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ABSTRACT

In this work, we consider rather general and broad class of Markov chains, Ito
chains, that look like Euler-Maryama discretization of some Stochastic Differential
Equation. The chain we study is a unified framework for theoretical analysis. It
comes with almost arbitrary isotropic and state-dependent noise instead of normal
and state-independent one as in most related papers. Moreover, in our chain the drift
and diffusion coefficient can be inexact in order to cover wide range of applications
as Stochastic Gradient Langevin Dynamics, sampling, Stochastic Gradient Descent
or Stochastic Gradient Boosting. We prove the bound in W2-distance between
the laws of our Ito chain and corresponding differential equation. These results
improve or cover most of the known estimates. And for some particular cases, our
analysis is the first.

1 INTRODUCTION

The connection between diffusion processes and homogeneous Markov chains has been investigated
for a long time (Skorokhod, 1963). If we need to approximate the given diffusion by some homoge-
neous Markov chain, it is easy to realize because we are free to construct the chain nicely, meaning
that we can choose terms and properties of MC, e.g., as it was shown in (Raginsky et al., 2017).
However, often the inverse problem arises, namely, we have the a priori given chain, and the goal is
to study it via the corresponding diffusion approximation. This task is an increasingly popular and
hot research topic. Indeed, it is used to investigate different sampling techniques (Orvieto & Lucchi,
2018), to describe the behavior of optimization methods (Raginsky et al., 2017) and to understand the
convergence of boosting algorithms (Ustimenko & Prokhorenkova, 2021). From practical experience,
the given Markov chain may not have good properties that are easy to analyze in theory. Thus, the
aim of our work is to study when diffusion approximation holds for as broad as the possible class of
homogeneous Markov chains, i.e., we want to consider the maximally general chain and place the
broadest possible assumptions on it whilst obtaining diffusion approximation guarantee.

The key and most popular MC is Langevin-based (Raginsky et al., 2017; Dalalyan, 2017; Cheng
et al., 2018; Erdogdu et al., 2018; Durmus & Moulines, 2019; Orvieto & Lucchi, 2018; Cheng et al.,
2020) (which corresponds to Langevin diffusion). Such a chain is found in most existing works. In
this paper, we propose a more general Ito chain:

Xk+1 = Xk + η
(
b
(
Xk

)
+ δk

)
+
√
η1+γ

(
σ
(
Xk

)
+ ∆k

)
εk
(
Xk

)
, (1)

where Xk ∈ Rd is the state of the chain at the moment k ≥ 0, η ∈ R is the stepsize, b : Rd → Rd is
the main part in the drift of the chain (e.g., for Langevin MC, b = −∇f , where f is some potential),
δ ∈ Rd is the deterministic bias of the drift (Dalalyan & Karagulyan, 2019) (e.g., such bias occurs if
we use smoothing techniques (Chatterji et al., 2020) for Langevin dynamics, or a gradient-free method
instead of a gradient based in optimization (Duchi et al., 2015), or a special modification of boosting
(Ustimenko & Prokhorenkova, 2021)), parameter γ takes values between 0 and 1 (e.g., for SGD case
γ = 1, for sampling case γ = 0), the whole expression

√
η1+γ

(
σ + ∆

)
ε is responsible for generally

non-Gaussian noise, depending on the current state of our chain. In this case, σ : Rd → Rd×d is
called the covariance coefficient, ∆ ∈ Rd×d – the covariance shift and ε : Rd → Rd – the noise
function.
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Next, let us consider the following Ito diffusion:
dZt = b(Zt)dt+

√
ηγσ

(
Zt
)
dWt. (2)

with Brownian motion Wt. This is the diffusion for which we obtain bounds on the discretization
error with equation 1.

1.1 OUR CONTRIBUTION AND RELATED WORKS

Explanation of our contribution can be divided into three parts: 1) the universality of the chain equa-
tion 1, 2) rather weak and broad assumptions on the chain’s terms, 3) guarantees on the discretization
error between equation 1 and equation 2 in theW2-distance.

• Unified framework. The Ito chain equation 1 incorporates a variety of practical approaches and
techniques – see Table 1. In particular, equation 1 can be used to describe:

Dynamics. Primarily, chain equation 1 is suitable for analyzing Langevin Dynamics, which have
a wide range of applications. Here we can note the classical results in sampling (Ma et al., 2019;
Chatterji et al., 2020; Dalalyan, 2017; Durmus et al., 2019; Durmus & Moulines, 2019), continuous
optimization (Gelfand et al., 1992), as well as modern and hot techniques in generative models (Gidel
et al., 2018).

SGD and beyond. The use of equation 1 is also a rather popular way to study the behavior of stochastic
optimization methods. In particular, one can highlight papers on SGD (Robbins & Monro, 1951;
Ankirchner & Perko, 2021; Orvieto & Lucchi, 2018; Hu et al., 2017) analysis via diffusions, as well
as works (Bhardwaj, 2019; Kim et al., 2020) about diffusions for popular and famous modifications
of the original SGD: SGD with momentum (Robbins & Monro, 1951), RMSProp (Tieleman et al.,
2012) and Adam (Kingma & Ba, 2014). Moreover, equation 1 can be used to describe stochastic
methods not only for minimization but for saddle point problems (Facchinei & Pang, 2003; Ben-Tal
et al., 2009; Juditsky et al., 2011; Gidel et al., 2018): minX maxY f(X,Y ), and fixed point problems
(Bailion et al., 1978): F (X∗) = X∗.

Gradient Boosting. Moreover, Gradient Boosting algorithms, in particular, the original one from
(Friedman, 2001), and the Langevin-based boosting proposed in (Ustimenko & Prokhorenkova, 2021),
can be written in the form equation 1.
Table 1: Matching different methods and frameworks with the parameters of the Ito chain equation 1
and Assumption 1.

Case γ α β b(Xk) δk σ(Xk) ∆k

D
yn

am
ic

s GLD 0 ∞ (1) ∞ −∇xf(Xk) 0
√

2
τ
Id

(2) 0

SGLD (Gelfand et al., 1992) 0 1
2

1 −∇xf(Xk) 0
√

2
τ
Id

√
2
τ
Id + ηCov(∇̂)−

√
2
τ
Id

SGLD with smoothing (Chatterji et al., 2020) 0 1
2

1 −∇xf(Xk) ∇x
(
f(Xk)− Eεf(Xk + η

1
2 ε)

) √
2
τ
Id

√
2
τ
Id + ηCov(∇̂)−

√
2
τ
Id

O
pt

im
iz

at
io

n

SGD (Robbins & Monro, 1951) 1 ∞ 0 −∇xf(Xk) 0
√

Cov(∇) 0

SGDA (Dem’yanov & Pevnyi, 1972) 1 ∞ 0
(
−∇xf(Xk, Yk),∇yf(Xk, Yk)

)
0

√
Cov(∇) 0

SA-FP (Bailion et al., 1978) 1 ∞ 0 F (Xk)−Xk 0

√
Cov(F̂ ) 0

SA (Bailion et al., 1978) 1 ∞ 0 H(Xk)− a (3) 0

√
Cov(Ĥ) 0

B
oo

st
in

g SGB (Friedman, 2001) 1 ∞ 0 −P (Xk)∇xf(Xk) 0

√
Cov(∇̂) 0

SGLB (Ustimenko & Prokhorenkova, 2021) (4) 0 1
2

0 −P (Xk)∇xf(Xk) 0
√

2
τ
Id

√
ηCov(∇̂)

SGLB-O (Ustimenko & Prokhorenkova, 2021) (5) 0 1
4

0 −P∞∇xf(Xk)
(
P∞ − P (Xk)

)
∇xf(Xk)

√
2
τ
Id

√
ηCov(∇̂)

(1)
η∞ means that the terms multiplied by it vanish, i.e., we can take α as large as we desire when calculating overall approximation error.

(2)
τ refers to inverse diffusion temperature.

(3)
a is any constant. Stochastic Approximation tries to solveH(x) = a.

(4)
SGLB here is defined as in the original paper, but here we ignore smoothing applied to the trees selection algorithm.

(5)
"O" stands for "original", i.e., as presented in the original paper. In that case, such coefficients appear if we take the distribution of trees as in the paper.

•Wide assumptions and results. We consider the most general and practical setting for equation 1
- see Table 2. Next, we give more details on each of the columns of Table 2 (comparison criteria):

Non-normality of noise. The central and widely used assumption about noise in analyses of MC
satisfying equation 1 (e.g., Langevin-based) is that it has a normal distribution (Raginsky et al.,
2017; Dalalyan, 2017; Cheng et al., 2018; Durmus & Moulines, 2019; Ma et al., 2019; Feng et al.,
2019; Orvieto & Lucchi, 2018; Chatterji et al., 2020; Xie et al., 2021). However, practice suggests
otherwise. For example, stochastic gradient noise in the training of neural networks is not Gaussian
for classical and small models (Simsekli et al., 2019), as well as for modern and large transformers
(Zhang et al., 2020). Therefore, as in some papers on the SDE approximations for SGD (Li et al.,
2019a;b; Hu et al., 2017; Cheng et al., 2020), we assume that the noise in our Ito chain equation 1 is
non-Gaussian – see Assumption 1.
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Dependence of the noise on the current state. Most of the papers on Langevin MCMC assume that the
noise is independent of the current state (Raginsky et al., 2017; Erdogdu et al., 2018; Dalalyan, 2017;
Cheng et al., 2018; Durmus & Moulines, 2019; Ma et al., 2019; Chatterji et al., 2020; Feng et al.,
2019; Orvieto & Lucchi, 2018; Xie et al., 2021). However, let’s talk primarily about SGD analysis.
This assumption is often unmet because the noise in a stochastic gradient can depend strongly on the
current weights of the model, e.g., how close we are to the optimal weights. Therefore, we consider
the state-dependent noise in our chain equation 1. However, in our chain, we require that the diffusion
coefficient is strictly non-singular and its minimal eigenvalue is lower bounded uniformly from zero
(uniformly elliptic, see (Baldi & Baldi, 2017), p. 308), which is a limitation of our work compared to
the analysis done in (Li et al., 2019a).

Table 2: Comparison of the theoretical setups and results on Markov chains and diffusions analysis.

Noise Generator, i.e. b(·)

Reference Distribution Dependence Non-convex Non-dissipative Non-uniformly elliptic W2

(Raginsky et al., 2017) N+SG 3 3 7 3 3

(Dalalyan, 2017) N 7 7 7 7 3

(Cheng et al., 2018) N 7 3 7 7 7

(Erdogdu et al., 2018) N+SG 3 3 7 7 7

(Durmus & Moulines, 2019) N 7 7 7 7 3

(Ma et al., 2019) N 7 3 7 7 7

(Li et al., 2019b) N 3 7 7 3 3

(Chatterji et al., 2020) N 7 7 7 7 3

(Feng et al., 2019) ‖ε‖ ≤ const a.s. 7 3 7 7 7

(Orvieto & Lucchi, 2018) N 7 3 7 7 7

(Ankirchner & Perko, 2021) N 7 3 7 3 7

(Hu et al., 2017) N 7 3 7 7 7

(Xie et al., 2021) N 7 7 7 7 7

(Ustimenko & Prokhorenkova, 2021) MixtureN 3 3 7 3 7

(Cheng et al., 2020) N+SG 3 3 7 7 7

(Li et al., 2019a) E‖ε‖4 ≤ const 3 3 7 3 7

Ours E‖ε‖4 ≤ const 3 3 3 7 3

Without convexity and dissipativity assumptions. Note also that often, when dealing with Langevin
MC, the authors consider the convex/monotone setup (Dalalyan, 2017; Erdogdu et al., 2018; Durmus
& Moulines, 2019; Li et al., 2019b; Chatterji et al., 2020; Xie et al., 2021), which is possible and
relevant, but at the same time restricted. This is primarily because a large number of practical problems
(including ML problems) are non-convex: neural networks (Goodfellow et al., 2016), adversarial
training (Goodfellow et al., 2014), games (Hazan et al., 2017), problems with specific losses (Nguyen
& Sanner, 2013) and many others examples. However, even those works (Raginsky et al., 2017;
Cheng et al., 2018; Ma et al., 2019; Feng et al., 2019; Orvieto & Lucchi, 2018; Ankirchner & Perko,
2021; Hu et al., 2017; Ustimenko & Prokhorenkova, 2021; Cheng et al., 2020) which consider the
non-convex case make it under the dissipativity assumption (see for example, A.3 from (Cheng et al.,
2020)). This assumption means non-convexity inside some ball and strong convexity outside the
ball. However, it is not always fulfilled for practical problems and is primarily needed to simplify the
analysis.

