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Abstract

Bridging contrastive language-image pre-training
(CLIP) to video action recognition has attracted
growing interest. Human actions are inherently
rich in spatial and temporal contexts, involving
dynamic interactions among people, objects, and
the environment. Accurately recognizing actions
requires effectively capturing these fine-grained
elements and modeling their relationships with
language. However, most existing methods rely
on cosine similarity–practically equivalent to the
Pearson correlation coefficient–between global
tokens for video-language alignment. As a re-
sult, they have limited capacity to model com-
plex dependencies and tend to overlook local to-
kens that encode critical spatio-temporal cues. To
overcome these limitations, we propose BDC-
CLIP, a novel framework that leverages Brown-
ian Distance Covariance (BDC) to align visual
and textual representations. Our method can
capture complex relationships–both linear and
nonlinear–between all visual and textual tokens,
enabling fine-grained modeling in space, time,
and language. BDC-CLIP achieves state-of-the-
art performance across zero-shot, few-shot, base-
to-novel, and fully supervised action recognition
settings, demonstrating its effectiveness and broad
applicability.

1. Introduction
Multimodal foundation models, such as contrastive
language-image pre-training (CLIP) (Radford et al., 2021),
have demonstrated remarkable zero-shot and few-shot
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Figure 1. Key differences between prior arts (a) and our BDC-
CLIP (b). Previous methods align video and language based on
cosine similarity between average of frame-level [CLS] tokens in
video and sentence-level [EOS] token. This limits the alignment
to coarse semantic matching. In contrast, BDC-CLIP aligns the
two modalities via Brownian distance correlation using all visual
tokens and all textual tokens, which can capture fine-grained spatio-
temporal cues crucial for action recognition.

recognition capabilities. In particular, adapting CLIP to
image-centric downstream tasks has driven significant ad-
vances (Gu et al., 2022; Zhou et al., 2022). Motivated by this
success, researchers have turned their attention to similarly
powerful models for video-language alignment. However,
training such models from scratch remains impractical (Ni
et al., 2022; Rasheed et al., 2023) due to the limited availabil-
ity of large-scale video-text datasets and the prohibitive com-
putational costs of video processing. Consequently, recent
efforts focus on repurposing image-pretrained CLIP models
for video-centric tasks, yielding promising progress (Mo-
meni et al., 2023; Huang et al., 2024; Kim et al., 2024).

Human actions exhibit rich contextual information when
captured in video and described by human language, in-
volving dynamic interactions among people, objects, and
the environment (Rasheed et al., 2023; Chen et al., 2024a).
For example, the action {playing polo} features players
swinging mallets on horseback, galloping across a grass
field, with the scene continuously evolving (see Figure 5).
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These fine-grained elements, which are encoded as image
regions within frames (Dosovitskiy et al., 2021; Caron et al.,
2021) and key words in textual descriptions, are mapped via
CLIP to a shared embedding space alongside corresponding
textual descriptions. Effectively capturing and distinguish-
ing these elements while modeling their relationships with
language is crucial for robust video action recognition.

However, most existing methods suffer from two primary
limitations in modeling video-language relations. First, they
rely on cosine similarity to align video and language. Since
cosine similarity is practically equivalent to the Pearson
correlation coefficient (Zhelezniak et al., 2019), it can only
capture linear relationships and fails to model more complex,
nonlinear dependencies. Second, these methods typically
focus on global tokens—that is, the average of frame-level
[CLS] tokens for video and the sentence-level [EOS] to-
ken for text—while neglecting local tokens (i.e., patch to-
kens and word tokens) that encode fine-grained elements
in video frames and textual descriptions. As a result, these
approaches are limited to coarse semantic matching and lack
the capacity to capture the detailed spatio-temporal cues that
are essential for understanding actions in videos.

To address these limitations, we propose BDC-CLIP, a novel
framework for video-language alignment based on Brown-
ian distance covariance (BDC) (Székely & Rizzo, 2009).
BDC overcomes the limitations of existing methods in two
key ways. First, unlike cosine similarity, BDC can cap-
ture both linear and nonlinear correlations, enabling it to
model the complex dependencies between video and lan-
guage embeddings. Second, BDC naturally models rela-
tionships between sets of embeddings by treating them as
random vectors, allowing it to fully leverage both global
tokens and local tokens. This makes BDC particularly well-
suited for fine-grained video-language alignment, where
understanding the relationships between detailed visual and
linguistic elements is essential.

Figure 1 illustrates the key differences between our approach
and prior methods. BDC-CLIP introduces two core com-
ponents: a video BDC adapter and a text BDC adapter. In
the video BDC adapter, we leverage all visual tokens (i.e.,
[CLS] and patch tokens) to compute a BDC matrix as a
frame-wise representation and design a temporal attention
mechanism to model frame-to-frame dynamics. The video
representation is then obtained by averaging these frame-
wise features. On the textual side, we exploit all textual
tokens (i.e., [EOS] and word tokens) to compute a BDC
matrix as the text representation. Finally, we align the video
and text representations using Brownian distance correlation
(BDCorr), a normalized metric that is invariant to orthogo-
nal, translational, and scaling transformations.

The primary contributions of this paper are summarized as
follows:

• We introduce Brownian Distance Covariance (BDC) for
multimodal alignment in foundation models such as
CLIP, going beyond the limitations of cosine similarity.
BDC enables the model to capture complex statistical
dependencies in the video-language embedding space.

• We propose a temporal BDC attention that captures patch-
wise importance and temporal dynamics, along with a
language-side BDC representation derived from all tex-
tual tokens. This enables fine-grained multimodal con-
text modeling across space, time, and language.

• Our method achieves strong performance across a range
of video recognition tasks, including zero-shot, few-shot,
base-to-novel, and fully supervised recognition, demon-
strating its ability to capture subtle spatio-temporal cues
critical for video action understanding.

2. Related Works
Recently many methods have been proposed for adapting
image-pretrained CLIP to action recognition. They can be
roughly grouped into two categories: the methods based on
frozen CLIP encoders and those fine-tuning CLIP encoders.

Adapting frozen (�) CLIP encoders This research di-
rection focuses on designing learnable prompts or adapters
attached to frozen CLIP encoders. Vita-CLIP (Wasim et al.,
2023) learns frame-level and video-level prompts alongside
a summary video prompt for the vision encoder, as well as
linguistic prompts for the text encoder. ST-Adapter (Pan
et al., 2022) plugs light spatial-temporal adapters into the
visual encoder. DUALPATH (Park et al., 2023) extends
the visual encoder with a dual-branch architecture and intro-
duces lightweight adapters to perform spatial and temporal
modeling independently. CAST (Lee et al., 2023) also uses
a two-stream architecture, with the CLIP visual encoder as
the spatial expert and VideoMAE (Tong et al., 2022) as the
temporal expert. It introduces a bottleneck cross-attention to
enable interaction between the spatial and temporal streams.
However, all these methods require backpropagation (BP)
through entire encoders, making them training-inefficient.
To improve efficiency, BP-free methods have been proposed.
A5 (Ju et al., 2022) connects frame-level temporal adapter
to the visual encoder, and meanwhile learns textual prompts.
EVL (Lin et al., 2022) designs an efficient transformer de-
coder connected to visual encoders for capturing temporal
cues. DiST (Qing et al., 2023) disentangles temporal learn-
ing via a light temporal encoder and spatial learning via
CLIP encoder. MoTED (Qing et al., 2023) aligns the spa-
tial embedding output by the frozen visual encoder with
text description of categories, and also aligns temporal em-
beddings output by the light motion encoder with motion
descriptions of categories. RIVA (Qian et al., 2024) employs
slot attention to extract compact object tokens from frozen
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Figure 2. Illustration of BDC-CLIP adapting image-pretrained CLIP for action recognition in videos. Our key idea is Brownian Distance
Covariance (BDC) for video-language alignment. Specifically, we develop a video BDC adapter that models temporal relation of
frame-wise BDC matrices computed from weighted visual tokens. Similarly, we introduce a text BDC adapter that computes BDC matrix
using weighted textual tokes as language representation. To decrease computations, we use a linear layer for dimension (dim) reduction
before the BDC adapters. As in previous arts, we use LLMs to augment simple category names. Besides the BDC alignment, we also
introduce a separate vision classifier (not shown for simplicity), attached to the video BDC adapter for further improvement.

pretrained models and performs temporal reasoning through
object-time interactions.

