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ABSTRACT

Hard-thresholding is an important type of algorithm in machine learning that is
used to solve ℓ0 constrained optimization problems. However, the true gradient of
the objective function can be difficult to access in certain scenarios, which normally
can be approximated by zeroth-order (ZO) methods. The SZOHT algorithm is the
only algorithm tackling ℓ0 sparsity constraints with ZO gradients so far. Unfortu-
nately, SZOHT has a notable limitation on the number of random directions due to
the inherent conflict between the deviation of ZO gradients and the expansivity of
the hard-thresholding operator. This paper approaches this problem by considering
the role of variance and provides a new insight into variance reduction: mitigat-
ing the unique conflicts between ZO gradients and hard-thresholding. Under this
perspective, we propose a generalized variance reduced ZO hard-thresholding algo-
rithm as well as the generalized convergence analysis under standard assumptions.
The theoretical results demonstrate the new algorithm eliminates the restrictions
on the number of random directions, leading to improved convergence rates and
broader applicability compared with SZOHT. Finally, we illustrate the utility of
our method on a ridge regression problem as well as black-box adversarial attacks.

1 INTRODUCTION

ℓ0 constrained optimization is a fundamental method in large-scale machine learning, particularly
in high-dimensional problems. This approach is widely favored for achieving sparse learning. It
offers numerous advantages, notably enhancing efficiency by reducing memory usage, computational
demands, and environmental impact. Additionally, this constraint plays a crucial role in combatting
overfitting and facilitating precise statistical estimation (Negahban et al., 2012; Raskutti et al., 2011;
Bühlmann and Van De Geer, 2011; Yuan and Li, 2021). In this study, we focus on the following
problem:

min
θ∈Rd

F(θ) =
1

n

n∑
i=1

fi(θ), s.t. ∥θ∥0 ≤ k, (1)

Here, F(θ) is the (regularized) empirical risk. ∥θ∥0 represents the number of non-zero directions.
d is the dimension of θ. Unfortunately, due to the ℓ0 constraint, (1) becomes an NP-hard problem,
rendering traditional methods unsuitable for its analysis.

Therefore, we consider using the hard-threshold iterative algorithm (Raskutti et al., 2011; Jain et al.,
2014; Nguyen et al., 2017b; Yuan et al., 2017), which is a widely used technique for obtaining
approximate solutions to NP-hard’s ℓ0 constrained optimization problems. Specifically, this technique
alternates between the gradient step and the application of the hard threshold operator Hk(θ). Operator
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Hk(θ) retains the top k elements of θ while setting all other directions to zero. The advantage of hard-
thresholding over its convex relaxations is that it can achieve similar precision without the need for
computationally intensive adjustments, such as tuning ℓ1 penalties or constraints. Hard-thresholding
was first used for its full gradient form(Jain et al., 2014). Nguyen (Nguyen et al., 2017b) developed
a stochastic gradient descent SGD version of hard thresholding known as StoIHT. Nevertheless,
StoIHT’s convergence condition is overly stringent for practical applications(Li et al., 2016). To
address this issue, (Zhou et al., 2018), (Shen and Li, 2017) and (Li et al., 2016) implemented variance
reduction techniques to improve the performance of StoIHT in real-world problem-solving.

However, this type of stolHT is still not suitable for many problems. For example, in certain
graphical modeling tasks (Blumensath and Davies, 2009), obtaining the gradient is computationally
hard. Even worse, in some settings, the gradient is inaccessible by nature, for instance in bandit
problems (Shamir, 2017), black-box adversarial attacks(Tu et al., 2019; Chen et al., 2017; 2019),
or reinforcement learning (Salimans et al., 2017; Mania et al., 2018; Choromanski et al., 2020). To
address these challenges, zeroth-order (ZO) optimization methods have been developed(Nesterov and
Spokoiny, 2017). These methods commonly replace the inaccessible gradient with its finite difference
approximation which can be calculated by simply using the function evaluations. Subsequently, ZO
methods have been adapted to handle convex constraint sets, rendering them suitable for solving
the ℓ1 convex relaxation of the problem (1)(Liu et al., 2018; Balasubramanian and Ghadimi, 2018).
However, it’s essential to highlight that in the context of sparse optimization, ℓ1 regularization or
constraints can introduce substantial estimation bias and result in inferior statistical properties when
compared to ℓ0 regularization and constraints(Fan and Li, 2001; Zhang, 2010).

