
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

POTABLE: PROGRAMMING ON TABLES TO REASON
LIKE A DISTINGUISHED HUMAN DATA ANALYST

Anonymous authors
Paper under double-blind review

ABSTRACT

Table-based reasoning has garnered substantial research interest, particularly in
its integration with Large Language Model (LLM) which has revolutionized the
general reasoning paradigm. Numerous LLM-based studies introduce symbolic
tools (e.g., databases, Python) as assistants in complex information understand-
ing and arithmetic computations. However, they emphasize extensive and flexible
utilization of symbolic tools, without fully considering the intrinsic logic of the
reasoning process. In this study, we propose POTABLE as a simple yet effective
table-based reasoning method. Specifically, POTABLE features a planning phase
and an executing phase, implemented with an LLM-based operation planner and
code generator and a Python interpreter as the real-time executor. To incorporate
logical top-level guidance, we split the entire reasoning process into several dis-
tinct analysis stages with macroscopic instruction injection. As the reasoning pro-
cess is structured suitably under the top-level guidance with precise and specific
goals, POTABLE produces superior reasoning results with highly accurate, steply
commented and completely executable code. To summarize, POTABLE enjoys
the advantages of accuracy and explainability that make it a distinguished tabu-
lar data analyst. Extensive experiments over three evaluation datasets from two
public benchmarks on two backbones demonstrate the outstanding performance
of POTABLE. In particular, GPT-based POTABLE achieves over 4% higher abso-
lute accuracy than runner-ups on all evaluation datasets. Our code is available at
https://anonymous.4open.science/r/PoTable-6788.

1 INTRODUCTION

Tables are widely applied in various scenarios (e.g., healthcare (Ghasemi & Amyot, 2016), finance
(Li et al., 2021)), since they can visually present the core information in various types of scientific
documents (e.g., articles, reports, websites) (Embley et al., 2006) through a structured format. With
the growing development of AI techniques, there has been an increasing demand for automated table
processing, attracting significant attention from both academia and industry (Borisov et al., 2022).
Recently, the evolution of Large Language Model (LLM) (Zhao et al., 2023) has raised a brand
new prompting paradigm for table processing (Lu et al., 2024). This training-free method facilitates
complex understanding and reasoning procedures in table question answering (Pasupat & Liang,
2015), table fact verification (Chen et al., 2020) and other downstream tasks (shown in Figure 1(a)).

Throughout the history of humankind, tools have been regarded as the crystallization of human
wisdom and a core factor in social productivity development (Washburn, 1960). This consensus has
inspired LLM-based techniques to go a step further in simulating more extensive human behavior,
i.e., collaborating with symbolic tools to overcome LLMs’ inherent limitations (Qu et al., 2024). In
table processing, two unique challenges have been issued in earlier studies (Lu et al., 2024; Dong
& Wang, 2024): (1) Tables are structured in two-dimension, leading to unstable memorization of
LLMs trained in next-token prediction mode (Sui et al., 2024). (2) Table-based reasoning inevitably
involves logical and arithmetic operations, and LLMs may produce misleading results due to their
limited calculation abilities. Nevertheless, with a rising trend to utilize databases (Li et al., 2023b),
Python (Chen et al., 2022; Gao et al., 2023) and other symbolic tools as assistants, recent approaches
effectively reduce table processing errors and misleading computational results by storing the tabular
data into internal structure types (e.g., arrays, database tables) and executing syntactic computation
commands (e.g., SQL, Python code) (Cheng et al., 2023; Cao et al., 2023; Nahid & Rafiei, 2024).

1

https://anonymous.4open.science/r/PoTable-6788

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Country Gold Silver Bronze Total

USA 40 44 42 126 (#1)

China 40 27 24 91 (#2)

Japan 20 12 13 45 (#6)

Paris 2024 Olympic Medal Count (Top 3 in Gold) [Table Question Answering]
Q: How many medals did China get in total?
A: 91

[Table Fact Verification]
Q: USA got 40 gold medals and 42 silver medals.
A: False

(a) Two table-based reasoning tasks: table question answering and table fact verification

(b) An example of human cognitive behavior in tabular data analysis

Human
Analyst

Initialization1

• Question
Decomposition

• Meta Analysis

• Others …

Pre-process2

• Table Extraction

• Data Type
Cleaning

• Others …

Reasoning3

• Manipulation

• Computation

• Others …

Conclusion4

• Post-processing

• Visualization

• Others …

Figure 1: Illustration of (a) two table-based reasoning tasks evaluated in our study, and (b) the human
analyst follows top-level logical guidance to plan and execute operations under distinct stages to
produce highly accurate and explainable answers.

Despite their promising results in some scenarios, they emphasize extensive and flexible utiliza-
tion of symbolic tools without fully considering the intrinsic logic of the overall reasoning process.
Some earlier studies promote LLMs to generate complete task programs without intermediate de-
composition (Cheng et al., 2023; Cao et al., 2023). Recent studies adopt dynamic state observation
and autonomous operation planning, lacking explicit global guidance during reasoning (Wang et al.,
2024b; Zhang et al., 2024b). These approaches may encounter missing steps or misleading details
when handling complex tasks with numerous reasoning operations, leading to sub-optimal results.
Moreover, verifying the accuracy of these reasoning processes can be time-consuming. For instance,
it is hard to quickly judge whether an existing operation is needed immediately or can be deferred.

Along this line, in tool-based reasoning, integrating logical top-level guidance is necessary to re-
duce the possibility of misleading chain steps while enhancing the explainability of the process.
Some studies design instructions only for special operations (e.g., table decomposition) (Ye et al.,
2023; Nahid & Rafiei, 2024), yet the overall top-level guidance integration remains underexplored.
Metaphorically speaking, existing methods behave more like a junior student rather than a distin-
guished human data analyst (shown in Figure 1(b)), which follows a relatively standard top-level
stage-split guidance in tabular mining and reasoning (Fayyad et al., 1996; Mariscal et al., 2010).

In this paper, we propose POTABLE (Programming on Tables) as a simple yet effective table-based
reasoning method. Inspired by plan-and-solve prompting (Wang et al., 2023), POTABLE features
a planning phase for the operation chain production and an executing phase for code generation
and real-time execution and feedback. Specifically, POTABLE integrates an LLM-based planner and
code generator with a Python interpreter as the executor. To incorporate logical top-level guidance,
we naturally split the entire process into several logical analysis stages with macroscopic instruction
injection. At each stage, we set a general sub-goal and expect it to plan and execute the operations
sequentially. Consequently, POTABLE produces superior reasoning results with highly accurate,
steply commented and completely executable code.

