfies the divergence-free/curl-free
constraint for an appropriate choice of matrix kernel K. Then, for ease of presentation, we will apply just the
divergence-free kernels to both real and synthetic datasets.

5.1 Divergence-free kernels

Let x ∈ Rd and d = 2, 3, and let ϕ(∥x∥) be a radial basis function. Then the standard construction Fuselier
(2008) for divergence-free and curl-free matrix-valued radial basis functions are

{−∆I +∇∇T }ϕ(∥x∥) and −∇∇Tϕ(∥x∥), (29)
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respectively, where ∆ =
∑d

i=1 ∂
2/∂x2

i and [∇∇T ]ij = ∂2/∂xi∂xj , 1 ≤ i, j ≤ d. For example, if d = 2, then

{−∆I +∇∇T }ϕ(∥x∥) =
[
−∂2ϕ

∂x2
2

∂2ϕ
∂x1∂x2

∂2ϕ
∂x2∂x1

−∂2ϕ
∂x2

1

]
(∥x∥). (30)

Thus, the columns of the matrix-valued radial basis function {−∆I + ∇∇T }ϕ(∥x∥) are divergence-free.
Similarly, we have that the columns of −∇∇Tϕ(∥x∥) are curl-free.

We select the divergence-free kernel K(x, y) = {−∆I +∇∇T }ϕ(∥x− y∥) where our choice of scalar radial
basis function is the C10 Matérn kernel Fuselier et al. (2016).

5.2 Hamiltonian systems

A system
ẋ1 = f(x1, x2), ẋ2 = g(x1, x2) (31)

is called a Hamiltonian system if there exists a function H(x1, x2) (called the Hamiltonian) for which
f = ∂H/∂x2 and g = −∂H/∂x1. This implies that the vector field (f, g) is divergence-free. Furthermore,
along every orbit we have H(x1, x2) = constant and any conservative dynamical equation ü = f(u) leads to
a Hamiltonian system where the Hamiltonian coincides with the total energy. For example, every orbit of the
conservative system corresponding to the equation describing the motion of a pendulum

ẋ1 = x2, ẋ2 = −g
ℓ

sin(x1) (32)

satisfies the conservation law

H(x1, x2) = 1
2x

2
2 −

g

ℓ
cos(x1) = E (33)

for some constant E.

5.3 Experiments

We test the divergence-free MOCK method on the following real and synthetic datasets.

Pendulum Problem We generate data using (32) with ℓ = 1 and g = 9.8. This 2-dimensional synthetic
dataset consists of 100 trajectories of 50 samples each. This dataset allows us to test whether the MOCK
method can, simultaneously, learn a known Hamiltonian system while analytically enforcing the divergence
free constraint.

Buoy Data We obtained a buoy dataset from https://oceanofthings.darpa.mil/data#tab-all, which contains
two-dimensional trajectories of buoys submerged in the ocean. We sampled every tenth observation of the
raw data and converted the time measurements into years. Trajectories with only one sample were dropped.

5.4 Evaluation

The error was computed using (28) for both datasets. For the pendulum problem, the scalar Matérn kernel
provided an error of 1.5×10−1 while the divergence-free kernel provided an error of 1.9×10−2, an improvement
by an order of magnitude. Not only does the divergence-free kernel allow for a physically constrained solution,
but it is also more accurate. For the buoy data, the scalar Matérn kernel provided an error of 3.5× 101 while
the divergence-free kernel provided an error of 3.1× 101. Thus, despite the presence of noise (which is not
necessarily divergence-free), we still achieve a reduction in the error of about 10%.

Figure 5 shows the error in the computed vector fields of the pendulum problem. A plot of the results for the
buoy data problem using the divergence-free kernel, along with the training data, is shown in figure 6.
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(a) Scalar Matérn kernel (b) Divergence-free kernel

Figure 5: The magnitude of the error in vector field approximation of the pendulum problem obtained using
different choices of kernel along with the training set (gray).

Figure 6: A detail of the vector field learned using the divergence-free kernel from the buoy data together
with the training set (red).
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6 Summary and discussion

The implicit matrix-valued kernel formulation has enabled us to demonstrate that the MOCK algorithm,
originally proposed by J. Rosenfeld and collaborators, effectively learns the vector field of an ODE in
multivariate settings or under predefined constraints, while maintaining linear scalability with the dimension
of the state space. We have benchmarked the algorithm against a representative selection of competitive
methods and provided compelling experimental evidence showcasing its superior performance on many
datasets, along with consistently competitive results across all cases tested.

