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ABSTRACT

Transformers have revolutionized machine learning with their simple yet effective
architecture. Pre-training Transformers on massive text datasets from the Internet
has led to unmatched generalization for natural language understanding (NLU)
tasks. However, such language models remain fragile when tasked with algo-
rithmic forms of reasoning, where computations must be precise and robust. To
address this limitation, we propose a novel approach that combines the Trans-
former’s language understanding with the robustness of graph neural network
(GNN)-based neural algorithmic reasoners (NARs). Such NARs proved effec-
tive as generic solvers for algorithmic tasks, when specified in graph form. To
make their embeddings accessible to a Transformer, we propose a hybrid archi-
tecture with a two-phase training procedure, allowing the tokens in the language
model to cross-attend to the node embeddings from the NAR. We evaluate our
resulting TransNAR model on CLRS-Text, the text-based version of the CLRS-
30 benchmark, and demonstrate significant gains over Transformer-only models
for algorithmic reasoning, both in and out of distribution. Finally, we empirically
show that Transformer-only models distilled from TransNAR models also exhibit
improved out-of-distribution generalization capabilities.

1 INTRODUCTION

Recent work motivated (Dudzik &
Veli¢kovid, and showcased (Ibarz
et al [2022; Bevilacqua et al [2023) the
effectiveness of graph neural networks
(Velickovid, 2023, GNNs) at robustly
solving algorithmic tasks of various input
sizes, both in and out of distribution—
such systems are often referred to as

neural algorithmic reasoners (Velickovié
& Blundell, 2021, NARs). Provided

appropriate inductive biases are used,
NARs are capable of holding perfect
generalisation even on 6Xx larger inputs
than ones seen in the training set, for
highly complex algorithmic tasks with
long rollouts (Jir et all, [2023). NARs
are, however, st111 relatlvely narrow forms
of Al, as they require rigidly structured
formatting of inputs, and they hence can-
not be directly applied to problems posed
in more noisy forms—such as in natural
language—even when the underlying
problem is still algorithmic in nature.
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Figure 1. Our TransNAR architecture, with its direct synergy
of Transformers and Neural Algorithmic Reasoners, yields
clear improvements in out-of-distribution reasoning across
wide categories of algorithmic tasks in CLRS-Text
[2024). Here, the x-axis indicates one of the eight
algorithmic families of CLRS, and the y-axis spans the aver-
age execution accuracy across a dataset of out-of-distribution
examples. TransNAR enables emerging capabilities in the
particular out-of-distribution regime depicted here, with over
20% absolute improvement in several classes.
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Conversely, the current undisputed state-of-the-art approach for modelling noisy text data are

Transformer-based (Vaswani et all,[2017) language models (Anil et al., 2023} [Achiam et al., [2023).
In spite of their unrivalled natural language understanding properties (Wei et al., 2022), they are
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also notoriously brittle when faced with even the simplest algorithmic tasks (Dziri et al.| [2023)—
especially if out-of-distribution generalisation is required (Anil et al., 2022).

It appears that uniting Transformers with NARs can lead to fruitful returns on both sides. In this
paper, we explore this interface for the first time, building the TransNAR model.

Contributions. Our exploration proved fruitful. The key takeaways in this work are as follows:

1. We introduce TransNAR, a hybrid architecture combining language understanding of a
Transformer with the robustness of reasoning of a pre-trained GNN-based NAR. The Trans-
former uses the NAR as a high-dimensional tool that will modulate its token embeddings.

2. We show, through an evaluation on CLRS-Text (Markeeva et al., |2024), the text-based
version of the CLRS-30 benchmark, that such an NAR-augmented large language model
(LLM) exhibits improved and more robust reasoning capabilities out-of-distribution (Fig-

ure[T).

3. We show that Transformer-only models distilled from TransNAR models are significantly
better at out-of-distribution generalization.