POTABLE enjoys two advantages that make it a distinguished data analyst. (1) Accuracy: POTABLE
can easily plan coherent operation chains under precise and specific sub-goals with less possibility of
misleading or missing steps, producing more accurate results. (2) Explainability: POTABLE follows
suitable structured top-level guidance with full operation code execution, making it easier to verify
the completeness and accuracy of the reasoning process. Finally, we conduct extensive experiments
over three evaluation datasets from two public benchmarks of table-based reasoning tasks on two
backbones. POTABLE achieves more outstanding accuracy results than all LLM-based baselines.
In particular, GPT-based POTABLE achieves over 4% higher absolute accuracy than runner-ups on
all evaluation datasets. All experimental results and analyses validate the strong effectiveness of
POTABLE. In summary, our main contributions can be listed as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

LLM Python

PoTable Stage Block

Planning

Current Operation

Think

Executing
Operation Chain

Code Base

Generate Execute in

Error

Normal

Macroscopic Stage Goal

Info

Tabular Task

Initialization1

Row Selection2

Data Type Cleaning3

Reasoning4

Final Answering5

Answer

Next Operation

(If in “Final Answering”,
print out the answer)

(If in “Initialization”, skip it)

Figure 2: Illustration of our propose POTABLE, a simple yet effective table-based reasoning method.
POTABLE follows logical top-level guidance as distinct analysis stage split: initialization, row se-
lection, data type cleaning, reasoning and final answering. Each stage contains a planning phase to
generate operation chains, and an executing phase to generate step code for real-time execution.

• We propose POTABLE, a simple yet effective table-based reasoning method that consists
of an LLM and a Python interpreter to implement the planning and executing phases, pro-
ducing highly accurate, steply commented and completely executable programs.

• We integrate logical top-level guidance into POTABLE by splitting the entire process into
several logical analysis stages. By structuring the overall reasoning process in a suitable
manner, POTABLE enjoys the advantages of high accuracy and explainability, making it
behave like a distinguished human data analyst.

• Experimental results over three evaluation datasets from two public benchmarks of table-
based reasoning tasks show the outstanding performance of POTABLE.

2 POTABLE

2.1 TASK FORMULATION

Our study focuses on two table-based reasoning tasks, i.e., table question answering and table fact
verification. Each sample can be represented as (T,Q,A), where T denotes the structured table, Q
denotes a question to be answered or a statement to be verified. Given T and Q, our goal is to find
the answer A in the table question answering task, while in the table fact verification task, we have
to decide A = 1 or A = 0 indicating whether the statement is true or false, respectively.

2.2 OVERVIEW

We propose POTABLE (Programming on Tables), a simple yet effective table-based reasoning
method shown in Figure 2. Specifically, POTABLE features a planning phase for the operation chain
production and an execution phase for code generation and real-time execution and feedback, which
is implemented by an LLM and a Python interpreter. POTABLE follows logical top-level guidance
that splits the entire analysis process into several distinct analysis stages, to structure the overall
reasoning process in a suitable manner. In this study, the stages include initialization, row selection,
data type cleaning, reasoning and final answering, while the design of split stages can be freely
customized with little effort for the extension in complicated scenarios. At each stage, POTABLE
follows a macroscopic instruction to accomplish a precise and specific goal through planning and
executing. Consequently, POTABLE reduces the possibility of misleading steps or missing details in
the overall reasoning process. In addition, through full code execution under the top-level guidance,
it is easy to verify the correctness and completeness of the reasoning process in POTABLE.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 LOGICAL TOP-LEVEL GUIDANCE: ANALYSIS STAGE SPLIT

In tabular analysis, a distinguished human analyst follows logical top-level guidance. For instance,
they may split the analysis process into several distinct stages in tabular mining and reasoning
(Fayyad et al., 1996; Mariscal et al., 2010). Such relatively standard stage splits decompose the
overall task goal into more precise and specific sub-goals, allowing more accurate operation plan-
ning with less possibility of misleading or missing steps. Inspired by human cognitive behavior
in tabular analysis, we integrate logical top-level guidance by splitting the overall procedure into
several stages. These stages will be implemented through Python code with pandas methods as a
common choice of human tabular analysts. Specifically, the overall analysis procedure is split into
five stages with macroscopic instruction injection:

• Initialization: Store the table data into pandas.DataFrame object.

• Row Selection: Remove redundant rows that do not represent distinct records.

• Data Type Cleaning: Transform the data type of table columns into a suitable form.

• Reasoning: Conduct flexible reasoning operations that are useful to find the final answer.

• Final Answering: Print out the final answer as the output of the evaluated sample.

In the above stages, the initialization stage is implemented by executing the pre-defined Python code
as import pandas as pd and df = pd.DataFrame(data=..., columns=...),
and then the LLM and the Python interpreter collaborate to traverse the other stages through meticu-
lous planning and execution sequentially. The detailed procedure is explained in the next subsection.
Notably, such stage division can be customized easily in different scenarios. We posit that such top-
level guidance enhances the reasoning framework to be a distinguished human analyst.

2.4 PLANNING AND EXECUTING

To implement the whole table analysis procedure, we adopt a planning phase and an executing phase
to complete the macroscopic goal in each stage. Such deployments leverage the LLM’s advantage
in thinking decomposition and code generation, and enjoy the benefits of robust memorization of
structured tables and precise computational results of the symbolic tools simultaneously.

Planning. Inspired by Chain-of-Thought (CoT) (Wei et al., 2022) prompting, the LLM decomposes
the stage target into operation chains based on the current status of table df, while the output is
always formatted as <START>->[OP.]->[OP.]->· · ·-><END> for easy operation extraction.
We do not restrict the scope of planned operations but only require the operations to be useful in
achieving the stage target even the overall tabular task goal. To prompt the LLM, we adopt a few-
shot learning strategy (Brown et al., 2020) with three self-made examples for the planning phase.

Executing. Given an operation, the LLM generates code based on the current table status df and
the existing code base. For the final answering stage, we adopt few-shot prompting with three self-
made examples to obtain the code to print out the answer, while in other stages we adopt zero-shot
prompting to generate the code. Next, the generated code is sent to the Python interpreter for real-
time execution. Most of the time, the execution is successful and then the table status is updated
as the next input from df stored in the Python interpreter. Occasionally, the execution fails as the
interpreter raises grammar error information or returns illegal output in the final answering stage. In
this case, POTABLE will roll back the interpreter to the status before the current execution, and urge
the LLM to regenerate suitable code based on the abnormal information.

Consequently, the final answer is obtained from the output of the executed code, instead of the direct
LLM response of an LLM query. The overall algorithmic procedure is shown in Algorithm 1.