A rigorous analysis of the algorithm’s convergence and error, including precise assumptions regarding noise,
is deferred to future work. This analysis will incorporate the quadrature error and the effects of noise, as
well as provide concentration inequalities to quantify the error between predicted and true trajectories as
functions of quadrature precision, observation noise levels, and data granularity, offering insights into the
algorithm’s generalization capabilities.

The surprising simplicity of the MOCK technique, combined with its strong performance, opens the door to
numerous opportunities for optimization, generalization, and further exploration. Future work is expected
to advance the state-of-the-art in high-dimensional dynamics learning, extend applications to PDEs, and
analyze generalization properties in detail.
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A Experiment Code

We created a code capsule on Code Ocean that hosts all the methods used in our experiments for system
identification of ordinary differential equations. The code repository allows for the repeatability of our results
for a single experiment—Lorenz63—and facilitates the evaluation of the performance of different models on
synthetic and real-world datasets. The real world plasma and imaging experiment are restricted data and
will not be available for the evaluation.

We provide an anonymized zipfile (6.6 MB) export of the code capsule for review at https://drive.google.
com/file/d/1p36HH00dHGLuBeHEfhJyMlfxjv1At5La/view?usp=sharing. The code can be run locally in a
Docker container with instructions in the README.md and REPRODUCING.md.

To ensure the reproducibility of the experiment, we have tuned the hyperparameters for each method,
except for ResNet, which is known to require substantial tuning time. The code repository provides detailed
instructions for running each method experiment, including the necessary input data and the corresponding
hyperparameter settings. Please note that due to limitations on Code Ocean, we have set the TensorFlow
library to use the CPU rather than the GPU, as using the GPU resulted in numerous errors. This may
increase the runtime of the experiments. For the paper, we ran some experiments in google colab on A100
GPUs where the training time was much lower.

Upon running the code repository, the experiments will take approximately 1.5 hours to complete. The results
of each experiment are provided in the form of trajectory CSV files, capturing the predicted trajectories of
the identified systems. These trajectory files can be further analyzed or visualized as desired. Additionally, a
summary of the performance of each method is available in the code repository.

B Datasets

B.1 Synthetic data

Noisy FitzHugh-Nagumo The FitzHugh-Nagumo oscillator FitzHugh (1961) is a nonlinear 2D dynamical
system that models the basic behavior of excitable cells, such as neurons and cardiac cells (See figure 3). The
system is popular in the analysis of dynamical systems for its rich behavior, including relaxation oscillations
and bifurcations. The FHN oscillator consists of two coupled ODEs that describe the membrane potential v
and recovery variable w,

v̇ = v − v3

3 − w +RI (34)

τẇ = v + a− bw (35)

Here, I is the external current input, a and b are positive constants that affect the shape and duration of the
action potential, and τ is the time constant that determines the speed of the recovery variable’s response.
We added random Gaussian noise of standard deviation 0.12 to this dataset.

Noisy Lorenz63 The 3D Lorenz 63 system Lorenz (1963) is a simplified model of atmospheric convection,
but has since become a canonical example of chaos in dynamical systems. The Lorenz 63 system exhibits
sensitive dependence on initial conditions and parameters, which gives rise to its characteristic butterfly-shaped
chaotic attractor. The equations are

dx
dt = σ(y − x)

dy
dt = x(ρ− z)− y

dz
dt = xy − βz

. (36)

Here, x, y, and z are state variables representing the fluid’s convective intensity, and σ, ρ, and β are positive
parameters representing the Prandtl number, the Rayleigh number, and a geometric factor, respectively. We
added random Gaussian noise with standard deviation 0.5 to this dataset.
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Lorenz96 The Lorenz96 data arises from Lorenz (1995) in which a system of equations is proposed that
may be chosen to have any dimension greater than 3. The chaotic system is defined by:

dxk

dt
= −xk−1xk−2 + xk+1xk−1 − xk + F (37)

where we take F = 8 and consider 16, 32, 128 and 1024 dimensional systems. Indices are assumed to wrap so
that for an n dimensional system x−2 = xn−2.

B.2 Real Data

CMU Walking The Carnegie Mellon University (CMU) Walking data is a repository of publicly available
data. It can be found at http://mocap.cs.cmu.edu/. It was generated by placing sensors on a number of
subjects and recording the position of the sensors as the subjects walked forward by a fixed amount and then
walked back. There were 50 spatial dimensions of data as recorded by the sensors, which were recorded at
regular times. Since the observation times were not provided, we separated each observation in time by 0.1
units and began each trajectory at time zero. The CMU Walking data which we used for our experiments
consists of 75 trajectories with an average of 106.7 observations per trajectory. We could not use the full
amount of data provided because some subjects did not walk in the same manner as other subjects.