Fine-tuning (\) CLIP encoders This category focuses
on fine-tuning CLIP’s vision and text encoders for video
tasks. ViFi-CLIP (Rasheed et al., 2023) simply finetunes
both encoders with minimal design changes. It is efficient
and strong, even better than previous methods with specific
adapters to model temporal cues, e.g., ActionCLIP (Wang
et al., 2021) and XCLIP (Ni et al., 2022). As such, the
follow-up works are often based on the fine-tuned encoders.
FROSTER (Huang et al., 2024) distills the fine-tuned mod-
els with the frozen CLIP models to enhance generalization
ability. OST (Chen et al., 2024a) augments action class
names with LLMs into Spatio-Temporal Descriptors, which
are aligned to frame-level representations based on optimal
transport. TC-CLIP (Kim et al., 2024) proposes a method
of temporal contextualization, which summarizes informa-
tive tokens for infusing temporal cues and also serves as
video-conditional text prompts. Open-VCLIP (Weng et al.,
2023) introduces regularization via weight interpolation (Il-
harco et al., 2022) to balance adaptation and generalization
capabilities.

BDC for deep learning The concept and theory of BDC
were established in (Székely & Rizzo, 2009) to measure
the dependence between sets of random vectors. BDC is
computationally efficient, capable of modeling both linear
and non-linear correlations, and provides a complete charac-
terization of the independence of random variables. These
favorable properties have motivated researchers to explore
its applications in deep learning. Zhen et al. (2022) inves-
tigate the use of BDC and partial BDC (Székely & Rizzo,

2014) in tasks such as network comparison, disentangled
representation learning, and improving robustness in adver-
sarial learning. DeepBDC (Xie et al., 2022) applies the BDC
metric to measure similarities between query images and
support classes for few-shot image classification. Similarly,
BDC-Adapter (Zhang et al., 2023) utilizes a BDC-based
nearest neighbor classifier for pure vision prediction, which
is integrated with vision-language prediction for final clas-
sification. Our work is inspired by both DeepBDC and
BDC-Adapter but is distinguished by two key points: (1)
we extend the BDC metric to match two distinct modalities
(i.e., vision and language), rather than limiting it to uni-
modal tasks (i.e., vision only); and (2) we focus on video
action recognition, introducing a novel BDC attention mech-
anism to model temporal cues, whereas prior methods focus
on image recognition that requires no temporal modeling.

3. From Cosine Similarity to BDC
To facilitate analysis, we first introduce some notations. Let
P̃ = [p̃0, . . . , p̃N ] ∈ Rd×(N+1) denote the N +1 visual
token embeddings of d dimensions for an image, where
p̃0 indicates the [CLS] token and the remaining entries
indicate patch tokens. Similarly, let W̃=[w̃0, . . . , w̃M ]∈
Rd×(M+1) denote the textual token embeddings, where w̃0

indicates the [EOS] token and the rest indicate word tokens.

3.1. A Statistical Perspective on Cosine Similarity

As described in (Zhelezniak et al., 2019), the similarity
between tokens can be interpreted from a statistical per-
spective. Specifically, each d-dimensional token embedding
can be regarded as a sample of d observations from a ran-
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Figure 3. Distributions of token embeddings.

dom variable. When these samples are nearly zero-centered,
cosine similarity (CS) becomes approximately equivalent
to the Pearson correlation coefficient (PCC). This property
holds for the CLIP model, as evidenced by the near-zero
mean distributions in Figure 3.

Most existing CLIP adaptations rely on computing the CS
between the [CLS] token p̃0 and the [EOS] token w̃0, which
can be interpreted as samples drawn from two random vari-
ables, Rimg,0 and Rtxt,0, respectively. Thus, we have:

CS(p̃0, w̃0) ≊ PCC(p̃0, w̃0)=
E(Rimg,0Rtxt,0)√

E(R2
img,0)

√
E(R2

txt,0)
, (1)

where E(·) denotes expectation over the random variable.
However, PCC is limited to capturing linear relationships,
and is optimal only when the joint distribution is Gaussian.
It cannot capture more complex, nonlinear dependencies. As
illustrated in Figure 4, the correlations between visual and
textual tokens are highly nonlinear and non-Gaussian. Con-
sequently, methods that rely solely on CS or PCC are fun-
damentally limited in modeling such dependencies. More-
over, these methods often ignore fine-grained information
encoded in patch and word tokens across both modalities.

3.2. BDC for Modeling Statistical Dependency

To overcome these limitations, we propose to use BDC to
match vision and language modalities by considering all to-
kens jointly. We treat each visual (resp. textual) embedding
p̃i (resp. w̃j) as a sample of d observations drawn from a
random variable Rimg,i (resp. Rtxt,j). We then define the
random vectors:

Rimg = [Rimg,0, . . . ,Rimg,N ],Rtxt = [Rtxt,0, . . . ,Rtxt,M ].

As formalized in Székely & Rizzo (2009), BDC measures
the discrepancy between the joint distribution of Rimg and
Rtxt and the product of their marginals. For the discrete
case, the BDC metric can be computed in closed form using
the so-called BDC matrices. For the visual modality, the
BDC matrix Bimg ∈ Rd×d is computed as:

Bimg = Bdc9M([p̃0, . . . , p̃N ]), (2)

where Bdc9M(·) computes a symmetric matrix whose (i, j)-
th entry is the Euclidean distance between the i-th and j-th
rows of P̃, adjusted by subtracting row mean, column mean,
and the global mean. The BDC matrix for textual tokens,
Btxt, is computed analogously. The BDC metric is then
given by:

BDC(Bimg,Btxt) =
1

d2
tr(BimgBtxt), (3)

where tr(·) denotes the trace of a matrix. The BDC metric
can capture arbitrary statistical dependencies–both linear
and nonlinear–without requiring distributional assumptions.

In the next section, we extend this framework to align videos
with textual descriptions. By modeling complex dependen-
cies across all visual tokens (across frames) and all tex-
tual tokens, our method effectively captures fine-grained
semantics such as salient regions and key words critical for
video understanding. This is further supported by Grad-
CLIP (Zhao et al., 2024) visualizations in Figures 5 and 7.

4. Proposed BDC-CLIP
The framework of BDC-CLIP, as shown in Figure 2, mainly
consists of a video BDC adapter and a text BDC adapter.
The two adapters output respectively video and language
representations, aligned by Brownian distance correlation.

4.1. Video-Language Alignment with BDC Metric

Consider a video sample consisting of T frames and its cor-
responding textual description indicating an action category.
These inputs are processed by the visual and text encoders,
respectively. Let Pt = [pt

0, · · · ,pt
N ] ∈ Rd′×(N+1) be the

visual token embeddings of the t-th frame output by the
visual encoder. Let W= [w0, · · · ,wM ] ∈Rd′×(M+1) be
the textual token embeddings from the text encoder.

