
Under review as a conference paper at ICLR 2024

A NEURO-SYMBOLIC FRAMEWORK FOR ANSWERING
CONJUNCTIVE QUERIES

Anonymous authors
Paper under double-blind review

ABSTRACT

The problem of answering logical queries over incomplete knowledge graphs is re-
ceiving significant attention in the machine learning community. Neuro-symbolic
models are a promising recent approach, showing good performance and allowing
for good interpretability properties. These models rely on trained architectures
to execute atomic queries, combining them with modules that simulate the sym-
bolic operators in queries. Unfortunately, most neuro-symbolic query processors
are limited to the so-called tree-like logical queries that admit a bottom-up exe-
cution, where the leaves are constant values or anchors, and the root is the target
variable. Tree-like queries, while expressive, fail short to express properties in
knowledge graphs that are important in practice, such as the existence of multiple
edges between entities or the presence of triangles.
We propose a framework for answering arbitrary conjunctive queries over incom-
plete knowledge graphs. The main idea of our method is to approximate a cyclic
query by an infinite family of tree-like queries, and then leverage existing models
for the latter. Our approximations achieve strong guarantees: they are complete,
i.e. there are no false negatives, and optimal, i.e. they provide the best possible
approximation using tree-like queries. Our method requires the approximations to
be tree-like queries where the leaves are anchors or existentially quantified vari-
ables. Hence, we also show how some of the existing neuro-symbolic models can
handle these queries, which is of independent interest. Experiments show that our
approximation strategy achieves competitive results, and that including queries
with existentially quantified variables tends to improve the general performance
of these models, both on tree-like queries and on our approximation strategy.

1 INTRODUCTION

Knowledge graphs play a crucial role in representing knowledge within organizations and commu-
nities. Their usage is now widespread both in industry and in the scientific community (Fensel et al.,
2020; Hogan et al., 2021). Knowledge graphs model information as nodes, which represent entities
of interest, and edges, that represent relations between entities. During the creation of knowledge
graphs, however, information may be stale or conflicting, and certain sources of data may have not
been integrated yet. As a consequence, knowledge graphs tend to be incomplete in the sense that
some of the entities or relations occurring in the application domain may not be present in the graph.
We refer to Ren et al. (2023) for statistics about missing information in knowledge graphs.

A particularly important reasoning task on knowledge graphs is the answering of queries. Tra-
ditional query answering methods, especially those from the data management and semantic web
literature, focus on only extracting the information that can be derived from the knowledge present
in the graph (Angles et al., 2017; Hogan et al., 2021; Ali et al., 2022). Given the incomplete char-
acter of knowledge graphs, these methods hence fail to address the need to reason about unknown
information. This limits their usefulness in many application domains (Nickel et al., 2015).

This observation has spurred the development of numerous machine learning approaches to query
answering, e.g. Hamilton et al. (2018); Ren et al. (2019); Ren & Leskovec (2020); Zhang et al.
(2021); Zhu et al. (2022). We focus on a recently proposed family of approaches, namely, the
neuro-symbolic models. They rely on trained (e.g. neural) architectures to execute atomic queries,
and combine them with modules that simulate the symbolic logical operators in queries. These

1



Under review as a conference paper at ICLR 2024

y

z

x

Employee

Employee
Friend

Friend

Bank

Tech

y

z

x

Employee

Employee
Friend

FriendTech

w x

yz

Coworker Friend

Friend

q(x) ← E(w, y) ∧ E(Tech, z) ∧ F(y, x) ∧ F(z, x)q(x) ← E(Bank, y) ∧ E(Tech, z) ∧ F(y, x) ∧ F(z, x) q(x) ← F(x, y) ∧ F(y, z) ∧ C(z, x)
(a) Anchored tree-like CQs (b) Tree-like CQs (c) Cyclic CQs

Figure 1: Different conjunctive queries (CQs) (a) atoms in anchored tree-like CQs are structured as
trees where the leaves are anchors and the root the target variable (x in this case); (b) leaves in tree-
like CQs can be anchors or existential varibles (w in this case); (c) arbitrary CQs can have cycles.

approaches have shown promising performance and, more importantly, produce more interpretable
models. We refer to Ren et al. (2023) for a comprehensive recent survey on neural and neuro-
symbolic approaches for query answering over incomplete knowledge graphs.

State-of-the-art neuro-symbolic approaches, however, only support a restricted class of queries,
namely, anchored tree-like queries1 (Ren et al., 2023). Figure 1a shows an example of an anchored
tree-like query. Although tree-like queries already capture interesting properties in graphs, they are
not capable of checking more complex properties such as the existence of triangles or of multiple
edges between entities. The development of neuro-symbolic approaches for more complex query
classes remains largely unexplored. In particular, supporting cyclic queries, such as the triangle
query, has been identified as an important open challenge by Ren et al. (2023). Figure 1c shows an
example of a cyclic (triangle) query. In this paper we propose a neuro-symbolic framework for
approximating complex queries by maximally leveraging methods for tree-like queries.

More specifically, our contributions are as follows. (1) We propose an approximation scheme for
complex conjunctive queries using tree-like queries. Moreover, the approximation scheme comes
with theoretical guarantees: It is complete in the sense that no false negative query answers are
produced. It is optimal in that we provide the best possible approximation using tree-like queries.
(2) The approximation scheme is adaptive in the sense that it is parameterized by the notion of depth
of tree-like queries. For any depth, an approximation exists and higher depth queries potentially
provide better approximations. The choice of depth can be tuned depending on available resources,
queries and data at hand. (3) Our approach is generic and can be used in combination with any
neuro-symbolic query processor, provided that unanchored tree-like queries are supported. Figure
1b depicts an unanchored tree-like query in which the input node w is variable. As an independent
contribution, we show how to go from anchored to (unanchored) tree-like queries in some neuro-
symbolic methods. (4) We implemented our approach on top of the GNN-QE implementation by
Zhu et al. (2022). Results show our techniques are a viable strategy for answering cyclic queries,
and that our improvements can be carried over with little cost over this standard neuro-symbolic
architecture.

2 RELATED WORK

Neural and neuro-symbolic query answering. The machine learning community has produced
a wide body of literature investigating how to answer complex queries over incomplete knowledge
graphs. These works build on and extend recently successful methods desgined for knowledge
graph completion (Bordes et al., 2013; Yang et al., 2015; Trouillon et al., 2016; Sun et al., 2019;
Schlichtkrull et al., 2018; Vashishth et al., 2020; Teru et al., 2020). Following Ren et al. (2023),
we can identify two different approaches to complex query answering. Firstly, neural approaches
(Hamilton et al., 2018; Kotnis et al., 2021; Liu et al., 2022; Pflueger et al., 2022) answer queries
by processing atomic queries and logical operators directly in the embedding space, parameterizing
them with neural networks. These methods usually lead to better performance, but at the cost of
being much less interpretable. Secondly, there are so-called neuro-symbolic approaches, which

1These queries are also referred simply as tree-like in the literature. We reserve the term tree-like for the
generalization where the anchored condition is lifted.

2



Under review as a conference paper at ICLR 2024

combine neural approaches to compute missing links between entities and symbolic approaches to
extract answers from the completed data (Bai et al., 2023; Luo et al., 2023; Chen et al., 2022; Ren
& Leskovec, 2020; Yin et al., 2023; Zhu et al., 2022). While logical operators are still processed in
the latent space, they are biased to better correlate with their symbolic counterparts. We refer to Ren
et al. (2023) for more details on the particular workings of each of these models. To our knowledge,
none of these approaches deal with general CQs.

Approximation of conjunctive queries. The notion of a tree-like approximation of a conjunctive
query, as explored in this paper, was originally introduced by the database theory community. Two
types of approximations were proposed: underapproximations, which yield sound but not necessar-
ily complete answers (Barceló et al., 2014), and overapproximations, which yield complete but not
necessarily sound answers (Barceló et al., 2020). For reasons explained above, in this work we focus
on overapproximations, that is, complete approximations of conjunctive queries. The main distinc-
tion between our work and previous research is the fact that tree-like approximations are evaluated
using a neuro-symbolic approach. Additionally, we present the first working implementation of the
concept of CQ approximation, as prior work had only examined its theoretical properties. Finally,
previous works deal with a slighly different notion of tree-like, namely, treewidth-1 queries, and
hence some refinements are needed to obtain our theoretical results.

3 PRELIMINARIES

Knowledge graphs and conjunctive queries. Knowledge graphs are directed graphs with labeled
edges. Formally, let Con be a countably infinite set of constants. A knowledge graph (KG) is a
tuple G = (E ,R,S) where E ⊆ Con is a finite set of entities, R is a finite set of edge types, and
S ⊆ E ×R× E is a finite set of edges. We typically denote an edge (a,R, b) by R(a, b).