It should be noted that it may not be appropriate to consider the CMU walking data as being generated by a
single dynamical system. Since there were multiple subjects in the dataset, it is reasonable to conclude that
there are multiple dynamical systems responsible for the motion of these different subjects. However, we fit
our model to this dataset assuming that it was generated by a single dynamical system.

Plasma This dataset includes imaging and plasma biomarkers from the WRAP study, see Johnson et al.
(2018). The imaging biomarker is a distribution volume ratio obtained from Pittsburgh Compound-B
positron emission tomography. The plasma biomarkers include Aβ40/Aβ42 that reflects specific amyloid
beta (Aβ) proteoforms; ptau217, which has a high correlation with amyloid PET positivity, GFAP, which
measures the levels of the astrocytic intermediate filament glial fibrillary acidic protein, and NFL, a recognized
biomarker of subcortical large-caliber axonal degeneration, for a total of 6 biomarkers. There are a total
n = 425 trajectories, one per subject, and, on average, 2.95 time points per trajectory. The data was split
(70%, 10%, 20%) corresponding resp. to training, validation, and testing.

Imaging This dataset includes regional imaging biomarkers from the WRAP study, see Johnson et al. (2018).
The imaging biomarker is an atlas-based distribution volume ratio obtained from Pittsburgh Compound-B
positron emission tomography. There are a total of 117 biomarkers. There are a total of n = 231 trajectories,
one per subject, and, on average, 2.26 time points per trajectory. The data was split (70%, 10%, 20%)
corresponding resp. to training, validation, and testing.

C Reproducing Kernel Hilbert Spaces (RKHS)

Basic notions and notations associated with RKHSs are important for understanding the algorithms presented
in this paper. We thus provide a short presentation. We limit ourselves to RKHSs over the field of real
numbers. RKHSs are Hilbert spaces for which the evaluation functional is continuous. The evaluation
functional at x ∈ R is a mapping from an RKHS H to R, which associates to a function its evaluation at x,
that is f 7→ f(x). Riesz representation theorem allows us to interpret evaluations of a function in an RKHS
as a geometric operation consisting of computing an inner product. That is, there is a unique vector kx ∈ H
such that f(x) = ⟨f, kx⟩. Moreover, let us define, for any x, y ∈ R, the so-called kernel k(x, y) = ⟨kx, ky⟩.
Let us use this to characterize the function kx. Evaluating kx at y and using Riesz representation provides
kx(y) = ⟨kx, ky⟩ = ⟨ky, kx⟩ = k(y, x). Thus the function kx(·) is the function k(·, x). Moreover, for any f ∈ H,
f(x) = ⟨f, k(·, x)⟩. This is the reproducing property of the kernel. Applying this property to ky implies that
k(x, y) = ⟨k(·, x), k(·, y)⟩
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C.1 Linear functionals and occupation kernels

Let H be an RKHS of functions from R to R with kernel k. Assume that x 7→ k(x, x) is continuous. Consider
a continuous parametric curve [0, 1] → R, t 7→ x(t) and define the functional from an RKHS H to R,
Lx(f) =

´ 1
0 f(x(t))dt. Lx is clearly linear. The Cauchy-Schwarz inequality implies Lx is bounded. Indeed,

|Lx(f) | =

∣∣∣∣∣
ˆ T

0
f(x(t))dt

∣∣∣∣∣ (38)

=

∣∣∣∣∣
ˆ T

0
⟨f, k(·, x(t))⟩ dt

∣∣∣∣∣ (39)

≤
ˆ T

0
| ⟨f, k(·, x(t))⟩ | dt (40)

≤
ˆ T

0
||f ||||k(·, x(t))||dt (41)

= ||f ||
ˆ T

0

√
k(x(t), x(t))dt (42)

where we have used the Cauchy-Schwartz inequality in (41). Now, since t 7→ x(t) and x 7→ k(x, x) are
continuous, the integral in (42) is upper-bounded. Thus the functional Lx(f) is continuous.