Our work presents one of the most comprehensive size generalisation challenges given to Trans-
formers to date, and the introduction of NARs moves the needle significantly.
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Figure 2. Augmenting LL.Ms with algorithmic reasoning: a bird’s eye view of TransNAR. A large language
model (LLM) consumes input tokens and produces output tokens, as common for a unimodal Transformer. The
neural algorithmic reasoner (NAR) module is a graph neural network (GNN) pre-trained to execute various
algorithmic computation on a collection of graph-based inputs (Ibarz et al.l 2022)—the pre-training pipeline is
denoted by faded arrows. Throughout its forward pass, the Transformer may access the embeddings computed
by the NAR, by leveraging cross-attention (trained by learnable “glue” weights).

2 RELATED WORK

Our work sits at the intersection of several areas: neural algorithmic reasoning, length generalisation
in language models, tool use, and multimodality. Here, we briefly survey various relevant works in
each area. Due to the diversity of perspectives, to preserve brevity, we do not offer a comprehensive
review of related work, but rather aim to provide an indication of specific works that inspired ours
the most.

Neural algorithmic reasoning NAR is, in general terms, the art of building neural networks that
are capable of capturing algorithmic computation. Such capabilities can be amplified by careful
choices in algorithmic alignment (Xu et al.| |2020), step-wise training (Velickovi¢ et al., 2019) or
contrastive objectives (Bevilacqua et al., [2023]).
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Recently, it was demonstrated that: (1) it is possible to learn an NAR capable of executing multiple
algorithms simultaneously in its latent space (Xhonneux et al., [2021)—with the Triplet-GMPNN
(Ibarz et al.| 2022) skillfully doing so for a collection of thirty algorithms across the CLRS bench-
mark (Velickovic€ et al.l [2022); (2) Once trained, such NARs can be usefully deployed in various
downstream tasks: reinforcement learning (Deac et al.,2021; He et al.,[2022), self-supervised learn-
ing (Velickovic et al., |2022)), combinatorial optimisation (Georgiev et al.| 2023a; Qian et al., |2023)),
computational biology (Georgiev et al.,|2023b)) and neuroscience (Numeroso et al., 2023)).

Our work’s use of NAR is mostly motivated by two of the works listed before: we use a relatively
small, pre-trained, multi-task NAR (Ibarz et al.|[2022), and deploy it in a far more scaled environ-
ment: as shown by [Numeroso et al.[(2023), NAR should in principle be scalable to systems that are
orders-of-magnitude greater than the NAR’s training distribution (180, 000 in that particular case).

Length generalisation in LLMs While NARs can often strongly generalise to far greater test
inputs (Jiirl3 et al., |2023)), LLMs have seen significantly less success in such scenarios. We attribute
this to their autoregressive, causally-masked objective, which may not always correspond to the
most logical order in which outputs of algorithms should be predicted. Just as a simple example,
performance of various LLMs on multiplication can be significantly improved by predicting the
result in reverse order (Lee et al.,[2023)). Of course, on more complicated algorithms, it may be much
harder to determine the best way to permute the input, and it may not be the most human-readable.
Further, it was recently shown (Barbero et al.l|2024) that perfectly solving certain types of problems
(such as copying and counting) is fundamentally out of reach of decoder-only Transformers, due
to their auto-regressive nature. Using an NAR allows the Transformer access to embeddings which
have been obtained without autoregression, ameliorating this issue in part.

Knowledge of the above issues has led to a significant amount of effort being invested in building
Transformers that can generalise in length. While length generalisation is not the only kind of
distribution shift of interest to OOD reasoning, it is among the most easy such shifts to simulate.
Accordingly, various works have attempted to induce length generalisation in LLMs, through the use
of careful prompting (Zhou et al.} [2022; |Shen et al., [2023)), randomised positional encoding (Ruoss
et al., 2023), curricula (Abbe et al., 2023) or scratchpads (Anil et al.,|2022). We firmly believe that
an important trait of reasoning is robustness with respect to prompt quality—so long as the prompt
unambiguously specifies the problem—and hence deliberately do not explore prompt modification
approaches here; only randomised positions (Ruoss et al., [2023) are leveraged out of the works
above in our model.

Tool use and multimodality Another way to obtain robust generalisation performance is to lever-
age a hard-coded algorithm (also known as a fool) by teaching an LLM to invoke its API (Schick
et al.l 2023). Arguably, most of the major successes of reasoning with LLMs (Leblond et al., 2023
Romera-Paredes et al.,|2023;|Trinh et al.|[2024) can primarily be attributed to an LLM’s clever usage
of a tool rather than the LLM itself, as a tool will by definition not have issues in generalising to
diverse inputs.