2.5 SUMMARIZATION

According to the detailed procedure, we can see that POTABLE enjoys two advantages that make
it a distinguished human data analyst. (1) Accuracy: POTABLE can easily plan coherent opera-
tion chains under precise and specific sub-goals at each stage with less possibility of misleading
or missing steps through the integration of logical top-level guidance, hence producing more accu-
rate results. (2) Explainability: POTABLE follows suitably structured top-level guidance with full

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: POTABLE

Input: Table T , Question or statement Q, LLM M and Python Interpreter R
Output: Answer A to the question or statement

1 codeBase← initalCode(T)
2 R. executeCode(codeBase)
3 for stage in {“RowSelection”, “DataTypeClean”, “Reasoning”, “FinalAnswer”} do
4 stageModule← PoTableBlock(PlanPrompt[stage],CodePrompt[stage])
5 operationList← StageModule.plan(T,Q,M)
6 for operaion in operationList do
7 code← stageModule. codeGen(T,Q,M, operation, codeBase)
8 errorCnt← 0
9 while catchError(R. executeCode(code)) as error and errorCnt < 10 do

10 R. resetEnvironment(). executeCode(codeBase)
11 code← stageModule. codeReGen(T,Q,M, operation, codeBase, error)
12 errorCnt← errorCnt+1
13 end
14 codeBase← codeBase+ code
15 T ← R. getCurrentStatus(T)
16 end
17 end
18 A← R. getProgramOutput()
19 return A

program execution of each stage and operation, making it easier to verify the completeness and ac-
curacy of the reasoning process along the stage guidance. As a result, POTABLE produces superior
reasoning results with high-quality Python programs. The programs are highly accurate, steply com-
mented and completely executable, since they correspond to clear operations and have experienced
real-time execution and validation.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on three evaluation sets of two public benchmarks: WikiTQ
(Pasupat & Liang, 2015) and TabFact (Chen et al., 2020). WikiTQ is a benchmark for table question
answering, which requires answering the question with a short corpus based on the given table. We
conduct experiments over the validation (dev.) set with 2,831 questions and the test set with 4,344
questions as previous studies do, and use the official denotation accuracy for evaluation. TabFact is
a benchmark for table fact verification, which requires judging whether the given statement is true
or false based on the given table. We conduct experiments over the released small test set with 2,024
statements as previous studies do, and use the binary classification accuracy for evaluation.

Backbones. We select two representative language models as the backbones of POTABLE and other
baseline approaches in our experiments. Specifically, we choose GPT-4o-mini (2024-07-18)1 (GPT)
as the closed-source small language model, which is competent and cost-efficient to cover a wide
range of downstream tasks. In addition, we choose Llama-3.1-70B-Instruct2 (LLAMA) as the open-
source LLM for evaluation, which shows strong reasoning capabilities among released foundation
models. Please refer to Appendix A for the detailed parameter settings of the backbone models.

Baselines. We select four competitive LLM-based approaches as baselines for comparison. Binder
(Cheng et al., 2023) is a neural-symbolic framework that maps the reasoning task into a specific pro-
gram and then executes the program binding LLM as a unified API to extend its grammar coverage
and tackle the commands that cannot be executed normally. Dater (Ye et al., 2023) first decomposes
the table into sub-evidence with column and row selection through LLM queries and then decom-

1https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
2https://ai.meta.com/blog/meta-llama-3-1/

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Accuracy results (%) of table-based reasoning approaches on WikiTQ (D denotes dev.
set, T denotes test set) and TabFact (S denotes small test set) on GPT-4o-mini (GPT) and Llama-
3.1-70B-Instruct (LLAMA). The best results are marked in bold and the second-best results are
underlined, while the improvements of POTABLE over the runner-ups are recorded in teal.

Approach WikiTQ (D) WikiTQ (T) TabFact (S)
GPT LLAMA GPT LLAMA GPT LLAMA

Binder (ICLR’23) 59.20 50.65 58.86 50.51 84.63 78.16
Dater (SIGIR’23) 56.76 42.78 58.33 43.53 80.98 81.57

Chain-of-Table (ICLR’24) 56.64 62.39 55.60 62.22 84.24 85.62
TabSQLify (NAACL’24) 56.87 55.51 57.02 55.78 78.75 70.70

POTABLE (Ours)
63.58
(+4.38)

65.10
(+2.71)

64.73
(+5.87)

65.56
(+3.34)

88.93
(+4.30)

87.06
(+1.44)

poses the question into simpler sub-questions through intermediate SQL generation, followed by
a joint reasoning stage with simplified tables and questions. Chain-of-Table (Wang et al., 2024b)
pre-defines several common atomic operations for dynamic selection by the LLM, forming an oper-
ation chain to process the table with pre-defined code to simplify the table for the final LLM answer
querying. TabSQLify (Nahid & Rafiei, 2024) leverages Text-to-SQL to decompose the table into
sub-tables and conduct comprehensive reasoning and answer generation through LLM queries. All
these selected approaches are competitive as LLM-based baselines on table-based reasoning.

Implementation Details. To implement POTABLE, we carefully design prompting templates for
planning and executing phases of each stage. In addition, we respectively prepare three few-shot
prompting examples for WikiTQ and TabFact, including query-answer pairs for both operation plan-
ning and final answer code generation. Please refer to Appendix C for the detailed contents.

3.2 MAIN RESULTS

We conduct experiments to compare POTABLE with other baselines over three evaluation datasets
of WikiTQ and TabFact on GPT and LLAMA backbones. The result table is presented in Table 1.
From the main results, it is clear that our POTABLE significantly outperforms all other baselines over
all evaluation datasets from WikiTQ and TabFact on GPT and LLAMA, respectively. In particular,
GPT-based POTABLE achieves over 4% higher absolute accuracy than runner-ups on all evaluation
datasets, which demonstrates the superior effectiveness of our method.

To be more specific, we make a more comprehensive analysis of results from all approaches and
base models. Firstly, Binder is always the runner-up in GPT-based approaches, while its accuracy
drop based on LLAMA is 6%-9%. As Binder contains an important step in generating the whole
program for the question, it seems that GPT-4o-mini enjoys a higher ability for full code generation.
In comparison, POTABLE integrates top-level logical splits of the whole tabular analysis process
and generates code once for a single operation with error checking, reducing possible blurred and
uncleared code in the overall programs. Consequently, this may be one reason that our method
achieves significant improvement over Binder and others in accuracy. Secondly, in LLAMA-based
approaches, Chain-of-Table is the second-best approach although it has a constrained operation
pool for dynamic selection, while its accuracy drop based on GPT is around 6% in WikiTQ and
1.44% in TabFact. Its reasoning performance mainly depends on the LLM’s ability to plan and
decompose the operations rather than code generating since the codes for all operations are pre-
defined, which may indicate that Llama-3.1-70B-Instruct enjoys a stronger ability to plan and reason.
In our POTABLE, the two LLM abilities are fully stimulated, unleashing the potential of symbolic
tools for more flexible planning and executing simultaneously. This may be another reason that our
method outperforms Chain-of-Table and others in accuracy. Thirdly, in Dater and TabSQLify, the
accuracy difference between GPT and LLAMA is unstable across different evaluation datasets. This
may indicate that their module and prompt design lack robustness under different LLM bases, while
POTABLE demonstrates no such disadvantage.