We use Riesz representation theorem to define the occupation kernel function as the unique element L∗
x in H

that verifies Lx(f) = ⟨f, L∗
x⟩. Note that

L∗
x(y) = ⟨L∗

x, k(·, y)⟩ = ⟨k(·, y), L∗
x⟩ = Lx(k(·, y)) =

ˆ 1

0
k(x(t), y)dt (43)

Furthermore, 〈
L∗

x, L
∗
y

〉
= Ly(L∗

x) =
ˆ 1

0
L∗

x(y(t))dt =
ˆ 1

0

ˆ 1

0
k(x(s), y(t))dsdt (44)

C.2 Kernels

For all experiments (except for section 5) we use standard scalar-valued positive definite kernels, references to
which may be found, see, for example, Table 3.1 on page 42 of Fasshauer & McCourt (2015). Additionally, in
section 5, we demonstrate how a divergence-free kernel allows us to incorporate physical constraints in our
model. The specific divergence-free kernel we use is given in Fuselier et al. (2016). For the sake of clarity, we
include the analytical forms of the kernels used throughout the paper below:

Guassian kernel:

g(x, y, σ) = exp

(
−∥x− y∥

2

2σ2

)
(45)

Laplace kernel:

l(x, y, γ) = exp

(
−∥x− y∥

γ

)
(46)

Fourier Feature kernel:

f(x, y, σ) = 1
√
q

[
cos(zT

1 x/σ + β1), ..., cos(zT
q x/σ + βq)

]T [
cos(zT

1 y/σ + β1), ..., cos(zT
q y/σ + βq)

]
(47)
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Matérn kernel C10:

m(x, y, σ) = 1
945exp(−r/σ)

(( r
σ

)5
+ 15

( r
σ

)4
+ 105

( r
σ

)3
+ 420

( r
σ

)2
+ 945

( r
σ

)
+ 945

)
(48)

where in equation 47 zi ∼ N(0, I) and βi ∼ U(0, 2π), and in equation 48 r = ∥x− y∥. We now introduce the
divergence-free kernel of section 5. Let

d1(x, y, σ) = −1
945σ2 exp(−r/σ)

(( r
σ

)4
+ 10

( r
σ

)3
+ 45

( r
σ

)2
+ 105

( r
σ

)
+ 105

)
and

d2(x, y, σ) = 1
945σ4 exp(−r/σ)

(( r
σ

)3
+ 6

( r
σ

)2
+ 15

( r
σ

)2
+ 15

)
,

and define
ϕ11(x, y, σ) = −d2(x, y, σ)(x2 − y2)2 − d1(x, y, σ),
ϕ22(x, y, σ) = −d2(x, y, σ)(x1 − y1)2 − d1(x, y, σ),

and
ϕ12(x, y, σ) = ϕ21(x, y, σ) = d2(x, y, σ)(x1 − y1)(x2 − y2),

where x = [x1, x2]T , y = [y1, y2]T , and r = ∥x− y∥. Then,

mdiv(x, y, σ) =
[
ϕ11 ϕ12
ϕ21 ϕ22

]
(x, y, σ). (49)

D Vector-Valued Reproducing Kernel Hilbert Spaces

There are three ways to characterize a vvRKHS.

Firstly, we can construct a vvRKHS with linear functions of the kernel:
Definition 3. Let

H0 =
{
f ; f(x) =

n∑
i=1

K(x, xi)wi, xi ∈ X , wi ∈ Rd, i = 1 : n
}

(50)

then, consider the encoding in H0 of the functions f and g,

f ←→
{

x1, . . . , xn

w1, . . . , wn
and g ←→

{
y1, . . . , ym

v1, . . . , vm
(51)

Define the inner product

⟨f, g⟩ =
n∑

i=1

m∑
j=1

wT
i K(xi, yj)vj (52)

then the closure of H0 for ⟨., .⟩ is the vvRKHS of K.

The second construction starts from a Hilbert space and uses the Riesz representation theorem.
Definition 4. Let H be a Hilbert space of functions Rd → Rd such that for any x ∈ Rd, the evaluation
functional f 7→ f(x) is continuous: there is a constant Mx ∈ R, such that

||f(x)||Rd ≤Mx||f ||H (53)

for all f ∈ H. Then, using the Riesz representation, for any v ∈ Rd there exists a unique Kx,v ∈ H such that

vT f(x) = ⟨f,Kx,v⟩H (54)

This equation is the reproducing property.
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Define the matrix-valued kernel

Kij(x, x′) =
〈
Kx,ei ,Kx′,ej

〉
, i, j = 1 . . . d (55)

where e1, . . . , ed is the natural basis of Rd. Then K is a kernel and H is the vvRKHS of K.