Since our aim is to directly evaluate reasoning capabilities of LLMs, we explicitly do not permit
tool use in our baselines. That being said, we envision the pre-trained NAR as a modulator for the
Transformer’s embeddings which is more robust to OOD noise. Hence, we may observe the NAR as
an “internal tool”: rather than using raw tokens, the Transformer and NAR can communicate using
their embeddings, breaking the associated algorithmic bottlenecks (Deac et al.,|2021;|Ong, |2023)).

How to actually realise this communication and embedding exchange? For this, we turn to multi-
modal LLMs (Jaegle et al., |2021) for inspiration, since we need to integrate signals coming from
two different representations of algorithmic problems (text and graph). Specifically, our exchange
operator is directly inspired by vision language models (VLMs) and the cross-attention operator
used in Flamingo (Alayrac et al.,[2022), which offered a principled way of fusing information from
text and image modalities. Similar cross-attentive operators have been used to combine GNN and
Transformer representations (Song et al., [2019; Wang et al.| 2020). We offer, however, the first
such approach to combine them in the context of (algorithmic) reasoning and out-of-distribution
generalisation, which is a setting that is particularly harmful for decoder-only Transformers.
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Figure 3. TransNAR hybrid architecture. Similar to|Alayrac et al.[(2022)), we interleave existing Transformer
layers with gated cross-attention layers which enable information to flow from the NAR to the Transformer.
We generate queries from tokens while we obtain keys and values from nodes and edges of the graph. The node
and edge embeddings are obtained by running the NAR on the graph version of the reasoning task to be solved.
When experimenting with pre-trained Transformers, we initially close the cross-attention gate, in order to fully
preserve the language model’s internal knowledge at the beginning of training.

3 TRANSNAR: AUGMENTING TRANSFORMERS WITH A PRE-TRAINED
GNN-BASED NAR

This section describes our hybrid TransNAR architecture (refer to Figure [3). TransNAR accepts
a dual input consisting of a textual algorithmic problem specification (of 7' tokens) and its corre-
sponding CLRS-30-specific graph representation (of N nodes) and outputs a textual response to the
problem. We can assume that, once encoded, the textual input is stored in T € RT*k and the
graph input is stored in G € RV !, Note that, for simplifying the equations to follow, we make an
assumption that all of the information relevant to the graph version of the problem is stored in the
nodes—which is often not true in CLRS-30 (there may be edge- and graph-level inputs as well) but
it doesn’t change the underlying dataflow presented below.

The forward pass of TransNAR unfolds as follows. First, we properly initialise the inputs by setting
T = T and G(® = G. Next, to compute the representation of a step (¢ + 1), the text (token)
representations are fed to the current layer of the Transformer (Vaswani et al., [ 2017):

(t) T()
e+t — FFN <softmax <(T Q) T Kt) T(t)Vt> (1)
Vg

where Q;, K; € RF* 'V, € RF¥F are the query, key and value transformations, respectively, and
FFN is a feedforward network. In a similar manner, the graph representations are fed to the NAR
layer, implementing e.g. a standard max-MPNN (Velickovic et al.l 2019):

i —¢><g5f>, max o (g, 5“)) @

1<v<N

where 1, ¢ : R¥ x R*¥ — RF are learnable message and update functions, respectively, and max is
the elementwise-max aggregation. Note that Equation [2]only provides pairwise interactions between
nodes for brevity—in reality, our NAR is a Triplet-GMPNN (Ibarz et al., | 2022)), which also contains
triplet interactions and a gating mechanism. Further, note that there is no timestep index on the
learnable parts of the NAR—at each step, a shared function is applied. This aligns well with the
iterative, repeated nature of algorithmic computation on graphs.