As a result, the logical top-level guidance integration leads POTABLE to the best accuracy, strongly
validating the effectiveness in table-based reasoning scenarios.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Accuracy results (%) of POTABLE on different groups in task difficulty as simple and
complex and different groups in table size as small (S), medium (M) and large (L).

Backbone Dataset Task Difficulty Table Size Original
Simple Complex S M L

GPT
WikiTQ (D) 67.77 60.04 63.00 65.57 62.32 63.58
WikiTQ (T) 68.99 61.12 70.20 66.21 61.61 64.73
TabFact (S) 90.65 87.24 90.59 88.44 88.05 88.93

LLAMA
WikiTQ (D) 68.00 62.65 68.41 67.52 61.78 65.10
WikiTQ (T) 68.89 62.74 71.27 67.99 61.50 65.56
TabFact (S) 88.96 85.18 85.71 87.84 87.23 87.06

3.3 PERFORMANCE ANALYSIS GROUPED BY TASK DIFFICULTY AND TABLE SIZE

To make further performance analysis of POTABLE, we recompute the main performance at different
levels of task difficulty and table size. Specifically, we label the difficulty of the evaluated questions
or statements as “simple” or “complex”. In WikiTQ, a question with a length less than 50 is labeled
as “simple”, while a “complex” question is longer. As for TabFact, we use the official difficulty
label for all statements. In addition, we group the table content size as “small” (S), “medium” (M)
and “large” (L), in situations when the table has 1-49 cells, 50-99 cells and no less than 100 table
content cells respectively. The detailed grouped results are reported in Table 2.

The results illustrate that more complex tasks always lead to performance drop as expected, yet the
negative correlation between table size and performance is not always obvious. We can draw two
preliminary inferences: (1) POTABLE may ignore task decomposition as a potential improvement,
although it is trivial to see performance drop on difficult tasks. (2) POTABLE seems somewhat robust
on the table size, yet a deeper study grouped by table tokens may be more persuasive.

3.4 ABLATION STUDY ON LOGICAL STAGES

In our implementation of POTABLE, the overall tabular analysis procedure is split into five distinct
stages. To validate the effect of the logical stage split, we present an ablation study by adopting
different stage splits in the compared settings. Specifically, we compare the original GPT-based
POTABLE with the following four settings: (1) Only Reasoning: we discard all other unnecessary
stages except for initialization, reasoning and final answering. In fact, this setting shows no explicit
stage split. (2) Removing Row Selection: we give up checking redundant rows before further
processing and reasoning stages, which is commonly regarded as an operation of sub-table data
extraction. (3) Removing Data Type Cleaning: we give up checking whether the table column data
needs type transformation. As all table columns are stored with an initial type of string, discarding
this operation may cause more error execution. (4) Adding Column Selection: we add a new
column selection stage to select relative columns before further processing and reasoning stages.
This stage has been included in most studies as an operation of sub-table data extraction. The
overall results of the ablation study on logical stages are shown in Figure 3.

We can see that the original GPT-based POTABLE outperforms all ablated settings in the three eval-
uation datasets. To be more specific, we make a more comprehensive analysis of results from all
settings. Firstly, we focus on the “only reasoning” setting (only Reason). Compared with the original
setting, only Reason scores nearly 0.6%-1% less in WikiTQ and around 3% less in TabFact. These
results indicate that logical top-level guidance greatly benefits the tabular analysis process. In addi-
tion, only Reason shows few weaknesses among all other settings in WikiTQ but has more accuracy
drop in TabFact. From the task perspective, WikiTQ is about a clear task to answer the question
directly, while TabFact asks to judge the statement, containing intermediate reasoning processes to
judge the potential sub-facts. Therefore, the logical split for TabFact may be more necessary than
WikiTQ, and it is also crucial to make the split as reasonable as possible.

On the other hand, the results of settings “removing row selection” and “removing data type clean-
ing” demonstrate the importance of these stages as expected. Notably, “removing data type clean-
ing” always reaches the lowest accuracy, indicating that the framework may ignore these details
(e.g., treating text floats into real floats) with unreasonable top-level stage-split. A more interesting

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(-0.60)

62.98

(-0.96)

63.77
(-1.38)

62.20

(-0.71)

64.02

(-2.97)

60.61

(-3.27)

61.46

(-1.91)

61.67

(-2.18)

62.55
63.58

64.73

55

60

65

WikiTQ (D) WikiTQ (T)

A
cc

u
ra

cy
 (

%
)

(-3.01)

85.92

(-1.23)

87.70

(-6.22)

82.71

(-0.89)

88.04
88.93

80

85

90

TabFact (S)

only Reason w/o Row Sel. w/o Dty. Cle. w/ Col. Sel. Original

Figure 3: Accuracy results (%) in the ablation study of the different logic split employed in
POTABLE with GPT-4o-mini on three evaluation sets of WikiTQ and TabFact, including only rea-
soning (only Reason), removing row selection (w/o Row Sel.), removing data type cleaning (w/o
Dty. Cle.), adding column selection (w/ Col. Sel.) and the original setting (Original). The best
results are marked in bold, while the accuracy drops in all settings are recorded in red.

Table 3: Efficiency results on TabFact (S) for GPT-based methods. For the three baselines, we com-
pared the results of single LLM generation (Single) and default LLM generation (Default) following
their claimed settings in the article. Here Gen. denotes “generation” and ave. denotes “average”.

Approach Accuracy # Generation
(Default) Details

Single Default
Binder 84.63 85.13 50 SQL Gen.: 50

Dater 80.98 82.26 100
Decomposition Gen.: 40, Cloze Gen.: 20,
SQL Gen.: 20, Query: 20

Chain-of-Table 84.24 85.23 ≤22
Dynamic Planning: ≤4 (3.74 on ave.),
Args Gen.: ≤17 (16.09 on ave.), Query: 1

POTABLE

(only Reason) 85.92 ≤6
Planning: 1, Code Gen.: ≤ 4 (3.72 on ave.),
Re-Gen.: ≤1 (less than 1 on average)

POTABLE 88.93 ≤10
Planning: 3, Code Gen.: ≤ 6 (5.60 on ave.),
Re-Gen.: ≤1 (less than 1 on ave.)

fact is the addition of “column selection” results in worse performance, which is widely adopted in
previous approaches. We speculate that the selected backbones are competitive enough to handle
full table columns, yet eliminating seemingly irrelevant columns may cause a dilemma, i.e., poten-
tially useful columns are accidentally removed and the LLM reasoner cannot find adequate data for
processing. Therefore, column selection is not suitable to be regarded as a distinct stage.