To tackle this issue, a recent development introduced the Stochastic Zeroth-Order Hard-Thresholding
algorithm (SZOHT)(de Vazelhes et al., 2022), specifically designed for ℓ0 sparsity constraints and
gradient-free optimization. Unfortunately, as the only available algorithm in zeroth-order hard-
thresholding so far, SZOHT has notable limitations due to the inherent conflict between the deviation
of ZO estimators and the expansivity of the hard-thresholding. This limitation makes the algorithm
difficult to use in practice, and a natural question is proposed: Could we have a simple ZO hard-
thresholding algorithm whose convergence does not rely on the number of q (the number of random
directions used to estimate the gradient, further defined in Section 2)?

In this paper, we provide a positive response to this question. Our approach centers on the role of
variance in addressing this problem. We firmly believe that variance reduction can offer a dual benefit.
It not only holds the potential to accelerate convergence speed but, more importantly, it can effectively
mitigate the unique conflicts associated with zero-order hard-thresholding. From this perspective,
SZOHT is characterized by its limitation in restricting the sampling of zero-order gradients, essentially
representing an incomplete approach to variance reduction. This incompleteness leads to strict
conditions for SZOHT. In contrast, we have developed better algorithms by using historical gradients
to reduce variance thoroughly. We then provide the convergence and complexity analysis for the
generalized variance reduce algorithm under the standard assumptions of sparse learning, which are
restricted strong smoothness (RSS), and restricted strong convexity (RSC) (Nguyen et al., 2017b;
Shen and Li, 2017) to retain generality. These algorithms eliminate the restrictions on zero-order
gradient steps, leading to improved convergence rates and broader applicability. Crucial to our
analysis is to provide how variance reduction mitigates contradictions on the parameters q and k.
Finally, we demonstrate the effectiveness of our method by applying it to both ridge regression
problems and black-box adversarial attacks. Our results highlight that our method can achieve
competitive performance when compared to state-of-the-art methods for zeroth-order algorithms
designed to enforce sparsity.

The majority of our work can be summarized in three parts:

1. New Perspective on Resolving Conflicts Between Zeroth-Order Methods and Hard-
Thresholding. Our paper acknowledges the necessity of mitigating this contradiction,
emphasizing the demand for a more flexible and resilient approach. By employing the per-
spective of variance to analyze this issue, our paper presents a more practical and effective
solution.

2. Variance Reduction: Another key innovation presented in the paper is the introduction of
variance reduction. This concept provides a unique solution to ℓ0-constrained zeroth-order
optimization. By employing data-driven techniques to reduce variance, the paper not only
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Figure 1: Motivation of our algorithm.

enhances the algorithm’s convergence but also expands its utility across a wider range of
scenarios.

3. General Analysis: The introduction of a general analysis framework is another contribution
to the paper. This framework systematically evaluates the performance and behavior of
varying variance reduced algorithms under ℓ0-constraint and ZO gradient.

2 PRELIMINARIES

Throughout this paper, we use ∥θ∥ to denote the Euclidean norm for a vector, ∥θ∥∞ to denote the
maximum absolute component of that vector, and ∥θ∥0 to denote the ℓ0 norm (which is not a proper
norm). The following two assumptions are widely adopted (Li et al., 2016; Nguyen et al., 2017b) and
are needed in this paper.

