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Non-Binary Discrete Tomography by Continuous
Non-Convex Optimization

Matthias Zisler, Jörg Hendrik Kappes, Claudius Schnörr, Stefania Petra, and Christoph Schnörr

Abstract—We study an energy formulation for non-binary dis-
crete tomography and introduce a non-convex coupling term in or-
der to combine discrete constraints with a continuous reconstruc-
tion method based on total variation regularization. The optimiza-
tion is carried out by a generalized forward–backward splitting
algorithm for non-convex functions, which exploits the problem
structure and is guaranteed to globally converge to a local opti-
mum. A detailed numerical evaluation on standard test-datasets
demonstrates that the proposed algorithm returns more accurate
reconstructions from a few number of projection angles than com-
peting methods.

Index Terms—Discrete tomography, limited-angle tomography,
non-binary, non-convex optimization, reconstruction, relaxation,
total variation regularization.

I. INTRODUCTION

A. Overview, Motivation

TOMOGRAPHY is a key imaging method [1]. Applica-
tions are widespread from medical imaging [2] to natural

sciences, engineering [3] and industry, like non-destructive ma-
terial testing [4] for quality inspection. In computer tomogra-
phy (CT), the central task is to reconstruct an object in terms
of a volume function that corresponds to the absorption of rays
passing through the object. The input data to the reconstruction
algorithm are projection images of the object where each pixel
corresponds to a line integral along a corresponding ray.

We are particularly interested in scenarios where the number
of projections is very small in comparison to the sampling rates
established for standard CT reconstruction methods [1]. Such
scenarios are motivated by applications that, for instance, en-
able only limited-angle imaging set-ups or require synchronous
recording by several cameras to minimize acquisition time and
to eliminate inaccuracies that otherwise would be caused by a
moving sensor.

In order to cope with such severely ill-posed reconstruction
problems [1], we make the crucial assumption that the range of
the volume function is finite and known. This assumption ef-
fectively restricts the admissible set to piecewise constant func-
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tions, which is reasonable in industrial quality inspection where
the function values are related to the piecewise homogeneous
material properties of the imaged object. Thus, the problem class
addressed in this paper belongs to the field of discrete tomogra-
phy [5]. The challenge is to design algorithms that incorporate
corresponding constraints into the reconstruction process while
avoiding combinatorially complex operations. To this end, we
devise and study a continuous non-convex variational approach.
Our focus in this paper is rather on the design of the approach
and the competitive numerical evaluation using established aca-
demical datasets, than on working out a specific application.

B. Related Work

In view of the huge literature on tomographic reconstruction,
we limit ourselves to the discussion of few recent, directly re-
lated works. We distinguish binary tomography and non-binary
discrete tomography.

Regarding binary tomography, Weber et al. [6], [7] suggested
a quadratic program together with a non-convex penalty term
for gradually enforcing binary functions. These functions were
reconstructed by difference of convex functions (DC) program-
ming resulting in a sequence of convex quadratic programs to
be solved. The increasing sequence of weights for gradually
enforcing the penalty term has to chosen heuristically, how-
ever. The specific case of binary tomography has spurred a lot
of research on dedicated algorithms that essentially exploit the
fact that each pixel (or voxel) only takes either of two values.
Batenburg [8], for instance, used polynomial time network flow
solvers for subproblems based on pairwise orthogonal projec-
tions directions, yet without proving convergence of the overall
scheme. A clever and fast multiscale heuristic is proposed in
[9], where a stochastic level-set method is explored in [10]. Re-
cently, Kappes et al. [11] proposed a recovery approach based
on a discrete graphical model constrained by the projection data.
Recovery is performed by a sequence of s-t graph-cuts which
gives fast and accurate binary reconstructions from a small num-
ber of projections.

The general case of non-binary (multivalued) discrete to-
mography is considerably more involved because the allowed
function values, encoded by unit vectors, span a simplex rather
than just a one-dimensional (1D) interval. In view of the piece-
wise constancy of admissible functions, a natural approach
is to consider convex sparsity promoting priors like the �1-
norm or the total variation (TV) functionals [12], [13] and to
round the continuous solution to a piecewise constant one in a
postprocessing step. While this approach connects the field of
discrete tomography to the fast evolving field of compressive
sensing and corresponding recovery guarantees [14], the prior
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information in terms of the finite set of function values is
not directly used for reconstruction. Regarding non-convex ap-
proaches, the authors of [15] proposed a dynamic programming
approach for using the �0-norm in order to directly enforce spar-
sity of the gradient. While this non-convex component concerns
regularization and necessitates a strategy for avoiding poor lo-
cal minima, we present a non-convex data term that utilizes
prior knowledge about the finites range set of the tomographic
reconstruction, without danger of getting trapped in poor local
minima as the experiments clearly demonstrate. Using this type
of prior knowledge is not possible with the approach [15].

Batenburg and Sijbers [16] proposed a very fast heuristic, the
Discrete Algebraic Reconstruction Technique (DART). Starting
with a continuous reconstruction by a basic algebraic recon-
struction method, a threshold operation is progressively applied
to obtain a piecewise constant function, followed by a smooth-
ing operation and performing again a continuous reconstruction,
to refine the uncertain boundaries, and further repeating these
steps. This approach leads to good results in practice but can-
not be characterized by an objective function that is optimized.
Moreover, the approach requires considerable parameter tuning,
as the authors describe in follow-up work [17]. The latter recent
work alleviates these issues by incorporating a TV regularization
term along with a scheme for steering the reconstructed function
towards discrete values. This combination bears some similarity
with the scope of our approach introduced in the present paper.
Yet, the objective functions as well as the numerical algorithm
are fairly different.