Once both streams have prepared their representations, ®“*1) and G(*1), the node embeddings
in the graph condition the Transformer’s token embeddings to produce the final outcome of the
TransNAR block in the Transformer stream, inspired by Flamingo (Alayrac et al., [2022)):

QX TGIHKX
T+ — FFN (softmax ((® Qt\/)@G t ) G(t)VtX> 3)
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where Q;, K} € RF*d V) € R¥*F are the key, query and value transformations of the cross-

attention, respectively. No additional transformations are performed on G(*+1) before concluding
this layer.

This process repeats until the final, N;-th layer, when the final text output is read out from TV0),
The final output is converted into token logits by a prediction head produced by the final layer, which
we supervise by means of a standard next-token prediction objective.

The training of TransNAR proceeds in two phases: Firstly, prior to the start of TransNAR fine-
tuning, we pre-train the NAR to robustly execute the thirty algorithms spanned by CLRS-30
(Veliékovic et all, [2022), in a manner similar to [Tbarz et al|(2022). Such procedures are known
to yield out-of-distribution generalisation at up-to-4 x larger inputs in graph space. Then, the sec-
ond phase (fine-tuning) can proceed. The parameters of the NAR are generally kept frozen during
fine-tuning, as additional gradients would eliminate the model’s original robustness properties. This
is also, similarly, the reason why no cross-attention is performed by the graph embeddings. The
LLM itself may be pre-trained over large-scale datasets (Hoffmann et al.,2022), to establish its gen-
eral language priors, though we recover the same experimental findings even if the LM is randomly
initialised.
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Figure 4. TransNAR significantly outperforms the baseline Transformer. We compare TransNAR to its
corresponding Transformer baseline on various algorithms and for various input sizes: 12 is the largest size
in-distribution. The other two sizes tested—10 and 14—are out-of-distribution, with the former testing inter-
polation and the latter extrapolation. Note that in-distribution generalisation is much easier for Transformers,
and as such, we have modified the y-axis for this setting only to the [0.7, 1.0] range. It is evident that, on most
algorithmic tasks of interest, the TransNAR 1is capable of outperforming its baseline Transformer. Additionally,
we see that this advantage is consistent across both training regimes: initial training and finetuning. The metric
used is the CLRS score. Each model was trained with 4 random seeds. Error bars indicate £1 standard devia-
tion.
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In our experimentation, we will demonstrate that the recipe offered by TransNAR admits significant
benefits to out-of-distribution reasoning in language model architectures. In this section we provide
details of our experimental setup.
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Transformer architecture and initialisation. We use a decoder-only, 6 layers, transformer model
from the Chinchilla family (Hoffmann et al., 2022) pretrained on MassiveText (Rae et al., [2022).
In particular we use a model of 70 million parameters with a context size 2, 048. To showcase the
suitability of our approach regardless of the starting point of training, we run two ablative variants.
In the first, the Transformer weights are initialised with the outcome of the pre-training—emulating
a fine-tuning scenario—and in the second, we use a fully random initialisation. In our figures and
tables of results that follow, we will refer to these two setups as “Pretrained” and “Untrained”.

Randomized positional encoding. Previous work has emphasised the significant relevance of ran-
domised positional embeddings in Transformers, especially for enabling more robust reasoning (Ru-
oss et al., 2023). Corresponding to previous studies on the generalization capabilities of language
models, randomised positional embeddings have indeed led to significant gains on both our base-
lines and TransNAR, allowing more interesting reasoning behaviour to emerge in both. As such, all
our experiments in this paper will use randomised positional embeddings. We provide more details

in Appendix

Pre-training the NAR. Following [Ibarz et al.| (2022), we pre-train a multi-task MPNN-based NAR
on input problem sizes of up to 16, from the CLRS-30 benchmark (Velickovic et al., 2022). Ow-
ing to its graph structure formulation, such NARs are capable of significant OOD generalisation—
sometimes staying competitive on graphs that are 4 x the size. We will attempt to utilise such models
through TransNAR, to convey this rich representational knowledge into text.