Video representation To decrease computational cost, we
introduce a linear layer for dimension reduction:

P̂t = Linear(LN([pt
0, · · · ,pt

N ])), (4)

where P̂t=[p̂t
0, p̂

t
1, . . . , p̂

t
N ]∈Rd×(N+1), LN denotes layer

normalization, and Linear denotes a linear transformation
reducing the feature dimension from d′ to d (d < d′).

We construct the video representation using all visual to-
kens per frame. Notably, different patch tokens contribute
differently to video recognition tasks. For instance, certain
patch tokens may capture essential parts of the subjects (e.g.,
persons or objects), while others may represent background
or irrelevant regions. To quantify token importance, we
introduce a weighting mechanism based on the similarity
of each token to the [CLS] token. Since the [CLS] token
is designed to encapsulate the holistic representation of a

4



BDC-CLIP: Brownian Distance Covariance for Adapting CLIP to Action Recognition

frame, it is reasonable to assign greater importance to tokens
with higher similarity to the [CLS] token. The weighted
embedding of a patch token is computed as:

p̃t
i = ωt

i p̂
t
i, ωt

i = Softmax
(
p̂t
0 · p̂t

i/
√
d
)
, (5)

where · denotes the dot product of two vectors, and Softmax
is the softmax function. The BDC matrix for the t-th frame
is computed as:

Bt
img = Bdc9M([p̃t

0, · · · , p̃t
N ]), (6)

For efficient processing, we perform half-vectorization
(Vech) for Bt by stacking the entries on and below its di-
agonals, obtaining a compact vector bt

img =Vech(Bt
img)∈

Rd(d+1)/2.

Then, we learn temporal relationships across frames
with an attention mechanism. Let the values be V =
[b1

img,b
2
img, · · · ,bT

img]. We feed the frame-wise [CLS] to-
kens [p̂1

0, · · · , p̂T
0 ] to two separate linear layers, achieving

the queries Q ∈ Rd×T and keys K ∈ Rd×T , respectively.
The attention module outputs:

Ṽ = Attention[Q,K,V]. (7)

Finally, we perform average (Avg) pooling across T frames
and obtain the video-level representation:

Bvid = Sym9h(Avg9pool(Ṽ)), (8)

where Sym9h reconstructs a symmetric matrix from a vector.

Text representation The computation for text representa-
tion mirrors that of video representation, but without tem-
poral attention. Given textual tokens W, we first achieve
the embeddings of reduced dimension Ŵ ∈ Rd×(M+1)

through a layer normalization and a linear layer, which are
then weighted in terms of their similarities to the [EOS]
token ŵ0 for obtaining w̃i, i = 0, 1, · · · ,M . The BDC
matrix for text representation is then computed as:

Btxt = Bdc9M([w̃0, · · · , w̃M ]). (9)

Vision-language alignment The similarity between video
and text representations is measured using Brownian Dis-
tance Correlation (BDCorr):

BDCorr(Bvid,Btxt)=
tr(BvidBtxt)√

tr(BvidBvid)
√
tr(BtxtBtxt)

(10)

The values of BDCorr lie in the interval [0, 1], where a value
of zero indicates that the two modalities are independent of
each other. It is worth mentioning that BDCorr is invariant
to orthogonal, translational, and scaling transformations.

By leveraging all visual and textual tokens, BDC-CLIP
captures fine-grained relationships across spatial, temporal,
and linguistic domains. In contrast, cosine similarity-based
methods capture only coarse, linear correlations between
global tokens.

4.2. Training Objective

In addition to aligning video and text BDC representations,
we introduce a vision classifier built upon the video BDC
adapter, leveraging ground-truth labels for supervision. Con-
sistent with prior works (Chen et al., 2024a; Zhang et al.,
2024), we retain the backbone loss, i.e., CLIP’s original
contrastive loss, which directly aligns the embeddings from
the visual and textual backbone encoders.

Let Btxt(c) be the textual BDC matrix of the c9th category,
and let SBDC(c)=BDCorr(Bvid,Btxt(c)). Additionally, let
y= [yc]

C
c=1 be the ground-truth probability vector, where

C is the number of categories. The Vision-Language Con-
trastive (VL-Ctr) loss for the BDC adapters is defined as:

LVL-Ctr
adapter =

C∑
c=1

yc log

(
exp(SBDC(c)/τ)∑C

c′=1 exp(SBDC(c′)/τ)

)
, (11)

where τ is a learnable temperature parameter.

For the vision classifier, the half-vectorized video represen-
tation Bvid is passed through a fully-connected layer param-
eterized by R for softmax classification. The classification
loss is given by:

LV-Cls
adapter =

C∑
c=1

yc log(Softmax(Vech(Bvid)R)c), (12)

where (·)c denotes the c9th component of the softmax out-
put. This supervised loss encourages learning of more dis-
criminative and generalizable features.

The backbone loss is based on cosine similarity (Rasheed
et al., 2023):

LVL-Ctr
backbone =

C∑
c=1

yc log

(
exp(Scos(c)/τ

∗)∑C
c′=1 exp(Scos(c′)/τ∗)

)
, (13)

where Scos(c) = cos(Avg9pool([pt
0]

T
t=1),w0(c)), w0(c) is

the [EOS] token of the c9th category, and τ∗ is a learnable
temperature parameter.

The overall loss function combines the three components:

Ltotal = LVL-Ctr
adapter + LV-Cls

adapter + LVL-Ctr
backbone. (14)

5. Experiments
We first describe the experimental setup (§5.1). Then
we compare to state-of-the-art methods in light of perfor-
mance (§5.2) and cost (§5.3). We finally conduct ablation
study (§5.4) and provide qualitative analysis (§5.5).
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5.1. Experimental Setup

Datasets and task setting We conduct experiments on
five widely used action recognition datasets, i.e., Kinetics-
400 (K400) (Carreira & Zisserman, 2017), Kinetics-600
(K600) (Carreira et al., 2018), HMDB-51 (Kuehne et al.,
2011), UCF-101 (Soomro et al., 2012) and Something Some-
thing V2 (SSv2) (Goyal et al., 2017). Following (Rasheed
et al., 2023; Kim et al., 2024; Chen et al., 2024b; Li et al.,
2024), we pretrain on K400 and then evaluate on down-
stream tasks in zero-shot, few-shot, base-to-novel general-
ization and fully-supervised settings. Few-shot and base-to-
novel generalization tasks directly fine-tuned from CLIP are
reported in Section B.2 of Appendix.

Implementation We utilize CLIP models with a ViT-B/16
visual encoder and the corresponding text encoder through-
out this paper. For text augmentation, following the ap-
proach in (Huang et al., 2024; Kim et al., 2024), we query
GPT-4o to generate enriched textual descriptions for each
category name using the prompt: “Describe the action of
{category name} in a video.” Both temperature parameters
τ in Eq. 11 and τ∗ in Eq. 13 in the training objective are
initialized by 0.07. All experiments are conducted using
GeForce RTX 4090 GPUs with the PyTorch framework.

Detailed experimental setup is provided in Section A.

5.2. Comparison to State-of-The-Art Methods

(i) Zero-shot recognition For this task, all models are
trained on K400 and then directly evaluated on down-
stream datasets in zero-shot manner. Note that recent
works (Kim et al., 2024; Huang et al., 2024; Lin et al., 2023;
Weng et al., 2023) have exploited weight-space ensembling
(WSE) (Wortsman et al., 2022) to boost performance of
zero-shot task; see Section A.2 for implementation details.
For a fair comparison, we report the results with (w/) and
without (w/o) WSE. Table 1 presents the comparison results.
The results of ActionCLIP and ViFi-CLIP w/ WSE are du-
plicated from TC-CLIP. For the case of w/o WSE, the top-1
accuracies of BDC-CLIP are better than the second-best
ones by 1.2%, 2.9% and 1.1% in top-1 accuracy on HMDB-
51, UCF-101 and K600, respectively. All methods w/ WSE
improve over their counterparts without WSE, particularly
on UCF-101 and K600, while our BDC-CLIP still stands
out, outperforming the runners-up by 4.7%, 1.5% and 0.8%
on the three datasets. These results suggest that BDC-CLIP
has better generalization ability than the competitors.