Tuysuzoglu et al. [18] suggested a local approximation of a
�2-fidelity term around an iteratively updated working point in
order to cast the non-binary discrete reconstruction problem into
a series of submodular binary problems within an α-expansion
approach (cf. [19]). This local approximation discards a lot of
information, however. As a consequence, a significantly larger
number of projections is needed in practice to get reasonable
reconstructions.

Maeda et al. [20] proposed an alternating optimization ap-
proach for maximizing the a posteriori probability of a prob-
abilistic model formulation which couples a continuous recon-
struction with the Potts model. However, there is no convergence
guarantee for the algorithm that alternates a continuous and dis-
crete block coordinate descent.

Varga et al. [21] proposed a heuristic algorithm to adaptively
combine an energy formulation with a non-convex polynomial
in order to steer the solution towards the allowed values. The
idea of enforcing integer constraints with a non-convex polyno-
mial penalty is closely related to the DC programming approach
[6], [7] in the binary case. Unlike [17], however, the DC pro-
gramming approach comes along with convergence guarantees.

We regard [16], [21] as state-of-the-art approaches and addi-
tionally considered the purely continuous approach [12] for a
comparison. We ignored the approach [18] which did not work
well unless considerably more projection data was added as
input data.

C. Contribution and Organization

We introduce a new coupling term as part of a continuous
non-convex variational approach to discrete tomography. This

term resembles the non-convex polynomial proposed by [21]
which was motivated as extension of the non-convex approach
[6], [7] to non-binary discrete tomography. Our term, however,
is derived in a more principled way as relaxation of the min-
imum distance to the set of admissible values. We explain in
detail the rationale behind the design of this coupling term. Fur-
thermore, by introducing an auxiliary variable representing the
probability of each admissible value at every pixel, we obtain a
procedure for computing the most likely discrete solution based
on a local minimum of the continuous approach. The latter is
optimized by a non-convex algorithm which exploits the prob-
lem structure and is guaranteed to converge to a local optimum.
A numerical evaluation on standard test-datasets demonstrates
that the proposed approach returns a piecewise constant function
which renders any rounding procedure unnecessary. Addition-
ally, these solutions obtained from a small number of projec-
tions are more accurate reconstructions in comparison to those
obtained by related approaches.

The manuscript is structured as follows. In Section II the non-
binary discrete tomography problem is formally defined and the
continuous TV reconstruction is briefly reviewed. Next, the cou-
pling term is introduced and discussed, followed by our overall
variational approach. We show in Section III how to tackle
the resulting non-convex optimization problem by an appro-
priate algorithm. In Section IV, we report results of numerical
experiments and compare to other methods from literature. We
conclude in Section V and indicate directions of future research.

II. MODEL FOR JOINT RECONSTRUCTION AND

DISCRETE LABELING

We first sketch the combinatorial problem formulation of
discrete tomography that motivates our tractable variational
approximation introduced and discussed in the subsequent
sections.

A. Problem

Discrete tomography is the reconstruction of an image from
its projections, which is defined on a bounded region tesselated
into pixels (or voxels in 3D) and only takes a few possible
intensities as values. Every single projection is a line integral
summing up all intensities (absorptions) hit by the projection
ray. The discrete reconstruction problem amounts to solving a
system of linear equations

Au = b, restricted to ui ∈ L, ∀ i = 1, . . . , N (1)

where
1) L := {c1 , . . . , cK } ⊂ [0, 1] is the set of possible intensi-

ties describing the expected CT values for a priori known
materials, and K = |L| is the number of materials;

2) u is the vector representing the intensities of the N pixels /
voxels of the image to be reconstructed, and N := n1 · ... ·
nd for images defined on a regular grid graph embedded
in Rd , d ∈ {2, 3};

3) b ∈ Rm are the measurements or projection values with
m denoting the total number of projection rays;
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4) A ∈ Rm×N is a sparse projection matrix, where each entry
aij corresponds to the length of the line segment of the ith
projection ray passing through the jth pixel / voxel.

Solving an equation system restricted to few allowed values
only is a hard combinatorial problem, however. Even in the
binary case, L = {0, 1}, the discrete reconstruction problem
is NP-hard if the number of projection angles is larger than
two [22]. As a consequence, we are interested in a suitable
energy formulation which approximates the non-binary discrete
tomography reconstruction problem. Our strategy is to introduce
an auxiliary variable z which represents the discretization of the
reconstructed image with respect to L. Then the reconstruction
u has no longer to be restricted to L. It suffices to enforces
similarity between u and z through a novel coupling term.

B. Variational Reconstruction Approach

Solving solely the projection constraints Au = b does not
make sense even without restricting the solution to the set of
possible intensities L. For, the equation system is underdeter-
mined (m � N ) when using only a few projection angles, and
noisy measurements take b outside of the range of A, if the pro-
jection matrix is rank deficient. Hence, even the “continuous”
reconstruction is a severely ill-posed inverse problem.