Combining cross-attention contributions from nodes and edges. The NAR pre-trained by the
method presented in [Ibarz et al.| (2022) produces both node and edge latent representations, and
we cross-attend to both of them, as they may contain complementary useful information. To cross-
attend over the edge features, E(®) ¢ RV*Nxk e apply Equation [3| one more time (with ©(*)
cross-attending over E(*)), with the caveat that we need to flatten the first and second axis of E
into one, to make sure the dimensionalities match. We combine the cross-attention contribution
from the node and edge embeddings provided by the pre-trained NAR by concatenation, followed
by the application of a linear layer. We have attempted to use other reduction schemes such as
summing the vectors, or applying a 2-layer MLP. We have also attempted different preprocessing
schemes such as orthogonalising the contributions using the Gram-Schmidt process to ensure their
algebraic complementarity before combining them. However, none of these variations have brought
improvements over our original approach.

Datasets. We use the CLRS-Text benchmark (Markeeva et al., [ 2024)), the text version of the CLRS-
30 benchmark (Velickovi€ et al.,|2022)). Note that the textual representation is directly derived from
the graph-based CLRS-30 in a deterministic manner, so the two datasets convey exactly the same
information. However, due to the tokenised representation, there are stringent limitations on how
large of a problem size we can evaluate on without running out of context length for Chinchilla.

Accordingly, we train our algorithms on smaller problem sizes—|4, 8] and 12, and evaluate on prob-
lem sizes 10 (OOD—interpolation), 12 (in-distribution), 14 (OOD—extrapolation).

It is worth noting that CLRS-Text is among the most challenging long-range reasoning tasks for lan-
guage models, compared to the present evaluation landscape—a clear step-up in complexity from
grade school math, mainly because it allows for explicitly controlling for out-of-distribution general-
isation. Yet, there exists a clear polynomial-time-algorithmic description for each of them, meaning
that they can be explained in relatively little parameters—certainly way less than a typical large
language model of today!

The dataset comprises 10, 000 samples per algorithm per input size, making up a total of 2, 400, 000
data points, split as per above into 70% for training and 30% for validation.

Training details. We train all models over seven epochs of the training data with a batch size
of 256 and employ an Adam optimizer (Kingma & Bal, [2017) with a learning rate of 10~%. We
apply randomized positional encoding with a maximal length of 8, 192 on top of Rotary Positional
Encoding (RoPE) used in the base Chinchilla transformer (Hoffmann et al., 2022). As previously
mentioned, for all TransNAR models, we keep the NAR frozen during training.

Evaluation metrics. We refrain from computing the accuracy of each model using exact string
matching, on the grounds that this does not provide insights as to the causes of failure on a particular
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Figure 5. Shape Score: The TransNAR significantly outperforms its baseline in terms of producing correct
shapes. This score sheds light on an obvious failure model of regular Transformers out-of-distribution: they
fail to capture the seemingly trivial dependency between input size and output size, and so irrespective of the
complexity of the algorithm itself. The TransNAR model manages to considerably alleviate this problem (with
many emerging gains), albeit, these gains do not always lead to perfect scores, implying a fruitful direciton for
future research.

datapoint, and more critically, it fails to capture how close to correctness a given model output is (as
observed by|Velickovi¢ et al|(2022)). Instead, we evaluate the performance of each model according
to three metrics measuring capabilities of increasing complexity over the generated text:

1. The shape score: a binary-valued metric capturing whether the output has the right shape.
For example, if we consider a sorting task, the output should have exactly the same number
of elements as the input. Similarly, if the output is a matrix, we ensure its shape is consistent
with both the input and the task.

2. The parse score: a binary-valued metric capturing whether the output is free from any illicit
characters, for example, considering again a sorting task on a list of numbers, the output
shouldn’t contain any letters of the alphabet.

3. The CLRS score: The percentage of elements in the output that match the ground truth
answer. This score is the one traditionally used in CLRS-30 (Velic¢kovi€ et al.| 2022} [Tbarz
2022), hence its name. Note that we automatically assign a CLRS score of 0 if the
shape score is 0, as there is no clear correspondence between output indices.

These multi-faceted scores are explicitly designed to capture the various failure modes of LLMs
when learning to reason over text: they may overly specialise to the training problem sizes (leading
to incorrect shapes at test time), fail to cope with unseen number combinations (leading to incorrect
parsing), and of course, produce incorrect or inconsistent outputs, captured by the CLRS score.

