Under review as a conference paper at ICLR 2025

POTABLE: PROGRAMMING ON TABLES TO REASON
LIKE A DISTINGUISHED HUMAN DATA ANALYST

Anonymous authors
Paper under double-blind review

ABSTRACT

Table-based reasoning has garnered substantial research interest, particularly in
its integration with Large Language Model (LLM) which has revolutionized the
general reasoning paradigm. Numerous LLM-based studies introduce symbolic
tools (e.g., databases, Python) as assistants in complex information understand-
ing and arithmetic computations. However, they emphasize extensive and flexible
utilization of symbolic tools, without fully considering the intrinsic logic of the
reasoning process. In this study, we propose POTABLE as a simple yet effective
table-based reasoning method. Specifically, POTABLE features a planning phase
and an executing phase, implemented with an LLM-based operation planner and
code generator and a Python interpreter as the real-time executor. To incorporate
logical top-level guidance, we split the entire reasoning process into several dis-
tinct analysis stages with macroscopic instruction injection. As the reasoning pro-
cess is structured suitably under the top-level guidance with precise and specific
goals, POTABLE produces superior reasoning results with highly accurate, steply
commented and completely executable code. To summarize, POTABLE enjoys
the advantages of accuracy and explainability that make it a distinguished tabu-
lar data analyst. Extensive experiments over three evaluation datasets from two
public benchmarks on two backbones demonstrate the outstanding performance
of POTABLE. In particular, GPT-based POTABLE achieves over 4% higher abso-
lute accuracy than runner-ups on all evaluation datasets. Our code is available at
https://anonymous.4open.science/r/PoTable-6788.

1 INTRODUCTION

Tables are widely applied in various scenarios (e.g., healthcare (Ghasemi & Amyot, 2016), finance
(L1 et al, [2021)), since they can visually present the core information in various types of scientific
documents (e.g., articles, reports, websites) (Embley et al.,|2006) through a structured format. With
the growing development of Al techniques, there has been an increasing demand for automated table
processing, attracting significant attention from both academia and industry (Borisov et al.|, 2022]).
Recently, the evolution of Large Language Model (LLM) (Zhao et al.l 2023)) has raised a brand
new prompting paradigm for table processing (Lu et al.,2024])). This training-free method facilitates
complex understanding and reasoning procedures in table question answering (Pasupat & Liang,
2015)), table fact verification (Chen et al.,|2020) and other downstream tasks (shown in Figure Eka)).

Throughout the history of humankind, tools have been regarded as the crystallization of human
wisdom and a core factor in social productivity development (Washburn, [1960). This consensus has
inspired LLM-based techniques to go a step further in simulating more extensive human behavior,
i.e., collaborating with symbolic tools to overcome LLMs’ inherent limitations (Qu et al.,[2024). In
table processing, two unique challenges have been issued in earlier studies (Lu et al., |2024; |Dong
& Wang, 2024): (1) Tables are structured in two-dimension, leading to unstable memorization of
LLMs trained in next-token prediction mode (Sui et al., [2024])). (2) Table-based reasoning inevitably
involves logical and arithmetic operations, and LLMs may produce misleading results due to their
limited calculation abilities. Nevertheless, with a rising trend to utilize databases (Li et al.| 2023b),
Python (Chen et al.,[2022;|Gao et al.,2023) and other symbolic tools as assistants, recent approaches
effectively reduce table processing errors and misleading computational results by storing the tabular
data into internal structure types (e.g., arrays, database tables) and executing syntactic computation
commands (e.g., SQL, Python code) (Cheng et al., [2023; (Cao et al., 2023; Nahid & Rafiei, [2024).

https://anonymous.4open.science/r/PoTable-6788

Under review as a conference paper at ICLR 2025

Paris 2024 Olympic Medal Count (Top 3 in Gold) [Table Question Answering]

Country Gold Silver Bronze Total Q: How many medals did China get in total?
A: 91
USA 40 a4 42 126 (#1)
) [Table Fact Verification]
China 40 27 24 91 (#2) Q: USA got 40 gold medals and 42 silver medals.
Japan 20 12 13 45 (#6) A: False

(a) Two table-based reasoning tasks: table question answering and table fact verification

%Q » @ Initialization » @ Pre-process >» @ Reasoning >» @ Conclusion » o

* Question » Table Extraction

Decomposition * Manipulation * Post-processing
Human i « Data Type

» Computation + Visualization

Analyst * Meta Analysis Cleaning
. Others - + Others + Others =
hers . Q thers ... @ q H’;I

(b) An example of human cognitive behavior in tabular data analysis

Figure 1: [llustration of (a) two table-based reasoning tasks evaluated in our study, and (b) the human
analyst follows top-level logical guidance to plan and execute operations under distinct stages to
produce highly accurate and explainable answers.

Despite their promising results in some scenarios, they emphasize extensive and flexible utiliza-
tion of symbolic tools without fully considering the intrinsic logic of the overall reasoning process.
Some earlier studies promote LLMs to generate complete task programs without intermediate de-
composition (Cheng et al., |2023};|Cao et al.| 2023)). Recent studies adopt dynamic state observation
and autonomous operation planning, lacking explicit global guidance during reasoning (Wang et al.,
2024b; [Zhang et al., [2024b). These approaches may encounter missing steps or misleading details
when handling complex tasks with numerous reasoning operations, leading to sub-optimal results.
Moreover, verifying the accuracy of these reasoning processes can be time-consuming. For instance,
it is hard to quickly judge whether an existing operation is needed immediately or can be deferred.

Along this line, in tool-based reasoning, integrating logical top-level guidance is necessary to re-
duce the possibility of misleading chain steps while enhancing the explainability of the process.
Some studies design instructions only for special operations (e.g., table decomposition) (Ye et al.,
2023 [Nahid & Rafieil 2024)), yet the overall top-level guidance integration remains underexplored.
Metaphorically speaking, existing methods behave more like a junior student rather than a distin-
guished human data analyst (shown in Figure [I(b)), which follows a relatively standard top-level
stage-split guidance in tabular mining and reasoning (Fayyad et al.| |{1996; Mariscal et al.,[2010).

In this paper, we propose POTABLE (Programming on Tables) as a simple yet effective table-based
reasoning method. Inspired by plan-and-solve prompting (Wang et al., [2023), POTABLE features
a planning phase for the operation chain production and an executing phase for code generation
and real-time execution and feedback. Specifically, POTABLE integrates an LLM-based planner and
code generator with a Python interpreter as the executor. To incorporate logical top-level guidance,
we naturally split the entire process into several logical analysis stages with macroscopic instruction
injection. At each stage, we set a general sub-goal and expect it to plan and execute the operations
sequentially. Consequently, POTABLE produces superior reasoning results with highly accurate,
steply commented and completely executable code.