As a completion, we also recompute the performance results grouped by task difficulty and table
size. Please refer to Appendix B to check the detailed results and analyses.

3.5 EFFICIENCY ANALYSIS

We analyze the efficiency of POTABLE and three representative baselines based on GPT by eval-
uating the count number of required LLM-based generation in TabFact (S). The result tables are
presented in Table 3. We notice that the multiple generation achieves some improvement in the com-
pared baselines, yet PoTable always adopts the single generation and outperforms them. In Binder
and Dater, the generation counts are fixed while the ones of Chain-of-Table and our PoTable fluctuate
dynamically. Therefore, we report the empirical average counts of each module and rounded them
up as their estimation. It can be seen that POTABLE has much fewer LLM generation counts than
previous baselines. In addition, the difference in generation counts between the original POTABLE
and the only Reason setting is small, while the accuracy improvement is more than 3%. These re-
sults demonstrate the efficiency of our POTABLE, indicating that the improvements come from the
top-level guidance integration rather than multiple generations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

import pandas as pd

df = pd.DataFrame(data=[...], columns=[...])

Row
Selection

Initialization
(Pre-defined)

Data Type
Cleaning

Final
Answering

Reasoning

remove rows where `rank`='-'

df = df[df['rank'] !='-']

transform column `rank` into `int` type

df['rank'] = df['rank'].astype(int)

extract the rank of france

france_rank = df.loc[df['country'] ==

'france', 'rank'].values[0]

find the country that has a rank one

greater than the rank of france

next_rank = france_rank + 1

next_country = df.loc[df['rank'] ==

next_rank, 'country'].values[0]

final output

print(next_country)

Q: Who ranks after France in the list of largest markets in the
film industry by box office?

A: South Korea

rank country box office year
box office

from national films

1 Canada/United States $10.8 billion 2012 \u2013

2 China $3.6 billion 2013 59.7% (2013)

… … … … …

5 France $1.7 billion 2012 33.3% (2013)

6 South Korea $1.47 billion 2013 59.7% (2013)

… … … … …

12 Brazil $0.72 billion 2013 17% (2013)

- World $34.7 billion 2012 \u2013

Program Output: South Korea

Figure 4: A case study of an evaluated sample from WikiTQ (T) wit its generated Python program
and output answer, which indicates the effectiveness and explainability of POTABLE.

3.6 CASE STUDY

We conduct a case study of POTABLE in Figure 4 by presenting an evaluated sample from Wik-
iTQ (T) with its generated Python program and output answer. The tabular task sample is fed into
POTABLE, experiencing a relatively standard analysis process including five logical stages. From the
complete program, we notice the planned operations (shown as split comments in the stage block)
and high-quality generated code of each operation (matching the former comment) for real-time exe-
cution. POTABLE follows suitably structured top-level guidance with full program execution of each
stage and operation, allowing us to easily review the whole process precisely and discover the true
reason why it leads to right or wrong answers. Along with the answer, POTABLE produces highly
accurate, steply commented and completely executable code. These produced outputs demonstrate
that POTABLE enjoys high accuracy and explainability.

4 RELATED WORK

Table Processing with Language Models. Table processing has been a popular research domain
over the past decade. Before the era of LLMs, numerous efforts were made to process tables with
pre-trained language models. TaPas (Herzig et al., 2020) extends BERT (Devlin et al., 2019) by
conducting masked pre-training with joint encoding of questions and flattening tables. TaBERT
(Yin et al., 2020) combines content snapshot and vertical attention based on BERT to obtain joint
textual and tabular representations for further understanding. TUTA (Wang et al., 2021) enhances
transformers (Vaswani et al., 2017) with structure-aware mechanisms to effectively capture spatial,
hierarchical and semantic information. TAPEX (Liu et al., 2022) pre-trains BART (Lewis et al.,
2020) on a large synthetic SQL dataset to imitate the SQL executor that better understands tabular
structure information. With the development of LLMs, the paradigm of table processing has been
deeply revolutionized, especially in tabular data encoding and reasoning. In prompting methods,
Sui et al. (2024) designs a benchmark to evaluate the structural understanding capabilities of LLMs,
followed by a novel self-augmentation for effective structural prompting. Dater (Ye et al., 2023)
and DIN-SQL (Pourreza & Rafiei, 2023) adopt task decomposition for better understanding with
simplified queries, while Chain-of-Table (Wang et al., 2024b) defines atomic operations for dynamic
selection in CoT prompting. Some other approaches explore training or tuning LLMs as generalists.
TableLlama (Zhang et al., 2024a) develops an open-source tabular LLM by fine-tuning Llama 2-
7B (Touvron et al., 2023) with LongLoRA (Chen et al., 2024b), while Table-LLAVA (Zheng et al.,
2024) trains a multi-modal tabular LLM that can handle table images as vision inputs.

Table Processing with Symbolic Tools. Symbolic tools have been widely utilized as assistants to
produce more accurate and robust mid-results in LLM-based table reasoning scenarios. Most stud-
ies adopt databases and Python as affiliated executors to interact with LLMs. Binder (Cheng et al.,
2023) and Cao et al. (2023) parse the tasks into integral SQL or Python programs for further ex-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ecution, incorporating LLM-assistant APIs to handle abstract code blocks for complete execution.
TabSQLify (Nahid & Rafiei, 2024) generates SQL queries to extract sub-tables and executes them
to get simplified tables for further LLM reasoning. Some works target boosting the code genera-
tion ability for tabular reasoning and other scenarios. TroVE (Wang et al., 2024a) asks the code
LLMs to curate reusable high-level functions and use them to write solutions for Python execution
on the table question answering and other tasks, while Self-Debugging (Chen et al., 2024a) teaches
LLMs to debug their predicted SQL or Python programs on Text-to-SQL (Yu et al., 2018) and other
tasks. Recently, research in LLM-based table reasoning has been extended into more sophisticated
tools environments and more advanced reasoning tasks. SheetCopilot (Li et al., 2023a) and Spread-
sheetBench (Ma et al., 2024) address a novel spreadsheet manipulation task, which maneuvers table
analysis software like Microsoft Excel3 to generate step-by-step solutions for simulated execution.
MatPlotAgent (Yang et al., 2024) addresses the task of scientific data visualization, which includes a
code agent integrating Matplotlib4 responsible for generating the code to plot figures from input
tables. As a result, symbolic tool utilization has become a crucial component in table processing.