4.1 RESULTS

We summarize our findings in Figure ] (for CLRS score. See tabulated results in appendix [A).
Our results show that our TransNAR significantly outperforms the baseline Transformer overall,
and on most individual algorithms, both in- and out-of-distribution. In particular, we see that our
approach not only enhances existing out-of-distribution generalisation capabilities, but also causes
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the emergence of these capabilities when there was a complete lack thereof—reflected in the figure
by zero or near-zero performance of the baseline (Wei et al., [2022).

The analysis of shape score (Figure 5) provides an additional way to shed light on why TransNAR
performed as well as it did. Recall, first, that CLRS score is necessarily zero if shapes do not
match. Observing the shape scores achieved, it appears that grounding Transformer outputs in NAR
embeddings significantly increases the proportion of inputs for which a Transformer will produce
an output of the correct shape—indicating that this is one very specific failure mode that TransNAR
helps alleviate.

We note, however, that there remain a few algorithms for which TransNAR is not able to outperform
the baseline. A closer look at the results indicates that such tasks (Binary Search, Find Maximum
Subarray, Minimum, and Quickselect) all involve an element of searching for a particular index in an
input list. This hints at a unified failure mode: as these failures persist both when interpolating and
extrapolating, the model as implemented is not able to generalise to novel index boundaries unseen
in the training data. We therefore suspect that the use of index hints—as already demonstrated by
Zhou et al.| (2023))—is a promising avenue for ameliorating this behaviour. Alternatively, it might
be the case that the final NAR-computed hidden states are harder to decode by the cross-attention
layers in a generalisable way, and therefore might require either giving an additional capacity to
the cross-attention and/or performing a more progressive decoding in that: instead of having all
cross-attention layers decoding from the final NAR-computed hidden states, s, we could have early
cross-attention layers decode from hidden states coming from earlier message passing steps, and
later cross-attention layers decode from the later message passing steps.

Lastly, we provide parse scores in Appendix [C—omitting them from the main text because, in most
cases, parsing can be done at full accuracy.

4.2 DISTILLING TRANSNAR INTO A TRANSFORMER-ONLY MODEL

While our approach demonstrates favourable average performance under all out-of-distribution
regimes we have evaluated, the fact that the TransNAR requires access to both textual and graph-
representation limits its application to cases where a particular ground-truth executor or simulator
(or prior belief about one) is available. Now that we know that TransNAR-like ideas are beneficial,
we are interested in deploying such ideas into purely unimodal Transformers. Specifically, we at-
tempt to lift the need for a second data stream by distilling the knowledge acquired by the trained
TransNAR (teacher) model into a vanilla (text-only) Transformer (student) model.

One very interesting benefit of the distillation approach is that it allows us to train our student model
on any problem size we want, including sizes that used to be considered out-of-distribution! This
does not violate the desired distribution shift, as at no stage were OOD labels actually used to train
any model—only the predictions of the teacher model were used as labels at those sizes. We denote
this setting as “soft out-of-distribution” in what follows.

Distillation details. The teacher model is the TransNAR model, trained as described in previous
sections. The student comprises only the Transformer model from the pipeline, and it was pre-
trained on MassiveText (Rae et al.| [2022).

Due to memory constraints, we focus on a proof-of-concept setting wherein the training dataset for
the student comprises eight algorithms over five input problem sizes. These sizes include 4, 8 and
12—for which both ground-truth and teacher supervision are provided (in-distribution regime); and
10 and 14—for which only teacher supervision is provided (“soft OOD”).

We sample 1, 000 problems per algorithm per input size, making up a total of 40, 000 training data
points. For the test dataset we sample 500 problems per algorithm for each of the out-of-distribution
test input sizes 6, 10, 14 and 16, making a total of 16,000 test data points. We train all models
(students and baseline) over three epochs of the training data with a batch size of 16.

The overall loss is computed as a convex linear combination of the ground-truth next-token predic-
tion loss (which is restricted to in-distribution problem sizes only) and the teacher distillation loss,
both of which are cross-entropy losses:

L=(1-a)llup(y,¥s) + aL(Pt,Js) (4)
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where « is the weight of the distillation loss; ¢ and ¢, are next-token probabilities computed by
the teacher and the student respectively.