POTABLE enjoys two advantages that make it a distinguished data analyst. (1) Accuracy: POTABLE
can easily plan coherent operation chains under precise and specific sub-goals with less possibility of
misleading or missing steps, producing more accurate results. (2) Explainability: POTABLE follows
suitable structured top-level guidance with full operation code execution, making it easier to verify
the completeness and accuracy of the reasoning process. Finally, we conduct extensive experiments
over three evaluation datasets from two public benchmarks of table-based reasoning tasks on two
backbones. POTABLE achieves more outstanding accuracy results than all LLM-based baselines.
In particular, GPT-based POTABLE achieves over 4% higher absolute accuracy than runner-ups on
all evaluation datasets. All experimental results and analyses validate the strong effectiveness of
POTABLE. In summary, our main contributions can be listed as follows:

Under review as a conference paper at ICLR 2025

Tabular Task Answer

=l 2] Q
s BERERE {@

| 4
Initialization 3 DataTypeCIeamng 5 FmaIAnswermg

3 """"""""""""""" — PoTable Stage Block “““““““‘3"""””""""””"""3

) (If in “Initialization”, skip it) . (If in "Final Answering”,
Planning Executing 1---- |°f < Error <—| print out the answer)
Operation Chain v nig
Think Generate Execute in Normal
—T> @ T T > > !’ » Next Operation
@ Macroscopic Stage Goal Code Base |</> Current Operation @ LLM p Python

Figure 2: Illustration of our propose POTABLE, a simple yet effective table-based reasoning method.
POTABLE follows logical top-level guidance as distinct analysis stage split: initialization, row se-
lection, data type cleaning, reasoning and final answering. Each stage contains a planning phase to
generate operation chains, and an executing phase to generate step code for real-time execution.

* We propose POTABLE, a simple yet effective table-based reasoning method that consists
of an LLM and a Python interpreter to implement the planning and executing phases, pro-
ducing highly accurate, steply commented and completely executable programs.

* We integrate logical top-level guidance into POTABLE by splitting the entire process into
several logical analysis stages. By structuring the overall reasoning process in a suitable
manner, POTABLE enjoys the advantages of high accuracy and explainability, making it
behave like a distinguished human data analyst.

» Experimental results over three evaluation datasets from two public benchmarks of table-
based reasoning tasks show the outstanding performance of POTABLE.

2 POTABLE

2.1 TASK FORMULATION

Our study focuses on two table-based reasoning tasks, i.e., table question answering and table fact
verification. Each sample can be represented as (T, Q, A), where T denotes the structured table, @
denotes a question to be answered or a statement to be verified. Given 7" and @), our goal is to find
the answer A in the table question answering task, while in the table fact verification task, we have
to decide A = 1 or A = 0 indicating whether the statement is true or false, respectively.

2.2 OVERVIEW

We propose POTABLE (Programming on Tables), a simple yet effective table-based reasoning
method shown in Figure[2] Specifically, POTABLE features a planning phase for the operation chain
production and an execution phase for code generation and real-time execution and feedback, which
is implemented by an LLM and a Python interpreter. POTABLE follows logical top-level guidance
that splits the entire analysis process into several distinct analysis stages, to structure the overall
reasoning process in a suitable manner. In this study, the stages include initialization, row selection,
data type cleaning, reasoning and final answering, while the design of split stages can be freely
customized with little effort for the extension in complicated scenarios. At each stage, POTABLE
follows a macroscopic instruction to accomplish a precise and specific goal through planning and
executing. Consequently, POTABLE reduces the possibility of misleading steps or missing details in
the overall reasoning process. In addition, through full code execution under the top-level guidance,
it is easy to verify the correctness and completeness of the reasoning process in POTABLE.

Under review as a conference paper at ICLR 2025

2.3 LoOGICAL TOP-LEVEL GUIDANCE: ANALYSIS STAGE SPLIT

In tabular analysis, a distinguished human analyst follows logical top-level guidance. For instance,
they may split the analysis process into several distinct stages in tabular mining and reasoning
(Fayyad et al. |1996; Mariscal et al., [2010). Such relatively standard stage splits decompose the
overall task goal into more precise and specific sub-goals, allowing more accurate operation plan-
ning with less possibility of misleading or missing steps. Inspired by human cognitive behavior
in tabular analysis, we integrate logical top-level guidance by splitting the overall procedure into
several stages. These stages will be implemented through Python code with pandas methods as a
common choice of human tabular analysts. Specifically, the overall analysis procedure is split into
five stages with macroscopic instruction injection:

* Initialization: Store the table data into pandas .DataFrame object.

* Row Selection: Remove redundant rows that do not represent distinct records.

* Data Type Cleaning: Transform the data type of table columns into a suitable form.

* Reasoning: Conduct flexible reasoning operations that are useful to find the final answer.

 Final Answering: Print out the final answer as the output of the evaluated sample.

In the above stages, the initialization stage is implemented by executing the pre-defined Python code
as import pandas as pd and df = pd.DataFrame (data=..., columns=...),
and then the LLM and the Python interpreter collaborate to traverse the other stages through meticu-
lous planning and execution sequentially. The detailed procedure is explained in the next subsection.
Notably, such stage division can be customized easily in different scenarios. We posit that such top-
level guidance enhances the reasoning framework to be a distinguished human analyst.

2.4 PLANNING AND EXECUTING

To implement the whole table analysis procedure, we adopt a planning phase and an executing phase
to complete the macroscopic goal in each stage. Such deployments leverage the LLM’s advantage
in thinking decomposition and code generation, and enjoy the benefits of robust memorization of
structured tables and precise computational results of the symbolic tools simultaneously.

Planning. Inspired by Chain-of-Thought (CoT) (Wei et al.,|2022) prompting, the LLM decomposes
the stage target into operation chains based on the current status of table df, while the output is
always formatted as <START>->[OP.]—->[OP.]->---—><END> for easy operation extraction.
We do not restrict the scope of planned operations but only require the operations to be useful in
achieving the stage target even the overall tabular task goal. To prompt the LLM, we adopt a few-
shot learning strategy (Brown et al.||2020) with three self-made examples for the planning phase.

Executing. Given an operation, the LLM generates code based on the current table status df and
the existing code base. For the final answering stage, we adopt few-shot prompting with three self-
made examples to obtain the code to print out the answer, while in other stages we adopt zero-shot
prompting to generate the code. Next, the generated code is sent to the Python interpreter for real-
time execution. Most of the time, the execution is successful and then the table status is updated
as the next input from df stored in the Python interpreter. Occasionally, the execution fails as the
interpreter raises grammar error information or returns illegal output in the final answering stage. In
this case, POTABLE will roll back the interpreter to the status before the current execution, and urge
the LLM to regenerate suitable code based on the abnormal information.