A basic energy minimization approach is to solve the projec-
tion constraints in the least-square sense with additional regular-
ization to ensure spatial coherence of the reconstructed image.
Since the image u only consists of a few known materials, u is as-
sumed to be piecewise constant and the gradient ∇u is assumed
to be sparse (see [14] for a sufficient uniqueness condition from
the compressive sensing viewpoint), where ∇ denotes the dis-
crete gradient with finite differences with Neumann boundary
conditions, see [23] for details. The most straightforward sparse
gradient regularization is TV, which can be seen as a discrete
version of the Rudin-Osher-Fatemi model [24]. This results in
the convex energy functional

ETVL2 (u) :=
1
2
‖Au − b‖2

l2
+ λ

N∑

i=1

|(∇u)i | + δ[0,1]N (u)

(2)
where λ > 0 is the regularization parameter which controls the
trade-off between taking into account the measured data and the
prior. The norm | · | can be either Euclidean to have isotropic TV
or the sum of absolute values for anisotropic TV. Additionally,
it has been empirically proven that a non-negativity box con-
straint u ∈ [0, 1]N increases the reconstruction performance.
This is accomplished by the indicator function δ[0,1]N (u) of the
functional (2), where δC (u) for a closed set C is defined as

δC (u) :=

{
0 if u ∈ C

∞ if u 	= C.
(3)

C. Discrete Labeling

The constraint u ∈ LN , i.e. the restriction of the image to the
finite set of possible values, renders the reconstruction problem
intractable. To alleviate this problem, we next introduce and
discuss a reformulation based on additional auxiliary variables
in order to gradually steer the solution towards the feasible set
LN of discrete labelings.

Our starting point is the minimum squared distance to mea-
sure closeness of u to LN

d(u,L) := min
c∈LN

‖u − c‖2
l2

=
N∑

i=1

minck ∈L(ui − ck )2 . (4)

We introduce an auxiliary variable z supposed to represent
the discrete version of u with respect to LN . Each value of L is
encoded by a corresponding unit vector in terms of z. Thus, the
admissible set for z is given by

S0 :=
{

z ∈ {0, 1}N ×K :
K∑

k=1

zik = 1, ∀ i = 1, . . . , N

}
. (5)

We rewrite the distance measure (4) accordingly

dp
S0

(u,L) = minz∈S0 D
p(u, z) (6a)

Dp(u, z) :=
K∑

k=1

N∑

i=1

zp
ik(ui − ck )2 with p ∈ {1, 2} (6b)

where the minimizer z of the coupling term Dp(u, z), for a
given fixed u, can be interpreted as a projection of u onto the
set LN .

An important aspect of the coupling term that will be dis-
cussed in more detail below, is a tight and smooth interplay
between u and z. To enable this, we avoid hard decisions in
terms of the integer-valued variable z and therefore relax the
condition z ∈ {0, 1}N ×K to z ∈ [0, 1]N ×K . Accordingly, the
feasible set S0 of eq. (5) is replaced by its convex hull that we
denote by S. Now, for every pixel i the vector (zik )K

k=1 is a
point of the standard simplex and hence can be interpreted as
the probability that ui takes the value ck ∈ L.

Fig. 1(a) shows the effect of the relaxation of S0 to S on the
distance given by the left-hand side of (6a), for both p = 1 and
p = 2 and the label set L = {0.0, 0.4, 1.0}. We first observe that
the distance values do not change whenever z ranges over the
original feasible set S0 : d1

S0
(u,L)= d2

S0
(u,L). In the relaxed

case, we still have

dp
S0

(u,L) = d1
S(u,L) (7)

for p = 1, 2 (blue curve in Fig. 1(a)), whereas d2
S(u,L) is a

smoothed version thereof (red curve in Fig. 1(a)).
Fig. 1(b) and (c) show how the variables z = (z1 , . . . , zK )
,

K = |L| = 3, affect these distances. The plots display the
relaxed distances dp

S(u(z),L), p = 1, 2, as z ranges over S
(rather than S0) on the right-hand side of (6a). The three
vertices correspond to the unique decisions for three labels
ck ∈ L, k = 1, 2, 3. Close to these vertices, the smoothing ef-
fect from panel (a) is visible in (c), in comparison to (b). And
both versions (b) (p = 1) and (c) (p = 2) create high costs for
switching from the decision c1 to c3 and vice versa, that are
visible as red peaks.

In summary, the relaxed distance d2
S(u,L) exhibits two

favourable properties: It is exact at values of u determined by
the vertices of S, and it is smooth in contrast to the piece-
wise quadratic distance d1

S(u,L) and the non-relaxed distances
dp
S0

(u,L), p = 1, 2. We will exploit this smooth coupling of
u and z for numerical optimization in order to compute high-
quality tomographic restorations u.
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Fig. 1. The distance functions dp
S0

(u,L) and dp
S (u,L) for the label set L =

{0.0, 0.4, 1.0}, before and after relaxation, respectively. Panel (a) illustrates
that the relaxation d1

S is tight whereas d2
S is a smooth version thereof. Panels

(b) and (c) show the dependency of the relaxed distance functions on z, as z
ranges over S on the right-hand side of (6a). We exploit in this paper the relaxed
distance function d2

S that is exact if u ∈ L and smooth in the entire region. (a)
The blue curve shows the distances d1

S0
(u,L) = d2

S0
(u,L) = d1

S (u,L) that all

coincide, whereas the relaxation d2
S (u,L) with p = 2 results in the smoothed

distance function displayed as red curve. (b) The relaxed distance function
d2
S (u(z),L) as z ranges over S, with uz = 〈z, c〉. (c) The relaxed distance

function d2
S (u(z),L) as z ranges over S, with uz = 1∑K

j = 1
z 2

j

∑K

k=1 z2
k ck .