Assumption 1 (Restricted strong convexity (RSC) (Li et al., 2016; Nguyen et al., 2017b)). A
differentiable function F is restricted ρ−s -strongly convex at sparsity s if there exists a generic
constant ρ−s > 0 such that for any θ, θ′ ∈ Rd with ∥θ − θ′∥0 ≤ s, we have:

F(θ)−F(θ′)− ⟨∇F(θ′), θ − θ′⟩ ≥ ρ−s
2
∥θ − θ′∥22. (2)

Assumption 2 (Restricted strong smoothness (RSS) (Li et al., 2016; Nguyen et al., 2017b)). For any
i ∈ [n], a differentiable function fi is restricted ρ+s -strongly smooth at sparsity level s if there exists
a generic constant ρ+s > 0 such that for any θ, θ′ ∈ Rd with ∥θ − θ′∥0 ≤ s, we have

∥∇fi(θ)−∇fi(θ
′)∥ ≤ ρ+s ∥θ − θ′∥.

We assume that the objective function F(θ) satisfies the RSC condition and that each component
function fi(θ)

n
i=1 satisfies the RSS condition. We also define the restricted condition number as

κs = ρ+s /ρ
−
s . This assumption ensures that the objective function behaves like a strongly convex and

smooth function over a sparse domain, even when it is non-convex.

2.1 ZO ESTIMATE

Then, we give our zeroth-order gradient estimator below adopted by (de Vazelhes et al., 2022):

∇̂f(θ) =
d

qµ

q∑
i=1

(f(θ + µui)− f(θ))ui, (3)

where each random direction ui is a unit vector sampled uniformly from the set {u ∈ Rd : ∥u∥0 ≤
s2, ∥u∥ = 1}, q is the number of random unit vectors, and µ > 0 is a constant called the smoothing
radius (typically taken as small as possible, but no too small to avoid numerical errors). To obtain
these vectors, we can first sample a random set of coordinates S of size s2 from [d]. Following,
we sample a random vector u supported on S, in other words, uniformly sampled from the set
{u ∈ Rd : u[d]−S = 0, ∥u∥ = 1}. Especially, if s2 = d, the general estimator is the usual vanilla
estimator with uniform smoothing on the sphere (Gao et al., 2018). Additionally, for convenience, we
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define I∗ = supp(θ∗) as the support of θ∗. Let θ(r) be a sparse vector with ∥θ(r)∥0 ≤ k and support
I(r) = supp(θ(r)). Define, with H2k(·) the hard-thresholding operator of sparsity 2k:

Ĩ = supp(H2k(∇̂F(θ∗)) ∪ supp(θ∗).

and let I = I(r) + I(r+1) + Ĩ. εµ = ρ+s
2
sd, εI = 2d

q(s2+2)

(
(s−1)(s2−1)

d−1 + 3
)
+ 2, εIc =

2d
q(s2+2)

(
s(s2−1)

−1

)
, εabs =

2dρ+
s

2
ss2

q

(
(s−1)(s2−1)

d−1 + 1
)
+ ρ+s

2
sd.

2.2 REVISIT OF SZOHT

Based on this assumption and ZO estimation, de Vazelhes proposed the SZOHT algorithm (de Vazel-
hes et al., 2022). The iteration relationship of this algorithm is:

θ(r+1) = Hk(θ
(r) − η∇̂F(θ(r)))

where Hk(·) is the hard-thresholding operator and ∇̂F(θ(r)) is ZO gradient estimate defined by (3),
η represents learning rate. SZOHT can address some ZO ℓ0-constrained problems under specific
conditions. However, it’s important to note that the hard-thresholding operator, unlike the projection
onto the ℓ1 ball, lacks non-expansiveness. Consequently, it has the potential to divert the algorithm’s
iteration away from the desired solution. To deal with this challenge, SZOHT imposes stringent
limitations on both k (hard-thresholding coefficients) and q. That is,(

1− ρ−s
2

(4εI + 1)ρ+s
2

)
k∗(4εI + 1)2ρ+s

4

ρ−s
4 ≤ k ≤ d− k∗

2

and

• if s2 > 1: q ≥ 16d(s2−1)k∗κ2

(s2+2)(d−1)

[
18κ2 − 1 + 2

√
9κ2(9κ2 − 1) + 1

2 − 1
2k∗ + 3

2
d−1

k∗(s2−1)

]
• if s2 = 1: q ≥ 8κ2d√

d
k∗ +1

Evidently, these conditions are exceedingly stringent and may not be suitable for numerous real-world
problems. Therefore, we urgently need an algorithm with fewer constraints.