Consequently, the final answer is obtained from the output of the executed code, instead of the direct
LLM response of an LLM query. The overall algorithmic procedure is shown in Algorithm|[I]

2.5 SUMMARIZATION

According to the detailed procedure, we can see that POTABLE enjoys two advantages that make
it a distinguished human data analyst. (1) Accuracy: POTABLE can easily plan coherent opera-
tion chains under precise and specific sub-goals at each stage with less possibility of misleading
or missing steps through the integration of logical top-level guidance, hence producing more accu-
rate results. (2) Explainability: POTABLE follows suitably structured top-level guidance with full

o R I 7 T R SR

11
12
13
14
15
16
17
18
19

Under review as a conference paper at ICLR 2025

Algorithm 1: POTABLE

Input: Table 7', Question or statement (), LLM M and Python Interpreter R

Output: Answer A to the question or statement

codeBase < initalCode(T')

R. executeCode(codeBase)

for stage in { “RowSelection”, “DataTypeClean”, “Reasoning”, “Final Answer” } do

stageModule <— PoTableBlock(PlanPrompt[stage], CodePrompt[stage])

operationList « StageModule. plan(T, @, M)

for operaion in operationList do

code + stageModule. codeGen(T, Q, M, operation, codeBase)

errorCnt < 0

while catchError(R. executeCode(code)) as error and errorCnt < 10 do
R.resetEnvironment(). executeCode(codeBase)
code + stageModule. codeReGen(T, Q, M, operation, codeBase, error)
errorCnt errorCnt +1

end

codeBase +— codeBase + code

T < R.getCurrentStatus(T)

end

end

A < R. getProgramOutput()
return A

program execution of each stage and operation, making it easier to verify the completeness and ac-
curacy of the reasoning process along the stage guidance. As a result, POTABLE produces superior
reasoning results with high-quality Python programs. The programs are highly accurate, steply com-
mented and completely executable, since they correspond to clear operations and have experienced
real-time execution and validation.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three evaluation sets of two public benchmarks: WikiTQ
(Pasupat & Liang,2015) and TabFact (Chen et al.,|2020). WikiTQ is a benchmark for table question
answering, which requires answering the question with a short corpus based on the given table. We
conduct experiments over the validation (dev.) set with 2,831 questions and the test set with 4,344
questions as previous studies do, and use the official denotation accuracy for evaluation. TabFact is
a benchmark for table fact verification, which requires judging whether the given statement is true
or false based on the given table. We conduct experiments over the released small test set with 2,024
statements as previous studies do, and use the binary classification accuracy for evaluation.

Backbones. We select two representative language models as the backbones of POTABLE and other
baseline approaches in our experiments. Specifically, we choose GPT-40-mini (2024-07-1 SH(GPT)
as the closed-source small language model, which is competent and cost-efficient to cover a wide
range of downstream tasks. In addition, we choose Llama-3. 1-70B-Instruc (LLAMA) as the open-
source LLLM for evaluation, which shows strong reasoning capabilities among released foundation
models. Please refer to Appendix [A]for the detailed parameter settings of the backbone models.

Baselines. We select four competitive LLM-based approaches as baselines for comparison. Binder
(Cheng et al.,2023)) is a neural-symbolic framework that maps the reasoning task into a specific pro-
gram and then executes the program binding LLM as a unified API to extend its grammar coverage
and tackle the commands that cannot be executed normally. Dater (Ye et al.|[2023) first decomposes
the table into sub-evidence with column and row selection through LLM queries and then decom-

"https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
Zhttps://ai.meta.com/blog/meta-llama-3-1/

Under review as a conference paper at ICLR 2025

Table 1: Accuracy results (%) of table-based reasoning approaches on WikiTQ (D denotes dev.
set, T denotes test set) and TabFact (S denotes small test set) on GPT-40-mini (GPT) and Llama-
3.1-70B-Instruct (LLAMA). The best results are marked in bold and the second-best results are
underlined, while the improvements of POTABLE over the runner-ups are recorded in teal.

WikiTQ (D) WikiTQ (T) TabFact (S)

Approach GPT LLAMA GPT LLAMA GPT LLAMA
Binder (ICLR'23) 5920 50.65 58.86 5051 84.63 78.16
Dater (SIGIR’23) 5676 42.78 5833 43.53 8098 81.57
Chain-of-Table (ICLR24) 56.64 62.39 5560 6222 8424 85.62
TabSQLify (NAACL'24) 56.87 55.51 5702 55.78 7875 70.70
POTABLE (Oury) 6358 65.10 6473 65.56 8893 87.06
(+4.38) (+2.71) (+5.87) (+3.34) (+4.30) (+1.44)

poses the question into simpler sub-questions through intermediate SQL generation, followed by
a joint reasoning stage with simplified tables and questions. Chain-of-Table (Wang et al., [2024b)
pre-defines several common atomic operations for dynamic selection by the LLM, forming an oper-
ation chain to process the table with pre-defined code to simplify the table for the final LLM answer
querying. TabSQLify (Nahid & Rafieil [2024) leverages Text-to-SQL to decompose the table into
sub-tables and conduct comprehensive reasoning and answer generation through LLM queries. All
these selected approaches are competitive as LLM-based baselines on table-based reasoning.

Implementation Details. To implement POTABLE, we carefully design prompting templates for
planning and executing phases of each stage. In addition, we respectively prepare three few-shot
prompting examples for WikiTQ and TabFact, including query-answer pairs for both operation plan-
ning and final answer code generation. Please refer to Appendix |C|for the detailed contents.

3.2 MAIN RESULTS

We conduct experiments to compare POTABLE with other baselines over three evaluation datasets
of WikiTQ and TabFact on GPT and LLAMA backbones. The result table is presented in Table [T}
From the main results, it is clear that our POTABLE significantly outperforms all other baselines over
all evaluation datasets from WikiTQ and TabFact on GPT and LLAMA, respectively. In particular,
GPT-based POTABLE achieves over 4% higher absolute accuracy than runner-ups on all evaluation
datasets, which demonstrates the superior effectiveness of our method.