The third formulation allows for checking that a Hilbert space is a vvRKHS.
Definition 5. Let H be a Hilbert space of functions Rd → Rd. Let K be a (d, d) matrix-valued kernel. H is
the vvRKHS of K when

1. For any x′ ∈ X , v ∈ Rd, x 7→ K(x, x′)v ∈ H

2. The reproducing property holds: for any f ∈ H, x ∈ X , v ∈ Rd, equation 54 holds

D.1 Verifying the continuity for the occupation kernel in multiple dimensions

Let(e1, . . . , ed)T be the standard basis of Rd. Then

|eT
j Lx(f)| =

∣∣∣∣∣
ˆ T

0
eT

j f(x(t))dt

∣∣∣∣∣ (56)

≤
ˆ T

0

∣∣eT
j f(x(t))

∣∣ dt (57)

=
ˆ T

0
|⟨f,K(., x(t))ej⟩| dt (58)

≤ ||f ||
ˆ T

0

√
Kjj(x(t), x(t))dt (59)

where we have used the Cauchy-Schwartz inequality. If x 7→ Kjj(x, x) is continuous, then since t 7→ x(t) is
continuous, eT

j Lx is bounded for each 1 ≤ j ≤ d, which implies that Lx is bounded and thus continuous.

D.2 Occupation Kernel inner product

Consider
L∗

x,v(·) =
ˆ T

0
K(·, x(t))dtv

L∗
y,w(·) =

ˆ T

0
K(·, y(t))dtw

we wish to evaluate 〈
L∗

x,v, L
∗
y,w

〉
= wTLy

(
L∗

x,v(·)
)

(60)

= wT

ˆ T

0

{ˆ T

0
K(y(s), x(t))dtv

}
ds (61)

= wT

(ˆ T

0

ˆ T

0
K(y(s), x(t))dtds

)
v (62)

E Proof of Theorem 1

Consider the linear span of the occupation kernel functions L∗
xi,αi

, i = 1 . . . n

F =
{
f ∈ H, f =

n∑
i=1

L∗
xi,αi

, α = (α1, . . . , αn) ∈ Rd×n

}
(63)
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Note that F is linear and finite-dimensional; thus, it is a closed linear subspace of H. We can then project
any function in H orthogonally onto it

f = fF + fF⊥ (64)

Now, for each i = 1 . . . n, and v ∈ Rd,

vT

ˆ bi

ai

f(xi(t))dt = vTLxi
(f) =

〈
L∗

xi,v, f
〉

=
〈
L∗

xi,v, fF + fF⊥
〉

=
〈
L∗

xi,v, fF
〉

(65)

where the previous to last equality comes from the fact that fF⊥ is perpendicular to L∗
xi,v. Thus,

ˆ bi

ai

f(xi(t))dt = Lxi
(fF ) (66)

Next, using the Pythagorean equality

||f ||2 = ||fF ||2 + ||fF⊥ ||2 ≥ ||fF ||2 (67)

Thus, for any f ∈ H, J(fF ) ≤ J(f) which proves that the minimum of J actually belongs to F . Moreover,
note that

||fF ||2 =
〈

n∑
i=1

L∗
xi,αi

,

n∑
i=1

L∗
xi,αi

〉
=

n∑
i,j=1

〈
L∗

xi,αi
, L∗

xj ,αj

〉

=
n∑

i,j=1
αT

i

[ˆ bi

ai

ˆ bj

aj

K(xi(s), xj(t))dsdt
]
αj =

n∑
i,j=1

αT
i Mijαj = αTMα (68)

Also,

Lxi
(fF ) = Lxi

 n∑
j=1

L∗
xj ,αj

 (69)

=
ˆ bi

ai

n∑
j=1

L∗
xj ,αj

(xi(t))dt (70)

=
n∑

j=1

[ˆ bi

ai

ˆ bj

aj

K(xi(t), xj(s))dsdt
]
αj (71)

=
n∑

j=1
Mijαj (72)

= [Mα]i (73)

The minimization problem in f is thus equivalent to minimizing in α

J(α) = 1
n

n∑
i=1
∥[Mα]i − xi(bi) + xi(ai)∥2

Rd + λαTMα (74)

or equivalently,
J(α) = 1

n
∥Mα− x(b) + x(a)∥2

Rnd + λαTMα (75)

since λ > 0 and M is PSD, this is solved by

(M + λnI)α = x(b)− x(a) (76)
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F Computational Complexity

We detail below an analysis of the complexity for MOCK in terms of d, the dimension of the state space, and
N , the total number of observations. We present the implicit and explicit kernels successively.