Here, in addition to examples of non-convex ML problems, we can mention already classic examples
of the use of stochastic processes in applied problems (Øksendal & Øksendal, 2003). Even the simplest
processes of these are not dissipative. For example, one of the best-known stochastic processes, the
Ornstein–Uhlenbeck process, can be introduced using the diffusion equation 2: dZt = αZtdt+σdWt,
wit α, σ > 0. This process has been known for almost a century (Uhlenbeck & Ornstein, 1930),
and has both classical applications and completely new ones, e.g., in machine learning (Lillicrap
et al., 2015; Blanc et al., 2020). In our analysis, we do not need assumptions about either convexity
or dissipativity (formally, for our chain equation 1 we should talk not about non-convexity/non-
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dissipativity, but about non-monotonicity of (−b) because, unlike the Langevin MC, we do not
assume that b = −∇f ) – see Assumption 1.

W2 convergence. In our work, we give a bound on the discretization error in theW2-distance. This is
a common criterion in many works (Raginsky et al., 2017; Dalalyan, 2017; Erdogdu et al., 2018; Li
et al., 2019b; Ma et al., 2019). However, in the meantime, the main competitive paper (Cheng et al.,
2020) gives weaker guarantees, namely, the distance is measured inW1. First of all, note that from
theW2 bound follows theW1. The converse is not true. ThusW2-distance can be used when b in
equation 1 is a gradient of some potential/loss function f , and this potential is quadratic growth (e.g.,
MSE) – see Lemma 6 from (Raginsky et al., 2017). In turn,W1 cannot be used for such potentials.
(Edwards, 2011)

• Best and new rates. We provide explicit bound between the laws of Xk and Zkη inW2-distance
for almost arbitrary noise:

W2

(
L(Xk),L(Zkη)) = O

(
ηθ+η

θ
2 + γ

4

)
, where θ = min

{
α;

(γ + 1)(1 + χ0) + (γ + β)(1− χ0)

4

}
with χ0 = 1{Gaussian noise}. α and β are parameters from Assumption 1, γ is from the chain
equation 1. Specific values for α, β and γ in different cases can be found in Table 1. Using this table,
it is possible to obtain convergence guarantees for the major cases – see Table 3.

Table 3: Comparison of guarantees on dis-
cretization error in our work with the literature.

Noise Reference Rate
SG

L
D Gaussian

(Muzellec et al., 2020) O(η
1
4 )

Ours O(η
1
4 )

any Ours O(η
1
4 )

SG
D

Gaussian
(Cheng et al., 2020) (1) O(η

1
8 )

Ours O(η
3
4 )

any
(Cheng et al., 2020) (1) O(η

1
8 )

Ours O(η
1
2 )

SG
B any Ours O(η

1
2 )

SG
L

B

any Ours O(η
1
4 )

(1)W1 - distance

For SGLD, our bounds are the best in the existing
literature. In particular, they coincide with the re-
sults for the general Euler-Maryama discretization
with normal noise – a subset of chains from the fam-
ily equation 1. For non-Gaussian noise, our results
are first in the literature.

SGD with non-Gaussian noise was considered in
(Cheng et al., 2020), the authors give guarantees in
W1 - distance, we useW2. Our guarantee inW1-
distances is O(η

1
4 ), which is better than O(η

1
8 ) in

(Cheng et al., 2020).

In the case of SGD and SGLB (Ustimenko &
Prokhorenkova, 2021), our work is the first to get
estimates on discretization error in both cases of
noise.

2 PROBLEM SETUP AND ASSUMPTIONS

We consider the chain equation 1 and the diffusion equation 2 with X0 = Z0 = x0 ∈ Rd. Our
ultimate goal is to produce an upper bound onW2

(
L(Xk),L(Zkη)

)
for all k ∈ N, where L here and

after denotes the distribution of a random vector.

We assume that learning rate η ∈ (0, 1] and γ ∈ {0, 1} (see Table 1 for details). In the literature
(especially on optimization), it is common to assume that the learning rate η depends on the properties
of∇f (in our case b), e.g., typically that η ∼ L−1, where L is a Lipschitz constant of∇f . Meanwhile,
we can always renormalize the original problem to guarantee η ∈ (0; 1]. Next, let us list the
assumptions concerning the terms of the chain equation 1.
Assumption 1. There exists some constants M0 ≥ 0, M1 ≥ 0, Mε ≥ 0, σ0 ≥ 0, σ1 ≥ 0,
α > 0, β ∈ [0, 1] (see also Table 1 for special cases) such that

• the drift b is M0-Lipschitz, i.e. for x, x′ ∈ Rd∥∥b(x)− b(x′)∥∥ ≤M0

∥∥x− x′∥∥.
For particular cases of optimization problems: minimization, and saddle point problems, this assump-
tion means that the corresponding target functions have Lipschitz gradients, i.e., are smooth. Hence,
we do not need other assumptions, such as the monotonicity of b or, in particular, the convexity of
b = −∇f .

• the biased drift δ is bounded, i.e. for all k ≥ 0∥∥δk∥∥2 ≤M2
1 η

2α
(
1 +

∥∥Xk

∥∥2)
.
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• the noise function ε is unbiased, has unit covariance, and "the central limit theorem" holds for it,
i.e., for all x ∈ Rd, k ≥ 0 and S ≥ 1

Eεεk
(
x
)

= 0d, EεεkεTk
(
x
)

= Id, W2
2

(
N
(
0d, SId

)
,L
( S−1∑
k=0

εk
(
x
)))
≤M2

ε η
β .

In the general case, noise e can be arbitrary within the assumption of "the central limit theorem,"
which holds in particular for all noises that have uniformly bounded the fourth moment E‖εk(x)‖4,
see (Bonis, 2020). We also define χ0 = 1 if the noise εk is Gaussian, otherwise χ0 = 0, note that in
the first case Mε = 0.

• the covariance coefficient σ is symmetric, positive definite, uniformly elliptic, bounded and M0-
Lipschitz, i.e. for all x, x′ ∈ Rd

σ1Id ≥ σ
(
x
)

= σT
(
x
)
≥ σ0Id, Eε

∥∥∥σ(x)εk(x)− σ(x′)εk(x′)∥∥∥2

≤M2
0

∥∥x− x′∥∥2
.

• the covariance shift ∆ is symmetric and bounded, i.e. for all k ≥ 0

∆k = ∆T
k , ηγTr

(
∆2
k

)
≤M2

1 η
2α
(
1 +

∥∥Xk

∥∥2)
.

Let us also introduce the following notation for convenience: M2 = 2 max
{
M2

0 ,
∥∥b(0d)∥∥2}

+

2 max
{
M2

0 , dσ
2
1

}
+ 3η2αM2

1 . One can note that such M > 0 gives∥∥b(Xk

)∥∥2
+ Tr

(
σ
(
Xk

)
σT
(
Xk

))
+
∥∥δk∥∥2

+ ηγTr
(
∆2
k

)
≤M2

(
1 +

∥∥Xk

∥∥2
)
.

Moreover, we define the bound on the initial vector x0: R2
0 = max{1;

∥∥x0

∥∥2}. Meanwhile, we do
not assume the existence of some X∗ s.t. Xk → X∗ because, in the general non-dissipative case, the
chain equation 1 can diverge, i.e., ‖Xk‖ → ∞.

3 MAIN RESULTS

3.1 CHAIN APPROXIMATION BY WINDOW COUPLING

The first thing to look into is the non-Gaussian noise. In this section, we construct a new auxiliary
chain with Gaussian noise that approximates S-subsampled initial dynamic equation 1. The idea
behind this approach is that we can use the central limit theorem for the noise function ε (Assumption
1), and note that by collecting a reasonably large S-batch, we can approximate our non-Gaussian
noise by Gaussian.

We define εSk (x) =
∑S−1
i=0 εSk+i(x). Since for ε "the central limit theorem" holds (Assumption 1),

using this new "batched" ε, we can introduce(√
SζSk (x), εSk (x)

)
∼ Π∗

(
N (0d, SId), L

(
εSk (x)

))
,

where Π∗(·, ·) is an optimal coupling for W2-distance. In fact, ζ has no closed form, but it is an
auxiliary object, and we need only that it exists (by definition ofW2) (Cavalletti & Huesmann, 2015).
The only fact we strongly need follows from definitions of ζSk and of optimal coupling – we know
that ζkS ∼ N (0d, Id). We need such ζkS to introduce the coupled chain (Y Xηk ), which is closed to the
chain XSk. The natural idea to construct is

Y Xη(k+1) = Y Xηk + η b
(
Y Xηk
)

+
√
η ηγ σ

(
Y Xηk
)
ζSk
(
XSk

)︸ ︷︷ ︸
coupling via noise

, (3)

where we additionally define subsampled learning rate η = Sη. The essence of this trick is quite
simple – a non-Gaussian noise is subtracted from the original chain equation 1 and replaced by a
Gaussian CLT approximation. This idea can show itself perfectly in the case of a µ-strongly monotone
operator (−b) (which corresponds to strong convexity and strong dissipativity in the case b = −∇f ):
〈b(X) − b(Y ), Y − X〉 ≥ µ‖X − Y ‖2. In particular, it is easy to bound (Y Xηk ) and (XSk) with
monotonicity:

E
∥∥Y Xη(k+1) −XS(k+1)

∥∥2
= E

∥∥Y Xηk + ηb
(
Y Xηk
)

+ . . .−XSk − η
S−1∑
i=0

b(XSk+i) + . . .
∥∥2
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≈ E
∥∥Y Xηk + ηb

(
Y Xηk
)
−XSk − ηb(XSk) + . . .

∥∥2

= E
∥∥Y Xηk −XSk

∥∥2
+ 2ηE〈b

(
Y Xηk
)
− b(XSk), Y Xηk −XSk〉+ . . .

≤ (1− µη)E
∥∥Y Xηk −XSk

∥∥2
+ . . . .

If we choose η < µ−1, then we have a geometric convergence. It allows us to obtain the bound on the
difference that does not diverge in time. But this idea does not work in our setting because nothing
like (strong) monotonicity/convexity/dissipativity is required to hold. Without such a term, those two
chains mainly diverge from each other in general, as no structure pulls them closer to each other. This
issue can be alleviated. We need to add one more term. In particular, we inject ηL

(
XSk −Y Xηk

)
with

some constant L > 0 (which we define later) into equation 3. Thus, instead of equation 3 we define
the coupled chain Y Xηk using arbitrary fixed constant L ≥ 0:

Y Xη(k+1) = Y Xηk + ηb(Y Xηk ) +
√
ηηγσ(Y Xηk )ζSk

(
XSk

)
−Lη(Y Xηk −XSk)︸ ︷︷ ︸

Window coupling

. (4)

This additional coupling effectively emulates "monotonicity"/"convexity"/"dissipativity":

E
∥∥Y Xη(k+1) −XS(k+1)

∥∥2
= E

∥∥Y Xηk + ηL
(
XSk − Y Xηk

)
+ . . .−XSk + . . .

∥∥2

= E
∥∥Y Xηk −XSk

∥∥2
+ 2ηLE〈XSk − Y Xηk , Y Xηk −XSk〉+ . . .