5 CONCLUSION

In this paper, we proposed POTABLE as a simple yet effective table-based reasoning method.
POTABLE featured a planning phase and an executing phase implemented by an LLM and a Python
interpreter, incorporating logical top-level guidance through analysis stage splitting with macro-
scopic instruction injection. Consequently, POTABLE produced highly accurate, steply commented
and completely executable code to obtain reliable answers. Accordingly, POTABLE enjoyed two
advantages of high accuracy and explainability, making it a distinguished tabular data analyst. Ex-
tensive experiments under three evaluation datasets of two benchmarks on different backbones pre-
sented a dominating performance of POTABLE on table-based reasoning.

This study targeted the balance of structure and autonomy through suitable top-level guidance inte-
gration in standardized table-based reasoning. However, more complicated tabular data (e.g., hierar-
chical tables, multiple tables) and more domain-specific scenarios (e.g., spreadsheet manipulation,
healthcare records) remained less explored. In the future, we will explore more effective ways to
make our improved method competent on more complicated and domain-specific table-based rea-
soning scenarios, simulating more advanced human behavior in tabular analysis.

REPRODUCIBILITY STATEMENT

Our code is available in https://anonymous.4open.science/r/PoTable-6788 for
reproducibility. All baseline approaches have released the official open-source code and prompts.
Specifically, we run Binder from https://github.com/xlang-ai/Binder, Dater from
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/dater,
Chain-of-Table from https://github.com/google-research/chain-of-table,
and TabSQLify from https://github.com/mahadi-nahid/TabSQLify.

REFERENCES

Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and Gjergji
Kasneci. Deep neural networks and tabular data: A survey. IEEE transactions on neural networks
and learning systems, 2022.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Proceedings
of the 34th International Conference on Neural Information Processing Systems, 2020. ISBN
9781713829546.
3https://www.microsoft.com/zh-cn/microsoft-365/excel
4https://matplotlib.org/

10

https://anonymous.4open.science/r/PoTable-6788
https://github.com/xlang-ai/Binder
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/dater
https://github.com/google-research/chain-of-table
https://github.com/mahadi-nahid/TabSQLify

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yihan Cao, Shuyi Chen, Ryan Liu, Zhiruo Wang, and Daniel Fried. Api-assisted code generation
for question answering on varied table structures. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 14536–14548, 2023.

Wenhu Chen, Hongmin Wang, Jianshu Chen, Yunkai Zhang, Hong Wang, Shiyang Li, Xiyou Zhou,
and William Yang Wang. Tabfact: A large-scale dataset for table-based fact verification. In
International Conference on Learning Representations, 2020.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2024a.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Lon-
glora: Efficient fine-tuning of long-context large language models. In The Twelfth International
Conference on Learning Representations, 2024b.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, et al. Binding language models in symbolic
languages. In The Eleventh International Conference on Learning Representations, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of
deep bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186.
Association for Computational Linguistics, 2019.

Haoyu Dong and Zhiruo Wang. Large language models for tabular data: Progresses and future
directions. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 2997–3000, 2024.

David W Embley, Matthew Hurst, Daniel Lopresti, and George Nagy. Table-processing paradigms:
a research survey. International Journal of Document Analysis and Recognition (IJDAR), 8:66–
86, 2006.

Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. The kdd process for extracting
useful knowledge from volumes of data. Communications of the ACM, 39(11):27–34, 1996.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Mahdi Ghasemi and Daniel Amyot. Process mining in healthcare: a systematised literature review.
International Journal of Electronic Healthcare, 9(1):60–88, 2016.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Mueller, Francesco Piccinno, and Julian Eisen-
schlos. Tapas: Weakly supervised table parsing via pre-training. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 4320–4333, 2020.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics, pp. 7871–7880, 2020.

Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and ZHAO-XIANG ZHANG. Sheetcopilot: Bring-
ing software productivity to the next level through large language models. Advances in Neural
Information Processing Systems, 36, 2023a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2023b.

Yiren Li, Zheng Huang, Junchi Yan, Yi Zhou, Fan Ye, and Xianhui Liu. Gfte: graph-based financial
table extraction. In Pattern Recognition. ICPR International Workshops and Challenges: Virtual
Event, January 10–15, 2021, Proceedings, Part II, pp. 644–658. Springer, 2021.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, and Jian-Guang Lou.
Tapex: Table pre-training via learning a neural sql executor. In International Conference on
Learning Representations, 2022.

Weizheng Lu, Jiaming Zhang, Jing Zhang, and Yueguo Chen. Large language model for table
processing: A survey. arXiv preprint arXiv:2402.05121, 2024.

Zeyao Ma, Bohan Zhang, Jing Zhang, Jifan Yu, Xiaokang Zhang, Xiaohan Zhang, Sijia Luo,
Xi Wang, and Jie Tang. Spreadsheetbench: Towards challenging real world spreadsheet ma-
nipulation. arXiv preprint arXiv:2406.14991, 2024.

Gonzalo Mariscal, Oscar Marban, and Covadonga Fernandez. A survey of data mining and knowl-
edge discovery process models and methodologies. The Knowledge Engineering Review, 25(2):
137–166, 2010.

Md Nahid and Davood Rafiei. Tabsqlify: Enhancing reasoning capabilities of llms through table
decomposition. In Proceedings of the 2024 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 5725–5737, 2024.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 1470–1480, 2015.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 36, 2023.

Changle Qu, Sunhao Dai, Xiaochi Wei, Hengyi Cai, Shuaiqiang Wang, Dawei Yin, Jun Xu,
and Ji-Rong Wen. Tool learning with large language models: A survey. arXiv preprint
arXiv:2405.17935, 2024.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. Table meets llm: Can
large language models understand structured table data? a benchmark and empirical study. In
Proceedings of the 17th ACM International Conference on Web Search and Data Mining, pp.
645–654, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pp. 5998–6008, 2017.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi Lan, Roy Ka-Wei Lee, and Ee-Peng Lim.
Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language
models. In Proceedings of the 61st Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 2609–2634, 2023.

Zhiruo Wang, Haoyu Dong, Ran Jia, Jia Li, Zhiyi Fu, Shi Han, and Dongmei Zhang. Tuta: Tree-
based transformers for generally structured table pre-training. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1780–1790, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Zhiruo Wang, Daniel Fried, and Graham Neubig. Trove: Inducing verifiable and efficient toolboxes
for solving programmatic tasks. arXiv preprint arXiv:2401.12869, 2024a.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, et al. Chain-of-table: Evolving
tables in the reasoning chain for table understanding. In The Twelfth International Conference on
Learning Representations, 2024b.