Let Var be a countably infinite set of variables. As is common in machine learning, we focus on
unary queries, that is, queries with only one target variable. Formally, a (unary) conjunctive query
(CQ) q over a set of edge typesR is a first-order logic (FO) formula of the form

q(x)← R1(y1, z1) ∧ · · · ∧Rm(ym, zm),

where x is the target variable, each Ri(yi, zi) is an atom with Ri ∈ R and {yi, zi} ⊆ Con ∪ Var
(yi, zi are either variables or constants). The variable set Var(q) of q is the set of variables appearing
in the atoms of q, that is, the variables appearing in {y1, z1, . . . , ym, zm}. Similarly, we denote by
Con(q) the constants appearing in the atoms of q. As usual, we assume x ∈ Var(q). The variables
in Var(q) \ {x} are the existentially quantified variables of q. Sometimes we write q(x) instead of q
to emphasize that x is the target variable of q. The semantics of CQs is defined using the standard
semantics of first-order logic. We denote by q(G) the answer of the CQ q over the KG G.

Figure 1c shows the CQ q(x)← Friend(x, y)∧Friend(y, z)∧Coworker(z, x) looking for all persons
x that have a friend y and a coworker z that are friends with each other. Here, Var(q) = {x, y, z}, x
is the target variable, and y and z are both existentially quantified.

The query graph of a CQ q is the multigraph that has Var(q) ∪ ConOcc(q) as nodes, and an edge
from node u to node v for every atom R(u, v) in q. Here ConOcc(q) is the set of occurrences of
constants in q, i.e. if the number of occurrences in different atoms of q of a constant a ∈ Con(q) is
k, then there are k duplicates of a in ConOcc(q). We say that a CQ q(x) with target variable x is
tree-like if the query graph of q is an (undirected) tree rooted in node x. In particular, no multiple
edges between pair of nodes are allowed. Additionally, q is anchored if all the leaves of this tree
are nodes in ConOcc(q); otherwise it is unanchored. As we are working with ConOcc(q) instead
of Con(q), different leaves could correspond to the same anchor. The depth of a tree-like CQ is the
depth of the corresponding tree formed in its query graph, that is, the length of the longest path from
the root to one of its leaves. Finally, q is cyclic if the query graph of q has an undirected cycle.

Figure 1 contains examples of anchored tree-like, tree-like and cyclic conjunctive queries, depicted
using their query graph. Notice that the unanchored query in Figure 1b was obtained by existentially
quantifying one of the leaves of the query in Figure 1a.

As we mentioned, most neuro-symbolic methods for logical query answering are restricted to an-
chored tree-like queries. Notice that one could define tree-like queries for the full FO fragment. This

3



Under review as a conference paper at ICLR 2024

is the fragment commonly dealt with in the literature, and our implementation also supports it. We
refer to Ren et al. (2023); Yin et al. (2023) for the definitions.

CQ containment. A concept we will exploit heavily is that of query containment. We say that a
CQ q is contained in a CQ q′, denoted by q ⊆ q′, if q(G) ⊆ q′(G), for all KGs G. That is, the answer
of q is always contained in the answer of q′, independently of the underlying KG. While this notion
reasons over all KGs, it admits a simple syntactic characterization based on homomorphisms.

A homomorphism from CQ q(x) to CQ q′(x) is a mapping h : Var(q)∪Con(q)→ Var(q′)∪Con(q′)
from the variables and constants of q to the variables and constants of q′ such that h(x) = x,
h(a) = a for all a ∈ Con(q), and R(h(y), h(z)) is an atom of q′, for all atoms R(y, z) of q. That is,
a homomorphism is a way of replacing the variables of q by variables of q′ such that each atom of
q becomes an atom of q′. The target variable of q must be mapped to the target variable of q′. The
following is a well-known characterization of CQ containment.

Proposition 3.1 (Chandra & Merlin (1977)). A CQ q is contained in a CQ q′ if and only if there is
a homomorphism from q′ to q.

4 ANSWERING CQS VIA TREE-LIKE APPROXIMATIONS

We now present our framework for answering arbitrary CQs over incomplete KGs. The idea of our
method is to approximate a cyclic CQ q by an infinite family Uq = {q̃d}d≥1 of tree-like CQs. As
already mentioned, by doing so we can use state-of-the-art neuro-symbolic methods – only designed
for tree-like queries – to deal with complex queries as well. The family Uq is parameterized by the
query depth: each q̃d is of depth d. By taking greater depths, we obtain better or equal approxima-
tions in Uq . Interestingly, the family Uq provides us with the following formal guarantees:

• Completeness: CQs in Uq are complete, that is, their answers always contain the answer of
q. In other words, q is contained in each q̃d and hence q̃d does not produce false negatives.

• Optimality: For each depth d ≥ 1, the CQ q̃d ∈ Uq is the best approximation (in a precise
sense) among all the complete tree-like approximations of q with depth at most d.

This suggests the following neuro-symbolic method for answering complex queries: Take any
neuro-symbolic method capable of answering tree-like queries. Then, given a CQ q, we answer q by
feeding one of its tree-like approximations q̃D ∈ Uq (the chosen depth D is a hyperparameter of our
model) to the chosen neuro-symbolic method. We thus leverage existing neuro-symbolic methods
for anchored tree-like CQs, both for inference and learning. We remark that current methods work
with anchored tree-like CQs, while our approach requires the use of (not necessarily anchored)
tree-like CQs. We show in Section 4.3 how to remedy this but first formalize our approach.

4.1 COMPLETE TREE-LIKE APPROXIMATIONS

Let q be an arbitrary CQ. A complete tree-like approximation of q is a tree-like CQ q′ that contains
q. That is, the answer q(G) is always contained in the answer q′(G), independently of the KG G.
We stress that the notion of completeness is particularly relevant for the setting of incomplete KGs.
Indeed, we are given a CQ q and an (incomplete) KG G and the goal is to obtain the answers q(G∗)
for the unobservable complete KG G∗. As containment considers all possible KGs, the answer
q′(G∗) of a complete approximation q′ must hence contain the sought answer set q(G∗).
By Proposition 3.1, a tree-like CQ q′ is a complete approximation of q if there is a homomorphism
from q′ to q. Of course, there could be many approximations for the same query. As an example,
consider the triangle CQ q(x)← Friend(x, y)∧Friend(y, z)∧Coworker(z, x) depicted in Figure 2.
On the right of Figure 2, we can see three possible complete tree-like approximations for q. Indeed,
q′1 and q′2 can be mapped to q via the homomorphism {x 7→ x, y 7→ y, z 7→ z, x′ 7→ x}. For q′3,
we can use the homomorphism {x 7→ x, y1 7→ y, y2 7→ y, z1 7→ z, z2 7→ z, x1 7→ x, x2 7→ x}.
Actually, by taking longer paths, it is easy to get infinitely many approximations for q. Hence, the
space of approximations may be infinite. This raises the question which approximation should we
choose? We discuss this problem in the next section.

4



Under review as a conference paper at ICLR 2024

x

yz

Coworker Friend

Friend

q′ 2(x) ← F(x, y) ∧ F(y, z) ∧ C(z, x′ )xyzx′ 

xy zx′ 

q(x) ← F(x, y) ∧ F(y, z) ∧ C(z, x)

q′ 1(x) ← F(x′ , y) ∧ F(y, z) ∧ C(z, x)

q′ 3(x) ← F(x, y1) ∧ F(y1, z1) ∧ C(z1, x1)
∧ F(x, y2) ∧ F(y2, z2) ∧ C(z2, x2)

z2x2 y2

z1x1 y1

x

Figure 2: A cyclic CQ q and three possible complete tree-like approximations. Best viewed in color.

4.2 COMPLETE OPTIMAL APPROXIMATIONS: UNRAVELINGS

While the number of approximations is infinite, we show there are a special kind of approximations
that are optimal in a precise sense, and hence are a natural choice to approximate the original CQ.

Let q(x) be a CQ. A valid path of q(x) is a sequence x0, A1, x1, . . . , Ak, xk, for k ≥ 0, such that:

• x0 = x, each xi ∈ Var(q) ∪ Con(q), and each Ai is an atom of q.
• for each 1 ≤ i ≤ k, the atom Ai is either of the form R(xi−1, xi) (a forward traversal of

the atom), or R(xi, xi−1) (a backward traversal of the atom).
• Ai ̸= Ai+1, for each 1 ≤ i < k.

Intuitively, a valid path is a way of traversing the CQ q starting from the target variable x and
sequentially moving through the atoms of q. We can visit the same variable, constant or atom
several times. The only restriction is that an atom cannot be visited multiple times consecutively in
the sequence. Hence, once an atom is traversed, we cannot go back via the same atom immediately.
The length of a valid path is the number of atoms k. Note that the valid path of length 0 is well-
defined and corresponds to the sequence x. A valid path is unanchored if it ends at a variable of q;
otherwise, we say that it is anchored. For a valid path P , we denote by end(P ) ∈ Var(q) ∪ Con(q)
the element at the end of path P .

Consider the CQ q(x) ← A1 ∧ A2 ∧ A3 in Figure 2, where A1 = Friend(x, y), A2 = Friend(y, z)
and A3 = Coworker(z, x). An example of an unanchored valid path is x,A1, y, A2, z, A3, x, which
corresponds to a clockwise traversal of length 3 starting at x. The anticlockwise traversal of length
3 is given by the valid path x,A3, z, A2, y, A1, x.

Now we are ready to define our optimal approximations. Let q(x) be a CQ. The unraveling of q(x)
of depth d ≥ 1 is the tree-like CQ q̃d(x) constructed as follows:

• The variables of q̃d correspond to the unanchored valid paths of q of length at most d.
Formally, Var(q̃d) := {zP | P unanchored valid path of q of length ≤ d}.