≤ (1− 2ηL)E
∥∥Y Xηk −XSk

∥∥2
+ . . . . (5)

Physical interpretation of the additional term Lη(Y Xηk −XSk) is straightforward: in order to force
Y Xηk and XSk to be close to each other we "forget" a portion of Y Xηk and replace it with a portion of
XSk. Normal noise appearing in Y Xηk makes the distribution of Y Xηk "regular" and −ηLY Xηk term acts
like L2-regularization for Y Xηk which additionally imposes regularity on Y Xηk , which was absent in X
due to the non-Gaussian noise and absence of the regularization.

On the other hand, the purpose of introducing Y Xηk is to create a Gaussian chain that approximates the
original non-Gaussian Xk. But Lη(Y Xηk −XSk) at first glance destroys the normality of Y Xηk . We
suggest to look at Window coupling Lη(Y Xηk −XSk) as a biased part of drift. Then the noise in the
Y Xηk remains Gaussian. Nevertheless, this will give us additional problems in the future that will have
to be solved.

Even though reasoning equation 5 gives the basic idea of convergence of E
∥∥XSk − Y Xηk

∥∥2
, we hide a

lot under the dot sign, and these missing terms can have a bad effect. In particular, if we try to bound
E
∥∥XSk − Y Xηk

∥∥2
, then we would immediately obtain divergence since the expected squared norm of

Xk can be unbounded (as we noted in Section 2). Such a norm appears multiplicative in bias-related
and covariance-related terms (e.g., δ and ∆ in Assumption 1). This suggests that if we temper the dif-
ference E

∥∥XSk−Y Xηk
∥∥2

on the bound of the worst-case norm R2(t) ≥ max
{

1; maxηk≤t E‖Xk‖2
}

,
then we effectively cancel out terms with E‖XSk‖2 and obtain "uniform" in kη ≤ t bound for any
fixed horizon t > 0.
Lemma 1. Let Assumption 1 holds. If L ≥ 1 +M0 +M + 2M2

0 +M2 +M2M2
ε and Sη ≤ 1, then

for any t > 0:

∆S
t = max

ηk′≤t

E
∥∥XSk′ − Y Xηk′

∥∥2

R2(t)
= O

(
η2α +

ηγ+β

S
(1− χ0) + η

)
,

where R2(t) ≥ max
{

1; maxηk≤t E‖Xk‖2
}

.

Here and after, in the main part, we use O-notation to hide constants that do not depend on η, k,
and t for simplicity. The full statements are given in Appendix. Since the chain Y Xηk is artificially
introduced by us, we can vary S, in particular, optimize the estimate from Lemma 1

Corollary 1. Under the conditions of Lemma 1. If we take S = η−
1−β
2 (1− χ0) + χ0 ≥ 1, then it

holds that:

∆S
t ≤ O

(
η2θ
)

with θ = min

{
α;

(γ + 1)(1 + χ0) + (γ + β)(1− χ0)

4

}
.
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3.2 NAIVE INTERPOLATION OF THE APPROXIMATION

As mentioned earlier, if we put ηL(XSk − Y Xηk ) to a biased drift, we can look at the chain equation 4
as a chain with Gaussian noise, i.e., we can rewrite equation 4 in the same form as equation 1:

Y Xη(k+1) = Y Xηk + η(b(Y Xηk ) + gSηk) +
√
η
√
ηγσ(Y Xηk )ζSk ,

where we introduce gSηk = L(XSk − Y Xηk ).

For a chain with Gaussian noise, there are well-known tricks for relating them to some diffusion
process driven by the Brownian motion process Wt. In most of the works, e.g., (Raginsky et al.,
2017), on Langevin processes from Table 2, one embeds a process with Gaussian noise into diffusion
without any hesitation due to normality of the noise, which allows one to think that the noises are
increments of the Brownian motion process Wt and intermediate points are obtained through naive
mid-point interpolation (e.g., by replacing η with δt for δt ∈ [0, η] allows to define Y Xηk+δt). Since

ζSk ∼ N (0d, Id), we consider ζSk =
√
η−1(W(k+1)η −Wkη). One can also complete the notation

for gSt = gS[t/η]η for all t (before we defined it only for t = ηk with integer k). Then we can define
the following diffusion:

dYt =
(
b(Yt) + (g∗t + gSt )

)
dt+

√
ηγ
(
σ(Yt) + Σ∗t

)
dWt,

with new notation g∗t = b(Y X[t/η]η)− b(Yt) and Σ∗t = σ(Y X[t/η]η)− σ(Yt).

The diffusion Yt has a "ladder" drift (since b(Yt) + (g∗t + gSt ) changes only in t = kη), thereby Yt
mimicks the chain Y Xηk . If there were no noise terms in the diffusion and in the chain, dYt would
fully coincide with Y Xηk . Nevertheless, we have noise components, and in diffusion, it is provided by
the Brownian process Wt and is continuous in time, unlike the Gaussian, but "discrete" noise term
in Y Xηk (depending on ζSk ). We need to estimate the differences in these noises. This is the idea of
estimating the difference between Y Xηk and dYt. We follow a similar path of proving as (Raginsky
et al., 2017), but we also consider that we now face non-dissipativity. In particular, the next lemma
gives a bound that includes R2(kη), which is not the case of (Raginsky et al., 2017).
Lemma 2. Let Assumption 1 holds. Then for any k ∈ N0:

sup
t≤kη

E
∥∥Y X[t/(η)]η − Yt

∥∥2
= O

(
η1+γR2(kη)

)
,

where R2(kη) ≥ max
{

1; maxk′≤k E‖Xk′‖2
}

.

From the definition ofW2, we immediately have.
Corollary 2. Under the conditions of Lemma 2, for any time horizon t = kη ≥ 0 it holds:

W2
2 (L(Y X[t/(η)]η),L(Yt)) ≤ sup

t≤kη
E
∥∥Y X[t/(η)]η − Yt

∥∥2
= O

(
η1+γR2(kη)

)
.

At this point, we linked the initial chain Xk to the auxiliary chain Yηk, and then the chain Yηk to the
diffusion Yt. However, the diffusion Yt differs from the target diffusion Zt we aim for. Therefore, we
are left to link diffusions Yt and Zt - we will spend the following three subsections on this.

3.3 COVARIANCE CORRECTED INTERPOLATION

The problem with the relation of Yt and Zt lies primarily in the fact that these two diffusions have
different covariance coefficients (

(
σ(Yt) + Σ∗t

)
and σ(Zt)). In that case, the Girsanov theorem states

that diffusions with different covariances are singular to each other. Meanwhile, if the covariance
coefficients are the same, then the Girsanov theorem (Liptser & Shiryaev, 2001) gives a more
optimistic answer to the possibilities of connecting such diffusions. Then our goal now is to deal
with Σ∗t in Yt.

It is proposed to build another auxiliary diffusion. We want the problems of the covariance coefficient
in Yt to move elsewhere, e.g., to drift, in the new chain ZYt . We have already done a similar trick
with the coupling of Xk and Y Xηk in Section 3.1. Then let us consider the following diffusion:

dZYt = (b(ZYt ) + gSt )dt+ L1(Yt − ZYt )dt︸ ︷︷ ︸
Window coupling

+
√
ηγσ(ZYt )dWt,

7
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where L1 we will define later. This coupling helps to eliminate not only Σ∗t but also g∗t . The basic
idea is that Σ∗t and g∗t are differences of σ and b, respectively. At the same time, σ and b are Lipschitz,
which means that we can bound Σ∗t and g∗t via the norm of the argument difference. Therefore, if we
choose L1 large enough, we compensate bounds on Σ∗t and g∗t . In particular, the following statement
holds.

Lemma 3. Let Assumption 1 holds. Then for L1 ≥ 2M0 +4M0η
γ and any time horizon t = kη ≥ 0:

W2
2 (L(Yt),L(ZYt )) ≤ sup

t′≤t
E
∥∥∥Y X[t′/(η)]η − Yt′

∥∥∥2

.

From Lemma 2, we immediately have.

Corollary 3. Let Assumption 1 holds. Then for any time horizon t = kη ≥ 0:

W2
2 (L(Yt),L(ZYt )) = O

(
η1+γR2(kη)

)
,

where R2(kη) ≥ max
{

1; maxk′≤k E‖Xk′‖2
}

.

To complete the proof, it remains to relate two diffusions Zt and ZYt in terms ofW2.

3.4 ENTROPY BOUND FOR DIFFUSION APPROXIMATION

With the introduction of the new notation GSt = gSt − L1(ZYt − Yt), one can rewrite ZYt as follows:

dZYt = (b(ZYt ) +GSt )dt+
√
ηγσ(ZYt )dWt.

At the moment, the only difference between Zt and ZYt is the presence of GSt in the drift of ZYt .
Finally, when the correlation coefficients are equal, we are close to using the Girsanov theorem
(Liptser & Shiryaev, 2001). However, its classical version requires that both diffusions are Markovian.
Unfortunately, this is not our case because of Gst . In particular, gst (part of Gst ) was defined in Section
5 as follows: gSηk = L(XSk − Y Xηk ) for k ∈ N0 and gS[t/η]η for all others t ≥ 0. It turns out that for
t 6= kη, gSt depends on the nearest reference point [t/η]η, which immediately violates the Markovian
property. The same problem arises in (Raginsky et al., 2017). The way out of this issue is to prove a
new version of the Girsanov theorem. The paper (Raginsky et al., 2017) considers the dissipative case
where additionally σ(·) is constant and independent of the current state. We have even more general
and complex versions of the Girsanov theorem without dissipativity and for state-dependent σ(·).

Theorem 1 (One-time Girsanov formula for mixed Ito/adapted coefficients). Assume that (Gt)t≥0 is
a (Wt)t≥0-adapted process with an integratable by t ≥ 0 second moment. Consider two SDEs ran
using two independent Brownian processes:

dZt = b(Zt)dt+Gtdt+ σ(Zt)dWt,

dZ∗t = b(Z∗t )dt + σ(Z∗t )dW̃t.

Let σ0 > 0 be the minimal possible eigenvalue of σ(x). Then we have that for any time horizon
T ≥ 0 the following bound holds:

DKL

(
L(ZT )

∣∣∣∣L(Z∗T )) ≤ σ0
−2

∫ T

0

E
∥∥Gt∥∥2

dt <∞.

The result of Theorem 1 is worse than the classical version, which is predictably the price of
generalization. This theorem can be considered as a stand-alone contribution of the paper. Let us
apply it to our case with Zt and ZYt .

Corollary 4. Let Assumption 1 holds. Then for any time horizon t = ηk ≥ 0:

DKL

(
L(ZYkη)

∣∣∣∣L(Zkη)) = O
(
η−γkηeO(kη)η2θ

)
,

where θ = min
{
α; (γ+1)(1+χ0)+(γ+β)(1−χ0)

4

}
.
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3.5 EXPONENTIAL INTEGRABILITY

At the moment, our modification of the Girsanov theorem gives the estimates on the relation between
Zkη and ZYkη only in terms of KL-divergence. Meanwhile, our ultimate goal is to bound theW2-
distance. Therefore, we need to connect the estimates for KL-divergence andW2-distance. Let us
use the auxiliary result from (Bolley & Villani, 2005) to solve this issue. In more details, for two
distributions p1 and p2, we have

W2(p1, p2) ≤ CW(p2)

((
DKL

(
p1

∣∣∣∣p2

)) 1
2

+
(DKL

(
p1

∣∣∣∣p2

)
2

) 1
4

)
, (6)

where CW
(
p2

)
> 0 relates entropy DKL

(
·
∣∣∣∣p2

)
withW2

(
·, p2

)
. The main challenge here is to find

the bound on the constant CW(p2) with p2 = L
(
Zkη

)
for all k ∈ N or a slightly more general result

with p2 = L
(
Zt
)

for all t ≥ 0. Related results are available in the literature (Raginsky et al., 2017),
but were obtained in special cases: under dissipative conditions and with specific γ equal to 0. The
challenge of finding C2

W in the non-dissipative case for arbitrary γ is solved in the next theorem.
Lemma 4. Let Assumption 1 holds. Then for any time horizon t ≥ 0:

CW
(
L
(
Zt
))

= O
(
η
γ
2 eO(t)

)
.