F.1 Implicit kernel

In several of our experiments, an implicit Gaussian kernel was used. The Gram matrix for the kernel is
N ×m where N is the total number of samples in the dataset X and m is the total number of samples in the
dataset Y . If X ∈ Rd×N , and Y ∈ Rd×m, we may compute any radial basis function kernel defined by:

Gi,j = f(∥xi − yj∥2) (77)

by observing:
D = outer(sum(X ⊛X), 1m)− 2XTY + outer(1N , sum(Y ⊛ Y )) (78)

Where Di,j = ∥Xi − Yj∥2 is the matrix of square distances, ⊛ is the Hadamard product, sum is column sum,
outer is an outer product, and 1N is the ones vector in N dimensions. G ∈ RN×N is then calculated by
applying f component by component to D for the training set X with X. The computational bottleneck of
this Gram matrix computation is the N × d by d×m matrix matrix multiplication, with a worst case run
time that is O(dNm) = O(dN2) when Y = X (with a naive implementation of matrix matrix multiplication).

We integrate over intervals of a single pair of samples, and these integrals are estimated using the trapezoid
rule quadrature. Therefore, for instance, if a single trajectory is given, we would get our estimate of all our
integrals by simply taking the matrix

k = h2

4

[
1 1
1 1

]
(79)

and convolving it with the Gram matrix G. If multiple trajectories are given, we apply the same convolution
to G and ignore terms involving sums that mix samples from different trajectories. In NumPy indexing
notation, we may apply the above convolution with the expression:

M = h2

4 (G[1 :, 1 :] +G[: −1, 1 :] +G[1 :, : −1] +G[: −1, : −1]) (80)

This adds an additional O(N2) computational complexity (for fixed G ∈ RN×N ).

Finally, the linear system we solve is:
(M + λI)A = Y (81)

Where M ∈ RN×N and A, Y ∈ RN×d, which adds the dominating computational complexity term of O(dN3).

F.2 Explicit Kernel

Assuming the vvRKHS has a matrix-valued kernel of the form

K(x, y) = ψ(x)ψT (y) (82)

where
ψ : Rd → Rd×q (83)

we may recall:

f(x) =
∑

i

ˆ bi

ai

ψ(x)ψ(xi(τ))T dταi = ψ(x)
∑

i

ˆ bi

ai

ψ(xi(τ))T dταi = ψ(x)β (84)

where β ∈ Rq is defined by β =
∑

i

´ bi

ai
ψ(xi(τ))T dταi. Letting

Ψ ∈ RNd×q (85)
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be defined by:

Ψi ∈ Rd×q =
ˆ bi

ai

ψ(xi(τ))dτ (86)

Let
L∗ = ΨΨT (87)

then
αTL∗α = βTβ. (88)

Thus, we reduce the minimization problem 21 to

min
β
J(β) = 1

N

N∑
i=1
∥[Ψβ]i − xi(bi) + xi(ai)∥2

Rd + λβTβ (89)

This simplifies to (
ΨT Ψ + λNI

)
β = ΨT y (90)

where y ∈ RNd with yi ∈ Rd and yi = xi(bi)− xi(ai). Thus, in the explicit kernel case, we require evaluating
Ψ which is O(Ndq), a q ×Nd by Nd× q matrix-matrix multiplication O(q2(Nd)) and a q × q linear system
solve which is O(q3). Notice, in the explicit kernel case, no assumptions on the overall structure of the kernel
matrix K(x, y) are needed. For instance, the matrices no longer need to be diagonal or proportional to the
identity matrix. However, in practice, for best results, q will typically be dependent on the dimension d. If
the kernel is I-separable however, the runtime may be improved. Indeed, supposing ψ(x) = ϕ(x)⊗ I ∈ Rpd

where ϕ : Rd → Rp. The runtime reduces from O(q2Nd+ q3) = O((pd)2Nd+ (pd)3) to O(p2nd+ p3d)

G Comparators:

The methods we benchmark against are presented in the table 4. References and hyperparameters are
specified. The Null model is used as a baseline to determine that something was learned of the dataset.

Method Hyperparameters
Null N/A
Sparse Identification of Nonlinear Dynamics
SINDy Brunton et al. (2016) polynomial degree, sparsity threshold
Reduced Order Models
eDMD-RFF DeGennaro & Urban (2019) number of features, lengthscale
eDMD-Poly Williams et al. (2015) polynomial degree
Deep Learning
ResNet He et al. (2016) Lu et al. (2021) network depth/breadth
eDMD-Deep Yeung et al. (2019) latent space dimension, autoencoder depth/breadth
Latent Ode Rubanova et al. (2019) latent space dimension, autoencoder and decoder depth/breadth

Table 4: Hyperparameters for the comparators

Our null model has no parameters and is the trivial dynamical system for which the slope-field is zero
everywhere. A model that fails to outperform the null model likely did not learn any useful information
about the dynamical system. We present now the computational complexity for each method.