• For valid paths P and P ′ = P,A′, end(P ′) of q of lengths ≤ d, if A′ =
R(end(P ), end(P ′)) then q̃d has an atom R(oP , oP ′), where oW = zW if W is unan-
chored, and oW = end(W ) otherwise. If A′ = R(end(P ′), end(P )) then q̃d has an atom
R(oP ′ , oP ).

• The target variable x of q̃d is zP0 , where P0 is the valid path of q of length 0.

The idea is that the unraveling q̃d(x) of depth d of q(x) is obtained by traversing q in a tree-like
fashion, starting from the target variable x and moving from one variable to all of its neighbors,
through the atoms of q. Every time we add fresh variables to the unraveling and hence this is
actually a tree-like CQ. The tree traversal has depth d and is always restricted to valid paths (no
immediate returns to the same atom). The leaves of the unraveling could be anchors or existentially
quantified variables. The latter case is unavoidable in general and hence the need of working with
(not necessarily anchored) tree-like CQs.

Continuing the example from Figure 2, q′3 is the depth 3 unraveling of q. Note how the variables z1,
y1, x1 of q′3 correspond to the valid paths (x,A3, z), (x,A3, z, A2, y), (x,A3, z, A2, y, A1, x). Sim-
ilarly, the variables y2, z2, x2 correspond to (x,A1, y), (x,A1, y, A2, z), (x,A1, y, A2, z, A3, x).

5



Under review as a conference paper at ICLR 2024

x

yz

Coworker Friend

Friend

⊆ ⊆ ⊆ ⊆⋯

⋯

Coworker

y x
Employee

Friend

Bank

⊆ ⊆ ⊆ ⊆⋯

⋯

Cyclic CQs Tree-like CQs

<latexit sha1_base64="pGbtVN/lLuMJd7sD2e0FEdK5j3M=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQXZSkiLosutBlBfuAJobJZNIOnTycmQglZOfGX3HjQhG3/oI7/8ZJm4W2HrhwOOde7r3HjRkV0jC+tdLC4tLySnm1sra+sbmlb+90RJRwTNo4YhHvuUgQRkPSllQy0os5QYHLSNcdXeZ+94FwQaPwVo5jYgdoEFKfYiSV5Oj7EFqSMo+k95nTqFkBkkOMWHqV3aXH2ZGjV426MQGcJ2ZBqqBAy9G/LC/CSUBCiRkSom8asbRTxCXFjGQVKxEkRniEBqSvaIgCIux08kcGD5XiQT/iqkIJJ+rviRQFQowDV3Xmd4pZLxf/8/qJ9M/tlIZxIkmIp4v8hEEZwTwU6FFOsGRjRRDmVN0K8RBxhKWKrqJCMGdfniedRt08rZs3J9XmRRFHGeyBA1ADJjgDTXANWqANMHgEz+AVvGlP2ov2rn1MW0taMbML/kD7/AEKOpjL</latexit>

q̃2(G⇤)
<latexit sha1_base64="lM3lRdyydjhxTY4qdNsSuHViMc4=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQXZRERV0WXeiygn1AE8NkMmmHTh7OTIQSsnPjr7hxoYhbf8Gdf+OkzUJbD1w4nHMv997jxowKaRjfWmlufmFxqbxcWVldW9/QN7faIko4Ji0csYh3XSQIoyFpSSoZ6cacoMBlpOMOL3O/80C4oFF4K0cxsQPUD6lPMZJKcvRdCC1JmUfS+8w5rlkBkgOMWHqV3aWH2YGjV426MQacJWZBqqBA09G/LC/CSUBCiRkSomcasbRTxCXFjGQVKxEkRniI+qSnaIgCIux0/EcG95XiQT/iqkIJx+rviRQFQowCV3Xmd4ppLxf/83qJ9M/tlIZxIkmIJ4v8hEEZwTwU6FFOsGQjRRDmVN0K8QBxhKWKrqJCMKdfniXto7p5WjdvTqqNiyKOMtgBe6AGTHAGGuAaNEELYPAInsEreNOetBftXfuYtJa0YmYb/IH2+QMLz5jM</latexit>

q̃3(G⇤)

<latexit sha1_base64="UseQU5Aos9B20dIbaYlUG6Glifo=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iE6qIkIuqy6EKXFewD2lgm00k7dPJwZiLUEPwVNy4Ucet/uPNvnLRZaPXAwOGce7lnjhtxJpVlfRmFufmFxaXicmlldW19w9zcasowFoQ2SMhD0XaxpJwFtKGY4rQdCYp9l9OWO7rI/NY9FZKFwY0aR9Tx8SBgHiNYaaln7iB0V+n6WA0J5sllepscpgc9s2xVrQnQX2LnpAw56j3zs9sPSezTQBGOpezYVqScBAvFCKdpqRtLGmEywgPa0TTAPpVOMkmfon2t9JEXCv0ChSbqz40E+1KOfVdPZjnlrJeJ/3mdWHlnTsKCKFY0INNDXsyRClFWBeozQYniY00wEUxnRWSIBSZKF1bSJdizX/5LmkdV+6RqXx+Xa+d5HUXYhT2ogA2nUIMrqEMDCDzAE7zAq/FoPBtvxvt0tGDkO9vwC8bHNza6lHA=</latexit>

q(G⇤)

<latexit sha1_base64="UseQU5Aos9B20dIbaYlUG6Glifo=">AAAB/XicbVDLSsNAFL2pr1pf8bFzM1iE6qIkIuqy6EKXFewD2lgm00k7dPJwZiLUEPwVNy4Ucet/uPNvnLRZaPXAwOGce7lnjhtxJpVlfRmFufmFxaXicmlldW19w9zcasowFoQ2SMhD0XaxpJwFtKGY4rQdCYp9l9OWO7rI/NY9FZKFwY0aR9Tx8SBgHiNYaaln7iB0V+n6WA0J5sllepscpgc9s2xVrQnQX2LnpAw56j3zs9sPSezTQBGOpezYVqScBAvFCKdpqRtLGmEywgPa0TTAPpVOMkmfon2t9JEXCv0ChSbqz40E+1KOfVdPZjnlrJeJ/3mdWHlnTsKCKFY0INNDXsyRClFWBeozQYniY00wEUxnRWSIBSZKF1bSJdizX/5LmkdV+6RqXx+Xa+d5HUXYhT2ogA2nUIMrqEMDCDzAE7zAq/FoPBtvxvt0tGDkO9vwC8bHNza6lHA=</latexit>

q(G⇤)

<latexit sha1_base64="WMl63flrj0Ff3HABfk0QY4EzpcE=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQXZREirosutBlBfuAJobJZNIOnTycmQglZOfGX3HjQhG3/oI7/8ZJm4W2HrhwOOde7r3HjRkV0jC+tdLC4tLySnm1sra+sbmlb+90RJRwTNo4YhHvuUgQRkPSllQy0os5QYHLSNcdXeZ+94FwQaPwVo5jYgdoEFKfYiSV5Oj7EFqSMo+k95nTqFkBkkOMWHqV3aXH2ZGjV426MQGcJ2ZBqqBAy9G/LC/CSUBCiRkSom8asbRTxCXFjGQVKxEkRniEBqSvaIgCIux08kcGD5XiQT/iqkIJJ+rviRQFQowDV3Xmd4pZLxf/8/qJ9M/tlIZxIkmIp4v8hEEZwTwU6FFOsGRjRRDmVN0K8RBxhKWKrqJCMGdfniedk7p5WjdvGtXmRRFHGeyBA1ADJjgDTXANWqANMHgEz+AVvGlP2ov2rn1MW0taMbML/kD7/AENZJjN</latexit>

q̃4(G⇤)

<latexit sha1_base64="WMl63flrj0Ff3HABfk0QY4EzpcE=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQXZREirosutBlBfuAJobJZNIOnTycmQglZOfGX3HjQhG3/oI7/8ZJm4W2HrhwOOde7r3HjRkV0jC+tdLC4tLySnm1sra+sbmlb+90RJRwTNo4YhHvuUgQRkPSllQy0os5QYHLSNcdXeZ+94FwQaPwVo5jYgdoEFKfYiSV5Oj7EFqSMo+k95nTqFkBkkOMWHqV3aXH2ZGjV426MQGcJ2ZBqqBAy9G/LC/CSUBCiRkSom8asbRTxCXFjGQVKxEkRniEBqSvaIgCIux08kcGD5XiQT/iqkIJJ+rviRQFQowDV3Xmd4pZLxf/8/qJ9M/tlIZxIkmIp4v8hEEZwTwU6FFOsGRjRRDmVN0K8RBxhKWKrqJCMGdfniedk7p5WjdvGtXmRRFHGeyBA1ADJjgDTXANWqANMHgEz+AVvGlP2ov2rn1MW0taMbML/kD7/AENZJjN</latexit>

q̃4(G⇤)