3 GENERAL ANALYSIS WITH VARIANCE

In this section, we will analyze the random ZO hard-thresholding algorithm from the perspective of
variance and provide a positive response to the above questions. These algorithms can be described
using the following general iterative expression:

θ(r+1) = Hk(θ
(r) − ηĝ(r)(θ(r))), (4)

where ĝ(r)(θ(r)) is the generalized gradient estimate (applicable to all ZO hard-thresholding algo-
rithms). Let α = 1 + 2

√
k∗√

k−k∗ . Then, we have:

Theorem 1. Assume that each fi is (ρ+s′ , s
′)−RSS and that F is (ρ−s , s)−RSC. For any stochastic

ZO hard-thresholding algorithm capable of expressing its iterative relationships as described in (4),
we can establish the following:

E||θ(r+1) − θ∗||22 ≤ (1 + η2ρ−s
2
)αE||θ(r) − θ∗||22 + η2αE||ĝ(r)I (θ(r))||22 − 2ηα

[
F(θ(r))−F(θ∗)

]
+ α

n2εµµ
2

ρ−s
2

(5)

Remark 1. Differing from the approach in (Yuan et al., 2017; Nguyen et al., 2017b; de Vazel-
hes et al., 2022), where the convergence inequality is segregated into linear convergence terms
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(represented as (1 + η2ρ−s
2
)αE||θ(r) − θ∗||22 in (5) and error terms (represented as αn2εµµ2

ρ−
s

2 −
2ηα

[
F(θ(r))−F(θ∗)

]
in (5), we have introduced the gradient squared term η2αE||ĝ(r)(θ(r))||22 to

elucidate the role of variance better. We can transform (5) into the form of (Yuan et al., 2017; Nguyen
et al., 2017b; de Vazelhes et al., 2022) by establishing an upper bound for the gradient squared term,
which is often feasible for specific algorithms.

Conflict analysis through variance. It is worth noting that among these three components, only
the gradient squared term η2αE∥ĝ(r)(θ(r))∥22 encompasses both the hard-thresholding parameter
(included by α) and the ZO gradient parameter (included by ∥ĝ(r)(θ(r))∥22). In essence, this means
that the conflict between expansivity and zeroth-order error can be fully encapsulated through the
gradient squared term. More importantly, when our attention is directed towards the gradient squared
term, we discover that in cases where the gradient estimation is unbiased, we obtain E∥ĝ(r)(θ(r))∥22 =

Var∥ĝ(r)(θ(r))∥2 +
∥∥∇F(θ(r))

∥∥2, which means that E∥ĝ(r)(θ(r))∥22 only related to the variance of
gradient estimation. This indicates that the conflict between the expansionary of hard-thresholding and
ZO error is actually between hard-thresholding and the variance of gradient estimation. In SZOHT,
we have ĝ(r)(θ(r)) = ∇̂F(θ(r)). Then, the gradient squared term becomes η2αE||∇̂F(θ(r))||22. In
this scenario, to guarantee algorithm convergence, it becomes essential to ensure that the gradient
squared term remains within a reasonable upper bound. Due to the fact that α is already required
to satisfy certain conditions (which are generated by linear convergence terms and error terms),
therefore, the sampling method for ZO gradients must be restricted, which leads to a reduction in the
variance. However, due to the technique of sampling used to reduce the variance, the limitation on
the number q of random directions is introduced into SZOHT.