The presence of factor η
γ
2 for γ 6= 0 is not only novel but also crucial. In the previous section, we

already encountered this η−γ . In the final estimate, these two factors will cancel each other out.

3.6 FINAL RESULT

It remains to combine all the results obtained above. In particular, we require Corollaries 1, 2, 3 and
4, as well as Lemma 4. It is important to note that in Corollary 1, S = η−

1−β
2 (1− χ0) + χ0 ≥ 1 has

already been chosen, it needs to be substituted to other results.
Theorem 2. Let Assumption 1 hold. Then for all k ∈ N0:

W2

(
L(Xk′),L(Zk′η)) = O

((
1 + (k′η)

1
2

)
eO(k′η)ηθ + (k′η)

1
4 eO(k′η)η

θ
2 + γ

4

)
,

where θ = min
{
α; (γ+1)(1+χ0)+(γ+β)(1−χ0)

4

}
.

All (exponentially) growing factors in Theorem 2 depend only on horizon T ≥ kη, which is assumed
to be fixed a priory. Thus, if we consider convergence on the interval t ∈ [0, T ], then those factors are
essentially constants, independent from η−1. Though, compared to the work on SGLD (Raginsky
et al., 2017) that relies on dissipativity assumption, those constants grow exponentially, which limits
the applicability of the results for such problems as sampling from the invariant measure. Since
our results do not rely on dissipativity/convexity assumptions, having exponential dependence on
the horizon is unavoidable in the general case (Alfonsi et al., 2014). Putting the horizon T fixed,
we obtain thatW2

(
L(Xk),L(Zkη)) = O

(
ηθ + η

θ
2 + γ

4

)
. From this, one can find estimates for the

different cases from Table 1. As an example:
Corollary 5 (SGD with Gaussian noise). Under the conditions of Theorem 2, if χ0 = 1, γ = 1,
α ≥ 1, then θ = 1 andW2

(
L(Xk),L(Zkη)) = O

(
η

3
4

)
.

4 CONCLUSION

This work considers a broad class of Markov chains, Ito chains. Moreover, we introduce the most
general assumptions on the terms of our Ito chain. In particular, we assume that the noise can be
almost arbitrary but not independent and normal. In this setting, we estimateW2 between the chain
and the corresponding diffusion. Our estimates cover a large variety of special cases: in some cases
replicating the state-of-the-art results, in others improving them, and in some cases being pioneering.
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A PRELIMINARIES

Primary we are going to work with Wasserstein-2 distance that would be defined a few lines later.
Wasserstein-2 distance metricize topology of weak convergence plus the convergence of the second
moments which are desirable properties for an algorithm to have and allow us to consider func-
tions that grow at most quadratically compared to uniformly bounded if we considered just weak
convergence without second moments as done in the original SGLB paper.

Now let’s define the metric. Denote by

Π
(
ν, µ
)

:=
{
π(dx1,dx2)

∣∣ ∫
Rd
π(dx1, ·) = µ ∧

∫
Rd
π(·,dx2) = ν

}
– the set of all possible couplings of measures µ(dx) and ν(dx). Then define:

W2(ν, µ) =
(

inf
π∈Π(ν,µ)

Eπ
∣∣x1 − x2

∣∣2) 1
2

– Wasserstein-2 distance between measures ν(dx) and µ(dx). The unique coupling achieving the
infinum we would denote as π∗ = Π∗

(
ν, µ
)
.

The following tautological statement would be useful when dealing with the Wasserstein-2 metric:

Statement 1. Assume that we are given two random variables x1 ∼ ν, x2 ∼ µ defined on common
probability space with measure π, then Wasserstein-2 distance between ν and µ is bounded by
L2-distance between x1 and x2:

W2(ν, µ) ≤
√
Eπ
∣∣x1 − x2

∣∣2
Moreover, we are going to use Kullback-Liebner divergence DKL

(
ν
∣∣∣∣µ) between measures ν and

µ such that ν � µ (absolute continious). In that case by Random-Nikodym theorem there exists
µ-measurable mapping dν

dµ that is non-negative µ-almost everywhere such that Eµ dν
dµ = 1 and

Eνf = Eµ
(
f dν

dµ

)
for any bounded measurable f . The mapping dν

dµ is called Radom-Nikodym
derivative of ν with respect to µ. Having dν

dµ we define Kullback-Liebner divergence as:

DKL

(
ν
∣∣∣∣µ) , Eν log

dν

dµ
=

∫
suppµ

dν

dµ
log

dν

dµ
dµ ≥ 0

The following statement is known as data-processing inequality:

Statement 2. (DPI; Data processing inequality, see Beaudry & Renner (2012)) Let T we some
µ-measurable mapping and ν � µ – measures. Let T#µ , µ(T−1(·)) – push-forward measure
under mapping T . Then we have an inequality:

DKL

(
T#ν

∣∣∣∣T#µ
)
≤ DKL

(
ν
∣∣∣∣µ)

We are going to apply DPI to µ = L(Xt : t ≤ kη) and ν = L(Zt : t ≤ kη) for a certain
diffusion processes (Xt)t≥0 and (Zt)t≥0 with the same diffusion coefficient (to ensure absolute
continuity since otherwise the measures are mutually singular due to Girsanov theorem) so that
Radom-Nykodym derivative exists and henceforth DKL

(
ν
∣∣∣∣µ) <∞. As push-forward map T we

can consider T
(
(Zt)0≤t≤kη

)
, Zkη . Then T is µ-measurable with the property T#µ = L(Xkη) and

therefore we obtain:
DKL

(
L(Zkη)

∣∣∣∣L(Xkη)
)
≤ DKL

(
ν
∣∣∣∣µ)

DPI can be trivially proved: consider minimal σ-algebra generated by pre-image of the given σ-
algebra under mapping T . We denote such σ-algebra as FT . After noting that T#ν � T#µ if ν � µ

we consider FT -measurable random-variable E
(

dν
dµ

∣∣FT ). Then dT#ν
dT#µ

exists and dT#ν
dT#µ

≡ E
(

dν
dµ

∣∣FT )
µ-almost everywhere. Then conditional Jensen inequality applied to KL implies DPI. In the work we
are going to deal with a wide range of sequences in the form:

rk+1 ≤ (1− ησ1)rk + ησ2 (7)
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with r0 = 0, 0 < ησ1 < 1 and σ2 ≥ 0. Iterating such sequence immediately yields the formula:

rk ≤ (1− (1− ησ1)k+1)
σ2

σ1
≤ σ2

σ1
(8)

Clearly, in order for the bound to be sound one needs σ2 � σ1.

The following theorem plays significant role in the proofs of our main results:
Theorem 3. (Girsanov, see Theorems 12.1, 12.2 on p. 368-370 in Baldi & Baldi (2017)) Assume
that we are given two SDEs in Ito form:

dXi,t = bi(Xi,t, t)dt+ σi(Xi,t, t)dWt

for i ∈ {1, 2} and where Wt is standart Wiener process valued in Rd. Denote by µi , L(Xi,t : 0 ≤
t ≤ T ) for some fixed T > 0. Assume that functions bi(x, t), σi(x, t) are Lipshitz continious in x
and σi(x, t) = σTi (x, t) ≥ σT Id almost everywhere in x for some constant σT > 0 and for every
t ∈ [0, T ]. Then µ2 � µ1 if and only if σ1(x, t) ≡ σ2(x, t) ≡ σ(x, t) almost everywhere in x ∈ Rd
∀t(0 ≤ t ≤ T ) and the Radom-Nykodym derivative is given by:

dµ2

dµ1
= eZT ((X1)t≤T )

Where we denote ∆b(x, t) , {σ(x, t)}−1(b2(x, t)− b1(x, t)) and:

Zt(X) ,
∫ t

0

〈∆b(Xs, s),dWs〉2︸ ︷︷ ︸
Ito Matringale

−
∫ t

0

∣∣∆b(Xs, s)
∣∣2ds ,

where X = (Xs)s≤t any vector valued continuous path defined over [0, t].

Moreover, the following result due to Gyöngy (1986) would be needed within Girsanov theorem:
Theorem 4. (Gyongy Gyöngy (1986)) Assume that we are given the following SDE:

dXt = Btdt+ σtdWt

where (Bt)t≥0, (σt)t≥0 are some predictable w.r.t. (Wt)t≥0 processes. Let (Xt)t≥0 be a solution.
Then L(Xt) = L(X̃t)∀t ≥ 0 where (X̃t)t≥0 is a solution to Ito SDE:

dX̃t = g(X̃t, t)dt+ σ(X̃t, t)dWt

where g(x, t) , E(Bt|Xt = x) and σ(x, t) ,
√

E(σtσT
t |Xt = x).

We also consider the following construction: for a chain (Xk)k∈Z+
in the form:

Xk+1 = Xk + ηBk +N (0d, ησ
2Id)

where (Bk)k∈Z+
is (Xk)k∈Z+

-predictable, we define the process Xt:

dXt = −Btdt+ σdWt

where Bt ,
∑∞
k=0Bk1t∈[ηk,η(k+1)). Then we obtain that:

L(Xk : k ∈ Z+) = L(X(kη) : k ∈ Z+).

Combining with the result due to Gyongy we, moreover, obtain:

L(Xt) = L(X̃t)∀t ≥ 0,

where (X̃t)t≥0 satisfies Ito SDE:

dX̃t = E
(
Bt|Xt = X̃t

)
dt+ σdWt

We call such processes (Xt)t≥0 and (X̃t)t≥0 as interpolation of the chain (Xk)k∈Z+
into the con-

tinious process. The core idea of interpolation is to obtain a bound on DKL between the chain’ law
and some other chain’ law by interpolating them into continuous processes in Ito form (recall that
(X̃t)t≥0 is in Ito SDE form) and then by using Girsanov theorem followed by DPI to switchback to
the chains.
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Theorem 5. (Deterministic Bihari-LaSalle inequality Bihari (1956)). Let H be constant, x(t) ≥ 0 a
càdlàg function for t ≥ 0 and A(t) ≥ 0 a non-decreasing function càdlàg function with A(0) = 0.
Let w(x) > 0 for x > 0 be continuous non-decreasing function on R≥0. Let W (v) =

∫ v
C

1
w(x)dx for

some C > 0. If function x(t) satisfies:

x(t) ≤
∫ t

0+

w(x(t))dA(t) +H∀t ∈ [0, T ]

for some T > 0 and H > 0 and if W (H) +A(t) is in domain of W−1 then:

x(t) ≤W−1(W (H) +A(t))∀t ∈ [0, T ]

B MISSING PROOFS
B.1 USEFUL LEMMAS

Lemma 5. Let Assumption 1 holds. Then for any k ∈ N0:

1 + E
∥∥Xk

∥∥2 ≤ eCkη
(
1 +

∥∥x0

∥∥2)
, R2(kη),

where C = 8(1 +M2).

Proof. Using the definition of equation 1, we get

‖Xk+1‖2 = ‖Xk‖2+η2
∥∥b(Xk

)
+δk

∥∥2
+η1+γ

∥∥∥(σ(Xk

)
+∆k

)
εk
(
Xk

)∥∥∥2

+2η〈Xk, b
(
Xk

)
+δk〉+ξk,

where ξk = 2
√
η1+γ〈

(
σ
(
Xk

)
+ ∆k

)
εk
(
Xk

)
, Xk +η

(
b
(
Xk

)
+ δk

)
〉. With unbiasedness of ek(Xk),

we have that E[ξk|Xk] = 0. The other terms can be bounded with Assumption 1 and notation of M
(from Section 2) as follows: ∥∥b(Xk

)
+ δk

∥∥2 ≤ 2M2(1 + ‖Xk‖2),∥∥∥(σ(Xk

)
+ ∆k

)
εk
(
Xk

)∥∥∥2

≤ 2M2(1 + ‖Xk‖2), (9)

〈Xk, b
(
Xk

)
+ δk〉 ≤ 1

2

(
‖Xk‖2 + ‖b

(
Xk

)
+ δk‖2

)
≤ (1 +M2)(1 + ‖Xk‖2).