Accordingly, based on (6b) we define the mapping

z = z(u), z : [0, 1]N → [0, 1]N ×K , u �→ arg min
z∈S

D2(u, z).

(8)
This function can be computed in closed form

z(u)il :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, if ui = ck ∧ l 	= k,

1, if ui = ck ∧ l = k,
(∑K

j=1
1

(ui −cj )2 (ui − cl)2
)−1

otherwise,

(9)

which results from the simplex constraint z ∈ S and the Fer-
mat’s (first order) optimality condition. Inserting this function
into D2(u, z) and fixing the second argument at some point u0
yields locally an upper quadratic envelope D2(u, z(u0)) of the
function (u, z) �→ D2(u, z) – see Fig. 2 for an illustration. Min-
imizing this local second-order approximation steers u towards
the value in L that is closest to u0 .

In order to further elucidate the coupling of u and z through
D2(u, z), we also visualize the functions z �→ D2(u0 , z) for
fixed u0 over the probability simplex z ∈ S. This is shown in
Fig. 3 for u0 ∈ {0.4, 0.5, 0.6}, where the black dot in each plot
shows the minimizer z(u0) of D2(u0 , z). Analogous to the local
quadratic upper envelopes u �→ D2(u, z(u0)) parametrized by
u0 , the functions z �→ D2(u0 , z) also constitute local quadratic

Fig. 2. Quadratic upper envelopes D2 (u, z(u0 )) of the distance D2 (u, z)
parametrized by u0 ,L = {0.0, 0.4, 1.0} and u0 ∈ {0.4, 0.5, 0.6}. Minimizing
these envelopes steers u towards the value in L that is closest to u0 .

Fig. 3. Visualization of the coupling term D2 (u0 , z) for fixed u0 over
the probability simplex z ∈ S, where the vertices correspond to the values
L = {0.0, 0.4, 1.0}. The black dot in each plot marks the minimizer z(u0 )
of D2 (u0 , z). The functions z �→ D2 (u0 , z) parametrized by u0 constitute
local upper quadratic envelopes of the function d2

S (u,L) shown in Fig. 1(c)).
Minimizing these envelopes locally steers z towards the vertices of the simplex.
(a) u0 = 0.6. (b) u0 = 0.5. (c) u0 = 0.4.

upper envelopes parametrized by u0 of the function d2
S(u,L)

shown in Fig. 1(c), which is steering z towards the vertices of
the simplex. We observe that if and only if u0 ∈ L, then the
optimal z is an unit vector.

Finally we combine the coupling D2(u, z), given by Eq. (6b),
and the continuous reconstruction energy ETVL2 (u), given by
Eq. (2). This results in the joint minimization problem with
respect to (u, z)

EJoint(u, z) :=
1
2
‖Au − b‖2

l2
+ λ

N∑

i=1

|(∇u)i | + δ[0,1]N (u)

+
α

2

K∑

k=1

N∑

i=1

z2
ik(ui − ck )2 + δS(z) (10)
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TABLE I
OVERVIEW OF APPROACHES USED FOR A COMPETITIVE EVALUATION

Shortcut Reference Regularization Implementation

TV-L2 Section II-B, [12] anisotropic TV ours, with PD [23]
Joint Section II-C anisotropic TV ours, with PALM [25]
DART [16] none ASTRA-toolbox [26]
Varga [21] Sobolev semi-norm ours

TABLE II
PARAMETER SETTINGS FOR THE APPROACHES USED IN THE NUMERICAL

EVALUATION OF THE THREE DIFFERENT TEST-DATASETS

Approach TV-L2 Joint Varga [21] DART [16]

Parameters λ λ α α μ σ P f i x r itS A RT

Phantom 1: Maple Leaf 0.003 0.003 0.32 0.1 20 1.0 0.85 0.1 3
Phantom 2: Shepp-Logan 0.1 0.1 0.8 0.5 20 1.0 0.85 0.1 3
Phantom 3: Batenburg 0.2 0.2 0.8 1.0 20 1.0 0.85 1.0 3

For a varying number of projection angles, we always used the same parameter values.

with weighting parameter α and the indicator function δS(z)
constrains the vectors (zik)K

k=1 to the standard simplex at every
pixel i.

Of course, our relaxed model EJoint(u, z) will not deliver a
discrete solution with respect to the set of feasible intensities
L. The most straightforward remedy is to round the continuous
variable u to the closest value inL at every pixel. Likewise, the 1-
of-K coding variables (zik)K

k=1 could be rounded so as to choose
the most likely value at every pixel. Our numerical evaluation
reported in Section IV however revealed no rounding of z was
necessary as long as α was chosen large enough. That is, due to
the non-convex component of our approach discussed above, our
approach returned in each experiment a unique discrete decision
at each pixel.

Although each mapping u �→ EJoint(u, z) and z �→ EJoint
(u, z) is convex, the joint mapping (u, z) �→ EJoint(u, z) is non-
convex because of the term D2(u, z). While further convex
relaxation of this non-convex term could be done, following
McCormick’s [McCormick1976] relaxation of products of two
functions, for instance, or some recent extensions [21] could be
applied to relax the term z2

ij(ui − ck )2 , the coupling effect then
would become too weak.