Improvement plan. A natural idea is to use a more comprehensive variance reduction approach
instead of only using sampling technique to reduce E||ĝ(r)(θ(r))||22, which could effectively alleviate
the conflict between ZO estimation and hard-thresholding, ultimately enabling the design of algo-
rithms with fewer constraints, broader applicability, and enhanced convergence speed. Based on this
perspective, we have developed a generalized variance reduction ZO hard-thresholding algorithm
that leverages historical gradients. We will provide a detailed explanation of this algorithm in the
next section.

4 pM-SZHT ALGORITHM FRAMEWORK

This section mainly presents the pM-SZHT algorithm framework along with its convergence anal-
ysis. This framework encompasses the majority of unbiased stochastic variance-reduction ZO
hard-thresholding methods, providing a generalized result.Subsequently, we introduce the VR-SZHT
algorithm, a special case under this framework. Additionally, we extend our discussion by introducing
SARAH-ZHT (please note that the gradient estimate in this algorithm is biased) and providing its
convergence analysis in the appendix.

4.1 pM-SZHT

We now present our generalized algorithm to solve the target problem (1), which we name pM-SZHT
(p Memorization Stochastic Zeroth-Order Hard-Thresholding). Each iteration of our algorithm is
composed of two steps: (i) the gradient estimation step, and (ii) the hard thresholding step, where the
gradient estimation step includes the variance reduce estimation and zeroth-order estimation. We
give the full formal description of our algorithm in Algorithm (1).

In the gradient estimation step, we are utilizing the p-Memorization framework, which was originally
proposed by Hofmann (Hofmann et al., 2015) to analyze the sequential stochastic gradient algorithm
for convex and smooth optimization problems. It’s worth noting that our gradient estimation can be
seen as its zeroth-order variant (the zeroth-order estimation is shown in Section 2.2). Here, we select
in each iteration a random index set J ⊆ [n] of memory locations to update according to:

∀j ∈ [n] : â+j :=

{
∇̂fj(θ), if j ∈ J

âj , otherwise
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such that any j has the same probability of p/n being updated1, where p is the number of directions
updated each time (see (Hofmann et al., 2015)). The value of p set J , ∀j,

∑
J∋j P {J} − p

n . Its
probability is determined by some specific algorithm. For example, if P {J} = 1/

(
n
p

)
if |J | = p, and

P {J} = 0 otherwise, we obtain the p-SAGA-ZHT algorithm. If P {∅} = 1− p
n and P {[1 : n]} = p

n ,
we obtain a variant of the VR-SZHT algorithm from Section 4.2. Those are the ZO hard-thresholding
versions of the algorithms mentioned in Hofmann et al. (2015); Gu et al. (2020).

In the hard thresholding step, we only keep the k largest (in magnitude) components of the current
iterate θ(r). This ensures that all our iterates (including the last one) are k-sparse. This hard-
thresholding operator has been studied for instance in (Shen and Li, 2017), and possesses several
interesting properties. Firstly, it can be seen as a projection on the ℓ0 ball. Second, importantly, it
is not non-expansive, contrary to other operators like the soft-thresholding operator (Shen and Li,
2017).

Algorithm 1 Stochastic variance reduced zeroth-order Hard-Thresholding with p-Memorization
(pM-SZHT)

Input: Learning rate η, maximum number of iterations T , initial point θ(0), number of random
directions q, and number of coordinates to keep at each iteration k.

Output: θ(r).
1: for r = 1, . . . , T do
2: Update â(r−1)

3: Randomly sample ir ∈ {1, 2, . . . , n}
4: ĝ(r−1)(θ(r−1)) = ∇̂fir (θ

(r−1))− â
(r−1)
ir

+ 1
n

∑n
j=1 â

(r−1)
j

5: θ(r) = Hk(θ
(r−1) − ηg(r−1)(θ(r−1)))

6: end for

Convergence Analysis: We provide the convergence analysis of pM-SZHT, using the assumptions
from Section 2, and demonstrate the correctness of the conclusions made in Section 3 by assessing
whether the algorithm converges independently of q.
Theorem 2. Suppose F(θ) satisfies the RSC condition and that the functions {fi(θ)}ni=1satisfy the
RSS condition with s = 2k+k∗. For Algorithm 1, suppose that we run SZOHT with random supports
of size s2, q random directions, a learning rate of η, and k coordinates kept at each iteration. We
have:

[EF(θ(r+1))−F(θ∗)] ≤ γ[EF(θ(r))−F(θ∗)] + 2Lµ + Lr (6)

here Lµ = α
n2εµµ

2

ρ−
s

2 +6αεabsµ
2+6η2αAr, Lr =

√
s||∇F(θ∗)||∞E||θ(r)− θ∗||2+η2(3α((4εIs+

2) + εIc(d− k))E∥∇fit(θ
∗)∥2∞), γ =

(
2β

ρ−
s
+ 48η2αρ+s εI − 2ηα+ 1− p

n

)
.

Remark 2. (System error). This format of result is similar to the ones in (Yuan et al., 2017;
Nguyen et al., 2017b; de Vazelhes et al., 2022), the right of (25) contains a linear convergence term
γ[EF(θ(r))−F(θ∗)], and system error 2Lµ +Lr. We note that if F has a k∗ -sparse unconstrained
minimizer, which could happen in sparse reconstruction, or with overparameterized deep networks,
then we would have ∥∇F(θ∗)∥∞ = 0 and ||∇fir (θ

∗)||2∞ = 0, and hence that part of the system
error Lrwould vanish. In addition, we also have another system error Lr, which depends on the
smoothing radius µ, due to the error from the ZO estimate and the iterative method of â.

From this theorem, we know that if the algorithm converges, η needs to lie in some specific interval.
Corollary 1. If

η′ −
√
∆

2(48εIαρ
+
s + ρ−s )

≤ η ≤ max

{
η′ +

√
∆

2(48εIαρ
+
s + ρ−s )

,
1

48εIρ
+
s

}
(7)

algorithm 1 converges. Here η′ = α
48εIαρ

+
s +ρ−

s
, ∆ = 4α2 − 4(48εIαρ

+
s + ρ−s )(1−

p
n + 2

ρ−
s
).

1Originally, p-Memorization is called q-Memorization. We change it to p to avoid conflicting with random
directions in zeroth order
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Remark 3. (Independence of q) When k > k∗, for any q > 0 the necessary condition ∆ > 0 for
(7) holds. We emphasize here that variance reduction can only make q unable to determine whether
to converge, but q can still affect the convergence speed. In other words, variance reduction can
mitigate the conflict, but cannot resolve it.

4.2 VR-SZHT

To offer a specific analysis, we introduce the VR-SZHT algorithm, which is the adaptation of the
original SVRG method Johnson and Zhang (2013) to our ZO hard-thresholding setting. In addition
to the previously mentioned convergence analysis, we will also provide a complexity analysis to
demonstrate the advantages of this algorithm, which extend beyond existing algorithm.

Algorithm 2 Stochastic variance reduced zeroth-order Hard-Thresholding (VR-SZHT)

Input: Learning rate η, maximum number of iterations T , initial point θ0, SVRG update frequency
m, number of random directions q, and number of coordinates to keep at each iteration k.

Output: θT .
1: for r = 1, . . . , T do
2: θ(0) = θr−1;
3: µ̂ = 1

n

∑n
i=1 ∇̂fi(θ

(0));
4: for t = 0, 1, . . . ,m− 1 do
5: Randomly sample it ∈ {1, 2, . . . , n};
6: Compute ZO estimate ∇̂fit(θ

(r)), ∇̂fit(θ
(0));

7: θ̄(r+1) = θ(r) − η(∇̂fit(θ
(r))− ∇̂fit(θ

(0)) + µ̂));
8: θ(r+1) = Hk(θ̄

(r+1));
9: end for

10: θr = θ(r+1), random t′ ∈ [m− 1];
11: end for

Theorem 3. Suppose F(θ) satisfies the RSC condition and that the functions {fi(θ)}ni=1 satisfy the