To be more specific, we make a more comprehensive analysis of results from all approaches and
base models. Firstly, Binder is always the runner-up in GPT-based approaches, while its accuracy
drop based on LLAMA is 6%-9%. As Binder contains an important step in generating the whole
program for the question, it seems that GPT-40-mini enjoys a higher ability for full code generation.
In comparison, POTABLE integrates top-level logical splits of the whole tabular analysis process
and generates code once for a single operation with error checking, reducing possible blurred and
uncleared code in the overall programs. Consequently, this may be one reason that our method
achieves significant improvement over Binder and others in accuracy. Secondly, in LLAMA-based
approaches, Chain-of-Table is the second-best approach although it has a constrained operation
pool for dynamic selection, while its accuracy drop based on GPT is around 6% in WikiTQ and
1.44% in TabFact. Its reasoning performance mainly depends on the LLM’s ability to plan and
decompose the operations rather than code generating since the codes for all operations are pre-
defined, which may indicate that Llama-3.1-70B-Instruct enjoys a stronger ability to plan and reason.
In our POTABLE, the two LLM abilities are fully stimulated, unleashing the potential of symbolic
tools for more flexible planning and executing simultaneously. This may be another reason that our
method outperforms Chain-of-Table and others in accuracy. Thirdly, in Dater and TabSQLify, the
accuracy difference between GPT and LLAMA is unstable across different evaluation datasets. This
may indicate that their module and prompt design lack robustness under different LLM bases, while
POTABLE demonstrates no such disadvantage.

As a result, the logical top-level guidance integration leads POTABLE to the best accuracy, strongly
validating the effectiveness in table-based reasoning scenarios.

Under review as a conference paper at ICLR 2025

Table 2: Accuracy results (%) of POTABLE on different groups in task difficulty as simple and
complex and different groups in table size as small (S), medium (M) and large (L).

Task Difficulty Table Size

Backbone Dataset Simple Complex S Vi T Original
WikiTQ (D) 67.77 60.04 63.00 65.57 62.32 63.58
GPT WikiTQ (T) 68.99 61.12 70.20 66.21 61.61 64.73
TabFact (S) 90.65 87.24 90.59 88.44 88.05 88.93
WikiTQ (D) 68.00 62.65 68.41 67.52 61.78 65.10
LLAMA WIikiTQ(T) 68.89 62.74 71.27 67.99 61.50 65.56
TabFact (S) 88.96 85.18 85.71 87.84 87.23 87.06

3.3 PERFORMANCE ANALYSIS GROUPED BY TASK DIFFICULTY AND TABLE SI1ZE

To make further performance analysis of POTABLE, we recompute the main performance at different
levels of task difficulty and table size. Specifically, we label the difficulty of the evaluated questions
or statements as “simple” or “complex”. In WikiTQ, a question with a length less than 50 is labeled
as “simple”, while a “complex” question is longer. As for TabFact, we use the official difficulty
label for all statements. In addition, we group the table content size as “small” (S), “medium” (M)
and “large” (L), in situations when the table has 1-49 cells, 50-99 cells and no less than 100 table
content cells respectively. The detailed grouped results are reported in Table [2]

The results illustrate that more complex tasks always lead to performance drop as expected, yet the
negative correlation between table size and performance is not always obvious. We can draw two
preliminary inferences: (1) POTABLE may ignore task decomposition as a potential improvement,
although it is trivial to see performance drop on difficult tasks. (2) POTABLE seems somewhat robust
on the table size, yet a deeper study grouped by table tokens may be more persuasive.

3.4 ABLATION STUDY ON LOGICAL STAGES

In our implementation of POTABLE, the overall tabular analysis procedure is split into five distinct
stages. To validate the effect of the logical stage split, we present an ablation study by adopting
different stage splits in the compared settings. Specifically, we compare the original GPT-based
POTABLE with the following four settings: (1) Only Reasoning: we discard all other unnecessary
stages except for initialization, reasoning and final answering. In fact, this setting shows no explicit
stage split. (2) Removing Row Selection: we give up checking redundant rows before further
processing and reasoning stages, which is commonly regarded as an operation of sub-table data
extraction. (3) Removing Data Type Cleaning: we give up checking whether the table column data
needs type transformation. As all table columns are stored with an initial type of string, discarding
this operation may cause more error execution. (4) Adding Column Selection: we add a new
column selection stage to select relative columns before further processing and reasoning stages.
This stage has been included in most studies as an operation of sub-table data extraction. The
overall results of the ablation study on logical stages are shown in Figure 3]

We can see that the original GPT-based POTABLE outperforms all ablated settings in the three eval-
uation datasets. To be more specific, we make a more comprehensive analysis of results from all
settings. Firstly, we focus on the “only reasoning” setting (only Reason). Compared with the original
setting, only Reason scores nearly 0.6%-1% less in WikiTQ and around 3% less in TabFact. These
results indicate that logical top-level guidance greatly benefits the tabular analysis process. In addi-
tion, only Reason shows few weaknesses among all other settings in WikiTQ but has more accuracy
drop in TabFact. From the task perspective, WikiTQ is about a clear task to answer the question
directly, while TabFact asks to judge the statement, containing intermediate reasoning processes to
judge the potential sub-facts. Therefore, the logical split for TabFact may be more necessary than
WikiTQ, and it is also crucial to make the split as reasonable as possible.

On the other hand, the results of settings “removing row selection” and “removing data type clean-
ing” demonstrate the importance of these stages as expected. Notably, “removing data type clean-
ing” always reaches the lowest accuracy, indicating that the framework may ignore these details
(e.g., treating text floats into real floats) with unreasonable top-level stage-split. A more interesting

Under review as a conference paper at ICLR 2025

WIkiTQ (D) WikiTQ (T) TabFact (S)
(-0.96)(-0.71) 64.73
65 (060 63.7764.02 123 (089)gg.93 90
62.98(-1.38) 63.58 . () 68,04

< 62 (-191) (-327)62.55 87.70 :
< ““Y(-2.97)61.67 61.46
2 60.61
o
S 60 o
g
<

55 %0

only Reason w/o Row Sel. ® w/o Dty.Cle. ®m w/ Col.Sel. = Original

Figure 3: Accuracy results (%) in the ablation study of the different logic split employed in
POTABLE with GPT-40-mini on three evaluation sets of WikiTQ and TabFact, including only rea-
soning (only Reason), removing row selection (w/o Row Sel.), removing data type cleaning (w/o
Dty. Cle.), adding column selection (w/ Col. Sel.) and the original setting (Original). The best
results are marked in bold, while the accuracy drops in all settings are recorded in red.

Table 3: Efficiency results on TabFact (S) for GPT-based methods. For the three baselines, we com-
pared the results of single LLM generation (Single) and default LLM generation (Default) following
their claimed settings in the article. Here Gen. denotes “generation” and ave. denotes “average”.