Sherwood L Washburn. Tools and human evolution. Scientific American, 203(3):62–75, 1960.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Zhiyu Yang, Zihan Zhou, Shuo Wang, Xin Cong, Xu Han, Yukun Yan, Zhenghao Liu, Zhixing Tan,
Pengyuan Liu, Dong Yu, Zhiyuan Liu, Xiaodong Shi, and Maosong Sun. Matplotagent: Method
and evaluation for llm-based agentic scientific data visualization. In Findings of the Association
for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16,
2024, pp. 11789–11804. Association for Computational Linguistics, 2024.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei Huang, and Yongbin Li. Large language models
are versatile decomposers: Decomposing evidence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 174–184, 2023.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. Tabert: Pretraining for joint
understanding of textual and tabular data. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pp. 8413–8426, 2020.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 3911–3921, 2018.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun. Tablellama: Towards open large generalist
models for tables. In Proceedings of the 2024 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers), pp. 6024–6044, 2024a.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep, and Jignesh M Patel.
Reactable: Enhancing react for table question answering. Proceedings of the VLDB Endowment,
17(8):1981–1994, 2024b.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Mingyu Zheng, Xinwei Feng, Qingyi Si, Qiaoqiao She, Zheng Lin, Wenbin Jiang, and Weiping
Wang. Multimodal table understanding. arXiv preprint arXiv:2406.08100, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A PARAMETER SETTINGS OF BACKBONES

We report the parameter settings of GPT-4o-mini (2024-07-18) and Llama-3.1-70B-Instruct as the
backbone models for POTABLE in Table 4. In all logical stages of the three evaluation datasets in
WikiTQ and Tabfact, the parameter setting remains unchanged. As for the baselines, we only unify
the setting of n samples as 1 for a fair generation effect comparison, while for other parameters,
we use the originally proposed settings since the targeted operations and the deployed paradigm in
different approaches are different.

Table 4: Parameter settings of GPT and LLAMA backbone models in POTABLE.

Backbone temperature top p max tokens n samples
GPT 0.1 0.9 2,048 1

LLAMA 0.1 0.9 2,048 1

B FINE-GRAINED ABLATION STUDY RESULTS

Following the same group division in comparison experiments, we report the fine-grained results of
the ablation study in GPT-based POTABLE. The result table grouped by task difficulty is shown in
Table 5, while the one grouped by table sizes is shown in Table 6. In most of the time, the original
setting reaches the best results in different grouped settings, strengthening the conclusions from the
ablation study in the main text. In addition, these results strongly indicate the influence of task
difficulty but do not seem to be that strong on table size on cells, as illustrated in the main text.

Table 5: Fine-grained accuracy results (%) in the ablation study grouped by different task difficulty
as simple and complex in GPT-based POTABLE.

Setting WikiTQ (D) WikiTQ (T) TabFact (S)
Simple Complex Simple Complex Simple Complex

only Reason 66.38 60.10 66.98 60.19 85.87 85.97
w/o Row Sel. 66.23 58.80 67.74 60.87 88.66 86.75
w/o Dty. Cle. 63.99 57.76 65.48 58.06 80.70 84.69
w/ Col. Sel. 65.30 58.60 66.18 59.46 88.96 87.14

Original 67.77 60.04 68.99 61.12 90.65 87.24

Table 6: Fine-grained accuracy results (%) in the ablation study grouped by different table sizes as
small (S), medium (M) and large (L) in GPT-based POTABLE.

Setting WikiTQ (D) WikiTQ (T) TabFact (S)
S M L S M L S M L

only Reason 65.45 64.14 61.00 68.82 64.59 61.35 85.89 86.53 85.11
w/o Row Sel. 61.95 64.24 60.76 69.74 65.28 60.99 87.80 87.37 88.05
w/o Dty. Cle. 60.73 62.70 58.97 66.67 63.50 57.92 83.80 83.55 80.52
w/ Col. Sel. 58.99 64.24 60.92 67.28 65.05 58.74 89.02 87.49 87.89

Original 63.00 65.57 62.32 70.20 66.21 61.61 90.59 88.44 88.05

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C IMPLEMENTATION DETAILS OF POTABLE

We list all prompt templates in Figure 5-22. These prompt templates are combined based on different
stages and scenarios in the planning and executing modules.

In operation planning, the prompt templates are combined as follows:

• Row Selection Stage: Figure 7/8 (WikiTQ/TabFact) + Figure 9.
• Data Type Cleaning Stage: Figure 5/6 (WikiTQ/TabFact) + Figure 10.
• Reasoning Stage: Figure 5/6 (WikiTQ/TabFact) + Figure 11/12 (WikiTQ/TabFact).
• Column Selection Stage (Ablation): Figure 5/6 (WikiTQ/TabFact) + Figure 13.

In code generation for execution, the prompt templates are combined as follows:

• Row Selection Stage: Figure 7/8 (WikiTQ/TabFact) + Figure 14.
• Data Type Cleaning Stage: Figure 5/6 (WikiTQ/TabFact) + Figure 15.
• Reasoning Stage: Figure 5/6 (WikiTQ/TabFact) + Figure 16/17 (WikiTQ/TabFact).
• Column Selection Stage (Ablation): Figure 5/6 (WikiTQ/TabFact) + Figure 14.
• Non-final Code Regeneration: Figure 18.
• Final Answering Stage: Figure 5/6 (WikiTQ/TabFact) + Figure 19/20 (WikiTQ/TabFact).
• Final Code Regeneration: Figure 21/22 (WikiTQ/TabFact).

In addition, we have constructed three samples based on the table of Paris 2024 Olympic Medal
Count, which are utilized for few-shot prompting to generate the planning operations list and the
final answering code. As for code generation and regeneration in other situations, we adopt zero-shot
prompting. To check the specific contents of the demo samples, please refer to our code repository.

Given the table information:
/*
Data:
{table_df}
*/
Here is a statement to be answered:
/*
Statement: {question}
*/

Figure 5: The prompt template of table information in WikiTQ.

Given the table information:
/*
Caption: {caption}
Data:
{table_df}
*/
Here is a statement to be verified:
/*
Statement: {statement}
*/

Figure 6: The prompt template of table information in TabFact.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Given the table information:
/*
Data:
{table_df}
*/

Figure 7: The prompt template of table information without the question in WikiTQ.

Given the table information:
/*
Caption: {caption}
Data:
{table_df}
*/

Figure 8: The prompt template of table information without the statement in TabFact.

INSTRUCTION:
Judge if there are redundant rows that can be obtained from other
independent row data. For example, if the statement do not mention words
like `total`, `average`, rows like `total`, `average` that do not
represent a distinct item data, should be removed.

FORMAT:
"<START> -> [OPERATION] -> <END>"

NOTE:
1. If no such rows exist, skip this [OPERATION] and generate "<END>"
directly to finish the plan. This operation should be generated in most
of the time even if you are not certain.
2. If such rows exist, remove them. In this case the format of this
[OPERATION] should be "remove rows where `XXX`=`YYY`, ...", here `XXX` is
the name of the first column, and `YYY` is the corresponding value (e.g.,
`total`, `average`). This [OPERATION] should be generated only once when
you are very confident that the rows are redundant.