(ii) Few-shot recognition In this setting, all methods are
first trained on K400 and subsequently are evaluated for
all-way classification provided with K training examples
per class. The comparison results are presented in Table 2.
TC-CLIP), our BDC-CLIP outperforms on HMDB-51 by
more than 2.7% in each K9 shot task, and improves on SSv2

Table 1. Comparison to previous methods in zero-shot setting using
K400-pretrained models. WSE indicates Weight-Space Ensem-
bling; CLIP Backbone Encoders (BEs) are frozen (�) or fine-
tuned (\). The best results are bold and the second-best ones are
underlined. † indicates results reproduced by us.

Method BEs HMDB-51 UCF-101 K600
(Top-1)

K600
(Top-5)

w
/o

W
SE

A5 Ju et al. � 44.3±2.2 69.3±4.2 55.8±0.7 81.4±0.3

Vita-CLIP Wasim et al. � 48.6±0.6 75.0±0.6 67.4±0.5 –
DiST Qing et al. � 55.4±1.2 72.3±0.6 – –
MoTED Zhang et al. � 58.2±1.1 78.3±0.6 69.9±0.5 –
ActionCLIP Wang et al. \ 49.1±0.4 68.0±0.9 56.1±0.9 83.2±0.2

X-CLIP Ni et al. \ 44.6±5.2 72.0±2.3 65.2±0.4 86.1±0.8

ViFi-CLIP Rasheed et al. \ 52.3±0.2 78.9±1.1 70.7±0.8 92.1±0.3

TC-CLIP†
Kim et al. \ 56.8±0.9 83.0±0.6 75.4±0.9 94.7±0.4

BDC-CLIP (Ours) \ 59.4±0.3 85.9±0.9 76.5±0.8 95.0±0.3

w
/W

SE

ActionCLIP Wang et al. \ 51.9±0.5 74.2±1.0 67.5±1.2 90.7±0.1

ViFi-CLIP Rasheed et al. \ 52.2±0.7 81.0±0.9 73.9±0.5 93.3±0.3

Open-VCLIP Weng et al. \ 53.9±1.2 83.4±1.2 73.0±0.8 93.2±0.1

MAXI Lin et al. \ 52.3±0.7 78.2±0.8 71.5±0.8 92.5±0.4

OST Chen et al. \ 55.9±1.2 79.7±1.1 75.1±0.6 94.6±0.2

FROSTER Huang et al. \ 54.8±1.3 84.8±1.1 74.8±0.9 –
TC-CLIP Kim et al. \ 56.0±0.3 85.4±0.8 78.1±1.0 95.7±0.3

BDC-CLIP (Ours) \ 60.7±0.5 86.9±0.9 78.9±0.8 95.9±0.2

by 1.2%, 1.5%, 2.3% and 4.3% for 29, 49, 89 and 169 shot
tasks, while performing better on UCF-101 (∼1.0%) in each
of K9shot setting. We provide results without pretraining
on K400 (i.e., directly finetuned from CLIP) in Table 8.

(iii) Base-to-novel generalization All methods pretrained
on K400 are fine-tuned and tested on base classes, along
with evaluation on novel classes in zero-shot manner. Ta-
ble 3 shows Top-1 accuracies for base and novel classes
and their harmonic mean (HM). We can see that BDC-
CLIP achieves state-of-the-art performance across all three
datasets, with HM exceeding TC-CLIP by 2.6% on HMDB-
51, 2.0% on UCF-101, and 2.1% on SSv2. See Appendix
Table 9 for the results without pretraining on K400.

(iv) Fully-supervised recognition Following the common
practice for closed-set setting, we conduct experiment with
standard splits on K400. As in ViFi-CLIP, we sample 16
frames per video clip and conduct inference with 4 video
clips and 3 spatial crops (4×3 views). We also apply WSE
to this setting. From Table 4, we can see that, without
WSE, BDC-CLIP surpasses the previous best performer
(TC-CLIP) by 0.4% in top-1 accuracy. Moreover, BDC-
CLIP with WSE further improves, achieving a top-1 accu-
racy of 86.5%.

5.3. Computational Cost Analysis

Following TC-CLIP, we analyze the computational cost in
terms of parameters, GFLOPS, and throughput (per view),
as reported in Table 5. All metrics are normalized to the
baseline (ViFi-CLIP), and measured on a single GeForce
RTX 4090 GPU. We separately list the costs for BDC-
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Method BEs
HMDB-51 UCF-101 SSv2

K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16

CLIP Radford et al. � 41.9 41.9 41.9 41.9 63.6 63.6 63.6 63.6 2.7 2.7 2.7 2.7

A5 Ju et al. � 46.7 50.4 61.3 65.8 76.3 84.4 90.7 93.0 4.5 6.7 7.2 9.5
ActionCLIP Wang et al. \ 54.3 56.2 59.3 66.1 76.7 80.4 87.6 91.8 4.8 6.9 9.1 12.3
X-CLIP Ni et al. \ 60.5 66.8 69.3 71.7 89.0 91.4 94.7 96.3 6.6 7.8 9.9 13.7
ViFi-CLIP Rasheed et al. \ 63.0 65.1 69.6 72.0 91.0 93.7 95.0 96.4 6.7 7.9 10.2 13.5
OST Chen et al. \ 64.8 66.7 69.2 71.6 90.3 92.6 94.4 96.2 8.0 8.9 10.5 12.6
ALT Chen et al. \ 64.3 66.7 70.4 74.5 93.2 95.3 96.4 97.3 6.6 7.7 9.4 12.9
TC-CLIP Kim et al. \ 65.3 68.5 71.4 73.0 94.1 95.6 96.6 97.3 8.7 10.1 12.1 15.2
BDC-CLIP (Ours) \ 68.0 71.5 75.9 77.3 94.9 96.7 97.5 98.5 9.9 11.6 14.4 19.5

Table 2. Comparison to previous
methods in all-way K9shot set-
ting with pretraining on K400.
CLIP Backbone Encoders (BEs)
are frozen (�) or finetuned (\).
The best results are bold and the
second-best ones are underlined.
The results of directly fine-tuning
from CLIP are provided in Ta-
ble 8.

Table 3. Comparison to previous methods in base-to-novel generalization
setting with pretraining on K400. HM indicates the harmonic mean. The
results of directly fine-tuning from CLIP are given in Table 9.

Method BEs
HMDB-51 UCF-101 SSv2

Base Novel HM Base Novel HM Base Novel HM

CLIP Radford et al. � 53.3 46.8 49.8 78.5 63.6 70.3 4.9 5.3 5.1

A5 Ju et al. � 70.4 51.7 59.6 95.8 71.0 81.6 12.9 5.7 7.9
ActionCLIP Wang et al. \ 69.0 57.2 62.6 85.6 75.3 80.1 8.1 8.7 8.4
X-CLIP Ni et al. \ 75.8 52.0 61.7 95.4 74.0 83.4 14.2 11.0 12.4
ViFi-CLIP Rasheed et al. \ 77.1 54.9 64.1 95.9 74.1 83.6 15.8 11.5 13.3
TC-CLIP Kim et al. \ 79.4 58.3 67.2 97.5 84.5 90.5 19.6 15.6 17.4
BDC-CLIP (Ours) \ 81.0 61.3 69.8 97.5 88.0 92.5 20.9 18.2 19.5

Table 4. Comparison to previous methods in fully-
supervised setting on K400. †: result with WSE.