Accuracy # Generation .
Approach — Defaull (Defaulty Al
Binder 84.63 85.13 50 SQL Gen.: 50
Decomposition Gen.: 40, Cloze Gen.: 20,
Dater 80.98 82.26 100 SQL Gen.: 20, Query: 20
. Dynamic Planning: <4 (3.74 on ave.),
-of- <
Chain-of-Table 84.24 8523 =22 Args Gen.: <17 (16.09 on ave.), Query: 1
POTABLE 85.92 <6 Planning: 1, Code Gen.: < 4 (3.72 on ave.),
(only Reason) ’ - Re-Gen.: <1 (less than 1 on average)
POTABLE 88.93 <10 Planning: 3, Code Gen.: < 6 (5.60 on ave.),

Re-Gen.: <1 (less than 1 on ave.)

fact is the addition of “column selection” results in worse performance, which is widely adopted in
previous approaches. We speculate that the selected backbones are competitive enough to handle
full table columns, yet eliminating seemingly irrelevant columns may cause a dilemma, i.e., poten-
tially useful columns are accidentally removed and the LLM reasoner cannot find adequate data for
processing. Therefore, column selection is not suitable to be regarded as a distinct stage.

As a completion, we also recompute the performance results grouped by task difficulty and table
size. Please refer to Appendix [B|to check the detailed results and analyses.

3.5 EFFICIENCY ANALYSIS

We analyze the efficiency of POTABLE and three representative baselines based on GPT by eval-
uating the count number of required LLM-based generation in TabFact (S). The result tables are
presented in Table[3] We notice that the multiple generation achieves some improvement in the com-
pared baselines, yet PoTable always adopts the single generation and outperforms them. In Binder
and Dater, the generation counts are fixed while the ones of Chain-of-Table and our PoTable fluctuate
dynamically. Therefore, we report the empirical average counts of each module and rounded them
up as their estimation. It can be seen that POTABLE has much fewer LLM generation counts than
previous baselines. In addition, the difference in generation counts between the original POTABLE
and the only Reason setting is small, while the accuracy improvement is more than 3%. These re-
sults demonstrate the efficiency of our POTABLE, indicating that the improvements come from the
top-level guidance integration rather than multiple generations.

Under review as a conference paper at ICLR 2025

- Initialization | import pandas as pd
rank country box office year box office (Pre-defined) | df = pd.DataFrame (data=[...], columns=[...])
from national films
1 Canada/United States ~ $10.8 billion 2012 \u2013 Row W
; _ ' o=t
2 China $3.6bilion 2013 59.7% (2013) Selection [
Data Type |
5 France $1.7 billion 2012 33.3% (2013) Cleaning df['rank'] = df['rank'].astype (int)
6 South Korea $1.47 billion 2013 59.7% (2013) £he .
france_rank = df.loc[df['country'] ==
12 Brazil $0.72 billion 2013 17% (2013) HEHERTy MERIE] oD O]
World $34.7 billion 2012 \u2013 Reasoning
. . . next rank = france rank + 1
Q: Who ranks after France in the list of largest markets in the T e R
film mdustry by box office? next_rank, 'country'].values[0]
A: South Korea Program Output: South Korea ¢ Final
Answering |print (next country)

Figure 4: A case study of an evaluated sample from WikiTQ (T) wit its generated Python program
and output answer, which indicates the effectiveness and explainability of POTABLE.

3.6 CASE STUDY

We conduct a case study of POTABLE in Figure] by presenting an evaluated sample from Wik-
iTQ (T) with its generated Python program and output answer. The tabular task sample is fed into
POTABLE, experiencing a relatively standard analysis process including five logical stages. From the
complete program, we notice the planned operations (shown as split comments in the stage block)
and high-quality generated code of each operation (matching the former comment) for real-time exe-
cution. POTABLE follows suitably structured top-level guidance with full program execution of each
stage and operation, allowing us to easily review the whole process precisely and discover the true
reason why it leads to right or wrong answers. Along with the answer, POTABLE produces highly
accurate, steply commented and completely executable code. These produced outputs demonstrate
that POTABLE enjoys high accuracy and explainability.

4 RELATED WORK

Table Processing with Language Models. Table processing has been a popular research domain
over the past decade. Before the era of LLMs, numerous efforts were made to process tables with
pre-trained language models. TaPas (Herzig et al.| 2020) extends BERT (Devlin et al., 2019) by
conducting masked pre-training with joint encoding of questions and flattening tables. TaBERT
(Yin et al.| [2020) combines content snapshot and vertical attention based on BERT to obtain joint
textual and tabular representations for further understanding. TUTA (Wang et al.l [2021) enhances
transformers (Vaswani et al.l 2017) with structure-aware mechanisms to effectively capture spatial,
hierarchical and semantic information. TAPEX (Liu et al.l [2022) pre-trains BART (Lewis et al.,
2020) on a large synthetic SQL dataset to imitate the SQL executor that better understands tabular
structure information. With the development of LLMs, the paradigm of table processing has been
deeply revolutionized, especially in tabular data encoding and reasoning. In prompting methods,
Sui et al.|(2024) designs a benchmark to evaluate the structural understanding capabilities of LLMs,
followed by a novel self-augmentation for effective structural prompting. Dater (Ye et al., [2023)
and DIN-SQL (Pourreza & Rafiei, 2023)) adopt task decomposition for better understanding with
simplified queries, while Chain-of-Table (Wang et al.,|2024b) defines atomic operations for dynamic
selection in CoT prompting. Some other approaches explore training or tuning LLMs as generalists.
TableLlama (Zhang et al., [2024a)) develops an open-source tabular LLM by fine-tuning Llama 2-
7B (Touvron et al.,|2023)) with LongLoRA (Chen et al.,|2024b), while Table-LLAVA (Zheng et al.,
2024) trains a multi-modal tabular LLM that can handle table images as vision inputs.

Table Processing with Symbolic Tools. Symbolic tools have been widely utilized as assistants to
produce more accurate and robust mid-results in LLM-based table reasoning scenarios. Most stud-
ies adopt databases and Python as affiliated executors to interact with LLMs. Binder (Cheng et al.,
2023) and [Cao et al.| (2023) parse the tasks into integral SQL or Python programs for further ex-

Under review as a conference paper at ICLR 2025

ecution, incorporating LLM-assistant APIs to handle abstract code blocks for complete execution.
TabSQLify (Nahid & Rafiei, [2024) generates SQL queries to extract sub-tables and executes them
to get simplified tables for further LLM reasoning. Some works target boosting the code genera-
tion ability for tabular reasoning and other scenarios. TroVE (Wang et al., [2024a)) asks the code
LLMs to curate reusable high-level functions and use them to write solutions for Python execution
on the table question answering and other tasks, while Self-Debugging (Chen et al.| 2024a)) teaches
LLMs to debug their predicted SQL or Python programs on Text-to-SQL (Yu et al.,|2018)) and other
tasks. Recently, research in LLM-based table reasoning has been extended into more sophisticated
tools environments and more advanced reasoning tasks. SheetCopilot (Li et al., 2023a)) and Spread-
sheetBench (Ma et al.,[2024) address a novel spreadsheet manipulation task, which maneuvers table
analysis software like Microsoft Exceﬂ to generate step-by-step solutions for simulated execution.
MatPlotAgent (Yang et al.,[2024) addresses the task of scientific data visualization, which includes a
code agent integrating Matplotl ibﬂresponsible for generating the code to plot figures from input
tables. As a result, symbolic tool utilization has become a crucial component in table processing.