<latexit sha1_base64="lM3lRdyydjhxTY4qdNsSuHViMc4=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQXZRERV0WXeiygn1AE8NkMmmHTh7OTIQSsnPjr7hxoYhbf8Gdf+OkzUJbD1w4nHMv997jxowKaRjfWmlufmFxqbxcWVldW9/QN7faIko4Ji0csYh3XSQIoyFpSSoZ6cacoMBlpOMOL3O/80C4oFF4K0cxsQPUD6lPMZJKcvRdCC1JmUfS+8w5rlkBkgOMWHqV3aWH2YGjV426MQacJWZBqqBA09G/LC/CSUBCiRkSomcasbRTxCXFjGQVKxEkRniI+qSnaIgCIux0/EcG95XiQT/iqkIJx+rviRQFQowCV3Xmd4ppLxf/83qJ9M/tlIZxIkmIJ4v8hEEZwTwU6FFOsGQjRRDmVN0K8QBxhKWKrqJCMKdfniXto7p5WjdvTqqNiyKOMtgBe6AGTHAGGuAaNEELYPAInsEreNOetBftXfuYtJa0YmYb/IH2+QMLz5jM</latexit>

q̃3(G⇤)
<latexit sha1_base64="pGbtVN/lLuMJd7sD2e0FEdK5j3M=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQXZSkiLosutBlBfuAJobJZNIOnTycmQglZOfGX3HjQhG3/oI7/8ZJm4W2HrhwOOde7r3HjRkV0jC+tdLC4tLySnm1sra+sbmlb+90RJRwTNo4YhHvuUgQRkPSllQy0os5QYHLSNcdXeZ+94FwQaPwVo5jYgdoEFKfYiSV5Oj7EFqSMo+k95nTqFkBkkOMWHqV3aXH2ZGjV426MQGcJ2ZBqqBAy9G/LC/CSUBCiRkSom8asbRTxCXFjGQVKxEkRniEBqSvaIgCIux08kcGD5XiQT/iqkIJJ+rviRQFQowDV3Xmd4pZLxf/8/qJ9M/tlIZxIkmIp4v8hEEZwTwU6FFOsGRjRRDmVN0K8RBxhKWKrqJCMGdfniedRt08rZs3J9XmRRFHGeyBA1ADJjgDTXANWqANMHgEz+AVvGlP2ov2rn1MW0taMbML/kD7/AEKOpjL</latexit>

q̃2(G⇤)
<latexit sha1_base64="kKJZjj9cG1DFRyuDg5zmK4Khdwg=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQXZRERF0WXeiygn1AE8NkMm2HTiZxZiKUkJ0bf8WNC0Xc+gvu/BsnbRZaPXDhcM693HuPHzMqlWV9GaW5+YXFpfJyZWV1bX3D3NxqyygRmLRwxCLR9ZEkjHLSUlQx0o0FQaHPSMcfXeR+554ISSN+o8YxcUM04LRPMVJa8sxdCB1FWUDSu8yza06I1BAjll5mt+lhduCZVatuTQD/ErsgVVCg6ZmfThDhJCRcYYak7NlWrNwUCUUxI1nFSSSJER6hAelpylFIpJtO/sjgvlYC2I+ELq7gRP05kaJQynHo6878Tjnr5eJ/Xi9R/TM3pTxOFOF4uqifMKgimIcCAyoIVmysCcKC6lshHiKBsNLRVXQI9uzLf0n7qG6f1O3r42rjvIijDHbAHqgBG5yCBrgCTdACGDyAJ/ACXo1H49l4M96nrSWjmNkGv2B8fAMIpZjK</latexit>

q̃1(G⇤)

<latexit sha1_base64="kKJZjj9cG1DFRyuDg5zmK4Khdwg=">AAACB3icbVDLSsNAFJ3UV62vqEtBBotQXZRERF0WXeiygn1AE8NkMm2HTiZxZiKUkJ0bf8WNC0Xc+gvu/BsnbRZaPXDhcM693HuPHzMqlWV9GaW5+YXFpfJyZWV1bX3D3NxqyygRmLRwxCLR9ZEkjHLSUlQx0o0FQaHPSMcfXeR+554ISSN+o8YxcUM04LRPMVJa8sxdCB1FWUDSu8yza06I1BAjll5mt+lhduCZVatuTQD/ErsgVVCg6ZmfThDhJCRcYYak7NlWrNwUCUUxI1nFSSSJER6hAelpylFIpJtO/sjgvlYC2I+ELq7gRP05kaJQynHo6878Tjnr5eJ/Xi9R/TM3pTxOFOF4uqifMKgimIcCAyoIVmysCcKC6lshHiKBsNLRVXQI9uzLf0n7qG6f1O3r42rjvIijDHbAHqgBG5yCBrgCTdACGDyAJ/ACXo1H49l4M96nrSWjmNkGv2B8fAMIpZjK</latexit>

q̃1(G⇤)Figure 3: Overview of our approach. We show unravelings until depth 4. The goal is to approximate
the answer q(G∗) of q over the unobservable complete KG G∗. Best viewed in color.

By definition, the unraveling q̃d is a tree-like CQ. By inverting the “unraveling” process, we can
obtain a homomorphism from q̃d to q, and then q̃d is always a complete tree-like approximation.
Also, we have that q̃d+1 ⊆ q̃d holds and hence the family Uq = {q̃d}d≥1 provides potentially better
approximations as depth increases (q ⊆ · · · ⊆ q̃3 ⊆ q̃2 ⊆ q̃1). These properties are summarized in
the following proposition (see Appendix A for a formal proof).
Proposition 4.1. Let q be a CQ and d ≥ 1. The unraveling q̃d is a complete tree-like approximation
of q. Moreover, q̃d+1 ⊆ q̃d holds.

Interestingly, we can show that q̃d is optimal in the following sense:
Theorem 4.1. Let q be a CQ and d ≥ 1. Suppose q′ is a complete tree-like approximation of depth
at most d. Then q̃d ⊆ q′ holds.

In particular, for any complete tree-like approximation q′ of q, there exists an unraveling q̃d at least
as good than q′ as an approximation of q, i.e. q ⊆ q̃d ⊆ q′. The proof idea of Theorem 4.1 is to turn
any homomorphism h from q′ to q into a homomorphism from q′ to q̃d by analyzing the image of h
on q. See Appendix A for complete details. Figure 2 shows the depth 3 unraveling q̃3 = q′3 for q,
and two additional depth 3 approximations q′1 and q′2. We see that q ⊆ q̃3 ⊆ q′1 and q ⊆ q̃3 ⊆ q′2.

In conclusion, we have shown that the tree-like queries Uq = {q̃d}d≥1 satisfy the desired properties
of completeness and optimality. Figure 3 shows an overview of our approach for the triangle query.
We next show how to turn the theory into practice.

4.3 A CONCRETE IMPLEMENTATION: ∃GNN-QE

One of the key strengths of our proposed approximation scheme is that it is generic. That is, it can
be implemented on top of any neuro-symbolic query processing method, provided that the method
is capable of dealing with (possibly unanchored) tree-like queries.

This claim comes with a small caveat. As already mentioned, state-of-the-art methods deal with
anchored tree-like queries (see also Ren et al. (2023)) and modifications are needed to support
general tree-like queries. The challenge is to encode unanchored leaf nodes in tree-like queries
in the latent space in which the encoding of anchored entities typically reside. Importantly, the
encoding needs to simulate existential quantification in line with the semantics of unanchored leaf
nodes. We here describe how this can be done in fuzzy-based neuro-symbolic approaches such as
Chen et al. (2022); Zhu et al. (2022), leaving the extension of other approaches to future work.

Our implementation is based on GNN-QE by Zhu et al. (2022), a neuro-symbolic architecture that
processes anchored tree-like queries in a bottom-up fashion. Anchored leaf nodes are encoded as
one-hot vectors in latent space, and edges between entities are processed using an adaptation of the
NBFNet graph neural network (Zhu et al., 2021). In each step, a probabilistic vector over entities is
obtained, indicating the likelihood of an edge to those entities. Intuitively, the knowledge graph is
completed by these edge predictions. Finally, the probability vectors are combined using operations
that simulate logical operations. For example, for the query in Figure 1a, a one-hot vector encoding
anchor “Tech” is transformed through the Employee edge into a vector indicating the probability
that someone (entity) works in Tech. Following this reasoning, we encode unanchored leaf nodes
as full unitary vectors (that is, a vector consisting of all ones). Such a vector indeed gives equal

6



Under review as a conference paper at ICLR 2024

probability to every entity hereby simulating existential quantification. For example, to answer a
query such as the one in Figure 1b, we encode the w node by the full unitary vector, the anchor node
“Tech” remains encoded as before. We then process these vectors as in GNN-QE. We denote our
extension by ∃GNN-QE. Since it can deal with general tree-like queries, we can use it alongside our
approximation scheme. In the next section we report how well everything works in practice.

5 EXPERIMENTS

We set up our experimental evaluation to address the following questions. The first two questions
relate to our support for general (not necessarily anchored) tree-like queries.

(Q1) What is the effect on the performance of answering anchored tree-like queries when the
training set includes unanchored tree-like queries as well?

(Q2) Similarly, what is the effect on the performance of answering general tree-like queries?