It gives the next estimate:

1 + E‖Xk+1‖2 ≤1 + E‖Xk‖2 + η2E
∥∥b(Xk

)
+ δk

∥∥2

+ η1+γE
∥∥∥(σ(Xk

)
+ ∆k

)
εk
(
Xk

)∥∥∥2

+ 2ηE〈Xk, b
(
Xk

)
+ δk〉

≤1 + E‖Xk‖2 + 2
(
η2 + η1+γ + 2η

)
(1 +M2)(1 + E‖Xk‖2)

≤
(
1 + η · 2(1 +M2)(2 + ηγ + η)

)
(1 + E‖Xk‖2),

Running the recursion with C = 2(1 +M2)(2 + ηγ + η), we obtain:

1 + E‖Xk‖2 ≤
(
1 + Cη

)k
(1 + ‖x0‖2) = ek log(1+Cη)(1 + ‖x0‖2) ≤ eCkη(1 + ‖x0‖2).

Using that η ≤ 1, we get that C = 2(1 +M2)(2 + ηγ + η) ≤ 8(1 +M2). It finishes the proof.

Lemma 6. Let Assumption 1 holds. Then for any k, i ∈ N0, S ∈ N (such that i < S):

E
[
‖XSk+i −XSk‖2

∣∣XSk

]
≤ C ′iη

(
1 + ‖XSk‖2

)
,

where C ′ = 12M2e(C+1)Sη and C from Lemma 5.

Proof. Similarly to Lemma 5 we obtain:

‖XSk+i+1 −XSk‖2 =‖XSk+i+1 −XSk+i + (XSk+i −XSk)‖

=‖XSk+i −XSk‖2 + η2
∥∥b(XSk+i

)
+ δSk+i

∥∥2

+ η1+γ
∥∥∥(σ(XSk+i

)
+ ∆Sk+i

)
εSk+i

(
Xk

)∥∥∥2
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+ 2η〈XSk+i −XSk, b
(
XSk+i

)
+ δSk+i〉+ ξSk+i,

where ξSk+i = 2
√
η1+γ〈

(
σ
(
XSk+i

)
+ ∆Sk+i

)
εSk+i

(
XSk+i

)
, XSk+i + η

(
b
(
XSk+i

)
+ δSk+i

)
〉.

With unbiasedness of eSk+i(XSk+i), we have that E[ξSk+i|eSk+i(XSk+i)] = 0. Now, using the
bound equation 9, taking the conditional expectation and applying Lemma 5 for X ′i = XSk+i, X

′
0 =

XSk, we deduce:

E
[
‖XSk+i+1 −XSk‖2

∣∣XSk

]
=E
[
‖XSk+i −XSk‖2

∣∣XSk

]
+ η2E

[∥∥b(XSk+i

)
+ δSk+i

∥∥2∣∣XSk

]
+ η1+γE

[∥∥(σ(XSk+i

)
+ ∆Sk+i

)
εSk+i

(
Xk

)∥∥2∣∣XSk

]
+ 2ηE

[
〈XSk+i −XSk, b

(
XSk+i

)
+ δSk+i〉+ E

[
ξSk+i

∣∣XSk

]
≤(1 + η)E

[
‖XSk+i −XSk‖2 + (η + η2)

∥∥b(XSk+i

)
+ δSk+i

∥∥2∣∣XSk

]
+ η1+γE

[∥∥(σ(XSk+i

)
+ ∆Sk+i

)
εSk+i

(
XSk+i

)∥∥∥2∣∣XSk

]
≤(1 + η)E

[
‖XSk+i −XSk‖2

∣∣XSk

]
+ 2(η + η1+γ + η2)M2

(
1 + E

[
‖XSk+i‖2

∣∣XSk

])
≤(1 + η)E

[
‖XSk+i −XSk‖2

∣∣XSk

]
+ 2(η + η1+γ + η2)M2eCiη

(
1 + ‖XSk‖2

)
.

Recursively expanding the bound we obtain:

E
[
‖XSk+i −XSk‖2

∣∣XSk

]
≤

i−1∑
j=0

(1 + η)j2M2eCiη(η + η1+γ + η2)
(
1 + ‖XSk‖2

)
≤ 2M2(η + η1+γ + η2)e(C+1)iηiη

(
1 + ‖XSk‖2

)
.

With i < S and η ≤ 1, we get

E
[
‖XSk+i −XSk‖2

∣∣XSk

]
≤ 12M2e(C+1)Sηiη

(
1 + ‖XSk‖2

)
.

Remark 1. In Lemma 1 and after we use that S = η−
1−β
2 (1− χ0) + χ0, then Sη = η

1+β
2 (1− χ0) +

χ0η ≤ 1, and the result of Lemma 6 can be rewritten immediately as

E
[
‖XSk+i −XSk‖2

∣∣XSk

]
≤ C ′iη

(
1 + ‖XSk‖2

)
,

where C ′ = 12M2e(C+1) and C = 8(1 +M2).

B.2 PROOFS OF LEMMAS 1-3

Lemma 7 (Lemma 1). Let Assumption 1 holds. If L ≥ 1 + 10M2
0 , ηL ≤ 1 and Sη ≤ 1, then for

any t > 0:

∆S
t = max

ηk′≤t

E
∥∥XSk′ − Y Xηk′

∥∥2

R2(t)
= C ′′

(
η2α +

ηγ+β

S
(1− χ0) + η

)
,

where R2(t) ≥ max
{

1; maxηk≤t E‖Xk‖2
}

and
C ′′ = 2

(
3M2

1 e
C + 3M2

0C
′ + 4M2

1 e
C + 48M2

0M
2eC+1 + 4dσ2

1M
2
e

)
where the constants C,C ′

are defined in Lemmas 6 and 5) respectively.

Proof. Let us consider the difference between Y Xη(k+1) and XS(k+1), square it, take the expectation
(conditional on XSk) and get:

E
[
‖Y Xη(k+1) −XS(k+1)‖2

∣∣XSk

]
=(1− Lη)2E

[
‖Y Xηk −XSk‖2

∣∣∣XSk

]
+
η2

S2
E
[∥∥∥ S−1∑

i=0

(
b(XSk+i)− b(Y Xηk ) + δSk+i)

)∥∥∥2∣∣∣XSk

]
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+ 2(1− Lη)η

S−1∑
i=0

E
[
〈Y Xηk −XSk,

1

S
(b(XSk+i)− b(Y Xηk ) + δSk+i)〉

∣∣XSk

]
+ ηηγE

[∥∥∥ 1√
S

S−1∑
i=0

(
σ(XSk+i) + ∆Sk+i

)
εSk+i(XSk+i)− σ(Y Xηk )ζSk (XSk)

∥∥∥2∣∣∣XSk

]
≤
(
(1− Lη)2 + η(1− Lη)

)
E
[
‖Y Xηk −XSk‖2

∣∣XSk

]
+
η2 + η(1− Lη)

S2
E
[∥∥∥ S−1∑

i=0

(
b(XSk+i)− b(Y Xηk ) + δSk+i)

)∥∥∥2∣∣∣XSk

]
+ ηηγE

[∥∥∥ 1√
S

S−1∑
i=0

(
σ(XSk+i) + ∆Sk+i

)
εSk+i(XSk+i)− σ(Y Xηk )ζSk (XSk)

∥∥∥2∣∣∣XSk

]
.

(10)

In the first step, we also used the unbiasedness of εSk+i(XSk+i) (in the same way as in Lemmas 5,
6), this makes all inner products with εSk+i(XSk+i) equal to 0 in the expectation. In the second step,
we use that ηL ≤ 1. We start with bounding the last term. One can make the following estimate with
Assumption 1 and Lemmas 5, 6:

E
[∥∥∥ 1√

S

S−1∑
i=0

(
σ(XSk+i) + ∆Sk+i

)
εSk+i(XSk+i)− σ(Y Xηk )ζSk (XSk)

∥∥∥2∣∣∣XSk

]
≤4E

[∥∥∥ 1√
S

S−1∑
i=0

∆Sk+iεSk+i(XSk+i)
∥∥∥2∣∣∣XSk

]
+

+ 4E
[∥∥∥σ(Y Xηk )

( 1√
S

S−1∑
i=0

εSk+i(XSk)− ζSk (XSk)
)∥∥∥2∣∣∣XSk

]
+ 4E

[∥∥∥(σ(XSk)− σ(Y Xηk )
)
ζSk (XSk)

∥∥∥2∣∣∣XSk

]
.

Next, we use that for i < j: E
[
〈εSk+i(XSk+i), εSk+j(XSk+j)〉

∣∣XSk

]
=

E
[
〈εSk+i(XSk+i),EεSk+j

[
εSk+j(XSk+j)

]
〉
∣∣XSk

]
= 0, and get

E
[∥∥∥ 1√

S

S−1∑
i=0

(
σ(XSk+i) + ∆Sk+i

)
εSk+i(XSk+i)− ζSk (XSk)

∥∥∥2∣∣∣XSk

]
≤ 4

S

S−1∑
i=0

E
[∥∥∥∆Sk+iεSk+i(XSk+i)

∥∥∥2∣∣∣XSk

]
+

4

S

S−1∑
i=0

E
[∥∥∥(σ(XSk+i)εSk+i(XSk+i)− σ(XSk)εSk+i(XSk)

)∥∥∥2∣∣∣XSk

]
+ 4E

[∥∥∥σ(XSk)
( 1√

S

S−1∑
i=0

εSk+i(XSk)− ζSk (XSk)
)∥∥∥2∣∣∣XSk

]
+ 4E

[∥∥∥(σ(XSk)− σ(Y Xηk )
)
ζSk (XSk)

)∥∥∥2∣∣∣XSk

]
.

Assumption 1 gives

E
[∥∥∥ 1√

S

S−1∑
i=0

(
σ(XSk+i) + ∆Sk+i

)
εSk+i(XSk+i)− σ(Y Xηk )ζSk (XSk)

∥∥∥2∣∣∣XSk

]
≤ 4

S

S−1∑
i=0

M2
1 η

2α−γ(1 + E
[∥∥XSk+i

∥∥2∣∣XSk

])
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+
4

S

S−1∑
i=0

M2
0E
[
‖XSk+i −XSk‖2

∣∣XSk

]
+ 4dσ2

1E
[∥∥∥ 1√

S

S−1∑
i=0

εSk+i(XSk)− ζSk (XSk)
∥∥∥2∣∣∣XSk

]
+ 4M2

0

∥∥∥XSk − Y Xηk
∥∥∥2

,

where for the last term, we used the following chain of identifies derived from Assumption 1 and
noting that E〈σ(x)(εk(x)−εk(x′)), σ(x)(εk(x)+εk(x′))〉 = E〈σ(x′)(εk(x)−εk(x′)), σ(x′)(εk(x)+
εk(x′))〉 = 0, E

∥∥(σ(x) + σ(x′))(εk(x)− εk(x′))‖2 ≥ E
∥∥(σ(x)− σ(x′))(εk(x)− εk(x′))‖2:

M2
0 ‖x− x′‖2 ≥ E‖σ(x)εk(x)− σ(x′)εk(x′)‖2

=
1

4
E
∥∥∥(σ(x) + σ(x′))(εk(x)− εk(x′)) +

(
σ(x)− σ(x′))(εk(x) + εk(x′))

∥∥∥2

=
1

4
E
∥∥∥(σ(x) + σ(x′))(εk(x)− εk(x′))

∥∥∥2

+
1

4
E‖
(
σ(x)− σ(x′))(εk(x) + εk(x′))

∥∥∥2

+
1

2
E
〈(
σ2(x)− σ2(x′)

)
(εk(x)− εk(x′)), εk(x)− εk(x′)

〉
=

1

4
E
∥∥∥(σ(x) + σ(x′)

)
(εk(x)− εk(x′))

∥∥∥2

+
1

4
E‖
(
σ(x)− σ(x′))(εk(x) + εk(x′))

∥∥∥2

+
1

2
E
〈
σ(x)(εk(x)− εk(x′)), σ(x)(εk(x)− εk(x′)

〉
− 1

2
E
〈
σ(x′)(εk(x)− εk(x′)), σ(x)(εk(x)− εk(x′)

〉
=

1

4
E
∥∥∥(σ(x) + σ(x′)

)
(εk(x)− εk(x′))

∥∥∥2

+
1

4
E‖
(
σ(x)− σ(x′))(εk(x) + εk(x′))

∥∥∥2

≥1

4
E
∥∥∥(σ(x)− σ(x′)

)
(εk(x)− εk(x′))

∥∥∥2

+
1

4
E‖
(
σ(x)− σ(x′))(εk(x) + εk(x′))

∥∥∥2

≥1

2
E
∥∥(σ(x)− σ(x′))εk(x)

∥∥2
+

1

2
E
∥∥(σ(x)− σ(x′))εk(x′)

∥∥2

≥ ‖σ(x)− σ(x′)‖2F
Taking into account that ζSk (XSk) is an optimal coupling (Section 3.1), we can estimate∥∥ 1√

S

∑S−1
i=0 εSk+i(XSk)− ζSk (XSk)

∥∥2
by Assumption 1.