Therefore, in the next section a non-convex optimization al-
gorithm is adopted which exploits the structure of the proposed
objective EJoint(u, z).

III. NON-CONVEX OPTIMIZATION

A. Proximal Alternating Linearized Minimization (PALM)

The authors of [25] propose the PALM algorithm for non-
convex, non-smooth problems. Their algorithm is based on a
proximal regularization of alternating minimizations combined
with a forward-backward splitting. Hence the objective function
is assumed to have the structure

ψ(u, z) := f(u) + g(z) + H(u, z) (11)

Fig. 4. The different phantom images which are used for the experiments. (a)
Phantom 1: Maple Leaf N = 32 × 32, K = 3. (b) Phantom 2: Shepp-Logan
N = 256 × 256, K = 6. (c) Phantom 3: Batenburg N = 512 × 512, K = 3.

Algorithm 1: PALM: Proximal Alternating Linearized
Minimization.

1. Initialization: start with any (u0 , z0) ∈ Rn ×Rm .
2. For each k = 0, 1, . . . generate a sequence

{(uk , zk )}k∈N as follows:
2.1 Take γ1 ≥ 1, set τk = γ1 · L1(zk ) and compute

uk+1 ∈ proxf
1

τ k

(
uk − 1

τk
∇uH(uk , zk )

)
. (13)

2.2 Take γ2 ≥ 1, set σk = γ2 · L2(uk+1) and compute

zk+1 ∈ proxg
1

σ k

(
zk − 1

σk
∇zH(uk+1 , zk )

)
. (14)

that suggests to decompose the problem into two block-
coordinates u and z and into smooth and non-smooth compo-
nents given by H and f , g functions, respectively. The analysis
of the PALM algorithm relies on the Kurdyka–Łojasiewicz (KL)
property of the objective function ψ and ensures global conver-
gence to a critical point. This means, the algorithm converges to
some critical point regardless of the initialization, but the critical
point depends on the initialization. Since the abstract concept
of KL functions is only needed for the proof of convergence of
PALM, it is not reviewed herein – see [25] for the exact defini-
tion and the proof. In addition, the functions have to satisfy the
following properties:

1) f : Rn → (−∞,+∞] and g : Rm → (−∞,+∞] are
proper and lower semicontinuous;

2) f , g and ψ are bounded from below;
3) the coupling function H : Rn ×Rm → R is twice con-

tinuous differentiable, H ∈ C2(Rn ×Rm );
4) the gradient in each block-coordinate of H(u, z) is glob-

ally Lipschitz continuous, u �→ H(u, z) ∈ C1,1
L1 (z )(R

n )
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Fig. 5. Numerical evaluation of the TV-L2 and the Joint approach for the different test-datasets (noiseless case) with a small number of projections in the noiseless
case. For both algorithms, the mean error measure was computed for non-rounded reconstructions and the relative pixel error after rounding. The proposed Joint
method needs at least one projection angle less to achieve exact reconstruction even in this severely underdetermined scenarios. This clearly demonstrates the
beneficial effect of coupling the variables (u, z) by the non-convex coupling term. (a) Phantom 1: Maple Leaf. (b) Phantom 2: Shepp-Logan. (c) Phantom 3:
Batenburg.

Fig. 6. Evolution of the relaxed 1-of-K coded zk variables on the test-dataset phantom 1 for 6 projection angles. Each row shows one of the layers z1 , z2 and
z3 representing the probability for setting a pixel to the values L = {0.0, 0.69, 1.0}. Black corresponds to 0 and white to the value 1. We observe that the Joint
approach converges without rounding to an exact and binary solution for each zk .

and z �→ H(u, z) ∈ C1,1
L2 (u)(R

m ), where L1(z) and
L2(u) denote the Lipschitz constants depending on z and
u respectively;

5) ψ is a KL function.
The proposed Algorithm 1 alternatingly updates the two

block-coordinates (u, z) where proxf
τ (p) denotes the proximal

operator defined by

proxf
τ (p) := argminu

1
2τ

‖u − p‖2
l2

+ f(u) (12)

and ∇u , ∇z denote the partial gradient with respect to block-
coordinates u and z.
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We note that the conditions γi ≥ 1, i = 1, 2 differ from the
conditions γi > 1, i = 1, 2 from the original PALM algorithm
[25]. This is due to the convexity of the functions f, g in our
case, in which the choices γi = 1, i = 1, 2 are also admissible
[25, Remark 4, (iv)].

The structure of the objective function (11) which the PALM
algorithm minimizes, is well suited for the joint CT reconstruc-
tion and discretization energy formulation EJoint(u, z) given by
(10). More precisely, we can identify the corresponding com-
ponents (11) of the objective function by setting

f(u) :=
1
2
‖Au − b‖2

l2
+ λ

N∑

i=1

|(∇u)i | + δ[0,1]N (u), (15)

g(z) := δS(z), (16)

H(u, z) :=
α

2

K∑

k=1

N∑

i=1

z2
ik(ui − ck )2 . (17)

According to Examples 2 and 4 of [25], the proposed model
EJoint(u, z) (10) enjoys the KL property because it is a sum
and composition of norms, real polynomials and indicator func-
tions of semi-algebraic sets. One easily checks that the other
requirements (1)–(4) stated above are also fulfilled.