Looking ahead, as a contribution of independent interest, our results indicate that we can support
general tree like queries (Q2) with little or no negative impact for both anchored tree-like queries
(Q1). This gives us ground to suggest that general tree-like queries should become default members
in training and testing sets of future neuro-symbolic architectures.

Our third question relates to our approximation scheme.

(Q3) What is the performance of our approximation scheme in answering cyclic queries? And
related, how does this depend on the chosen depth of the unravelling?

Looking ahead, our results show that unravellings can be used to answer cyclic queries: the metrics
obtained for our suite of cyclic test queries are competitive, albeit slightly weaker, with similar
metrics obtained by recent approaches for complex tree-like queries involving unions and negations
of atoms. We thus validate the potential of our approach and promote it to become a competitive
standard for future algorithms dealing with complex query types.

5.1 EXPERIMENTAL SETUP

We perform our evaluation on the commonly used knowledge graphs FB15k-237 (Toutanova &
Chen, 2015), FB15k (Bordes et al., 2013) and NELL995 (Xiong et al., 2017) with their official train-
ing/validation/testing split. With regards to methods, as baseline we use GNN-QE, trained following
the specifications of Zhu et al. (2022). That is, it is trained using the queries generated by BetaE
(Ren & Leskovec, 2020), consisting of 10 tree-like query types, including queries featuring union
and negation (1p/2p/3p/2i/3i/2in/3in/inp/pni/pin). For our method2 ∃GNN-QE we additionally pro-
vide a new set of training, validation and test queries without anchors and unravelings of cyclic
queries alongside with their corresponding answers for FB15k-237, FB15k and NELL995. These
queries adhere to the same query types as before, except they are not anchored. In order to ensure
a fair comparison, we trained ∃GNN-QE keeping the training parameters identical to those used for
GNN-QE, but including queries without anchors. Details and statistics of both the new query set
and the training can be found in the Appendix B. Metrics of GNN-QE are taken from its original
paper by Zhu et al. (2022). Specifically, we report the mean reciprocal rank (mrr) of the predicted
answer set (compared with the ground truth), and the Spearman correlation rank (spearmanr) be-
tween the total number of answers predicted and the number of answers in the ground truth. We
report the remaining metrics used in Zhu et al. (2022) in Appendix B. Results are measured only
against GNN-QE, see their original paper for comparison against other methods.

5.2 RESULTS

Anchored tree-like queries. In our first batch of experiments we investigate the effect of training
with unanchored queries on the performance on the original anchored BetaE queries (Q1). We com-
pare the performance of GNN-QE and ∃GNN-QE on anchored queries on our datasets. Importantly,
as mentioned already, GNN-QE is trained using the original BetaE queries, whereas ∃GNN-QE is
trained using additional unanchored BetaE queries. In Table 1 we report the results.

2Code is available at https://anonymous.4open.science/r/exists-gnn-qe-8A7C/

7

https://anonymous.4open.science/r/exists-gnn-qe-8A7C/


Under review as a conference paper at ICLR 2024

Table 1: Mean reciprocal rank and spearman rank correlation on test BetaE queries. Results of
GNN-QE are taken from (Zhu et al. (2022)). Other metrics can be found in Appendix C

Metric Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni 2u up
FB15k-237

spearmanr GNN-QE 0.948 0.951 0.895 0.992 0.970 0.937 0.911 0.981 0.968 0.864 0.880 0.987 - -
∃GNN-QE 0.977 0.966 0.942 0.992 0.975 0.898 0.943 0.990 0.981 0.853 0.933 0.989 0.979 0.968

mrr GNN-QE 0.428 0.147 0.118 0.383 0.541 0.189 0.311 0.100 0.168 0.093 0.072 0.078 0.162 0.134
∃GNN-QE 0.321 0.107 0.096 0.339 0.501 0.147 0.268 0.063 0.139 0.080 0.053 0.048 0.119 0.103

FB15k

spearmanr GNN-QE 0.958 0.970 0.940 0.984 0.927 0.916 0.936 0.980 0.907 0.905 0.944 0.978 - -
∃GNN-QE 0.951 0.829 0.714 0.971 0.944 0.650 0.808 0.985 0.974 0.843 0.821 0.967 0.995 0.939

mrr GNN-QE 0.885 0.693 0.587 0.797 0.835 0.704 0.699 0.447 0.417 0.420 0.301 0.343 0.741 0.610
∃GNN-QE 0.855 0.688 0.587 0.801 0.833 0.620 0.720 0.430 0.418 0.403 0.302 0.340 0.747 0.600

Table 2: Mean reciprocal rank and spearman rank correlation on test unanchored queries. Results of
GNN-QE were obtained through our adaptation. Other metrics can be found in Appendix C.2

Metric Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni 2u up
No Anchor FB15k-237

spearmanr GNN-QE 0.629 0.899 0.865 0.966 0.970 0.932 0.894 0.811 0.802 0.651 0.711 0.893 0.553 0.937
∃GNN-QE 0.901 0.975 0.963 0.993 0.986 0.948 0.965 0.979 0.972 0.815 0.927 0.984 0.879 0.983

mrr GNN-QE 0.007 0.081 0.087 0.221 0.295 0.108 0.164 0.020 0.105 0.063 0.036 0.022 0.029 0.078
∃GNN-QE 0.035 0.089 0.083 0.222 0.294 0.099 0.160 0.029 0.105 0.067 0.040 0.027 0.067 0.092

No Anchor FB15k

spearmanr GNN-QE 0.647 0.706 0.657 0.921 0.894 0.791 0.816 0.884 0.787 0.648 0.752 0.878 0.869 0.852
∃GNN-QE 0.924 0.789 0.660 0.957 0.959 0.539 0.803 0.964 0.971 0.804 0.824 0.967 0.967 0.897

mrr GNN-QE 0.112 0.387 0.457 0.685 0.686 0.571 0.533 0.109 0.283 0.240 0.152 0.102 0.131 0.421
∃GNN-QE 0.228 0.434 0.496 0.613 0.718 0.579 0.572 0.190 0.325 0.269 0.189 0.158 0.292 0.455

The experiments show that training with unanchored queries (∃GNN-QE) results in a slight decrease
in the mean reciprocal rank metric, and a slight increase in the spearman’s rank correlation. We note
that we failed to replicate the original numbers obtained in Zhu et al. (2022), so some of these
differences may also be due to differences in training hardware. All in all, we see we are either
paying a small price, or none at all, in order to enable a much more expressive class of queries.
Note that the set of queries with best comparative performance is in queries with negation: this is
according to our expectations, as negating a small set of entities results in dealing with large number
of entities, just as in unanchored entry points.

Tree-like queries. Our second batch of results relates to enabling treatment of tree-like queries
without anchors (Q2). While less interesting, we can also measure the effect of training with queries
without anchors. In order to do this, we maintain weights computed by GNN-QE, but enable the
processing of relation-projection that is non-anchored. Table 2 shows the results of both GNN-QE
and ∃GNN-QE over the original test set of our benchmark databases. Results, as expected, suggest
that training for this type of queries has a drastic increase in performance in all metrics.

Cyclic Queries. Next we move to cyclic queries, computed through their unravelings (Q3). Be-
cause our method relies on approximating the ground truth, we do not train for these types of queries,
but rather try them directly in the trained models. To this extent, we construct a new test set for cyclic
queries with 2 query-types: triangles, and squares (see Appendix B for more details).

Since our unravelings are parameterized by depth, before trying our all query shapes we tuned
this parameter with an exploratory analysis for triangles and squares on FB15k-237. Here we are
interested in maxing out the spearman correlation rank, because the choice of depth incides directly
on the number of answers returned by each query. The result of this analysis for the triangle are
shown in Figures 4 and 5. Further results can be found in Appendix C.

As we see, deeper unravelings appear to improve, but there seems to be a point after which this
effect starts to be cancelled out by natural imprecisions of the trained model. This is evident when
we analyze both the mean reciprocal rank (MRR) and the Spearman correlation. While the MRR
tends to show slight improvements after a depth of 3, the Spearman correlation starts to diminish or
worsen beyond that point. Hence, the remaining results (see Table 3) are reported for unravelings at
depths 3 and 4 for triangles on all datasets. Notice that the metrics reported here are comparable
to what state-of-the art architectures such as GNN-QE report for complex tree-like queries (see

8



Under review as a conference paper at ICLR 2024

Figure 4: Mean reciprocal rank test results for
different depths of unravelings for the triangle
query.

Figure 5: Spearman rank correlation test results
for different depths of unravelings for the trian-
gle query.

Table 3: Spearman’s rank correlation and reciprocal ranking scores of ∃GNN-QE model across
unravelings of depths 3 and 4 for the triangle query.

FB15k-237 FB15k NELL

Triangle
mrr 3 0.138 0.354 0.207

4 0.136 0.359 0.206

sp 3 0.816 0.716 0.516
4 0.801 0.721 0.439

e.g. results for query type combining paths and intersection). We believe that our approximation
scheme thus proves as a valid approach for allowing arbitrary CQs on neuro-symbolic architectures.
Remaining results can be found on Appendix C.