E
[∥∥∥ 1√

S

S−1∑
i=0

(
σ(XSk+i) + ∆Sk+i

)
εSk+i(XSk+i)− ζSk (XSk)

∥∥∥2∣∣∣XSk

]
≤ 4

S

S−1∑
i=0

M2
1 η

2α−γ(1 + E
[∥∥XSk+i

∥∥2∣∣XSk

])
+

4

S

S−1∑
i=0

M2
0E
[
‖XSk+i −XSk‖2

∣∣XSk

]
+

4

S
dσ2

1M
2
e η

β + 4M2
0

∥∥∥XSk − Y Xηk
∥∥∥2

.

With Lemmas 5, 6, one can obtain

E
[∥∥∥ 1√

S

S−1∑
i=0

(
σ(XSk+i) + ∆Sk+i

)
εSk+i(XSk+i)− ζSk (XSk)

∥∥∥2∣∣∣XSk

]
≤ 4

S

S−1∑
i=0

M2
1 η

2α−γeCiη
(
1 + ‖XSk‖2

)
+

4

S

S−1∑
i=0

M2
0 · 12M2e(C+1)Sηiη

(
1 + ‖XSk‖2

)
+

4

S
dσ2

1M
2
e η

β + 4M2
0E
[∥∥∥XSk − Y Xηk

∥∥∥2∣∣∣XSk

]
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≤4M2
1 η

2α−γeCSη
(
1 + ‖XSk‖2

)
+ 48M2

0M
2e(C+1)SηSη

(
1 + ‖XSk‖2

)
+

4dσ2
1M

2
e η

β

S
+ 4M2

0E
[∥∥∥XSk − Y Xηk

∥∥∥2∣∣∣XSk

]
≤
(

4M2
1 e
CSη + 48M2

0M
2e(C+1)Sη + 4dσ2

1M
2
e

)(
η2α−γ + Sη +

ηβ(1− χ0)

S

)(
1 + ‖XSk‖2

)
+ 4M2

0

∥∥∥XSk − Y Xηk
∥∥∥2

.

Here we also used that Me = 0 if χ0 = 0. Taking into account Sη ≤ 1, we can deal with eCSη ≤ eC :

E
[∥∥∥ 1√

S

S−1∑
i=0

(
σ(XSk+i) + ∆Sk+i

)
εSk+i(XSk+i)− ζSk (XSk)

∥∥∥2∣∣∣XSk

]
≤
(

4M2
1 e
C + 48M2

0M
2e(C+1) + 4dσ2

1M
2
e

)(
η2α−γ + η +

ηβ(1− χ0)

S

)(
1 + ‖XSk‖2

)
+ 4M2

0

∥∥∥XSk − Y Xηk
∥∥∥2

. (11)

For the drift related terms we also use Assumption 1 and then Lemmas 5, 6:

E
[∥∥∥ S−1∑

i=0

(
b(XSk+i)− b(Y Xηk ) + δSk+i)

)∥∥∥2∣∣∣XSk

]
≤S

S−1∑
i=0

E
[∥∥∥b(XSk+i)− b(Y Xηk ) + δSk+i)

∥∥∥2∣∣∣XSk

]
≤S

S−1∑
i=0

E
[
3‖δSk+i‖2 + 3‖b(XSk+i)− b(XSk)‖2 + 3‖b(XSk)− b(Y Xηk )‖2

∣∣∣XSk

]
≤S

S−1∑
i=0

(
3M2

1 η
2α
(
1 + E

[∥∥XSk+i

∥∥2∣∣XSk

])
+ 3M2

0E
[
‖XSk+i −XSk‖2

∣∣XSk

])
+ 3S2M2

0 ‖XSk − Y Xηk‖2

≤S
S−1∑
i=0

(
3M2

1 η
2αeCiη

(
1 + ‖XSk‖2

)
+ 3M2

0C
′iη
(
1 + ‖XSk‖2

))
+ 3S2M2

0 ‖XSk − Y Xηk‖2

≤S2
(
3M2

1 η
2αeCSη + 3M2

0C
′η
)
(1 + ‖XSk‖2) + 3S2M2

0E‖Y Xηk −XSk‖2.

Taking into account Sη ≤ 1, we can deal with eCSη ≤ eC :

E
[∥∥∥ S−1∑

i=0

(
b(XSk+i)− b(Y Xηk ) + δSk+i)

)∥∥∥2∣∣∣XSk

]
≤S2

(
3M2

1 η
2αeC + 3M2

0C
′η
)
(1 + ‖XSk‖2) + 3S2M2

0E‖Y Xηk −XSk‖2. (12)

Combining equation 10 with equation 11 and equation 12, we obtain:

E‖Y Xη(k+1) −XS(k+1)‖2
∣∣XSk

]
≤
(
1− 2Lη + L2η2 + η − Lη2

)
‖Y Xηk −XSk‖2

+ (η2 + η(1− Lη))
(
3M2

1 η
2αeC + 3M2

0C
′η
)
(1 + ‖XSk‖2)

+ (η2 + η(1− Lη)) · 3M2
0E‖Y Xηk −XSk‖2

+ ηηγ · 4
(
M2

1 e
C + 12M2

0M
2eC+1 + dσ2

1M
2
e

)(
η2α−γ + η +

ηβ(1− χ0)

S

)(
1 + ‖XSk‖2

)
+ ηηγ · 4M2

0

∥∥∥XSk − Y Xηk
∥∥∥2
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≤
(
1− η(2L− L2η − 1− 3M2

0 − 3M2
0 η − 4M2

0 η
γ)
)
‖Y Xηk −XSk‖2

+ η
(
3M2

1 e
C + 3M2

0C
′ + 4M2

1 e
C + 48M2

0M
2eC+1 + 4dσ2

1M
2
e

)
·
(
η2α + η2αη + η2 + η3 + ηηγ +

ηβ+γ(1− χ0)

S

)(
1 + ‖XSk‖2

)
.

With L ≥ 1 + 10M2
0 , Lη ≤ 1 and η = Sη ≤ 1, we get

E‖Y Xη(k+1) −XS(k+1)‖2
∣∣XSk

]
≤2
(

3M2
1 e
C + 3M2

0C
′ + 4M2

1 e
C + 48M2

0M
2e(C+1) + 4dσ2

1M
2
e

)
·
(
η2α + η +

ηβ+γ(1− χ0)

S

)(
1 + ‖XSk‖2

)
.

Definition of R2(t) finishes the proof.

Lemma 8 (Lemma 2). Let Assumption 1 holds. Then for any k ∈ N0:

sup
t≤kη

E
∥∥Y X[t/η]η − Yt

∥∥2
= C2η

1+γR2(kη),

where R2(kη) ≥ max
{

1; maxk′≤k E‖Xk′‖2
}

and C2 ≤ 4(L2 +M2)
(

1 + 3C ′′
)(

1 +
∥∥x0

∥∥2
)

(for

the definitions of L and C ′′ see Lemma 6).

Proof. For t = [t/η]η + δ we write:

E
∥∥∥Y X[t/η]η − Yt

∥∥∥2

≤2δ2L2E
∥∥Y X[t/η]η −X[t/η]S

∥∥2
+ δM2(2δ + 2ηγ)(1 + E

∥∥Y X[t/η]η

∥∥2
)

≤(2δ2M2 + 4M2ηγδ)(1 + E
∣∣X[t/η]S

∣∣2)

+ (2δ2(L2 +M2) + 4M2ηγδ)E
∥∥Y X[t/η]η −X[t/η]S

∥∥2

≤2M2Sη
(

(η + 2ηγ)(1 +
∥∥x0

∥∥2
)eCkη + (Sη

( L2

M2
+ 1
)

+ 2ηγ) max
ηk′≤ηk

E
∥∥Y Xηk′ −Xk′

∥∥2
)

≤
(

(2(L2 +M2)η2 + 2M2η1+γ
)(

(1 +
∥∥x0

∥∥2
)eCkη + max

ηk′≤ηk
E
∥∥Y Xηk′ −Xk′

∥∥2
)
.

Lemma 9 (Lemma 3). Let Assumption 1 holds. Then for L1 ≥ 2M0 + 4M0η
γ and any time horizon

t = kη ≥ 0:

W2
2 (L(Yt),L(ZYt )) ≤ E

∥∥Yt − ZYt ∥∥2 ≤ sup
t′≤t

E
∥∥∥Y X[t′/η]η − Yt′

∥∥∥2

.

Proof. Consider process Qt = Yt − ZYt . Note that Q0 = 0d. We have the following SDE for the
process Qt:

dQt =− L1Qtdt+
(
b(Y X[t/η]η)− b(ZYt )

)
dt+

√
2ηγ(σ(Y X[t/η]η)− σ(ZYt ))dWt

=− L1Qtdt+ (b(Yt)− b(ZYt ))dt+ (b(Y X[t/η]η)− b(Yt))dt

+
√

2ηγ(σ(Yt)− σ(ZYt ))dWt +
√

2ηγ(σ(Y X[t/η]η)− σ(Yt))dWt.

Now, by applying Itô lemma (see Theorem 8.1, p. 220 and Remark 9.1 on p. 257 in Baldi & Baldi
(2017)) to f(x) = x2 we obtain the following bound on the process ‖Qt‖2:

‖Qt‖2 ≤
∫ t

0

(
− 2L1‖Qt‖2 + 2〈Qt, b(Yt)− b(ZYt )〉+ 4ηγtr

((
σ(Yt)− σ(ZYt )

)2)
+2
∥∥b(Y X[t/η]η)− b(Yt)

∥∥2
+ 4ηγtr

((
σ(Y X[t/η]η)− σ(Yt)

)2))
dt+ ξt
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≤
∫ t

0

(
(−2L1 + 2M0 + 4M2

0 η
γ)‖Qt‖2 + (2M0 + 4M2

0 η
γ)
∥∥∥Y X[t/η]η − Yt

∥∥∥2)
dt+ ξt,

where ξt =
√

2ηγ
∫ t

0
〈2Qt,

(
σ(Y X[t/η]η)− σ(ZYt )

)
dWt〉.