OUTPUT:
{output}

Figure 9: The planning prompt template of row selection stage.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

INSTRUCTION:
All columns of the table stored in pandas.DataFrame `df` are string type.
Judge if there exist columns that need data type transformation. If so,
generate a plan to transfer the corresponding column type.

FORMAT:
"<START> -> [OPERATION] -> ... -> [OPERATION] -> <END>"

NOTE:
1. You can transfer the columns with integer values into `int` data type
or the columns with real number values into `double` type. The format of
this [OPERATION] should be "transfer column `XXX` into `XXX` type".
2. If there is no need to perform, skip this [OPERATION] and generate
"<END>" directly to finish the plan.

OUTPUT:
{output}

Figure 10: The planning prompt template of data type cleaning stage.

INSTRUCTION:
Generate a reasoning plan that can be easily executed by python code, to
answer the given statement.

FORMAT:
"<START> -> [OPERATION] -> ... -> [OPERATION] -> <END>"

NOTE:
Candidate [OPERATION] contain column value sorting, conditional data
counting, arithmetic calculations, expression comparison and other
reasoning operations, etc.

OUTPUT: {output}

Figure 11: The planning prompt template of reasoning stage in WikiTQ.

INSTRUCTION:
Generate a reasoning plan that can be easily executed by python code, to
verify whether the statement is true.

FORMAT:
"<START> -> [OPERATION] -> ... -> [OPERATION] -> <END>"

NOTE:
Candidate [OPERATION] contain column value sorting, conditional data
counting, arithmetic calculations, expression comparison and other
reasoning operations, etc.

OUTPUT: {output}

Figure 12: The planning prompt template of reasoning stage in TabFact.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

INSTRUCTION:
Select columns that are somewhat relevant in semantics to the statement.

FORMAT:
"<START> -> [OPERATION] -> <END>"

NOTE:
1. The first column should be always selected.
2. The format of this [OPERATION] should be "select columns named
`XXX`, ...".
3. This [OPERATION] should be generated only once.

OUTPUT:
{output}

Figure 13: The planning prompt template of column selection stage.

We have executed the following code:
```python
{code_base}
```
Now we need to continue to execute the following operation: {operation}

INSTRUCTION:
Generate code without any other texts according to the given operation.

FORMAT:
```python
df = XXXXXX
```

NOTE: The table is stored in a pandas.Dataframe variable named `df`.

OUTPUT: {output}

Figure 14: The code generation prompt template of row selection and column selection stage.

We have executed the following code:
```python
{code_base}
```
Now we need to continue to execute the following operation: {operation}

INSTRUCTION:
Generate code without any other texts according to the given operation.

FORMAT:
```python
df['XXX'] = XXXXXX
```

OUTPUT: {output}

Figure 15: The code generation prompt template of data type cleaning stage.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

We have executed the following code:
```python
{code_base}
```
Now we need to continue to execute the following operation: {operation}

INSTRUCTION:
Generate code without any other texts according to the given operation.
Remember to store the result into suitable variables.

FORMAT:
```python
[GENERATED CODE]
```

NOTE:
Do not store any formatted strings. For example, if the answer of winner
is "John", then just store "John" directly instead of formatted strings
like "John is the winner", "John wins". In addition, if the answer of
country number is "0", then just store "0" directly instead of formatted
strings like "no countries", "there is no countries".

OUTPUT: {output}

Figure 16: The code generation prompt template of reasoning stage in WikiTQ.

We have executed the following code:
```python
{code_base}
```
Now we need to continue to execute the following operation: {operation}

INSTRUCTION:
Generate code without any other texts according to the given operation.
Remember to store the result into suitable variables.

FORMAT:
```python
[GENERATED CODE]
```

OUTPUT: {output}

Figure 17: The code generation prompt template of reasoning stage in TabFact.

When executing the generated code, the python interpreter raises the
following error information:
{output}
INSTRUCTION: Please regenerate legal code for the given operation.

Figure 18: The code generation prompt template of regeneration.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We have executed the following code:
```python
{code_base}
```

INSTRUCTION:
Based on the executed code, continue to generate the final output code to
print out the variable indicating the answer of the statement. The
variable should be one of `int`, `float`, `string`, `bool` type or a list
containing elements of these types. Remember to use `print()` method in
the generated code.

FORMAT:
```python
...
print(XXX)
```

NOTE:
Here `XXX` denotes the variable indicating the answer of the statement.
Do not print out any irrelavent variables or strings.

OUTPUT: {output}

Figure 19: The code generation prompt template of final answering stage in WikiTQ.

We have executed the following code:
```python
{code_base}
```

INSTRUCTION:
Based on the executed code, continue to generate the final output code to
print out the bool type variable indicating whether the statement is true
or not. Remember to use `print()` method in the generated code.

FORMAT:
```python
...
print(XXX)
```

NOTE:
Here `XXX` denotes the bool type variable or boolean expression
indicating whether the statement is true or not.

OUTPUT: {output}

Figure 20: The code generation prompt template of final answering stage in TabFact.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

When executing the generated code, the python interpreter has the
following output:
{program_output}
It is an illegal type variable or a blank string/list, which is not
acceptable.

INSTRUCTION: Please regenerate legal code to print out the corresponding
variable indicating the answer of the statement. The variable should be
one of `int`, `float`, `string`, `bool` type or a list containing
elements of these types. Remember to use `print()` method in the
generated code.

FORMAT:
```python
...
print(XXX)
```

NOTE:
Here `XXX` denotes the variable indicating the answer of the statement.

OUTPUT:

Figure 21: The code generation prompt template of final answering regeneration in WikiTQ.

When executing the generated code, the python interpreter has the
following output:
{program_output}
It is neither True or False that indicates whether the statement is true
or not.

INSTRUCTION:
Please regenerate legal code to print out the bool type variable
indicating whether the statement is true or not. Remember to use
`print()` method in the generated code.

FORMAT:
```python
...
print(XXX)
```

NOTE:
Here `XXX` denotes the bool type variable or boolean expression
indicating whether the statement is true or not.

OUTPUT:

Figure 22: The code generation prompt template of final answering regeneration in TabFact.

21

	Introduction
	PoTable
	Task Formulation
	Overview
	Logical Top-level Guidance: Analysis Stage Split
	Planning and Executing
	Summarization

	Experiments
	Experimental Setup
	Main Results
	Performance Analysis Grouped by Task Difficulty and Table Size
	Ablation Study on Logical Stages
	Efficiency Analysis
	Case Study

	Related Work
	Conclusion
	Parameter Settings of Backbones
	Fine-grained Ablation Study Results
	Implementation Details of PoTable