Method BEs Views Frames Top-1 Top-5

DiST Qing et al. � 3 × 1 32 85.0 97.0
MoTED Zhang et al. � 3 × 1 32 86.2 97.5
AIM Yang et al. � 3 × 1 32 84.7 96.7
ALT Chen et al. \ 3 × 1 32 85.5 96.7

Vita-CLIP Wasim et al. � 4 × 3 16 82.9 96.3
X-CLIP Ni et al. \ 4 × 3 16 84.7 96.8
ViFi-CLIP Rasheed et al. \ 4 × 3 16 83.9 96.3
TC-CLIP Kim et al. \ 4 × 3 16 85.2 96.9
BDC-CLIP (Ours) \ 4 × 3 16 85.6 96.9
TC-CLIP†

Kim et al. \ 4 × 3 16 85.7 97.1
BDC-CLIP†(Ours) \ 4 × 3 16 86.5 97.4

Table 5. Comparison of computational cost to previous methods.
Throughput is measured on a single GeForce RTX 4090 GPU.

Method Params (M) GFLOPS Throughput

ViFi-CLIP Rasheed et al. 124.3 1.00× 285 1.00× 46 1.00×

ActionCLIP Wang et al. 143.7 1.16× 567 1.99× 28 0.61×

X-CLIP Ni et al. 169.7 1.37× 288 1.01× 42 0.91×

Vita-CLIP Wasim et al. 161.8 1.30× 307 1.08× 34 0.74×

OST Chen et al. 124.3 1.00× 287 1.01× 42 0.91×

TC-CLIP Kim et al. 127.5 1.03× 304 1.07× 33 0.72×

BDC-CLIP (ZeroS, Ours) 126.9 1.02× 316 1.11× 37 0.80×

BDC-CLIP (FullS, Ours) 132.0 1.06× 316 1.11× 37 0.80×

CLIP in zero-shot (ZeroS) and fully supervised (FullS)
settings. Notably, BDC-CLIP requires only a modest in-
crease over ViFi-CLIP in parameters (1.02×–1.06×) and
GFLOPS (1.11×), with throughput at 0.80×. Compared to
TC-CLIP, a previous top-performing method, BDC-CLIP in-
curs slightly higher GFLOPS but achieves faster throughput,
demonstrating efficient trade-offs in computational cost.

5.4. Ablation Analysis

To facilitate fast ablation, we pretrain on K400-
tiny (Rasheed et al., 2023) where each class has 100 training
videos, and evaluate zero-shot recognition on K600 and
K9shot (K = 2, 16) recognition on HMDB-51 and SSv2.

Component analysis Our baseline is the original CLIP
video-language (VL) alignment attached to the backbone en-

coders (Rasheed et al., 2023). Based on this, we analyze the
role of BDC VL alignment and BDC vision (V) classifica-
tion, as shown in Table 6a. It can be seen that, combination
of BDC VL alignment improves significantly over the base-
line by 1.8% on K600, 4.1% and 3.5% for 16-shot task on
HMDB-51 and SSv2, respectively. These big gains indicate
our BDC alignment can more effectively mitigate the do-
main gap between the image and video, and have stronger
ability for video-language alignment. By further integrating
a separate BDC vision classifier, the performance improves
non-trivially. This suggests that the additional vision super-
vision is helpful in learning generalized representations.

Metric and representation We compare different metrics
and representations. For the BDC, the vanilla method is
simple application of DeepBDC (Xie et al., 2022) to videos,
where the average of frame-wise BDC matrices is used as a
video representation. For the cosine similarity (CS), besides
the scheme of global tokens (GlobalT), the local tokens (i.e.,
patch tokens) can be combined, where we averagely pool all
patch tokens along with the global [CLS] token as per-frame
representation. We also compare to bilinear pooling (Lin
et al., 2015) that uses normalized second moment of all
tokens as the representations and Frobenius (Frob) distance
as the metric. The results are shown in Table 6b.

We first note that all BDC-based methods are superior to
CS-based ones, suggesting that the BDC metric is more
suitable for video-language matching. For the CS, the Glo-

7



BDC-CLIP: Brownian Distance Covariance for Adapting CLIP to Action Recognition

baT+LocalT scheme is better than the scheme of single
GlobalT, which indicates that usage of local tokens benefits
alignment of the two modalities. For the BDC metric, our
BDC-CLIP outperforms DeepBDC by 1.1%−1.3% for zero-
or 2-shot setting and 2.1%−3.0% for 16-shot setting. In the
end, we note that bilinear pooling is better than CS while
being significantly inferior to BDC-CLIP.

Dimension reduction (DR) The size of BDC matrices is
quadratic of the dimension of token embeddings. To de-
crease computations, we introduce a linear layer for DR
before the BDC adapters. We assess performance as a func-
tion of the dimension d. As seen in Table 6c, on the whole
the accuracies increase consistently as the dimension grows
until d = 320 and then decrease. To trade off the perfor-
mance and cost, we adopt d=192 across the paper.

Text augmentation We compare the vanilla prompt tem-
plate hand-engineered by CLIP, i.e., “A video of {}”, with
the prompts generated by LLM. From Table 6d, we can see
that LLM enhanced prompts improve non-trivially over the
vanilla prompts by 0.3%−0.7% for different settings across
the datasets. As such, throughout the paper we adopt the
text augmentation via LLM for the category name, unless
otherwise specified.

Additional ablation study is provided in Section B.1.

5.5. Qualitative Analysis

Why cosine similarity is insufficient Most CLIP adapta-
tion methods (e.g., Rasheed et al., 2023; Kim et al., 2024)
rely on cosine similarity (CS)–empirically equivalent to
the Pearson correlation coefficient (PCC)–for cross-modal
matching. However, since PCC only measures linear depen-
dence, it cannot capture the higher-order, non-monotonic
relations that often arise between vision and language. To
investigate this, we present scatterplots and density contours
for some representative visual-textual token pairs in Figure 4.
We observe that cross-modal token relationships are non-
linear and the joint distributions are non-Gaussian. In such
scenarios, CS collapses disparate patterns to similar scores,
whereas BDC cleanly separates matched from mismatched
pairs. Recall that in Table 6b we give the dataset-level,
apples-to-apples accuracy gains of BDC over CS.

Heatmap visualization of video-text pairs To enhance
understanding, we visualize attention maps for {playing
polo} from the K600 validation set. The models are eval-
uated in zero-shot manner using augmented text prompts
generated by LLMs for better fine-grained alignment. Grad-
ECLIP (Zhao et al., 2024) is employed to visualize the
attention maps of both visual and textual modalities. As
shown in Figure 5, BDC-CLIP demonstrates a stronger fo-
cus on critical regions in the dynamic frames, such as the
horse and players. In the meantime, it attends more effec-

Table 6. Ablation analysis of BDC-CLIP.

(a) Role of components.

K600 HMDB-51 SSv2
Zero-shot 2-shot 16-shot 2-shot 16-shot

Backbone vision-language align 71.7±0.9 63.2 69.3 7.7 12.9
+BDC vision-language align 73.5±0.7 65.9 73.4 8.7 16.4
+BDC vision classifier 73.8±0.8 66.1 73.9 8.9 16.8

(b) Effect of metric and representation.