Figure |6 shows that such distilled Transformer-only models (o > 0) are significantly better at out-
of-distribution generalization than their baseline (o« = 0). This is a very encouraging result that may
inform practical deployment of TransNAR-style ideas, as the distillation objective may be easily
combined with any other loss within text-only Transformers.
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Figure 6. TransNAR-distilled Transformer-only models significantly outperforms their baseline.
We compare TransNAR-distilled Transformer-only models to their corresponding baseline (for which
distillation loss weight, & = 0) on various algorithms and for various out-of-distribution input sizes: 6 and 10
testing interpolation, and 14 and 16 testing extrapolation. Furthermore, 10 and 14 test ”’soft” out-of-distribution
in that problems of these sizes were seen by the student during training, but only teacher supervision was pro-
vided for them (never the ground-truth); 6 and 16 test "hard” out-of-distribution in that problems of these sizes
were not seen by the student during training at all. The metric used is the CLRS score. Each model was trained
with 10 random seeds. Error bars indicate -1 standard error.

4.3  LIMITATIONS

While TransNAR demonstrates strong potential for enhancing out-of-distribution reasoning in lan-
guage models, some key limitations warrant attention in future research:

Dependence on Initial Graph Representation: Although our distillation approach transfers some
reasoning capabilities to a Transformer-only model, this process still relies on the initial availability
of graph representations for training the teacher model. This dependence on structured data
limits the applicability of TransNAR to scenarios where a clear graph representation or a reliable
understanding of the underlying algorithm is present. Extending its ability (e.g. by developing
domain-specialized NARs) to handle ambiguous problem specifications, commonly encountered in
real-world situations, is crucial for wider practical use.

Distillation Loss Weight Optimization: Determining the ideal distillation loss weight («) ap-
pears to be task-specific and potentially sensitive to the input length. For example, a value of 0.5
seems generally good in the interpolation regime, while 0.25 seems better in the extrapolation
regime. Further investigation is needed to understand how to balance ground-truth supervision
and teacher distillation effectively across different scenarios. Alternatively, one might consider



Under review as a conference paper at ICLR 2025

using ensemble decoding techniques (such as weight-averaging (Chronopoulou et all) 2023) or
majority-voting (Wang et al., 2023)), combining models trained with different values of « at
inference-time.

5 CONCLUSIONS

We presented a Transformer-NAR hybrid architecture: a language model that combines the language
understanding skills of a Transformer with the robust algorithmic reasoning capabilities of a pre-
trained graph neural network-based neural algorithmic reasoner, to solve algorithmic tasks specified
in natural language. We have demonstrated the superiority of our model over its Transformer-only
counterpart on the CLRS-Text benchmark, in the in-distribution, and more importantly, in two out-
of-distribution regimes, with respect to the input problem size. We have further showed that such
TransNAR models can be distilled into Transformer-only models with some retention of out-of-
distribution generalization capabilities.

We hope that future work will draw on our results and insights shared here, and further investigate
expansions of interest, notably, datasets with more ambiguous problem specifications such as those
involving mathematics, logical inference, or common sense reasoning. Developing NARs that can
effectively address these more nuanced domains might require innovative approaches to graph rep-
resentation, potentially moving beyond rigid structures to capture more abstract relationships and
uncertainties. Nevertheless, we believe the success of TransNAR in the classical algorithm domain
provides encouragement for continued investment in specialized differentiable solvers. The abil-
ity to distill such specialized models into more general-purpose language models, as demonstrated
through our distillation experiments, further strengthens this argument. Such a research direction
could lead to more robust and reliable reasoning capabilities in language models across a wider
range of real-world applications.
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A  TABULATED CLRS SCORE: TRANSNAR VS TRANSFORMER

A.1 PRETRAINED, IID (12)

algorithm

transnar_mean

transnar_std

transformer_mean

transformer_std

activity_selector
articulation_points
bellman_ford

bfs

binary_search
bridges
bubble_sort
dag_shortest_paths
dfs

dijkstra
find_max_subarr
floyd_warshall
graham_scan
heapsort
insertion_sort
jarvis_march
kmp_matcher
Ies_length
matrix_chain_order
minimum
mst_kruskal
mst_prim
naive_string_matcher
quickselect
quicksort

scc
segments_intersect
task_scheduling
topological _sort

0.990
0.974
0.940
0.984
0.991
0.982
0.923
0.979
0.955
0.953
0.973
0.929
0.993
0.934
0.920
0.992
0.996
0.987
0.989
0.998
0.987
0.934
0.996
0.983
0.926
0.990
0.988
0.996
0.927