6 FUTURE WORK

In this work, we present an approach to approximate the answers to arbitrary CQs over incomplete
knowledge graphs by applying the mature toolbox developed for answering tree-like CQs. As for
future work, we plan on expanding other neuro-symbolic architecture with the ability to deal with
unanchored queries, so that we can also implement our approach in these architectures. While this
approximation is cost-efficient, it can affect the quality of the retrieved answers. In fact, overapprox-
imations may return answers that are not necessarily sound, even when the data is complete. One of
our main goals for future work is to develop neuro-symbolic methods for CQs on knowledge graphs
that return exact answers when evaluated on complete data. This process can be computationally de-
manding, but over the last decade, worst-case optimal algorithms have been developed for retrieving
such answers in a symbolic manner (Ngo et al., 2013). We plan to investigate how such algorithms
can be integrated into the neuro-symbolic framework studied in this paper to provide high-quality
answers in a context where data is considered incomplete.

Another important issue we aim to address is determining the appropriate semantics for evaluating
CQs over incomplete knowledge graphs. Neural approaches for completing knowledge graphs of-
ten produce a probability or score that indicates the likelihood of a link’s existence between two
given entities. This places us in the realm of probabilistic data. The data management commu-
nity has long been studying how queries over probabilistic data should be interpreted (Suciu et al.,
2011). We believe it is important to understand how this semantics aligns with the one used in the
neuro-symbolic evaluation of tree-like CQs and how the techniques employed to approximate the
probabilistic evaluation of CQs can be used in our setting.

REFERENCES

Waqas Ali, Muhammad Saleem, Bin Yao, Aidan Hogan, and Axel-Cyrille Ngonga Ngomo. A survey
of RDF stores & SPARQL engines for querying knowledge graphs. The VLDB Journal, 31, 2022.
URL https://doi.org/10.1007/s00778-021-00711-3.

9

https://doi.org/10.1007/s00778-021-00711-3


Under review as a conference paper at ICLR 2024

Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan Reutter, and Domagoj Vrgoč.
Foundations of modern query languages for graph databases. ACM Comput. Surv., 50(5), 2017.
URL https://doi.org/10.1145/3104031.

Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. Answering complex logical queries on knowledge
graphs via query computation tree optimization. In International Conference on Machine Learn-
ing (ICML), volume 202 of Proceedings of Machine Learning Research, pp. 1472–1491, 2023.
URL https://proceedings.mlr.press/v202/bai23b.html.

Pablo Barceló, Leonid Libkin, and Miguel Romero. Efficient approximations of conjunctive queries.
SIAM J. Comput., 43(3):1085–1130, 2014. URL https://doi.org/10.1137/1309117.

Pablo Barceló, Miguel Romero, and Thomas Zeume. A more general theory of static approximations
for conjunctive queries. Theory of Computing Systems, 64(5):916–964, 2020. URL https:
//doi.org/10.1007/s00224-019-09924-0.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In Ad-
vances in Neural Information Processing Systems (NEURIPS), volume 26, 2013. URL
https://proceedings.neurips.cc/paper_files/paper/2013/file/
1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf.

Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in rela-
tional data bases. In Proceedings of the ACM Symposium on Theory of Computing (STOC), pp.
77–90, 1977. URL https://doi.org/10.1145/800105.803397.

Xuelu Chen, Ziniu Hu, and Yizhou Sun. Fuzzy logic based logical query answering on knowledge
graphs. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 36(4):3939–3948,
2022. URL https://doi.org/10.1609/aaai.v36i4.20310.

Dieter Fensel, Umutcan Şimşek, Kevin Angele, Elwin Huaman, Elias Kärle, Oleksandra Pana-
siuk, Ioan Toma, Jürgen Umbrich, and Alexander Wahler. Knowledge Graphs - Methodol-
ogy, Tools and Selected Use Cases. Springer, 2020. URL https://doi.org/10.1007/
978-3-030-37439-6.

William L. Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec. Embedding
logical queries on knowledge graphs. In Advances in Neural Information Processing Systems
(NEURIPS), volume 31, pp. 2030–2041, 2018. URL https://proceedings.neurips.
cc/paper/2018/hash/ef50c335cca9f340bde656363ebd02fd-Abstract.
html.

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo, Claudio Gutier-
rez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-
Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen,
Juan Sequeda, Steffen Staab, and Antoine Zimmermann. Knowledge Graphs. Synthesis Lec-
tures on Data, Semantics, and Knowledge. Morgan & Claypool Publishers, 2021. URL https:
//doi.org/10.2200/S01125ED1V01Y202109DSK022.

Bhushan Kotnis, Carolin Lawrence, and Mathias Niepert. Answering complex queries in knowledge
graphs with bidirectional sequence encoders. Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 35(6):4968–4977, 2021. URL https://doi.org/10.1609/aaai.
v35i6.16630.

Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu, Yuxiao Dong,
and Jie Tang. Mask and reason: Pre-training knowledge graph transformers for complex log-
ical queries. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD), pp. 1120–1130, 2022. URL https://doi.org/10.1145/3534678.
3539472.

Haoran Luo, E Haihong, Yuhao Yang, Gengxian Zhou, Yikai Guo, Tianyu Yao, Zichen Tang,
Xueyuan Lin, and Kaiyang Wan. NQE: N-ary query embedding for complex query answer-
ing over hyper-relational knowledge graphs. Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 37(4):4543–4551, 2023. URL https://doi.org/10.1609/aaai.
v37i4.25576.

10

https://doi.org/10.1145/3104031
https://proceedings.mlr.press/v202/bai23b.html
https://doi.org/10.1137/1309117
https://doi.org/10.1007/s00224-019-09924-0
https://doi.org/10.1007/s00224-019-09924-0
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://doi.org/10.1145/800105.803397
https://doi.org/10.1609/aaai.v36i4.20310
https://doi.org/10.1007/978-3-030-37439-6
https://doi.org/10.1007/978-3-030-37439-6
https://proceedings.neurips.cc/paper/2018/hash/ef50c335cca9f340bde656363ebd02fd-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ef50c335cca9f340bde656363ebd02fd-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/ef50c335cca9f340bde656363ebd02fd-Abstract.html
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.2200/S01125ED1V01Y202109DSK022
https://doi.org/10.1609/aaai.v35i6.16630
https://doi.org/10.1609/aaai.v35i6.16630
https://doi.org/10.1145/3534678.3539472
https://doi.org/10.1145/3534678.3539472
https://doi.org/10.1609/aaai.v37i4.25576
https://doi.org/10.1609/aaai.v37i4.25576


Under review as a conference paper at ICLR 2024

Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new developments in the theory
of join algorithms. SIGMOD Rec., 42(4):5–16, 2013. URL https://doi.org/10.1145/
2590989.2590991.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11–33, 2015. URL
https://doi.org/10.1109/JPROC.2015.2483592.

Maximilian Pflueger, David J Tena Cucala, and Egor V Kostylev. GNNQ: A neuro-symbolic
approach to query answering over incomplete knowledge graphs. In International Seman-
tic Web Conference (ISWC), pp. 481–497, 2022. URL https://doi.org/10.1007/
978-3-031-19433-7_28.

Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowl-
edge graphs. In Advances in Neural Information Processing Systems (NEURIPS), volume 33,
pp. 19716–19726, 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html.

Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
vector space using box embeddings. In International Conference on Learning Representations
(ICLR), 2019. URL https://openreview.net/forum?id=BJgr4kSFDS.

Hongyu Ren, Mikhail Galkin, Michael Cochez, Zhaocheng Zhu, and Jure Leskovec. Neural graph
reasoning: Complex logical query answering meets graph databases. CoRR, abs/2303.14617,
2023. URL https://doi.org/10.48550/arXiv.2303.14617.

Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European Semantic Web
Conference (ESWC), volume 10843 of Lecture Notes in Computer Science, pp. 593–607. Springer,
2018. URL https://doi.org/10.1007/978-3-319-93417-4_38.

Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic Databases. Synthesis
Lectures on Data Management. Morgan & Claypool Publishers, 2011. URL https://doi.
org/10.2200/S00362ED1V01Y201105DTM016.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. In International Conference on Learning Representations
(ICLR), 2019. URL https://openreview.net/forum?id=HkgEQnRqYQ.

Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive relation prediction by
subgraph reasoning. In Proceedings of the International Conference on Machine Learning
(ICML), volume 119 of Proceedings of Machine Learning Research, pp. 9448–9457, 2020. URL
http://proceedings.mlr.press/v119/teru20a.html.

Kristina Toutanova and Danqi Chen. Observed versus latent features for knowledge base and text in-
ference. In Proceedings of the 3rd workshop on continuous vector space models and their compo-
sitionality (CVSC), pp. 57–66, 2015. URL https://doi.org/10.18653/v1/W15-4007.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In Proceedings of the International Conference on
International Conference on Machine Learning (ICML), volume 48 of Proceedings of Machine
Learning Research, pp. 2071–2080, 2016. URL http://proceedings.mlr.press/
v48/trouillon16.html.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha P. Talukdar. Composition-based multi-
relational graph convolutional networks. In International Conference on Learning Representa-
tions (ICLR), 2020. URL https://openreview.net/forum?id=BylA_C4tPr.

Wenhan Xiong, Thien Hoang, and William Yang Wang. DeepPath: A reinforcement learn-
ing method for knowledge graph reasoning. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP), pp. 564–573, 2017. URL https:
//doi.org/10.18653/v1/d17-1060.