G.1 SINDy

The computational complexity for the SINDy algorithm is based on the Sequential Threshold Least Squares
(STLS) process, and it is influenced by two main factors:

1. Number of library functions (q) — This refers to the number of candidate terms in the library, which
is formed based on the polynomial degree and dimensionality of the system. In our case, we used
polynomials at most degree 3 and we used 16, 32, and 128 dimensions of the Lorenz system.
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2. Number of iterations (T ) — The number of times the STLS algorithm iterates to threshold the coef-
ficients. Each iteration performs regression on a progressively smaller set of terms after thresholding.

The complexity is derived by:

1. Sequential Thresholding: In each iteration, the algorithm identifies and zeroes out small coefficients
(based on the threshold), which has complexity O(qd), where q is the number of terms and d is the
number of variables (or dimensions).

2. Least Squares Regression: After thresholding, the algorithm re-solves the least squares problem for
the remaining large terms. The complexity of this operation depends on the size of the remaining set
p, and it scales as O(p3), where p ≤ q. In addition, as with our technique constructing the linear
system is an O(dNp2) operation.

Hence, after each iteration, the algorithm refines the set of non-zero coefficients in the library,
progressively reducing the number of terms included in the least squares regression.

Iterations

The number of iterations, T , can vary depending on the data and thresholding behavior. In general,
T is relatively small compared to the size of the library, but it still affects the total complexity.

Overall complexity:

Given that the STLS algorithm iterates T times, the total computational complexity is O(T ·
(qd+ q3 + dNq2)). The cubic and quadratic terms O(q3 + dNq2) dominate when solving the least
squares problem, especially when the number of terms q is large, which is typical when higher-degree
polynomials or large systems are considered.

G.2 Resnet

The Resnet algorithm use a residual network that learns the vector field. The input is a vector of dimension
d. The output is also a vector of dimension d. There are q fully connected layers. The Resnet is trained
during T epochs. The computational complexity is O(TNqd2).

G.3 Latent ODEs

The Latent ODE model consists of two primary components: an encoder and a decoder. In the encoder, a set
of ODEs is solved backward in time, where the ODEs operate on the observed state space of dimension d. In
the decoder, the ODEs are solved forward in time, but they operate on a latent space of dimension q.

To compute the overall complexity of the algorithm, we define several key variables:

1. T : the number of epochs used to train the neural network,

2. k1: the total number of function evaluations (time points) used in the numerical solver for the encoder
ODEs,

3. k2: the number of function evaluations for the decoder ODE,

4. n: the number of observed trajectories.

Given these notations, the per-epoch time complexity of the encoder is O(nk1d
2), as the ODEs in the encoder

are evaluated on a state space of dimension d. The per-epoch complexity of the decoder is O(nk2q
2), as the

ODEs in the decoder are evaluated on a latent space of dimension q.
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Thus, the total per-epoch complexity of the model is:

O
(
n
(
k1d

2 + k2q
2))

Finally, considering that the training runs for T epochs, the overall complexity of the algorithm becomes:

O
(
nT
(
k1d

2 + k2q
2))

G.4 eDMD-Poly and eDMD-RFF

The complexity of the eDMD method can be expressed in terms of N : the number of training examples,
q: the number of library functions, and d: the dimension of the data. We used a polynomial library for
eDMD-Poly and random Fourier features for eDMD-RFF. The underlying algorithm was the same.

The first step is to evaluate the library functions on the training data, obtaining an (N, q) matrix Ψ. Next, we
must numerically approximate the time derivatives of these quantities, yielding a matrix Ψ′. The complexity
of these operations is O(Nq).

In the next step, we compute an approximation of the Koopman operator, given by K = Ψ+Ψ′. The
pseudoinverse has a complexity which depends on whether N < q or N ≥ q. In the former, the complexity is
O(N2q), while in the latter, it is O(Nq2). The matrix-vector product Ψ+Ψ′ costs O(Nq2) to compute.

Then we compute an eigendecomposition of K, costing O(q3). The eigenvectors correspond to approximate
eigenfunctions of the true Koopman operator. Let E be the matrix of eigenvectors.

Let B be the matrix of coefficients of the full-state observable in terms of the library functions. This is a (d, q)
matrix. The eigenmodes are thus given by BE−1. The matrix E−1 can be expressed as the left eigenvectors
of K; thus, it is computed during the eigndecomposition. Therefore, the eigenmodes only require multiplying
(d, q) and (q, q) matrices together, costing O(dq2).