5 CONCLUSION

In this paper, we proposed POTABLE as a simple yet effective table-based reasoning method.
POTABLE featured a planning phase and an executing phase implemented by an LLM and a Python
interpreter, incorporating logical top-level guidance through analysis stage splitting with macro-
scopic instruction injection. Consequently, POTABLE produced highly accurate, steply commented
and completely executable code to obtain reliable answers. Accordingly, POTABLE enjoyed two
advantages of high accuracy and explainability, making it a distinguished tabular data analyst. Ex-
tensive experiments under three evaluation datasets of two benchmarks on different backbones pre-
sented a dominating performance of POTABLE on table-based reasoning.

This study targeted the balance of structure and autonomy through suitable top-level guidance inte-
gration in standardized table-based reasoning. However, more complicated tabular data (e.g., hierar-
chical tables, multiple tables) and more domain-specific scenarios (e.g., spreadsheet manipulation,
healthcare records) remained less explored. In the future, we will explore more effective ways to
make our improved method competent on more complicated and domain-specific table-based rea-
soning scenarios, simulating more advanced human behavior in tabular analysis.

REPRODUCIBILITY STATEMENT

Our code is available in https://anonymous.4open.science/r/PoTable-6788| for
reproducibility. All baseline approaches have released the official open-source code and prompts.
Specifically, we run Binder from https://github.com/xlang—ai/Binder, Dater from
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/dater)
Chain-of-Table from https://github.com/google-research/chain-of-table)
and TabSQLify from https://github.com/mahadi-nahid/TabSQLify.

REFERENCES

Vadim Borisov, Tobias Leemann, Kathrin SeBler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE transactions on neural networks
and learning systems, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, 2020. ISBN
9781713829546.

3https://www.microsoft.com/zh-cn/microsoft-365/excel
*https://matplotlib.org/

10

https://anonymous.4open.science/r/PoTable-6788
https://github.com/xlang-ai/Binder
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/dater
https://github.com/google-research/chain-of-table
https://github.com/mahadi-nahid/TabSQLify

Under review as a conference paper at ICLR 2025

Yihan Cao, Shuyi Chen, Ryan Liu, Zhiruo Wang, and Daniel Fried. Api-assisted code generation
for question answering on varied table structures. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 14536-14548, 2023.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. In
International Conference on Learning Representations, 2020.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024a.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
glora: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, 2024b.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. Binding language models in symbolic
languages. In The Eleventh International Conference on Learning Representations, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171-4186.
Association for Computational Linguistics, 2019.

Haoyu Dong and Zhiruo Wang. Large language models for tabular data: Progresses and future
directions. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2997-3000, 2024.

David W Embley, Matthew Hurst, Daniel Lopresti, and George Nagy. Table-processing paradigms:
a research survey. International Journal of Document Analysis and Recognition (IJDAR), 8:66—
86, 2006.

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The kdd process for extracting
useful knowledge from volumes of data. Communications of the ACM, 39(11):27-34, 1996.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764—10799. PMLR, 2023.

Mahdi Ghasemi and Daniel Amyot. Process mining in healthcare: a systematised literature review.
International Journal of Electronic Healthcare, 9(1):60-88, 2016.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Mueller, Francesco Piccinno, and Julian Eisen-
schlos. Tapas: Weakly supervised table parsing via pre-training. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 43204333, 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 7871-7880, 2020.

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and ZHAO-XIANG ZHANG. Sheetcopilot: Bring-
ing software productivity to the next level through large language models. Advances in Neural
Information Processing Systems, 36, 2023a.

11

Under review as a conference paper at ICLR 2025

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2023b.

Yiren Li, Zheng Huang, Junchi Yan, Yi Zhou, Fan Ye, and Xianhui Liu. Gfte: graph-based financial
table extraction. In Pattern Recognition. ICPR International Workshops and Challenges: Virtual
Event, January 10-15, 2021, Proceedings, Part 11, pp. 644—658. Springer, 2021.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
Tapex: Table pre-training via learning a neural sql executor. In International Conference on
Learning Representations, 2022.

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo Chen. Large language model for table
processing: A survey. arXiv preprint arXiv:2402.05121, 2024.

Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xiaokang Zhang, Xiaohan Zhang, Sijia Luo,
Xi Wang, and Jie Tang. Spreadsheetbench: Towards challenging real world spreadsheet ma-
nipulation. arXiv preprint arXiv:2406.14991, 2024.

Gonzalo Mariscal, Oscar Marban, and Covadonga Fernandez. A survey of data mining and knowl-
edge discovery process models and methodologies. The Knowledge Engineering Review, 25(2):
137-166, 2010.

Md Nahid and Davood Rafiei. Tabsqlify: Enhancing reasoning capabilities of llms through table
decomposition. In Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long

Papers), pp. 5725-5737, 2024.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),

pp. 1470-1480, 2015.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 36, 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaigiang Wang, Dawei Yin, Jun Xu,
and Ji-Rong Wen. Tool learning with large language models: A survey. arXiv preprint
arXiv:2405.17935, 2024.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. Table meets llm: Can
large language models understand structured table data? a benchmark and empirical study. In
Proceedings of the 17th ACM International Conference on Web Search and Data Mining, pp.
645-654, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998-6008, 2017.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 2609-2634, 2023.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang. Tuta: Tree-
based transformers for generally structured table pre-training. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1780-1790, 2021.

12

Under review as a conference paper at ICLR 2025

Zhiruo Wang, Daniel Fried, and Graham Neubig. Trove: Inducing verifiable and efficient toolboxes
for solving programmatic tasks. arXiv preprint arXiv:2401.12869, 2024a.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, et al. Chain-of-table: Evolving
tables in the reasoning chain for table understanding. In The Twelfth International Conference on
Learning Representations, 2024b.