11

https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1145/2590989.2590991
https://doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1007/978-3-031-19433-7_28
https://doi.org/10.1007/978-3-031-19433-7_28
https://proceedings.neurips.cc/paper/2020/hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e43739bba7cdb577e9e3e4e42447f5a5-Abstract.html
https://openreview.net/forum?id=BJgr4kSFDS
https://doi.org/10.48550/arXiv.2303.14617
https://doi.org/10.1007/978-3-319-93417-4_38
https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://doi.org/10.2200/S00362ED1V01Y201105DTM016
https://openreview.net/forum?id=HkgEQnRqYQ
http://proceedings.mlr.press/v119/teru20a.html
https://doi.org/10.18653/v1/W15-4007
http://proceedings.mlr.press/v48/trouillon16.html
http://proceedings.mlr.press/v48/trouillon16.html
https://openreview.net/forum?id=BylA_C4tPr
https://doi.org/10.18653/v1/d17-1060
https://doi.org/10.18653/v1/d17-1060


Under review as a conference paper at ICLR 2024

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. In International Conference on Learning
Representations (ICLR), 2015. URL http://arxiv.org/abs/1412.6575.

Hang Yin, Zihao Wang, and Yangqiu Song. Rethinking existential first order queries and their
inference on knowledge graphs, 2023. URL https://arxiv.org/abs/2304.07063.

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone
embeddings for multi-hop reasoning over knowledge graphs. In Advances in Neu-
ral Information Processing Systems (NEURIPS), volume 34, pp. 19172–19183,
2021. URL https://proceedings.neurips.cc/paper/2021/hash/
a0160709701140704575d499c997b6ca-Abstract.html.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural
Bellman-Ford Networks: A general graph neural network framework for link predic-
tion. Advances in Neural Information Processing Systems (NEURIPS), 34:29476–
29490, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html.

Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-symbolic models for logical
queries on knowledge graphs. In International Conference on Machine Learning (ICML), PMLR,
pp. 27454–27478, 2022. URL https://proceedings.mlr.press/v162/zhu22c.
html.

A MISSING DETAILS FROM SECTION 4

Proposition A.1 (Proposition 4.1 in the body of the paper). Let q be a CQ and d ≥ 1. The
unraveling q̃d is a complete tree-like approximation of q. Moreover, q̃d+1 ⊆ q̃d holds.

Proof. We first show that q̃d is a complete tree-like approximation of q. By definition, q̃d is tree-
like and hence it suffices to show that q̃d contains q, that is, that there exists a homomorphism
h from q̃d to q. Consider the mapping h : Var(q̃d) ∪ Con(q̃d) → Var(q) ∪ Con(q) such that
h(a) = a for all a ∈ Con(q̃d) and h(zP ) = end(P ) ∈ Var(q) for all zP ∈ Var(q̃d). We claim
that h is a homomorphism. Take an atom R(oP , oP ′) in q̃d. By construction, R(end(P ), end(P ′))
is an atom in q. For any valid path W , end(W ) = h(oW ). Indeed, if W is unanchored, then
h(oW ) = h(zW ) = end(W ). If W is anchored, h(oW ) = h(end(W )) = end(W ). It follows that
R(h(oP ), h(oP ′)) is an atom in q as required.

For the second part of the proposition, note that, by construction, the atoms of q̃d are contained in the
atoms of q̃d+1. In particular, the identity mapping from Var(q̃d)∪Con(q̃d) to Var(q̃d+1)∪Con(q̃d+1)
is a homomorphism from q̃d to q̃d+1. It follows that q̃d+1 ⊆ q̃d.

Theorem A.1 (Theorem 4.1 in the body of the paper). Let q be a CQ and d ≥ 1. Suppose q′ is a
complete tree-like approximation of depth at most d. Then q̃d ⊆ q′ holds.

Proof. We define a path of q(x) as a sequence x0, A1, x1, . . . , Ak, xk, for k ≥ 0, such that:

• x0 = x, each xi ∈ Var(q) ∪ Con(q), and each Ai is an atom of q.
• for each 1 ≤ i ≤ k, the atom Ai is either of the form R(xi−1, xi) (a forward traversal of

the atom), or R(xi, xi−1) (a backward traversal of the atom).

In other words, a path is a valid path without the validity condition on consecutive atoms. As for
valid paths, we denote by end(P ) the element at the end of the path P . Note that every path P that is
not valid define a unique valid path valid(P ) such that end(P ) = end(valid(P )). Indeed, whenever
we have a subsequence in the path P of form y,A, z, A, y violating validity, we can replace it by
y. By iteratively, applying this simplification, we always obtain a unique valid path valid(P ) with
end(P ) = end(valid(P )).

Now suppose q′(x) is a complete tree-like approximation of q(x) of depth at most d. In particular,
there exists a homomorphism h from q′ to q. We shall define a homomorphism g from q′ to q̃d,

12

http://arxiv.org/abs/1412.6575
https://arxiv.org/abs/2304.07063
https://proceedings.neurips.cc/paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/a0160709701140704575d499c997b6ca-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f6a673f09493afcd8b129a0bcf1cd5bc-Abstract.html
https://proceedings.mlr.press/v162/zhu22c.html
https://proceedings.mlr.press/v162/zhu22c.html


Under review as a conference paper at ICLR 2024

Table 4: Statistic of unanchored query set for each dataset: FB15k-237, FB15k and NELL.

Split 1p 2p 3p 2i 3i 2in 3in inp pin pni ip pi 2u up

FB15k-237
train 474 13139 62826 117688 147721 11644 12790 5719 12286 13358 - - - -
valid 288 2514 4213 3763 3368 2272 4255 3330 4080 1970 4135 4396 2905 1613
test 295 2475 4234 3792 3471 2259 4219 3272 3941 1975 3903 4312 2901 1604

FB15k
train 2690 51378 172943 231273 271760 22250 23759 11016 23337 25222 - - - -
valid 1182 5246 7481 6499 5072 3592 6908 5825 6506 3173 6620 7093 4916 2559
test 1240 5302 7433 6527 5252 3558 6902 5815 6442 2979 6306 7125 4906 2565

NELL
train 400 8713 35045 50076 37010 4458 3015 1035 4218 5026 - - - -
valid 346 2118 3239 2731 2342 1721 3193 2643 2884 1410 2772 3421 2428 1249
test 342 2050 3192 1596 897 474 1725 1568 1097 373 1542 1841 922 241

which would imply q̃d ⊆ q′ as required. For w ∈ Var(q′), we define the path Pw in q as follows.
Take the unique path from the root x to w in q′. As h is a homomorphism, the image of this path
via h produces a path in q, which we denote Pw. Consider the mapping g from Var(q′)∪Con(q′) to
Var(q̃d)∪Con(q̃d) such that g(a) = a for all a ∈ Con(q′), and g(w) = ovalid(Pw) for all w ∈ Var(q′).
Recall that oW = zW if W is a unanchored valid path and oW = end(W ) otherwise. Note g is well-
defined: as the depth of q′ is ≤ d, then the lengths of the paths Pw, and hence valid(Pw), are always
≤ d. We claim that g is a homomorphism. Take an atom R(t, t′) in q′ and suppose t is the parent of
t′ in q′ (the other case is analogous). We consider some cases:

• t, t′ ∈ Var(q′): Note that either valid(Pt′) extends valid(Pt), that is, valid(Pt′) =

valid(Pt), A
′, w′, or valid(Pt) extends valid(Pt′). Indeed, if the last atom A′ of Pt′ is

different from the last atom of valid(Pt) then valid(Pt′) = valid(Pt), A,w′. Otherwise,
if the last atom A′ of Pt′ coincides with the last atom of valid(Pt), then valid(Pt′) is the
subsequence of valid(Pt) that ends just before traversing the last atom A′. In particu-
lar, valid(Pt) = valid(Pt′), A

′, w. Suppose valid(Pt′) = valid(Pt), A
′, w′ (the other case

is analogous). Note that A′ = R(h(t), h(t′)) = R(end(valid(Pt)), end(valid(Pt′))) and
w′ = h(t′). By construction, the atom R(ovalid(Pt), ovalid(Pt′ )

) is in q̃d. It follows that
R(g(t), g(t′)) belongs to q̃d as required.

• t ∈ Con(q′) or t′ ∈ Con(q′): Suppose t ∈ Var(q′) and t′ ∈ Con(q′) (the other cases are
analogous). Let P ′ be the path in q′ moving from the root x to t and then going through
the atom R(t, t′) and ending at the constant t′. Let P be the path in q that is the image via
h of the path P ′ in q′. We can repeat the argument above by replacing Pt′ with P .

B EXPERIMENTAL DETAILS

B.1 NEW QUERY SET

We use both the query set provided by Ren & Leskovec (2020) and a new set of general tree like
queries. Statistic of the new query set are provided in Table 4.

For testing our approximation scheme, we also generated 500 triangles and 500 squares on FB15k-
237 and NELL and their corresponding unravelings.

B.2 TRAINING HYPERPARAMETERS

The training hyperparameters utilized in this study closely follow those detailed in the GNN-QE
paper (Zhu et al. (2022)). However, in order to accommodate the specific hardware constraints of our
computational setup, we made adjustments to the batch size while keeping all other hyperparameters
consistent. Table 5 show the learning hyperparameters we used3.