The matrix B, if not computed analytically, may be computed by inverting a (q, q) matrix and performing d
matrix-vector products, resulting in a complexity of O(dq2 + q3).

Thus, the total complexity is given by O((N + d)q2 +N2q + q3) if N < q and O((N + d)q2 + q3) if N ≥ q.

The pseudoinverse step may be impractical in situations where there are many training examples. Thus,
it may be substituted with a low-rank approximation using SVD. The rank of this approximation is a
hyperparameter and will affect the complexity of the algorithm. We omit this consideration for the sake of
simplicity.

G.5 eDMD-Deep

The eDMD-Deep method attempts to learn the library functions and the Koopman operator simultaneously.
It does so by defining the library functions as the output of a neural network and minimizing the error
incurred from a single Koopman operator update. Thus, the complexity is dependent on the architecture of
the neural network used and the choice of optimizer.

Assume that optimization is done with stochastic gradient descent and the neural network outputs q library
functions. Assume also that the data consists of n observations of d-dimensional trajectories. Suppose the
neural network has L layers with q neurons each. Then a single iteration of SGD for the neural network has
a cost of O(Ldq). Thus, an epoch as a cost of O(NLdq). Training for T epochs then costs O(TLNdq).

One must simultaneously optimize the cost function for the Koopman operator K, which is a (q, q)-dimensional
matrix, with the neural network. Computing the gradient of the cost with respect to K requires multiplying a
(q, q) matrix and q-dimensional vector, costing O(q2). We compute this product for each item in the training
set, costing O(Nq2). Thus, the total cost of optimizing K over T epochs is O(TNq2). Therefore, the cost of
training the Koopman operator together with the library functions is O(TN(Ldq + q2)).
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Once one has obtained the library functions and the matrix K, one proceeds as in eDMD and computes an
eigendecomposition of K, followed by computing the eigenmodes, costing O(q3 + dq2). Thus, the complexity
of the entirety of the eDMD-Deep algortihm is given by O(TN(Ldq + q2) + dq2 + q3).

G.6 Runtime Results for the models

The theoretical runtimes of each benchmarked method is provided in figure 7. The experimental runtimes
are also provided. The training and validation procedures differed for each of the methods making runtime
comparisons difficult to interpret. Moreover, the hardware on which the models were run differed as well. For
instance, all deep models were trained and run on GPUs while all other methods were not. In figure 7 we
show the experimental runtimes for Lorenz96-16, Lorenz96-32 and Lorenz96-128 to give some suggestion as
to how the runtimes scale as the dimension of the problem increases. The runtime of MOCK is not greatly
impacted by the increase in the dimension.

The runtime for ResNet and Lode is quadratic in d (as can be seen in figure 7). In addition,
eDMD-Poly and SINDy-Poly suffer from the problem that the number of polynomial features scales at least
linearly with d. Thus these models scale at least cubically in d. q is determined by the user for eDMD-RFF
and eDMD-Deep. If the user fixes q, then these methods will be linear in d. See the figure 7 and the
discussion of G.6.

MOCK
O(dN3)

Data val (h) non-val (s)
L96-16 2.27 9.0
L96-32 2.5 9.1
L96-128 3.7 9.5

ResNet
O
(
kd2TN

)
Data val (h) non-val (s)
L96-16 .02 86.1
L96-32 .03 107.8
L96-128 .07 232.5

eDMD-Deep
O(TN(Ldq + q2) + dq2 + q3)

Data val (h) non-val (s)
L96-16 5.63 62.34
L96-32 4.58 81.3
L96-128 6.8 123.9

eDMD-Poly
O((N + d)q2 +N2q + q3)

Data val (h) non-val (s)
L96-16 .31 7.0
L96-32 .43 8.1
L96-128 .5 9.4

eDMD-RFF
O((N + d)q2 + q3)

Data val (h) non-val (s)
L96-16 .08 1.56
L96-32 .08 1.6
L96-128 .15 2.58

Lode
O
(
nT
(
k1d

2 + k2q
2))

Data val (h) non-val (s)
L96-16 .23 829
L96-32 .44 1568
L96-128 4.7 16891

SINDy-Poly
O(T (qd+ q3 + dNq2))

Data val (h) non-val (s)
L96-16 .1 1.4
L96-32 .0025 1.5
L96-128 .03 23

Figure 7: val(h) is the training time including the training of the hyperparameters, in hours. non-val(s) is the
training time excluding the training of the hyper-paramters, in seconds. For non-val, The MOCK algorithm
scales most favorably with the dimension of the dataset, as increasing the dimension from 16 to 128 increases
training time by less than 10%.
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