Sherwood L Washburn. Tools and human evolution. Scientific American, 203(3):62-75, 1960.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824-24837, 2022.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan,
Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi, and Maosong Sun. Matplotagent: Method
and evaluation for llm-based agentic scientific data visualization. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16,
2024, pp. 11789-11804. Association for Computational Linguistics, 2024.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decomposing evidence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 174—184, 2023.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 8413-8426, 2020.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 3911-3921, 2018.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
models for tables. In Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 6024-6044, 2024a.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep, and Jignesh M Patel.
Reactable: Enhancing react for table question answering. Proceedings of the VLDB Endowment,
17(8):1981-1994, 2024b.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Mingyu Zheng, Xinwei Feng, Qingyi Si, Qiaoqiao She, Zheng Lin, Wenbin Jiang, and Weiping
Wang. Multimodal table understanding. arXiv preprint arXiv:2406.08100, 2024.

13

Under review as a conference paper at ICLR 2025

APPENDIX

A PARAMETER SETTINGS OF BACKBONES

We report the parameter settings of GPT-40-mini (2024-07-18) and Llama-3.1-70B-Instruct as the
backbone models for POTABLE in Table] In all logical stages of the three evaluation datasets in
WikiTQ and Tabfact, the parameter setting remains unchanged. As for the baselines, we only unify
the setting of n_samples as 1 for a fair generation effect comparison, while for other parameters,
we use the originally proposed settings since the targeted operations and the deployed paradigm in
different approaches are different.

Table 4: Parameter settings of GPT and LLAMA backbone models in POTABLE.

Backbone temperature topp max_tokens n_samples
GPT 0.1 0.9 2,048 1
LLAMA 0.1 0.9 2,048 1

B FINE-GRAINED ABLATION STUDY RESULTS

Following the same group division in comparison experiments, we report the fine-grained results of
the ablation study in GPT-based POTABLE. The result table grouped by task difficulty is shown in
Table [5] while the one grouped by table sizes is shown in Table[6] In most of the time, the original
setting reaches the best results in different grouped settings, strengthening the conclusions from the
ablation study in the main text. In addition, these results strongly indicate the influence of task
difficulty but do not seem to be that strong on table size on cells, as illustrated in the main text.

Table 5: Fine-grained accuracy results (%) in the ablation study grouped by different task difficulty
as simple and complex in GPT-based POTABLE.

Setting WikiTQ (D) WikiTQ (T) TabFact (S)
Simple Complex Simple Complex Simple Complex
only Reason 66.38 60.10 66.98 60.19 85.87 85.97
w/o Row Sel. 66.23 58.80 67.74 60.87 88.66 86.75
w/o Dty. Cle. 63.99 57.76 65.48 58.06 80.70 84.69
w/ Col. Sel. 65.30 58.60 66.18 59.46 88.96 87.14
Original 67.77 60.04 68.99 61.12 90.65 87.24

Table 6: Fine-grained accuracy results (%) in the ablation study grouped by different table sizes as
small (S), medium (M) and large (L) in GPT-based POTABLE.

WikiTQ (D) WikiTQ (T) TabFact (S)
S M L S M L S M L
only Reason 6545 64.14 61.00 68.82 64.59 61.35 85.89 86.53 85.11
w/o Row Sel. 61.95 64.24 60.76 69.74 65.28 60.99 87.80 87.37 88.05
w/o Dty. Cle. 60.73 62.70 58.97 66.67 63.50 57.92 83.80 8355 80.52
w/ Col. Sel. 5899 6424 60.92 67.28 65.05 58.74 89.02 87.49 87.89
Original 63.00 65.57 62.32 70.20 66.21 61.61 90.59 88.44 88.05

Setting

14

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS OF POTABLE

We list all prompt templates in Figure|5| These prompt templates are combined based on different
stages and scenarios in the planning and executing modules.

In operation planning, the prompt templates are combined as follows:

* Row Selection Stage: Figure [7}8| (WikiTQ/TabFact) + Figure 9]

* Data Type Cleaning Stage: Figure 56| (WikiTQ/TabFact) + Figure [I0]

* Reasoning Stage: Figure B} (WikiTQ/TabFact) + Figure (WikiTQ/TabFact).
+ Column Selection Stage (Ablation): Figure 5}[6] (WikiTQ/TabFact) + Figure

In code generation for execution, the prompt templates are combined as follows:

* Row Selection Stage: Figure [78](WikiTQ/TabFact) + Figure[T4]

* Data Type Cleaning Stage: Figure [3f6| (WikiTQ/TabFact) + Figure

* Reasoning Stage: Figure 56| (WikiTQ/TabFact) + Figure (WikiTQ/TabFact).

¢ Column Selection Stage (Ablation): Figure [5f6] (WikiTQ/TabFact) + Figure[14]

* Non-final Code Regeneration: Figure 18]

* Final Answering Stage: Figure 5[] (WikiTQ/TabFact) + Figure [T9f20] (WikiTQ/TabFact).
* Final Code Regeneration: Figure 21)22] (WikiTQ/TabFact).

In addition, we have constructed three samples based on the table of Paris 2024 Olympic Medal
Count, which are utilized for few-shot prompting to generate the planning operations list and the
final answering code. As for code generation and regeneration in other situations, we adopt zero-shot
prompting. To check the specific contents of the demo samples, please refer to our code repository.

Given the table information:

/*

Data:

{table_df}

*/

Here is a statement to be answered:
/*

Statement: {question}

=

Figure 5: The prompt template of table information in WikiTQ.

Given the table information:

/*

Caption: {caption}

Data:

{table_df}

*/

Here is a statement to be verified:
/*

Statement: {statement}

&/

Figure 6: The prompt template of table information in TabFact.

15

Under review as a conference paper at ICLR 2025

Given the table information:
/*

Data:

{table_df}

*/

Figure 7: The prompt template of table information without the question in WikiTQ.

Given the table information:

/*

Caption: {caption}
Data:

{table_df}

*/

Figure 8: The prompt template of table information without the statement in TabFact.

P
INSTRUCTION:
Judge if there are redundant rows that can be obtained from other
independent row data. For example, if the statement do not mention words
like “total’, “average’, rows like “total’, "average that do not
represent a distinct item data, should be removed.

FORMAT :
"<START> -> [OPERATION] -> <END>"

NOTE :

1. If no such rows exist, skip this [OPERATION] and generate "<END>"
directly to finish the plan. This operation should be generated in most
of the time even if you are not certain.

2. If such rows exist, remove them. In this case the format of this
[OPERATION] should be "remove rows where XXX ="YYY , ...", here "XXX is
the name of the first column, and “YYY is the corresponding value (e.g.,
“total’, “average'). This [OPERATION] should be generated only once when
you are very confident that the rows are redundant.

OUTPUT:
{output}
-

Figure 9: The planning prompt template of row selection stage.