It’s important to note that while working with the NELL dataset, we ran into hardware limitations
that unfortunately made it challenging to completely replicate the results outlined in the original

3To ensure a fair comparison, we maintained the architecture hyperparameters, including the number of
layers and hidden dimensions, as specified in the original GNN-QE paper.

13



Under review as a conference paper at ICLR 2024

Table 5: Learning hyperparameters of ∃GNN-QE for FB15k237, FB15k and NELL.

Hyperparameter FB15k-237 FB15k NELL
Batch size 24 24 6
Optimizer Adam Adam Adam
Learning rate 5e-3 5e-3 5e-3
Adv. temperature 0.2 0.2 0.2
#Batches 10.000 10.000 18.000

xyz

x

yz

x

y

z

w

(a) Double paths (b) Triangle (c) Square

Figure 6: Cyclic queries used for testing the method. Double paths where unravelled up to depth 2
and 3, triangles where unravelled up to depth 3 and 4, and squares where unravelled up to depths 4
and 6.

GNN-QE paper. A comparison of the results we replicated and the ones reported in the paper can
be found in Table 7.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 ANCHORED TREE-LIKE

Table 6 presents H@1 and MAPE for FB15k-237 and FB15k.

Table 7 presents H@1, MRR, MAPE and Spearman’s rank correlation for NELL. Due to different
training hyperparameters, we report both the metrics showed in GNN-QE paper Zhu et al. (2022)
and GNN-QE trained under the parameters in Table 5

C.2 QUERIES WITHOUT ANCHOR

Table 8 shows H@1, MAPE and MRR on test unanchored queries for both GNN-QE and ∃GNN-QE

C.3 CYCLIC CONJUNCTIVE QUERIES

Figures 7 and 8 show the MRR and spearman rank correlation for squares using unravelings of
differents depths.

Tables 9 and 10 show H@1, MAPE and MRR for different unravelings for both triangles and squares
respectively.

14



Under review as a conference paper at ICLR 2024

Table 6: Hits@1 and MAPE of test evaluation over FB15k-237 and FB15k. Metrics of GNN-QE
are retrieved from its original paper.

Metric Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni 2u up
FB15k-237

hits@1 GNN-QE 0.328 0.082 0.065 0.277 0.446 0.123 0.224 0.041 0.081 0.041 0.025 0.027 0.098 0.076
∃GNN-QE 0.228 0.056 0.051 0.231 0.401 0.095 0.187 0.022 0.058 0.034 0.016 0.014 0.067 0.054

mape GNN-QE 0.409 0.236 0.274 0.348 0.534 0.600 0.399 0.403 0.526 0.496 0.448 0.290 0.278 0.203
∃GNN-QE 0.425 0.249 0.334 0.383 0.573 0.414 0.410 0.408 0.512 0.463 0.468 0.333 0.314 0.292

FB15k

hits@1 GNN-QE 0.861 0.635 0.525 0.748 0.801 0.651 0.636 0.354 0.331 0.338 0.186 0.218 0.671 0.530
∃GNN-QE 0.831 0.643 0.533 0.759 0.791 0.566 0.668 0.308 0.297 0.315 0.189 0.219 0.704 0.540

mape GNN-QE 0.344 0.297 0.347 0.391 0.573 0.346 0.478 0.314 0.503 0.503 0.394 0.298 0.135 0.265
∃GNN-QE 0.264 0.293 0.340 0.367 0.540 0.386 0.453 0.346 0.480 0.457 0.426 0.292 0.106 0.239

Table 7: Spearman’s rank correlation and MRR of test queries over NELL dataset (the results under
GNN-QE corresponds to the ones in GNN-QE’s paper. GNN-QE* denotes the results using training
hyperparameters of Table 5)

Metric Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni 2u up
NELL

spearmanr
GNN-QE 0.913 0.851 0.780 0.974 0.935 0.737 0.825 0.994 0.980 0.882 0.848 0.976 - -
GNN-QE(*) 0.942 0.843 0.752 0.972 0.942 0.725 0.812 0.988 0.974 0.828 0.813 0.971 0.991 0.938
∃GNN-QE 0.951 0.829 0.714 0.971 0.944 0.650 0.801 0.985 0.974 0.843 0.821 0.967 0.995 0.939

mrr
GNN-QE 0.533 0.189 0.149 0.424 0.525 0.189 0.308 0.159 0.126 0.099 0.146 0.114 0.063 0.063
GNN-QE(*) 0.492 0.175 0.138 0.394 0.499 0.169 0.284 0.086 0.131 0.111 0.054 0.052 0.150 0.116
∃GNN-QE 0.479 0.160 0.119 0.378 0.484 0.140 0.269 0.086 0.128 0.111 0.055 0.053 0.141 0.107

Figure 7: MRR versus depth of square unravel-
ings.

Figure 8: Spearman rank correlation versus
depth of square unravelings.

Table 8: Results of evaluation of GNN-QE and ∃GNN-QE over test set of unanchored queries.
GNN-QE metrics are retrived from our training of GNN-QE following hyperparameters in Table 5

Metric Model 1p 2p 3p 2i 3i ip pi 2in 3in inp pin pni 2u up
FB15k-237

hits@1 GNN-QE 0.001 0.044 0.045 0.151 0.205 0.064 0.105 0.004 0.048 0.025 0.011 0.005 0.009 0.044
∃GNN-QE 0.015 0.045 0.042 0.143 0.196 0.055 0.100 0.008 0.041 0.027 0.011 0.006 0.034 0.051

mape GNN-QE 3.22 0.340 0.332 0.489 0.431 0.366 0.454 0.763 0.652 0.681 0.623 0.734 2.329 0.263
∃GNN-QE 0.626 0.178 0.199 0.245 0.333 0.307 0.291 0.440 0.514 0.501 0.496 0.347 0.793 0.159

FB15k

hits@1 GNN-QE 0.075 0.315 0.387 0.552 0.620 0.511 0.470 0.054 0.178 0.162 0.074 0.050 0.084 0.347
∃GNN-QE 0.171 0.353 0.426 0.628 0.661 0.523 0.511 0.103 0.209 0.181 0.094 0.081 0.209 0.373

mape GNN-QE 11.18 0.488 0.517 0.459 0.547 0.478 0.551 0.778 0.604 0.638 0.533 0.645 0.926 0.383
∃GNN-QE 5.99 0.29 0.306 0.280 0.395 0.351 0.370 0.447 0.453 0.454 0.442 0.317 0.361 0.205

NELL

hits@1 GNN-QE 0.004 0.022 0.033 0.130 0.183 0.057 0.082 0.066 0.021 0.025 0.004 0.004 0.005 0.017
∃GNN-QE 0.010 0.029 0.038 0.142 0.190 0,056 0.084 0.097 0.022 0.027 0.006 0.006 0.012 0.012

mape GNN-QE 2.698 0.571 0.609 0.518 0.641 0.583 0.554 0.689 0.635 0.697 0.594 0.825 1.328 0.345
∃GNN-QE 0.325 0.428 0.524 0.461 0.581 0.476 0.478 0.314 0.458 0.534 0.432 0.287 0.213 0.302

mrr GNN-QE 0.007 0.052 0.069 0.211 0.276 0.110 0.139 0.023 0.075 0.059 0.025 0.018 0.012 0.043
∃GNN-QE 0.028 0.067 0.075 0.228 0.290 0.107 0.137 0.034 0.080 0.066 0.033 0.024 0.033 0.047

spearmanr GNN-QE 0.589 0.732 0.591 0.928 0.922 0.520 0.731 0.922 0.833 0.655 0.646 0.907 0.735 0.913
∃GNN-QE 0.924 0.789 0.660 0.957 0.959 0.539 0.803 0.964 0.971 0.804 0.824 0.967 0.967 0.897

15



Under review as a conference paper at ICLR 2024

Table 9: Hits@1 and MAPE test results for triangle’s unravelings of depth 2 to 10 over FB15k-237.

Depth 2 3 4 5 6 7 8 9 10
hits@1 0.060 0.078 0.068 0.066 0.076 0.073 0.072 0.076 0.073
mape 2.148 1.134 0.914 0.789 0.748 0.734 0.724 0.710 0.711

Table 10: Hits@1 and MAPE test results for square’s unravelings of depth 2 to 14 over FB15k-237.

Depth 2 3 4 5 6 7 8 9 10 11 12 13 14
hits@1 0.005 0.010 0.005 0.010 0.014 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
mape 5.364 3.837 3.377 3.053 2.923 2.849 2.675 2.637 2.684 2.845 2.840 2.834 2.834

16


	Introduction
	Related Work
	Preliminaries
	Answering CQs via tree-like approximations
	Complete tree-like approximations
	Complete optimal approximations: unravelings
	A concrete implementation: ExistGNN-QE

	Experiments
	Experimental setup
	Results

	Future work
	Missing Details from Section 4
	Experimental details
	New query set
	Training hyperparameters

	Additional Experimental Results
	Anchored tree-like
	Queries without anchor
	Cyclic Conjunctive Queries