We next compute the partial gradients of the coupling term
H(u, z) Eq. (17) and estimate the Lipschitz constants L1(z) and
L2(u) with trivial assumptions z ∈ S and ui, ck ∈ [0, 1]

(∇uH(u, z))i = α

K∑

k=1

z2
ik(ui − ck ) (18)

⇒ L1(z) = α max
i

K∑

k=1

z2
ik ≤ α · 1 (19)

(∇zH(u, z))ik = αzik(ui − ck )2 (20)

⇒ L2(u) = α max
i,k

(ui − ck )2 ≤ α · 1. (21)

Here we can see that if the linear version p = 1 of the coupling
term Dp(u, z) (6b) would be used with zik instead of z2

ik , then
the gradient∇zH(u, z) would be constant with respect to z, and
thus the Lipschitz constant would be zero and we would not get
a proper estimate on the stepsize for minimizing with respect
to z. Therefore we consider the quadratic version, p = 2, of the
coupling term Dp(u, z) (6b).

Finally, the PALM Algorithm 1 requires to attain a minimizer
in each subproblem. Thus, we have to evaluate the following
two proximal operators

proxf
1

τ k

(p) = argmin
u

τk

2
‖u − p‖2

l2
+

1
2
‖Au − b‖2

l2

+ λ

N∑

i=1

|(∇u)i | + δ[0,1]N (u), (22)

proxg
1

σ k

(q) = argmin
z

σk

2
‖z − q‖2

l2
+ δS(z). (23)

Exact evaluation is only possible for simple proximal map-
pings whereas more complicated proximal mappings can only
be solved approximately by an iterative algorithm. The second

Fig. 7. Demonstrating the improvement of reconstruction performance by the
Joint reconstruction and discretization approach in comparison to TV-L2 . From
left to right the three different phantoms are shown. The (left) column shows
the rounded output u of TV-L2 and the (right) column the output of z from our
proposed approach. The increased accuracy of reconstructions computed using
the Joint approach is clearly visible.

proximal mapping of g(z), Eq. (23), can be evaluated exactly:
it is the projection onto the standard simplex S. However, the
first proximal mapping of f(z), Eq. (22), cannot be evaluated
in closed form. We suggest an approximative evaluation using a
standard primal dual (PD) algorithm [23], since the subproblem
is convex.

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate our approach for joint CT
reconstruction and discretization to the set of feasible intensities
L = {c1 , . . . , cK } by numerical experiments and compare it to
other approaches.

A. Evaluation

1) Procedure: We focused on two different aspects in order
to compare our new approach.

The first one concerns the evaluation of the plain TV-L2
model, see Eq. (2), and the proposed joint approach as defined
by EJoint(u, z) in Eq. (10), henceforth short: Joint. Both models
are based on TV regularization where we used the anisotropic
version of TV. One may expect that the joint reconstruction
shows reconstruction performance better than TV-L2 , as it en-
hances the TV-L2 model by the discretization term which thus
incorporates further prior knowledge. For the TV-L2 model we
used our own MATLAB implementation based on the PD algo-
rithm, which returns a continuous output for u. In order to get
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Fig. 8. The plots are showing the numerical evaluation of the approaches for the different test-datasets with a small number of projections in the noise free
case. The mean error measure was applied on non-rounded and the relative pixel error on rounded outputs of the algorithms. Our proposed Joint approach has the
most accurate reconstruction quality even for fewer projection angles compared to the other methods. (a) Phantom 1: Maple Leaf. (b) Phantom 2: Shepp-Logan.
(c) Phantom 3: Batenburg.

a discrete solution, we rounded the continuous solution at each
pixel to nearest value of the set of allowed intensities.

We furthermore implemented in MATLAB the proposed Joint
approach with the PALM algorithm, as described in Section
III. Since the Joint approach is a relaxation, the output of the
algorithm may not necessarily be discrete and we also applied
rounding. This was done on both coupled variables (u, z), where
for the continuous variable u we rounded to the nearest value
of the set L. The 1-of-K coded variables (zik)K

k=1 were rounded
to the most likely value at every pixel i, i.e. to the unit vector
corresponding to the maximal zi-component. It turned out, how-
ever, that in all experiments we obtained a binary solution (up
to numerical precision) for the variables (zik )K

k=1 , so rounding
was not necessary for the proposed joint approach.

The second aspect concerns a comparison of our Joint ap-
proach to methods proposed in literature which can handle non-
binary tomography for the few-projection limited-angle sce-
nario. Table I lists all considered approaches. We compared
to the DART [16] with the publicly available implementation
included in the ASTRA-toolbox [26], and we used the SART
algorithm for continuous iterative algebraic reconstruction. Re-
garding the method of Varga [21], we used our own imple-

mentation in MATLAB, because no public implementation was
available.

We tried to use the default parameters of the different algo-
rithms as proposed by their authors. However, since the test-
datasets sizes differ, we adjusted the parameters to get best
results for every algorithm. See Table II for a list of all used
parameters. They were only adjusted for different test-datasets
but were kept constant for varying numbers of projection angles.

The DART has the parameters Pf ix as fixed probability, r as
radius for the smoothing mask, and itSART which is the number
of SART iterations per DART iteration. As termination crite-
rion for DART we stopped after 200 iterations as the suggested
in [16].

The approach of Varga [21] involves the parameters α as reg-
ularization factor, and μ and σ are controlling the discretization
strength. We set as stopping criterion the maximum number of
iterations to 5000 and the tolerance between two iterations to
ε = 0.001.