16

Under review as a conference paper at ICLR 2025

INSTRUCTION:

All columns of the table stored in pandas.DataFrame “df are string type.
Judge if there exist columns that need data type transformation. If so,
generate a plan to transfer the corresponding column type.

FORMAT:
"<START> -> [OPERATION] -> ... -> [OPERATION] -> <END>"

NOTE :

1. You can transfer the columns with integer values into “int’ data type
or the columns with real number values into “double’ type. The format of
this [OPERATION] should be "transfer column “XXX* into XXX type".

2. If there is no need to perform, skip this [OPERATION] and generate
"<END>" directly to finish the plan.

OUTPUT:
{output}

Figure 10: The planning prompt template of data type cleaning stage.

INSTRUCTION:
Generate a reasoning plan that can be easily executed by python code, to
answer the given statement.

FORMAT :
"<START> -> [OPERATION] -> ... -> [OPERATION] -> <END>"

NOTE:

Candidate [OPERATION] contain column value sorting, conditional data
counting, arithmetic calculations, expression comparison and other
reasoning operations, etc.

OUTPUT: {output}
&

Figure 11: The planning prompt template of reasoning stage in WikiTQ.

INSTRUCTION:
Generate a reasoning plan that can be easily executed by python code, to
verify whether the statement is true.

FORMAT:
"<START> -> [OPERATION] -> ... -> [OPERATION] -> <END>"

NOTE:

Candidate [OPERATION] contain column value sorting, conditional data
counting, arithmetic calculations, expression comparison and other
reasoning operations, etc.

OUTPUT: {output}
&

Figure 12: The planning prompt template of reasoning stage in TabFact.

17

Under review as a conference paper at ICLR 2025

INSTRUCTION:
Select columns that are somewhat relevant in semantics to the statement.

FORMAT:
"<START> -> [OPERATION] -> <END>"

NOTE:

1. The first column should be always selected.

2. The format of this [OPERATION] should be "select columns named
XXX, ...t

3. This [OPERATION] should be generated only once.

OUTPUT:
{output}
&

Figure 13: The planning prompt template of column selection stage.

We have executed the following code:
" python
{code_base}

Now we need to continue to execute the following operation: {operation}

INSTRUCTION:
Generate code without any other texts according to the given operation.

FORMAT:

" python
df = XXXXXX

NOTE: The table is stored in a pandas.Dataframe variable named “df’ .

\OUTPUT: {output}

Figure 14: The code generation prompt template of row selection and column selection stage.

We have executed the following code:
" Tpython
{code_base}

Now we need to continue to execute the following operation: {operation}

INSTRUCTION:
Generate code without any other texts according to the given operation.

FORMAT :
* 7 T python
dF['XXX"] = XXXXXX

OUTPUT: {output}

Figure 15: The code generation prompt template of data type cleaning stage.

18

Under review as a conference paper at ICLR 2025

p
We have executed the following code:
" " python

{code_base}

Now we need to continue to execute the following operation: {operation}

INSTRUCTION:
Generate code without any other texts according to the given operation.
Remember to store the result into suitable variables.

FORMAT :
“ " “python
[GENERATED CODE]

NOTE:

Do not store any formatted strings. For example, if the answer of winner
is "John", then just store "John" directly instead of formatted strings
like "John is the winner", "John wins". In addition, if the answer of
country number is "@", then just store "0" directly instead of formatted
strings like "no countries", "there is no countries".

OUTPUT: {output}

Figure 16: The code generation prompt template of reasoning stage in WikiTQ.

We have executed the following code:
* T python
{code_base}

Now we need to continue to execute the following operation: {operation}

INSTRUCTION:
Generate code without any other texts according to the given operation.
Remember to store the result into suitable variables.

FORMAT :
* T python
[GENERATED CODE]

OUTPUT: {output}

Figure 17: The code generation prompt template of reasoning stage in TabFact.

When executing the generated code, the python interpreter raises the
following error information:

{output}

INSTRUCTION: Please regenerate legal code for the given operation.

Figure 18: The code generation prompt template of regeneration.

19

Under review as a conference paper at ICLR 2025

KWe have executed the following code:
"7 T python
{code_base}

INSTRUCTION:

Based on the executed code, continue to generate the final output code to
print out the variable indicating the answer of the statement. The
variable should be one of “int’, "float’, “string’, “bool™ type or a list
containing elements of these types. Remember to use “print()" method in
the generated code.

FORMAT:
" “python
print (XXX)

NOTE:
Here “XXX* denotes the variable indicating the answer of the statement.
Do not print out any irrelavent variables or strings.

| OUTPUT: {output}

Figure 19: The code generation prompt template of final answering stage in WikiTQ.

-
We have executed the following code:
* " “python
{code_base}

INSTRUCTION:

Based on the executed code, continue to generate the final output code to
print out the bool type variable indicating whether the statement is true
or not. Remember to use “print()" method in the generated code.

FORMAT :
* " python
print (XXX)

NOTE :
Here “XXX* denotes the bool type variable or boolean expression
indicating whether the statement is true or not.

kOUTPUT: {output}

Figure 20: The code generation prompt template of final answering stage in TabFact.

20

Under review as a conference paper at ICLR 2025

(When executing the generated code, the python interpreter has the
following output:
{program_output}
It is an illegal type variable or a blank string/list, which is not
acceptable.

INSTRUCTION: Please regenerate legal code to print out the corresponding
variable indicating the answer of the statement. The variable should be
one of “int’, “float’, “string , "bool® type or a list containing
elements of these types. Remember to use “print()" method in the
generated code.

FORMAT :
* T python

print (XXX)

NOTE:
Here “XXX* denotes the variable indicating the answer of the statement.

OUTPUT:

Figure 21: The code generation prompt template of final answering regeneration in WikiTQ.

When executing the generated code, the python interpreter has the
following output:

{program_output}

It is neither True or False that indicates whether the statement is true
or not.

INSTRUCTION:

Please regenerate legal code to print out the bool type variable
indicating whether the statement is true or not. Remember to use
“print()" method in the generated code.

FORMAT :
* 7 " python
print (XXX)

NOTE:
Here “XXX' denotes the bool type variable or boolean expression
indicating whether the statement is true or not.

OUTPUT :

Figure 22: The code generation prompt template of final answering regeneration in TabFact.

21

	Introduction
	PoTable
	Task Formulation
	Overview
	Logical Top-level Guidance: Analysis Stage Split
	Planning and Executing
	Summarization

	Experiments
	Experimental Setup
	Main Results
	Performance Analysis Grouped by Task Difficulty and Table Size
	Ablation Study on Logical Stages
	Efficiency Analysis
	Case Study

	Related Work
	Conclusion
	Parameter Settings of Backbones
	Fine-grained Ablation Study Results
	Implementation Details of PoTable