Next, by noting that ξ0 = 0 and ξt by it’s definition is a martingale process we have Eξt = 0 (see
Remark 9.2 on p. 264 in Baldi & Baldi (2017)) and, thus, by taking expectation E‖Qt‖2 we arrive at
the following bound:

E‖Qt‖2 ≤ E
∫ t

0

(
(−2L1 + 2M0 + 4M2

0 η
γ)‖Qt‖2 + (2M0 + 4M2

0 η
γ)
∥∥∥Y X[t/η]η − Yt

∥∥∥2)
dt

=

∫ t

0

(
(−2L1 + 2M0 + 4M2

0 η
γ)E‖Qt‖2 + (2M0 + 4M2

0 η
γ)E
∥∥∥Y X[t/η]η − Yt

∥∥∥2)
dt

≤
∫ t

0

(
(−2L1 + 2M0 + 4M2

0 η
γ)E‖Qt‖2 + (2M0 + 4M2

0 η
γ)supt′≤tE

∥∥∥Y X[t′/η]η − Yt′
∥∥∥2)

dt

Recall that we can choose L1 arbitrary in the definition of ZYt . We want to make sure that −2L1 +

2M0+4M2
0 η

γ < 0. In that case, we will obtain that E‖Qt‖2 ≤ (2M0+4M2
0 η
γ)

2L1−2M0−4M2
0 η
γ supt′≤tE

∥∥∥Y X[t′/η]η−

Yt′
∥∥∥2

. To simplify the bound, we are going to require (2M0+4M2
0 η
γ)

2L1−2M0−4M2
0 η
γ ≤ 1. Thus, by considering

L1 such that −2L1 + 2M0 + 4M2
0 η

γ ≤ −(2M0 + 4M2
0 η

γ) the lemma implies due to the fact that
W2

2 (L(Yt),L(ZYt )) ≤ E
∥∥Yt − ZYt ∥∥2

= E‖Qt‖2.

B.3 PROOF OF THEOREM 1
The proof idea relies on multiple applications of Theorem 4 to get a process for which the classic
Girsanov theorem 3 holds. To apply the theorem 3, we must ensure that the final process is Markovian

diffusion, for which the Novikov type condition Ee
∫ T
0

∥∥g(Zt,t)∥∥2

ds <∞ holds. While 4 will give us
Markovian property, to get the Novikov condition, we are going to build a sequence of intermediate
processes using stopping time τr = T ∧ infτ≥0{

∫ τ
0

∥∥g(Zt, t)
∥∥2

dt ≥ r2} and then we are going to
select a subsequence rn →∞ which in the limit will upper bound DKL for the original process Zt.
To do the former, we will prove the following Lemma first.
Lemma 10. Assume that Z1, . . . , Zk, . . . is a sequence of random variables converging in law to the
random variable Z0 and such that ∃ξi , dL(Zi)

dµ for some measure µ ∀i ∈ {0, 1, . . .}. Moreover we
assume that DKL

(
ξiµ
∣∣∣∣µ) <∞∀i ∈ {0, 1, . . .} uniformly and that measure µ is non-singular with

respect to standard Lebesgue measure on Rd. Then it holds:

DKL

(
ξ0µ
∣∣∣∣µ) ≤ sup

k≥1
DKL

(
ξkµ
∣∣∣∣µ) <∞

Proof. Let’s define the following unity partition system Pn =
{
ξ−1
0 ([m2−n, (m+1)2−n)

∣∣∣0 ≤ m ≤
n2n,m ∈ N0

}
∪
{
ξ−1
0 ([n,∞))

}
. For each density ξk we define

Γn(ξk) =
∑
A∈Pn

1A
Eµ
(
ξk1A

)
µ(A)

≥ 0

Γm(ξk) is essentially finite-sum approximation of Lebesgue integral of ξk. Let ξ<nk = ξk ∧ n =
min{ξk, n}. We have:

Γn(ξ<nk ) =
∑
A∈Pn

1A
Eµ
(
ξ<nn 1A

)
µ(A)

=
∑
A∈Pn

1A
Eµ
(
ξ<n0 1A

)
µ(A)

+
∑
A∈Pn

1A
Eµ
(
(ξ<nn − ξ<n0 )1A

)
µ(A)

Consider taking subsequence kn such that
∣∣Eµ((ξ<nkn −ξ<n0 )1A

)∣∣ ≤ 2−nµ(A). Since ξk is convergent
in law to ξ0 we have that ξ<nk convergent weakly to ξ<n0 as k →∞, hence for each n and for eachA ∈
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Pn there exists kn,A large enough so that ∀k ≥ kn,A we have
∣∣Eµ((ξ<nkn,A − ξ<n0 )1A

)∣∣ ≤ 2−nµ(A).
SincePn is finite we can define kn = maxA∈Pn kn,A <∞, which satisfies

∣∣Eµ((ξ<nkn −ξ<n0 )1A
)∣∣ ≤

2−nµ(A) for all A ∈ Pn.

Thus, we have: ∣∣∣Γn(ξ<nkn )−
∑
A∈Pn

1A
Eµ
(
ξ<n0 1A

)
µ(A)

∣∣∣ ≤ 2−n

Moreover, observe that ξ<n0 ≡
∑
A∈Pn ξ

<n
0 1A since Pn is unity partition. We have almost surely:∣∣∣ξ<n0 −

∑
A∈Pn

1A
Eµ
(
ξ<n0 1A

)
µ(A)

∣∣∣ ≤ ∑
A∈Pn

1AEµ
(
(ess sup

A
ξ<n0 − ess inf

A
ξ<n0 )1A

)
≤ max
A∈Pn

∆Aξ
<n
0 ,

where ∆Aξ
<n
0 = ess supA ξ

<n
0 − ess infA ξ

<n
0 . By definition of Pn we have that ∆Aξ

<n
0 ≤ 2−n,

which by combining both inequalities implies almost surely:

ξ<n0 − 2−n+1 ≤ Γn(ξkn) ≤ ξ<n0 + 2−n+1 ≤ Γn(ξkn) + 2−n+2

Note that Γn(1<n) = 1, therefore, by dominated convergence theorem Edmonds (1977)
with Data Processing inequality 2 DKL

(
Γn(ξkn)µ

∣∣∣∣Γn(1)µ
)
≤ DKL

(
ξknµ

∣∣∣∣µ) we obtain
supk≥1DKL

(
ξkµ
∣∣∣∣µ) ≥ limn→∞DKL

(
Γn(ξkn)µ

∣∣∣∣µ) = DKL

(
ξ0µ
∣∣∣∣µ) which finishes the proof.

Proof of Theorem 1. By applying Theorem 4 we obtain the process (Zt)t≥0 that has the same one-
time marginals as the process (Zt)t≥0:

dZt = (b(Zt) + E
(
g∗t
∣∣Zt = Zt

)
)dt+ σ(Zt)dWt

Denote by g(x, t) , E
(
g∗t
∣∣Zt = x

)
. We have that DKL

(
L(ZT )

∣∣∣∣L(Z∗T )) = DKL

(
L(ZT )

∣∣∣∣L(Z∗T )).
Consider defining processes Zrt for r ≥ 0 as:

dZrt = (b(Zrt ) + gr(Z
r
t , t))dt+ σ(Zrt )dWt

where we define the following progressively measurable process gr(Z
r
t , t) =

1
{
∫ t
0

∥∥g(Zrt ,t)∥∥2
<r2}

g(Zrt , t). Denote by τr = T ∧ infτ≥0{
∫ τ

0

∥∥g(Zt, t)
∥∥2

dt ≥ r2}. Clearly that τr

is a stopping time, i.e. {τr = t} is Zt-measurable ∀t ≥ 0. Moreover, we have the following property
Zt1t<τr = Zrt 1t<τr holding almost surely. Moreover, τr → T as r →∞ due to the continuity of
probability which implies that Zrt → Zt∀t ∈ [0, T ] holding almost surely as r →∞. And, finally,
we can rewrite gr(Z

r
t , t) = 1

{
∫ t
0

∥∥g(Zrt ,t)∥∥2
<r2}

g(Zrt , t) = 1{t<τr}g(Zrt , t) = 1{t<τr}g(Zt, t).

By applying Theorem 4 again to the process (Zrt )t≥0 we obtain the process (Z
r

t )t≥0 that has the
same one-time marginals:

dZ
r

t = (b(Z
r

t ) + E
(
gr(Z

r
t , t)

∣∣Zrt = Z
r

t

)
dt+ σ(Z

r

t )dWt

Denote by g̃r(x, t) = E
(
gr(Z

r
t , t)

∣∣Zrt = x
)

and by W r
t ,Wt+

∫ t
0
σ(Z

r

s)
−1g̃r(Z

r

t , t))ds. Consider
process Z∗t in the probability space where W ∗t is a Wiener process and satisfies:

dZ∗t = b(Z∗t )dt+ σ(Z∗t )dW ∗t

Let µT , L(Z∗t : 0 ≤ t ≤ T ) which is independent from r. Let νrT , L(Z
r

t : 0 ≤ t ≤ T ). Note

that the Novikov condition holds Ee
∫ T
0

∥∥σ(Z
r
s)−1g̃r(Z

r
t ,t)
∥∥2

ds ≤ eσ0
−2r2T < ∞∀T > 0. Then by

applying the Theorem 3 to Z
r

T and Z∗T we obtain the following sequence of inequalities:

DKL

(
νrT
∣∣∣∣µT )

Girsanov, 1
= E

∫ T

0

∥∥σ(Z
r

t )
−1g̃r(Z

r

t , t)
∥∥2

dt
Operator norm
≤ σ0

−2

∫ T

0

E
∥∥g̃r(Zrt , t)∥∥2

dt

Same marginals, 4
= σ0

−2

∫ T

0

E
∥∥g̃r(Zrt , t)∥∥2

dt
Jensen,‖E · ‖2 ≤ E‖ · ‖2 ,4

≤ σ0
−2

∫ T

0

E
∥∥gr(Zrt , t)∥∥2

dt
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Due definition of τr , gr= σ0
−2

∫ τr

0

E
∥∥gr(Zrt , t)∥∥2

dt
Due definition of τr , Zrt= σ0

−2

∫ τr

0

E
∥∥g(Zt, t)

∥∥2
dt

τr ≤ T and ‖ · ‖2 ≥ 0

≤ σ0
−2

∫ T

0

E
∥∥g(Zt, t)

∥∥2
dt

Same marginals, 4
= σ0

−2

∫ T

0

E
∥∥g(Zt, t)

∥∥2
dt

Jensen,‖E · ‖2 ≤ E‖ · ‖2 ,4
≤ σ0

−2

∫ T

0

E
∥∥g∗t ∥∥2

dt
By assumption

< ∞,

where we use Jensen inequality as ‖E · ‖2 ≤ E‖ · ‖2 whenever expression inside of ‖ · ‖2 was obtained
from application of Theorem 4 and use property of the same Theorem 4 that one-time marginals
coincide for processes that we obtain from applying it, which implies equality of expectations.

Then we have that ∀r ≥ 0 the following uniform majorization condition holds DKL

(
νrT
∣∣∣∣µT ) ≤

σ0
−2
∫ T

0
E
∥∥g∗s∥∥2

ds < ∞. By Data Processing inequality 2 we have DKL

(
L(Z

r

T )
∣∣∣∣L(Z∗T )

)
≤

DKL

(
νrT
∣∣∣∣µT ). Using the fact that L(Z

r

T ) = L(ZrT ) we obtain majorization condition:

DKL

(
L(ZrT )

∣∣∣∣L(Z∗T )
)
≤ DKL

(
νrT
∣∣∣∣µT ) ≤ σ0

−2

∫ T

0

E
∥∥g∗s∥∥2

ds <∞

By noting L(ZrT )⇒ L(ZT ) as r →∞ and DKL

(
L(ZT )

∣∣∣∣L(Z∗T )) <∞ by Lemma 10 we obtain:

DKL

(
L(ZT )

∣∣∣∣L(Z∗T )) ≤ sup
r≥0

DKL

(
L(ZrT )

∣∣∣∣L(Z∗T )) ≤ σ0
−2

∫ T

0

E
∥∥g∗s∥∥2

ds <∞

Finally, using property L(ZT ) = L(ZT ) we obtain the desired:

DKL

(
L(ZT )

∣∣∣∣L(Z∗T )) ≤ σ0
−2

∫ T

0

E
∥∥g∗s∥∥2

ds

B.4 PROOF OF LEMMA 4
Proof. Recall

C2
W
(
L(Zt)

)
=

1

4
min

a>0,z∈Rd
logE

1
a exp

(3

2
+ a
∥∥Zt − z∥∥2

)
To prove that bound we consider the following ODE with z(0) = x0:

dz(t)

dt
= b(z(t))

Using it as z ← z(t) and a ← a(t) = M0ε
4dσ2

1η
γ e
−2mt for m ≥ M0(1 + ε) we consider process

St = ϕ(t, Zt) for ϕ(t, z) = ea(t)‖z−z(t)‖2 . Note that

∂tϕ = a(t)
(
− 2〈b(zt), z − z(t)〉 − 2m‖z − z(t)‖2

)
ϕ(t, z).