Finally, for the algorithms TV-L2 and the proposed Joint
approach, we set the maximum number of iterations to 10 000
or terminated if the mean error distance based on (25) between
two iterates dropped below ε = 10−6 . We always used the same
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Fig. 9. The plots are showing runtime in seconds needed for the different
test-datasets in the noiseless case. DART and the approach of Varga are much
faster than the TV-L2 and the Joint approach. However, the proposed Joint
approach returns a fully discretized and more accurate solution, whereas the
other approaches stop earlier and have to apply rounding. (a) Phantom 1: Maple
Leaf. (b) Phantom 2: Shepp-Logan. (c) Phantom 3: Batenburg.

regularization parameter value λ for the proposed Joint method
which was optimal for the alternative TV-L2 approach. This
enabled to directly assess the improvement by the discretization
term of the Joint approach. Additionally, the Joint approach
involves the parameter α as weight for the coupling term, which
enforces discretization. We initialized throughout the variable
u = 0 and the variable z constant to 1/K in order to remove
the dependency of the result of the Joint approach from the
initialization.

2) Data Set-Up: We used the parallel beam setup for
our experimental evaluation. The projection matrices were
generated using the ASTRA-toolbox [26] with equidistant pro-
jection angles between 0 and 180◦. The resolution of the sensor-
array was chosen 1.5 times larger than the image size, so that
every pixel intersects with a projection ray and each sensor has
the corresponding pixel size. Each entry of the projection ma-
trix aij corresponds to the length of the line segment of the
ith projection ray passing through the jth pixel. The measure-
ments (projection data) are the line integrals along the projection
rays.

Fig. 4 shows the non-binary test-datasets used for the numer-
ical evaluation. The first image 4(a) was taken from [27]. Image
4(b) is the well-known Shepp-Logan phantom, and image 4(c)
was taken from the test-datasets of Batenburg and Sijbers [16].

3) Evaluation Measures: We used two measures for the eval-
uation process. The first one is the relative pixel error, that is
the relative number of erroneously reconstructed pixels as com-
pared to groundtruth u∗

Errpxl(u) :=
1
N

N∑

i

d(ui, u
∗
i ); d(x, y) :=

{
0 if x = y,

1 if x 	= y.

(24)

This measure was only used for discrete solutions of the
algorithms.

As a second error measure we use the mean error, defined as
average of the absolute error at every pixel

Errmean(u) :=
1
N

N∑

i

|ui − u∗
i |. (25)

This measure was applied to the non-discrete solutions of the
algorithms before rounding. Using these two error measures, we
quantified the effect of the final rounding step.

B. Numerical Results

We next report experimental results pertaining to the two
major aspects of our evaluation, as discussed in Section IV-A1.

1) Joint Reconstruction versus TV-L2 Approach: Fig. 5
shows the evaluation of the two error measures for the dif-
ferent test-datasets with increasing number of projection angles
in the noiseless case. On the left are the plots of the mean error,
which was computed for the non-rounded outputs, whereas on
the right the relative pixel error is displayed, computed for the
rounded outputs.

The first row 5(a) shows that the proposed approach needs
six projection angles, that is one angle less than TV-L2 , to
return a perfect reconstruction of Phantom 1. The more complex
Phantom 2, second row 5(b), can be reconstructed exactly with
ten projection angles using the Joint approach, whereas TV-L2
needs 12 angles. Phantom 3, last row 5(c), is fully reconstructed
already with seven angles by the proposed approach, whereas
TV-L2 needs at least nine projection angles.

Furthermore, we noticed that the Joint approach returns al-
ready binary output for the 1-of-K coded variables (zik)K

k=1 (up
to numerical precision) in these examples, thus making obso-
lete rounding on z. This can also be seen in Fig. 6, where the
evolution of the non-rounded zk is shown on Phantom 1 with
six projection angles for different iterations.

Finally, Fig. 7 shows the visual improvement of the recon-
struction performance by the Joint approach in comparison to
TV-L2 . The first column shows the rounded results u of TV-
L2 , and the second column shows the output z of the proposed
method, for a fixed number of projection angles of the three dif-
ferent phantoms. The results clearly demonstrated the increased
accuracy achieved by the Joint approach. In summary, the pro-
posed approach needs at least one projection angle less than
the TV-L2 approach. This is due to the additional prior knowl-
edge in terms of the set of allowed intensities L, that the Joint
approach is able to exploit during the reconstruction process.
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Fig. 10. Numerical evaluation of the approaches for the different test-datasets and increasing small numbers of projections in the noisy case (noise level:
SNRdb = 20). The mean error measure was computed for non-rounded reconstructions and the relative pixel error after rounding. The results demonstrate that
the proposed (Joint) approach is robust in the presence of noise. (a) Phantom 1: Maple Leaf. (b) Phantom 2: Shepp-Logan. (c) Phantom 3: Batenburg.

2) Comparison to Other Methods: Fig. 8 summarizes the
numerical evaluation of the approaches listed in Table I, using
the test-datasets in the noiseless case. DART gives better results
than the approach of Varga on Phantoms 2 and 3, yet performs
worse than the proposed approach. In case of the very small test-
dataset Phantom 1, the approach of Varga is better than DART,
because DART is applying a smoothing filter mask which limits
the reconstruction accuracy for such small image structures.