Metric Representation
K600 HMDB-51 SSv2

Zero-shot 2-shot 16-shot 2-shot 16-shot

BDC
DeepBDC Xie et al. 72.5±0.7 64.9 71.8 7.8 13.8
BDC-CLIP 73.8±0.8 66.1 73.9 8.9 16.8

CS
GlobalT 71.7±0.9 63.2 69.3 7.7 12.9
GlobalT+LocalT 71.8±0.8 63.6 69.9 7.7 13.5

Frob Bilinear Lin et al. 72.1±0.8 63.9 71.2 7.6 13.5

(c) Effect of dimension (dim).

Dim d K600 HMDB-51 SSv2
Zero-shot 2-shot 16-shot 2-shot 16-shot

128 72.7±0.8 65.7 73.3 8.4 17.0
192 73.8±0.9 66.1 73.9 8.9 16.8
256 73.7±0.8 66.3 73.7 8.4 17.1
320 73.8±0.9 67.1 74.5 8.8 17.1
384 73.9±0.7 65.7 73.2 8.7 16.9

(d) Influence of text augmentation.

Prompts
K600 HMDB-51 SSv2

Zero-shot 2-shot 16-shot 2-shot 16-shot

Vanilla 73.8±0.8 66.1 73.9 8.9 16.8
LLM 74.5±1.0 66.6 74.6 9.2 17.3

tively to the key words including ‘players’ and ‘mallets’.
This confirms that BDC-CLIP captures fine-grained cues
across space, time, and language, leading to better action
recognition.

Section B.4 provides t-SNE visualization of video-language
representation and additional heatmap visualizations.

6. Conclusion
We propose BDC-CLIP, a novel framework for adapting
image-pretrained CLIP models to video action recognition.
By leveraging Brownian Distance Covariance (BDC) and
utilizing all visual and textual tokens, our approach captures
complex dependencies between video and language in high-
dimensional embedding space. This allows BDC-CLIP to
effectively exploit fine-grained cues–such as salient regions
in video frames and key words in textual descriptions–that
are crucial for accurate action recognition. In doing so, it
overcomes the limitations of prior methods that rely solely
on classical cosine similarity. The strong performance of
BDC-CLIP across a range of action recognition benchmarks
highlights the value of advanced statistical metrics like BDC
for multimodal learning.
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Figure 4. Scatterplots and density contours of example visual vs. textual tokens (top: global tokens, bottom: local tokens). The tokens
of vision and lanuage exhibit complex relations and their distributions are non-Gaussian. Compared to CS/PCC, BDC effectively
distinguishes matching vs. non-matching text-video tokens in the top panel and attenuates irrelevant background tokens in the bottom
panel. See Table 6b for dataset-level, apples-to-apples accuracy gains of BDC over CS/PCC.

ViFi-CLIP

BDC-CLIP(Ours)

Original Frames

Figure 5. Visualizations of {playing polo} using Grad-ECLIP. Compared to ViFi-CLIP, our BDC-CLIP better focuses on important image
regions such as the horses and players across different frames, while attending more effectively to key words such as ‘player’ and ‘mallets’.
Best viewed by zooming in.
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Appendix

A. Detailed Experimental Setup
A.1. Datasets

We conduct experiments on five widely used action recog-
nition datasets, i.e., Kinetics-400 (Carreira & Zisser-
man, 2017), Kinetics-600 (Carreira et al., 2018), HMDB-
51 (Kuehne et al., 2011), UCF-101 (Soomro et al., 2012),
and Something-Something v2 (Goyal et al., 2017).

Kinetics-400 (K400) K400 is a large-scale action dataset
that spans 400 human action classes each with at least 400
videos collected from YouTube. It provides approximately
240K training videos, 20K validation videos and 40K test
videos, capturing a broad spectrum of human actions.

Kinetics-600 (K600) This is an extension of K400 that
broadens the scope to 600 categories and ∼ 650K videos. It
has 410K training and 29K validation samples.

HMDB-51 This dataset contains 51 action categories
and approximately 7K videos manually curated from di-
verse sources such as movies and YouTube. Three train-
ing/validation splits are predefined, each of which contains
3,570 training and 1,530 validation videos.

UCF-101 It consists of 101 action classes distributed
across over 13K videos sourced primarily from YouTube. It
defines three splits for training and validation, each contain-
ing roughly 9.5K training and 3.7K validation videos.

Something-Something v2 (SSv2) SSv2 contains more
than 100,000 videos across 174 fine-grained action cate-
gories, providing about 168K training and 24K validation
videos. It emphasizes human-object interactions, and is
highly temporal biased compared to other datasets.

A.2. Task Settings

As in (Rasheed et al., 2023; Kim et al., 2024; Chen et al.,
2024b), we benchmark on zero-shot & few-shot recognition,
base-to-novel generalization, and fully-supervised recog-
nition. For these tasks, we mainly follow the evaluation
protocols of ViFi-CLIP (Rasheed et al., 2023).

Zero-shot recognition We train our models on K400 and
benchmark on HMDB-51, UCF-101, and K600. On HMDB-
51 and UCF-101, evaluations are conducted on the three of-
ficial test splits. On K600, as prescribed by Chen & Huang,
we use three splits randomly selected from 160 out of the
220 novel categories not present in K400. Following TC-
CLIP (Kim et al., 2024) and OST (Chen et al., 2024a), we
adopt weight-space ensembling (WSE) technique (Worts-
man et al., 2022) for improving zero-shot performance, in
which the original CLIP parameters are linearly combined
with the fine-tuned parameters with a ratio of 0.3. We report

the average accuracy and standard deviation.

Few-shot recognition We evaluate all-way K-shot tasks
on downstream datasets including HMDB-51, UCF-101,
and SSv2, where K = 2, 4, 8, 16. We randomly sample
K videos per category for training, while testing on the
first validation split for HMDB-51 and UCF-101, along
with the full validation split for SSv2. We experiment in
two different few-shot settings: (i) pre-training on K400
followed by fine-tuning on downstream datasets, and (ii)
directly fine-tuning from CLIP without pretraining on K400.

Base-to-novel generalization This task involves training
models on base (known) classes in few-shot manner while
testing on novel (unknown) classes. We evaluate on K400,
HMDB-51, UCF-101, and SSv2 using base/novel category
splits prescribed by ViFi-CLIP. Three training splits per
dataset are constructed. On HMDB-51 and UCF-101, only
the first training split is used for training and validation;
on K400 and SSv2, evaluations are performed on the full
validation set. We also experiment in two different settings:
(i) pretraining on K400, and (ii) directly fine-tuining from
CLIP without pretraining on K400.

Fully-supervised recognition This is the classical closed-
set evaluation. As in ViFi-CLIP, we use standard splits for
training and testing. In addition, we employ WSE technique
for further performance improvement, where we interpolate
ViFi-CLIP zero-shot model with our BDC-CLIP modes with
a ratio of 0.2.

A.3. Hyper-parameter Settings

To achieve better spatio-temporal modeling, we follow the
practice of ViCLIP (Wang et al., 2023) by computing atten-
tion over the tokens of all frames in a video together at the
4th, 8th, and 12th layers of the CLIP vision encoder.

Pretraining on K400 For zero-shot pretraining, we use
the AdamW optimizer with β1 =0.9, β2 =0.98, a weight
decay of 1e-3 and a batchsize of 256. The base learning rate
(LR) of the backbone is 8e-6 with a cosine schedule in 10
epochs. The LRs of adapters and vision classifier are 100×
and 50× base LR, respectively. We adopt the augmentation
techniques and label smoothing as in ViFi-CLIP. For few-
shot pretraining, the hyper-parameter setting is consistent
with zero-shot pretraining, except that the base LR is 4e-6.
We sample 32 frames per video and conduct inference with
1 temporal clip and 1 spatial crop (1×1 view).