By applying Itô lemma (see Theorem 8.1, p. 220 and Remark 9.1 on p. 257 in Baldi & Baldi (2017))
to St = ϕ(t, Zt) and taking expectation, we obtain the equation:

dESt = E
(
∂tϕ(t, Zt) +Aϕ(t, Zt)

)
dt,

where we used the fact that E
(
dWt

∣∣Wt

)
= 0 to eliminate all terms with dWt (see Remark 9.2 on p.

264 in Baldi & Baldi (2017)). Substituting there definition of ϕ we obtain:

dEϕ(t, Zt) = E
(
a(t)

(
−2〈b(zt), Zt−z(t)〉−2m‖z−z(t)‖2

)
ϕ(t, z)+2a(t)〈b(zt), Zt−z(t)〉ϕ(t, z)+

+ηγTr
(
σ(Zt)

(
2a(t)Id + 4a2(t)(Zt − zt)(Zt − zt)T

)
σT (Zt)

)
ϕ(t, Zt)

)
dt

Simplifying yields:

dEϕ(t, Zt) = E
(
a(t)

(
− 2m‖z − z(t)‖2

)
ϕ(t, z)+
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+ηγTr
(
σ(Zt)

(
2a(t)Id + 4a2(t)(Zt − zt)(Zt − zt)T

)
σT (Zt)

)
ϕ(t, Zt)

)
dt

Since σ(x) ≤ σ1Id we can bound the last term as 4ηγa2(t)dσ2
1‖Zt − zt‖2. Thus, by choosing m ≥

M0(1 + ε) we can ensure that 2a(t)m ≥ 4ηγa2(t)dσ2
1‖Zt − zt‖2 and, therefore, to upper bound all

quadratic terms by zero, leaving contribution only from term 2a(t)ηγTr
(
σ(Zt)σ

T (Zt)
)
ϕ(t, Zt) ≤

2a(t)ηγdσ2
1ϕ(t, Zt). Which in turn allows us to reduce the estimate of w(t) = Eea(t)‖Zt−z(t)‖2 to

deterministic Bihari-LaSalle inequality 5

w(t) ≤
∫ t

0

w(t)dA(t) + 1,

where we denoted as A(t) =
(σ2

1M0ε
m (1− e−2mt)

)
, A(0) = 0, A(t)↗ σ2

1M0ε
m as t→ +∞. Using it

gives us bound

w(t) ≤ exp
((σ2

1M0ε

m
(1− e−2mt)

))
≤ exp

(σ2
1M0ε

m

)
.

Finally, we obtain C2
W
(
L(Zt)

)
≤ ηγ

dσ2
1

M0
eM0(1+ε)t

(
3
2ε + 1

1+ε

)
by noting that C2

W
(
L(Zt)

)
≤

log
(
e

3
2w(t)

) 1
a(t) =

3
2 +logw(t)

a(t) and substituting formulas for w(t) and a(t), which concludes the
proof.

Remark 2. Constant ε > 0 can be chosen arbitrarily. smaller values lead to tighter asymptotic
behavior, while larger values lead to tighter constants on finite horizon T . For simplicity, we choose
ε = 1. Therefore, we have that

CW
(
L(Zt)

)
≤ η

γ
2 σ1e

M0t
( 2d

M0

) 1
2

Remark 3. This result is aligned up to constant multipliers with the result of Remark 10.4 on p. 319
in Baldi & Baldi (2017). However, there is no explicit expression for some constants or proof of it
in Baldi & Baldi (2017). Nevertheless, they claim that a = a(t) can be selected arbitrarily as long
as a < e−2M0T

2Tσ2
1η
γ . This is slightly better asymottically for T →∞ as 1

T � eεT (as in our result) for

arbitrarily small ε > 0. What’s important here is that the order of growth eO(T ) is the same, and the
scaling factor O( 1

ηγ ) which is extremely important for the main result of our work, without which
we won’t be able to cover the case of γ = 1. While it may be interesting to derive the sharpest bound
regarding exponential growth, we assume that horizon T is fixed in our work. Therefore, the bound
and order of the bound in Lemma 4 are sharp up to constant multipliers.

Moreover, in Baldi & Baldi (2017), this similar result is claimed to be true under the assumption of
uniform ellipticity and uniformly bounded diffusion coefficient (i.e., 0 < σ0 ≤ σ(x) ≤ σ1 <∞∀x)
which is aligned with the Assumption 1.

B.5 PROOF OF THEOREM 2

To prove the Theorem, we first will apply Theorem 1 to obtain the bound for the very last step in
upper bounding, i.e., between ZYt and Zt. Since that theorem gives bound on DKL we are going to
use transportation bound (Eq. 6) to obtain the bound onW2. After that, we have bounds between
all subsequent pairs of processes that we have built: Xk′ , XSk, Y

X
ηk , Yηk′ , Z

Y
ηk′ , Zk′η . Thus, triangle

inequality allows us to upper bound W2

(
L(Xk′),L(Zk′η)

)
by the sum of bounds between each

subsequent process.

Corollary 6. We have that for time horizon t = ηk ≥ 0 the following bound holds:

DKL

(
L(ZYkη)

∣∣∣∣L(Zkη)) ≤ η−γC3kηR
2(kη)

(
η2α +

ηγ+β

S
(1− χ0) + η

)
,

where C3 ≤ 2(L2C′′+L2
1C2)

σ2
0

(see Lemma 7 for the definition of C ′′, Lemma 8 for the definitions of L
and C2, and Lemma 9 for the definition of L).
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Proof. Recall that ZYt has the following SDE:

dZYt =
(
b(ZYt ) +GSt

)
dt+

√
ηγσ(ZYt )dWt,

where GSt = L(X[t/η]S −Y X[t/η]η)−L1(ZYt −Yt). By applying Theorem 1 to ZYt and Zt, we obtain
the following:

DKL

(
L(ZYkη)

∣∣∣∣L(Zkη)) ≤ 2

ηγσ0
2

∫ kη

0

E
∥∥GSt ∥∥2

dt

≤ 2

ηγσ0
2

∫ kη

0

E
∥∥L(X[t/η]S − Y X[t/η]η)− L1(ZYt − Yt)

∥∥2
dt

≤ 2

ηγσ0
2

∫ kη

0

(
L2E

∥∥Y X[t/η]η −X[t/η]S

∥∥2
+ L2

1E
∥∥ZYt − Yt∥∥2

)
dt

By using Lemma 3 we obtain the bound:

DKL

(
L(ZYkη)

∣∣∣∣L(Zkη)) ≤

≤ 2

ηγσ0
2

∫ kη

0

(
L2E

∥∥Y X[t/η]η −X[t/η]S

∥∥2
+ L2

1sups≤kηE
∥∥∥Y X[s/η]η − Ys

∥∥∥2)
dt

≤ 2kη

ηγσ0
2

(
L2supt≤kηE

∥∥Y X[t/η]η −X[t/η]S

∥∥2
+ L2

1supt≤kηE
∥∥∥Y X[s/η]η − Ys

∥∥∥2)
Next, by using Lemmas 1 and 2 we bound both terms to obtain:

DKL

(
L(ZYkη)

∣∣∣∣L(Zkη)) ≤ 2kη

ηγσ0
2

(
L2R2(kη)C ′′

(
η2α+

ηγ+β

S
(1−χ0)+η

)
+L2

1R
2(kη)C2η

1+γ
)

Finally, by noting that η2α + ηγ+β

S (1− χ0) + η ≥ η1+γ we obtain the desired result.

Proof of Theorem 2. Let’s introduce constant δ = η2α+ ηγ+β

S (1−χ0)+Sη (appears first in Lemma 7;
χ0 = 1 iff εk is Gaussian (see Assumption 1)). We want to produce a bound onW2(L(Xk′),L(Zηk′)).
To do so we consider k′ = Sk + i, i < S and rewrite it as:

W2(L(Xk′),L(Zk′η)) ≤ W2(L(Xk′),L(XSk)) +W2(L(XSk),L(Zηk′))

We note that L2 norm between random variables upper bounds Wasserstein-2 distance between their
distributions by definition of the metric. Therefore, the first term is bounded by Lemma 6 as

W2(L(Xk′),L(XSk)) ≤ C ′
1
2Sη ≤ C ′

1
2 δ

1
2 .

To bound the second one, we consider the following trick:

W2(L(XSk),L(Zηk′))

≤W2(L(XSk),L(Y Xηk )) +W2(L(Y Xηk ),L(Yηk′))

+W2(L(Yηk′),L(ZYηk′)) +W2(L(ZYηk′),L(Zηk′))

The first term is bounded by Lemma 7:

W2(L(XSk),L(Y Xηk )) ≤ C ′′R(k′η)δ
1
2 ,

where C ′′ is defined in Lemma 7). The second one can be bounded by Lemma 8 as

W2(L(Y Xηk ),L(Yηk′)) ≤ C2(Sη)
1+γ
2 R(k′η) ≤ C2R(k′η)δ

1
2 .

The third one by Lemma 9 and then by Lemma 7 by the same upper bound exactly as the second one.
To bound the last one we use entropy bound onW2 (equation 6):

W2(L(ZYηk′),L(Zηk′)) ≤ CW
(
L(Zt)

) (
D

1
2

KL

(
L(ZYηk′)

∣∣∣∣L(Zηk′)
)

+D
1
4

KL

(
L(ZYηk′)

∣∣∣∣L(Zηk′)
))
,

and by using Corollary 6 with Lemma 4 and Remark 2 we bound it as:

W2(L(ZYηk′),L(Zηk′))

26



Published as a conference paper at ICLR 2024

≤ η
γ
2

( 2d

M0

) 1
2

σ1e
M0k

′η
(
C

1
2
3 η
− γ2R(k′η)(k′η)

1
2 δ

1
2 + 2−

1
4C

1
4
3 η
− γ4R

1
2 (k′η)(k′η)

1
4 δ

1
4

)
≤
( 2d

M0

) 1
2

σ1e
M0k

′η
(
C

1
2
3 R(k′η)(k′η)

1
2 δ

1
2 + 2−

1
4C

1
4
3 R

1
2 (k′η)(k′η)

1
4 η

γ
4 δ

1
4

)
Finally, we obtain the bound between W2(L(Xk′),L(Zk′η)) by summing up those bounds and
simplifying:

W2(L(Xk′),L(Zk′η))

≤
((
C4(k′η)

1
2 eM0k

′η + C5

)
R(kη) + C ′

1
2

)
δ

1
2 + C6(k′η)

1
2 eM0k

′ηR
1
2 (kη)η

γ
4 δ

1
4 ,

where C4 =
(

2d
M0

) 1
2

σ1C
1
2
3 , C5 = C ′′ + 2C2, C6 =

(
2

1
2 d
M0

) 1
2

σ1C
1
4
3 and R(k′η) ≤

e4(M+1)k′η
√

1 + ‖x0‖2 by Lemma 5.

Recall that δ = η2α + ηγ+β

S (1 − χ0) + Sη, thus, to eliminate S we set S = η−
1−β
2 (1 −

χ0) + χ0. Observe that Sη = η
1+β
2 (1 − χ0) + χ0η ≤ 1. Moreover, by defining θ =

min
{
α; (γ+1)(1+χ0)+(γ+β)(1−χ0)

4

}
, from Corollary 1 we have that δ ≤ 3η2θ. Substituting and

re-arranging the constants yields the final expression of the form:

W2

(
L(Xk′),L(Zk′η)) = O

((
1 + (k′η)

1
2

)
eO(k′η)ηθ + (k′η)

1
4 eO(k′η)η

θ
2 + γ

4

)
,

where constants depend only on ones defined in Assumption 1.
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