TV-L2 also performs better than DART. We attribute this
effect to the anisotropic TV term of the TV-L2 approach. Only
for the non-rounded results in case of Phantom 3, see Fig. 8(c),
DART is better than the TV-L2 approach, but no longer so after
rounding the results. The gap in reconstruction performance
between the approaches based on TV regularization and the
other two approaches can be explained by the used regularization
method. It would therefore be interesting to extend DART and
the approach of Varga to TV regularization.

Fig. 9 shows the runtimes for each algorithm. It is interesting
to see how the runtime curves of TV-L2 and the Joint approach
are related. The peak of the Joint approach indicates the number
of projections up to which the additional prior knowledge from
the set of allowed intensities is effectively used for reconstruc-

Fig. 11. Numerical evaluation of the approaches for Phantom 3: Batenburg
and increasing small numbers of projections in the noisy case (noise level:
SNRdb = 20) and with corrupted intensities L̂ = {0.0220, 0.5588, 0.9628}.
The mean error measure was computed for non-rounded reconstructions against
the original groundtruth with L = {0.000, 0.5020, 1.000}. Note, that the con-
tinuous variable u of the proposed approach is plotted which gives the lowest
mean error since it is affected only indirectly by the perturbed intensity values.
Interestingly, the TV-L2 approach has a higher mean error although the noisy
intensities are not involved in the corresponding objective function.

tion. Further increasing the number of projection angles yields
similar curves for TV-L2 and Joint, because then TV-L2 already
solves the reconstruction problem.

Clearly, DART and the approach of Varga are much faster
than the TV-L2 and the Joint approach. However, our proposed
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Fig. 12. Exemplary reconstructions (rounded results) from Phantom 3 for different numbers of projection angles to illustrate the visual differences of the
compared methods. The proposed Joint approach needs less projections for an exact reconstruction compared to the other approaches. Perfect reconstructions are
marked by a green frame.

Joint approach returns a fully discretized and more accurate
solution, whereas the other approaches stop earlier and have
to apply rounding. Obviously, the proposed approach can be
parallelized and implemented e.g. in CUDA to run on a modern
graphics card, if computational performance is important.

In Fig. 12 the reconstructions from projections of the test-
dataset Phantom 3 are shown for all considered approaches.
We see that our proposed Joint approach achieves better results
even for a smaller number of projections compared to the other
approaches. Exact reconstructions are marked by a green frame.

We also tested the approaches with noise imposed on all the
datasets. Poisson noise was applied to the observations with a
signal to noise ratio of SNR = 20 db. Fig. 10 shows for an
increasing number of projections the numerical results using

the two error measures. Plots on the left display the mean er-
rors which were evaluated on the non-rounded outputs, whereas
on the right the relative pixel errors are shown, evaluated on
the rounded outputs. The results demonstrate that the proposed
(Joint) approach is robust in the presence of noise.

These results merely demonstrate that despite a significant
amount of noise, the ranking of the performance of the ap-
proaches does not change, i.e. neither approach is susceptible
to perturbations of the projection data. In realistic applications
with such small numbers of projections, however, efforts will
be made to obtain accurate measurements and a smaller level of
noise. Then the Joint approach will be the method of choice.

Finally, the approaches were tested on noisy data and
a corrupted set of feasible intensity values, which reflects
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imperfect knowledge in practice. The results depicted by Fig. 11
reveal again the robustness of the proposed approach. Interest-
ingly, the TV-L2 approach has a higher mean error although the
noisy intensities are not involved in the corresponding objective
function.

V. CONCLUSION

We proposed an energy minimization approach to the non-
binary discrete tomography problem. A non-convex coupling
term was derived which incorporates additional prior knowledge
so as to restrict the reconstruction to a set of feasible intensities.
For optimization, we applied a generalized forward-backward
splitting algorithm to our non-convex energy formulation. The
numerical evaluation demonstrated the superior reconstruction
quality of the proposed method. It returns an exact reconstruc-
tion with the least number of projection angles as compared to
other state-of-the-art approaches from literature. Additionally,
the approach converges to a discrete solution without a rounding
post processing step, which is required for all other approaches.

There are a range of interesting questions which should be
addressed in future work. The running time of the proposed
approach, which is long for our current research code, can be
improved. Furthermore, the existence of a sufficiently tight con-
vex relaxation for the proposed coupling term is open. In the
affirmative case, the approach could be casted into a convex op-
timization framework. Finally, adopting a norm different from
Euclidean for the first term of (10) is conceivable, in order to
better fit to the non-Gaussian noise characteristic.
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Christoph Schnörr received the degrees from the
Technical University of Karlsruhe and the University
of Hamburg, Hamburg, Germany, in 1991 and 1998,
respectively. He became a Full Professor at the Uni-
versity of Mannheim, Mannheim, Germany, in 1998.
In 2008, he joined Heidelberg University, where he
is currently heading the Image and Pattern Analysis
Group, Institute of Applied Mathematics. Together
with colleagues, he has set up and is Codirecting
the Heidelberg Collaboratory for Image Processing
(funded by the DFG and industrial partners). He also

serves as a Coordinator of a Research Training Group on Probabilistic Graphical
Models with Applications to Image Analysis, funded by the German Research
Foundation (DFG), that involves 12 Ph.D. positions and 10 colleagues as PIs.

His research interests include mathematical models of image analysis and
numerical optimization.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