RSS condition with s = 2k + k∗.When η =
αρ−

S

2(48εIαρ
−
s ρ+

s +ρ−
s

2
)
, we have:

δ
[
F(θ̃(r))−F(θ∗)

]
≤ γ′E[F(θ̃(r−1))−F(θ∗)] + L′

µ + L. (8)

Here β = (1 + η2ρ−s
2
)α, δ = βm−1

β−1 (2η − 48εIη
2ρ+s )α, γ′ = ( 2β

m

ρ−
s

+
48η2ρ+

s εIα(β
m−1)

β−1 ),

L′
µ = 2βm

ρ−
s

√
s∥∇F(θ∗)∥∞E∥θ̃(r−1)−θ∗∥2+6η2 βm−1

β−1 α((4εIs+2)+εIc(d−k))E||∇fit(θ
∗)||2∞+

3||∇IF(θ∗)||22), and L′ = βm−1
β−1 α(72η2εabsµ

2 +
n2εµµ

2

ρ−
s

2 ).

This theorem is similar to Theorem 2. And it is worth noting that q is also independent in VR-SZHT,
and can be found in the appendix due to space limitations.

Corollary 2. The ZO query complexity of the algorithm is O
(
[n+ κ3

κ2+1 ] log (
1
ε )
)

. And the hard-

thresholding query complexity is O
(
log( 1ε )

)
.

When comparing VR-SZHT with SZOHT, where the ZO query complexity of SZOHT is
O
(
(k + d

s2
)κ2 log (1ε )

)
and the hard-thresholding query complexity is O

(
κ2 log( 1ε )

)
, it becomes

evident that the hard-thresholding query complexity of VR-SZHT is significantly reduced. Further-
more, as k becomes large, the ZO complexity is also reduced.

5 EXPERIMENTS

We now compare the performance of VR-SZHT, SAGA-SZHT, and SARAH-SZHT (an adaptation of
the SARAH variance reduction method (Nguyen et al., 2017a) to our ZO hard-thresholding setting,
for which we provide the convergence analysis in Appendix 6) with that of the following algorithms,
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in terms of IZO (iterative zeroth-order oracle, i.e. number of calls to fi) and NHT (number of
hard-thresholding operations):

• SZOHT (de Vazelhes et al., 2022): a vanilla stochastic ZO hard-thresholding algorithm.
• FGZOHT: the full gradient version of SZOHT.

Ridge Regression We first consider the following ridge regression problem, where malfunctions
fi are defined as follows: fi(θ) = (x⊤

i θ − yi)
2 + λ

2 ∥θ∥
2
2, where λ is some regularization parameter.

We generate each xi randomly from a unit norm ball in Rd, and a true random model θ∗ from
a normal distribution N (0, Id×d). Each yi is defined as yi = x⊤

i θ
∗. We set the constants of

the problem as such: n = 10, d = 5, λ = 0.5. Before training, we preprocess each column by
subtracting its mean and dividing it by its empirical standard deviation. We run each algorithm with
k = 3, q = 200, µ = 10−4, s2 = d = 5, and for the variance reduced algorithms, we choose m = 10.
For all algorithms, the learning rate η is found through grid-search in {0.005, 0.01, 0.05, 0.1, 0.5}:
we choose the learning rates giving the lowest function value (averaged over several runs) at the
end of training. We stop each algorithm once its number of IZO reaches 80,000. All curves are
averaged over 3 runs, and we plot their mean and standard deviation in Figure 2. As we can observe,
SZOHT converges to higher function values than other algorithms: this illustrates the advantage
of the variance reduction techniques, which can allow to attain smaller function values than plain
SZOHT, but at a cheaper cost than FGZOHT.

Figure 2: #IZO and #NHT on the ridge regression task.

Figure 3: #IZO and #NHT on the few pixels adv. attacks (CIFAR-10), for the original class ’airplane’.