Downstream tasks with K400 pretrained models The
few-shot and base-to-novel settings utilize a batch size of
64, a learning rate of 2e-6 with a cosine schedule in 60
epochs, and a linear warmup over first 5 epochs. We set the
learning rate of adapters and vision classifier to 200× and
100× base LR, respectively. The other hyper-parameters
align with those used in zero-shot pretraining. We use 32
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sampled frames and conduct 1×1 view inference.

Fully-supervised training on K400 The hyper-parameters
in fully-supervised setting are largely consistent with those
in the setting of zero-shot pretraining, with a few notable
differences. Specifically, the model is trained for 30 epochs
that includes 5 linear warmup epochs with a batch size 512;
the base LR is set to 2.2e-5 with a cosine schedule. We
sample 16 frames per video and conduct inference with 12
views consisting of 4 temporal clips and 3 spatial crops.

B. Further Experiments
B.1. Additional Ablation Study about BDC-CLIP

To better understand our BDC-CLIP, we further conduct
ablation study on the ratio of tokens used for computing
BDC, the impacts of individual visual and textual BDC, and
of Token Weighting.

As shown in Table 7, subsampling patch tokens at ratios
3/4, 2/4 and 1/4–or taking only half the word tokens–leads
to performance degradation, suggesting retaining all tokens
is important for fine-grained alignment. For the impact of
applying BDC to the visual and textual branches, we observe
that using BDC on only one branch–either vision or text–
leads to a clear performance drop, especially on HMDB-51
and SSv2, while applying BDC to both branches achieves
optimal results across all benchmarks. Similarly, applying
Token Weighting to both branches consistently outperforms
using it on a single branch, with weighting only the text
branch generally being more effective than weighting only
the vision branch.

B.2. Directly Fine-tuned from CLIP

Here we compare to prior arts in the setting of directly
fine-tuned from CLIP, i.e., without pre-training on K400.

(i) Few-shot recognition We conduct experiment on
HMDB-51, UCF-101 and SSv2 in all9way K9shot setting
without pretraining on K400. We train BDC-CLIP mod-
els with 60 epochs with the base LR of 2e-6 on all three
datasets. All methods are directly fine-tuned on the down-
stream datasets, using K training examples per class for
all-way classification.The results, summarized in Table 8,
demonstrate that BDC-CLIP achieves superior performance
across all three datasets. Specifically, BDC-CLIP consis-
tently surpasses the second-best methods by 2.1%–2.8% on
HMDB-51 and 1.0%–1.5% on SSv2 for each of K9shot set-
tings. Additionally, BDC-CLIP outperforms the runners-up
by 0.6%–1.0% across all settings on UCF-101.

(ii) Base-to-novel generalization In this part of experiment,
we compare to the competing methods on four datasets in
base-to-novel generalization setting. Every method is di-
rectly fine-tuned on the base classes and then evaluated on

Table 7. Additional Ablation Study about BDC-CLIP.

Vision Text K600 HMDB-51 SSv2
zero-shot 2-shot 16-shot 2-shot 16-shot

Effect of Token Ratio

4/4 4/4 73.8±0.8 66.1 73.9 8.9 16.8
3/4 4/4 73.7±0.7 64.5 73.7 8.6 16.5
2/4 4/4 73.4±0.7 65.8 74.9 8.3 16.5
1/4 4/4 73.6±0.7 64.7 73.8 8.4 16.4
4/4 2/4 73.4±0.7 65.5 73.2 8.6 16.4

Visual and/or Textual BDC

✓ ✗ 73.6±0.8 65.2 72.3 7.9 16.0
✗ ✓ 73.8±0.8 64.3 71.5 7.5 14.3
✓ ✓ 73.8±0.8 66.1 73.9 8.9 16.8

Effect of Token Weighting

✓ ✗ 73.2±1.1 65.7 73.2 7.6 16.2
✗ ✓ 74.0±0.7 66.1 73.4 8.1 16.1
✓ ✓ 73.8±0.8 66.1 73.9 8.9 16.8

novel classes in zero-shot manner. Our BDC-CLIP mod-
els are trained in 12 epochs, with the base LRs of 2e-6 on
HMDB-51 & UCF-101, 4e-6 on K400 and 5e-6 on SSv2.
Table 9 reports the Top-1 accuracy for the base and novel
classes, along with their harmonic mean (HM). The results
indicate that BDC-CLIP achieves state-of-the-art perfor-
mance across all three datasets. Specifically, in terms of
HM, BDC-CLIP surpasses the previous best-performing
method TC-CLIP by 0.5% on K400, and ∼1.0% on all other
three datasets.

It is worth noting that most methods in this directly fine-
tuned setting perform remarkably inferior to their individ-
ual counterparts in the setting of pretraining on K400, for
either few-shot recognition (Table 2 vs. Table 8) or base-to-
novel generalization (Table 3 vs. Table 9). This comparison
suggests that pretraining on large-scale K400 is pivotal in
bridging the image and video gaps for CLIP, significantly
benefiting downstream video action recognition tasks.

B.3. BDC-CLIP for Few-shot IMAGE Recognition

Our BDC-CLIP can be extended to few-shot image recog-
nition. To adapt to image data, we remove the temporal
attention module from the visual encoder. Given the limited
number of training images, we adopt a parameter-efficient
approach similar to CLIP-LoRA (Zanella & Ben Ayed,
2024) by attaching a LoRA (Hu et al., 2022) module (rank
2, alpha 1) to each transformer block in both textual and
visual encoders. We use CLIP model with ViT-B/16 as im-
age encoder, and conduct experiments under the 16-shot
setting. For the training hyperparameters, we follow the
same settings as CLIP-LoRA. Following standard prac-
tice, we evaluate our approach on ImageNet (Deng et al.,
2009), Aircraft (Maji et al., 2013), Food (Bossard et al.,
2014), DTD (Cimpoi et al., 2014), UCF101 (Soomro et al.,
2012), Cars (Krause et al., 2013), OxfordPets (Parkhi et al.,
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Method BEs HMDB-51 UCF-101 SSv2

K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16

CLIP Radford et al. � 41.9 41.9 41.9 41.9 63.6 63.6 63.6 63.6 2.7 2.7 2.7 2.7
A5 Ju et al. � 39.7 50.7 56.0 62.4 71.4 79.9 85.7 89.9 4.4 5.1 6.1 9.7
ActionCLIP Wang et al. \ 47.5 57.9 57.3 59.1 70.6 71.5 73.0 91.4 4.1 5.8 8.4 11.1
X-CLIP Ni et al. \ 53.0 57.3 62.8 64.0 76.4 83.4 88.3 91.4 3.9 4.5 6.8 10.0
ViFi-CLIP Rasheed et al. \ 57.2 62.7 64.5 66.8 80.7 85.1 90.0 92.7 6.2 7.4 8.5 12.4
OST Chen et al. \ 59.1 62.9 64.9 68.2 82.5 87.5 91.7 93.9 7.0 7.7 8.9 12.2
TC-CLIP Kim et al. \ 58.6 63.3 65.5 68.8 86.8 90.1 92.0 94.3 7.3 8.6 9.3 14.0
BDC-CLIP (Ours) \ 61.4 65.6 67.9 70.9 87.4 90.8 93.0 95.1 8.3 9.6 10.6 15.5

Table 8. Results of few-shot
VIDEO recognition without
pretraining on K400. All
methods are directly fine-tuned from
CLIP in K9shot settings. CLIP
Backbone Encoders (BEs) are frozen
(�) or fine-tuned (\). The best
results are bold and the second-best
ones are underlined.

Method BEs K400 HMDB-51 UCF-101 SSv2

Base Novel HM Base Novel HM Base Novel HM Base Novel HM

CLIP Radford et al. � 62.3 53.4 57.5 53.3 46.8 49.8 78.5 63.6 70.3 4.9 5.3 5.1
A5 Ju et al. � 69.7 37.6 48.8 46.2 16.0 23.8 90.5 40.4 55.8 8.3 5.3 6.4
ActionCLIP Wang et al. \ 61.0 46.2 52.6 69.1 37.3 48.5 90.1 58.1 70.7 13.3 10.1 11.5
X-CLIP Ni et al. \ 74.1 56.4 64.0 69.4 45.5 55.0 89.9 58.9 71.2 8.5 6.6 7.4
ViFi-CLIP Rasheed et al. \ 76.4 61.1 67.9 73.8 53.3 61.9 92.9 67.7 78.3 16.2 12.1 13.9
Open-VCLIP Weng et al. \ 76.5 62.6 68.9 70.3 50.4 58.7 94.8 77.5 85.3 16.0 11.0 13.0
FROSTER Huang et al. \ 77.8 64.3 70.4 74.1 58.0 65.1 95.3 80.0 87.0 18.3 12.2 14.6
TC-CLIP Kim et al. \ 79.1 65.4 71.6 73.3 59.1 65.5 95.4 81.6 88.0 17.5 13.4 15.2
BDC-CLIP (Ours) \ 79.9 65.6 72.1 75.0 59.5 66.4 95.6 83.7 89.1 18.8 14.9 16.6

Table 9. Results of base-to-novel
VIDEO recognition without
pretraining on K400. All
methods are directly fine-tuned from
CLIP on base classes, and then
evaluated on validation set of base
classes along with on novel classes
in zero-shot manner.

Table 10. Results of few-shot IMAGE recognition. All methods are compared using CLIP models with ViT-B/16 as image encoder in the
16-shot setting. CLIP Backbone Encoders (BEs) are frozen (�) or finetuned (\).

Method BEs ImageNet Aircraft Food101 DTD UCF101 Cars Pets SUN397 Flowers102 Caltech101 EuroSAT Average

BDC-Adapter Zhang et al. � 66.5 39.5 80.5 71.1 86.5 78.8 92.0 72.7 97.0 93.9 85.2 78.5
TransCLIP Zanella et al. � 71.8 38.6 86.9 65.1 82.1 79.8 92.4 74.7 94.4 94.0 83.0 78.4
ProGrad Zhu et al. � 72.1 43.0 85.8 68.8 82.7 71.9 36.8 75.1 96.6 95.9 83.6 79.9
LLaMP Zheng et al. � 73.5 56.1 87.6 74.2 86.8 86.1 94.2 77.0 98.1 97.1 91.3 83.8
CLIP-LoRA Zanella & Ben Ayed \ 73.6 54.7 84.2 72.0 86.7 86.3 92.3 76.1 98.0 96.4 92.1 83.0
BDC-CLIP (Ours) \ 75.0 57.3 88.1 76.5 87.7 86.5 94.4 78.3 98.4 97.3 93.9 84.9

2012), SUN397 (Xiao et al., 2010), Flowers102 (Nilsback
& Zisserman, 2008), Caltech101 (Fei-Fei et al., 2004), Eu-
roSAT (Helber et al., 2019).

As shown in Table 10, BDC-CLIP surpasses CLIP-
LoRA (Zanella & Ben Ayed, 2024), a strong baseline,
by 1.9%, and outperforms the second-best method, i.e.,
LLaMP (Zheng et al., 2024), by 1.1%. Notably, BDC-CLIP
achieves the highest performance across all 11 datasets. The
comparison suggests that BDC-CLIP that uses BDC and
all visual and textual tokens is effective for both video and
image recognition tasks.

B.4. Extra Visualizations

t-SNE visualization of video-language representation
We compute prediction probability vectors with K400-
pretrained models for video samples from the validation
sets of HMDB-51 and K600. To isolate the influence of
LLMs, we use the CLIP prompt template for zero-shot clas-
sification. These probability vectors are projected into a
2D space using t-SNE. Figure 6 presents the results, with
different categories represented by distinct colors.

On HMDB-51 (Figure 6a), BDC-CLIP exhibits better inter-
class separability compared to the strong baseline of ViFi-
CLIP, and significantly outperforms vanilla CLIP. Similar
trends are observed on K600 (Figure 6b). We further eval-
uate clustering quality using Adjusted Rand Index (ARI)
and Normalized Mutual Information (NMI), where BDC-
CLIP achieves higher scores for both metrics, consistent
with the visual results. These comparisons suggest that the
BDC metric, leveraging all visual and textual tokens, can
learn representations with stronger generalization capabili-
ties compared to the cosine similarity relying only on global
tokens.

Visualization of video-text pairs We compare models
pretrained on K400 and evaluated in a zero-shot setting on
representative clips from K600. Figure 7 shows that BDC–
CLIP consistently highlights salient image regions and
words more accurately than ViFi-CLIP. For {Bulldozing},
ViFi-CLIP is distracted by most of irrelevant regions (i.e.,
ground) while BDC centers on the machine and material
without distraction; meanwhile, BDC-CLIP better attends
to key words such as ‘scraping’. For {Bull fighting}, BDC-
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CLIP better focuses on the image regions of the bull, mata-
dor, and cape across the frames; in the meantime, BDC-
CLIP pays more attention to key words such as ‘bull fight-
ing’ and ‘rushes’ in the textual description. These examples
demonstrate BDC-CLIP’s ability to capture rich spatial,
temporal, and linguistic context. We attribute this to the
BDC metric and the inclusion of all local tokens, which to-
gether enable the modeling of complex, fine-grained video-
language relations.

C. Limitations and Future Work
BDC-CLIP exhibits somewhat higher GFLOPs and lower
throughput compared to state-of-the-art methods. However,
as shown in Table 5, this overhead remains moderate. While
BDC effectively captures nonlinear correlations, other met-
rics, such as mutual information (MI), offer similar capabil-
ities. However, MI faces computational challenges in high-
dimensional spaces due to density estimation requirements
and the difficulty of lower-bound estimation (Belghazi et al.,
2018). Exploring such alternatives presents an exciting av-
enue for future work. Currently, BDC-CLIP is tailored for
video action recognition. Extending it to other tasks, such as
video-text retrieval or open-world object detection in videos,
represents a promising direction for future research.

CLIP

ARI: 0.17  NMI: 0.57

ViFi-CLIP

ARI: 0.37  NMI: 0.67
BDC-CLIP (Ours)

ARI: 0.40 NMI: 0.70

(a) HMDB-51

CLIP

ARI: 0.45 NMI: 0.76

ViFi-CLIP

ARI: 0.58  NMI: 0.80
BDC-CLIP (Ours)

ARI: 0.61  NMI: 0.82

(b) K600

Figure 6. t-SNE visualizations of joint video-language representa-
tions. K400-pretrained models are used for zero-shot recognition
on HMDB-51 and K600. BDC-CLIP shows better separability
than ViFi-CLIP and vanilla CLIP; the quantitative results of the
two clustering quality measures (i.e., ARI and NMI) are consistent
with the visualization results. Best viewed by zooming in.
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ViFi-CLIP

BDC-CLIP(Ours)

Original Frames

(a) Action category of {Bulldozing}

ViFi-CLIP

BDC-CLIP(Ours)

Original Frames

(b) Action category of {Bull fighting}

Figure 7. Heat-maps for representative video-text pairs produced with Grad-ECLIP using the K400-pre-trained BDC-CLIP in zero-shot
setting. Compared with ViFi-CLIP, BDC-CLIP more sharply highlights both the action-critical image regions and the corresponding
salient words as they evolve over time, demonstrating its ability to capture fine-grained multimodal context across space, time, and
language. Best viewed by zooming in.
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