Few Pixels Universal Adversarial Attacks Finally, we consider a few-pixel universal adversarial
attacks problem. Let some classifier be trained on a dataset of images. We assume that it can only be
accessed as a black box, i.e. it only returns the log probabilities of each estimated class, given an
input image. This is a typical real-life scenario, where for instance the model can only be accessed
through a provider’s API. We seek to find a single perturbation θ ∈ Rd, to apply to several images at
once, (we denote those images by xi, i = {1, . . . , n}, and their true label as yi) to make the predicted
class for those images different than their true class. Further discussion on universal perturbations
can be found in (Dezfooli et al., 2017). In addition, we seek an adversarial perturbation that is sparse,
to preserve as much as possible the original image. As is usual in black-box adversarial attacks, we
maximize the following Carlini-Wagner loss (Carlini and Wagner, 2017; Chen et al., 2017), which
encourages the prediction from the model to be different from the true class:

fi(θ) =max{Fyi(clip(xi + θ))−max
j ̸=yi

Fj(clip(xi + θ)), 0},

where xi is the original i-th image (rescaled to have values in [−0.5, 0.5]), of true class yi, clip denotes
the clipping operation into [−0.5, 0.5], θ is the universal perturbation that we seek to optimize, and
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Table 1: Comparison of universal adversarial attacks on n = 10 images from the CIFAR-10 test-set,
from the ’airplane’ class. For each algorithm, the leftmost image is the sparse adversarial perturbation
applied to each image in the row. (’auto’ stands for ’automobile’, and ’plane’ for ’airplane’)

Image ID 3 27 44 90 97 98 111 116 125 153

Original

FGZOHT

plane plane plane ship deer plane plane plane ship truck

SZOHT

plane plane plane plane deer plane bird bird ship truck

VR-SZHT

plane plane auto plane ship plane plane plane ship truck

SAGA-SZHT

plane frog plane plane deer plane plane plane ship ship

SARAH-SZHT

plane plane auto ship ship plane bird plane frog truck

each function Fk outputs the log-probability of image xi being of class k as predicted by the model,
for k ∈ {1, ..,K}, with K the number of classes (similarly to (Chen et al., 2017; Liu et al., 2018;
Huang et al., 2019)). Similarly to Liu et al. (2018) (Appendix A.11), we evaluate the algorithm on
a dataset of n = 10 images from the test-set of the CIFAR-10 dataset(Krizhevsky et al., 2009), of
dimensionality 32× 32× 3 = 3, 072, from the same class ’airplane’, which we display in Table 1.
We take as model F a fixed neural network, already trained on the train-set of CIFAR-10, obtained
from the supplementary material of (de Vazelhes et al., 2022). We set k = 60, µ = 0.001, q = 10,
s2 = d = 3, 072, and the number of inner iterations of the variance reduced algorithms to m = 10.
We check at each iteration the number of IZO, and we stop training if it exceeds 600. Finally, for each
algorithm, we grid-search the learning rate η in {0.001, 0.005, 0.01, 0.05}. The best learning rates
(giving the curve which obtained the smallest minimum function value), are respectively: FGZOHT:
0.05, SZOHT: 0.005, VR-SZHT: 0.01, SAGA-SZHT: 0.05, SARAH-SZHT: 0.05. Our experiments
are conducted on a workstation of 128 CPU cores. The training curves are presented in Figure 3:
SAGA-SZHT obtains the lowest function value at the end of the training, followed by SARAH-SZHT.
In terms of attack success rate, SARAH-SZHT presents the highest success rate, as it has successfully
attacked 7/10 images. We provide further results, on 3 more classes (’ship’, ’bird’, and ’dog’) in the
appendix, which demonstrate even further the advantage of variance reduction methods in our setting.

6 CONCLUSION

In this paper, we introduce a novel approach to address sparse zero-order optimization problems and
leverage it to enhance existing algorithms. We perform a comprehensive convergence analysis of
the generalized variance reduction algorithm, showcasing how variance reduction can effectively
mitigate the limitations inherent in existing algorithms. To substantiate our claims, we validate our
algorithm through experiments involving ridge regression and adversarial attacks.
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