0.003
0.005
0.004
0.003
0.006
0.005
0.142
0.005
0.010
0.006
0.015
0.009
0.001
0.099
0.147
0.002
0.010
0.007
0.002
0.002
0.003
0.008
0.004
0.010
0.107
0.002
0.001
0.001
0.051

0.906
0.939
0.916
0.968
0.966
0.966
0.959
0.953
0.901
0.920
0.898
0.915
0.918
0.956
0.964
0.918
0.912
0.999
0.985
0.993
0.983
0.885
0.926
0.901
0.951
0.975
0.937
0.972
0.834

0.036
0.010
0.005
0.005
0.013
0.007
0.060
0.005
0.011
0.005
0.061
0.028
0.085
0.056
0.054
0.083
0.097
0.001
0.014
0.014
0.003
0.011
0.068
0.043
0.070
0.009
0.009
0.013
0.042
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A.2 UNTRAINED, IID (12)

algorithm

transnar_mean

transnar_std

transformer_mean

transformer_std

activity_selector
articulation_points
bellman_ford

bfs

binary_search
bridges
bubble_sort
dag_shortest_paths
dfs

dijkstra
find_max_subarr
floyd_warshall
graham_scan
heapsort
insertion_sort
jarvis_march
kmp_matcher
Ies_length
matrix_chain_order
minimum
mst_kruskal
mst_prim
naive_string_matcher
quickselect
quicksort

scc
segments_intersect
task_scheduling
topological _sort

0.991
0.980
0.934
0.981
0.992
0.969
0.936
0.977
0.960
0.952
0.974
0.917
0.992
0.934
0.937
0.991
0.989
0.991
0.987
0.993
0.942
0.930
0.995
0.976
0.926
0.987
0.989
0.992
0.921

0.001
0.006
0.012
0.007
0.002
0.012
0.028
0.003
0.009
0.006
0.012
0.014
0.003
0.033
0.035
0.004
0.020
0.007
0.003
0.010
0.102
0.010
0.005
0.017
0.050
0.004
0.002
0.006
0.052

0.924
0.947
0.920
0.975
0.955
0.918
0.965
0.952
0.915
0.925
0.920
0.930
0.968
0.962
0.967
0.969
0.974
0.840
0.990
0.992
0.984
0.887
0.969
0.854
0.967
0.976
0.932
0.976
0.876

0.010
0.006
0.009
0.007
0.010
0.125
0.011
0.011
0.009
0.009
0.005
0.007
0.008
0.009
0.007
0.007
0.012
0.384
0.001
0.004
0.002
0.009
0.009
0.057
0.007
0.006
0.010
0.004
0.036
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A.3 PRETRAINED, OOD (14)

algorithm

transnar_mean

transnar_std

transformer_mean

transformer_std

activity_selector
articulation_points
bellman_ford

bfs

binary_search
bridges
bubble_sort
dag_shortest_paths
dfs

dijkstra
find_max_subarr
floyd_warshall
graham_scan
heapsort
insertion_sort
jarvis_march
kmp_matcher
Ies_length
matrix_chain_order
minimum
mst_kruskal
mst_prim
naive_string_matcher
quickselect
quicksort

scc
segments_intersect
task_scheduling
topological _sort

0.302
0.377
0.179
0.220
0.536
0.000
0.142
0.210
0.284
0.147
0.628
0.000
0.356
0.134
0.137
0.412
0.909
0.000
0.009
0.582
0.000
0.161
0.882
0.358
0.125
0.254
0.992
0.436
0.164

0.405
0.377
0.192
0.230
0.053
0.000
0.055
0.202
0.242
0.186
0.061
0.000
0.404
0.050
0.058
0.449
0.100
0.000
0.012
0.122
0.000
0.167
0.105
0.152
0.057
0.237
0.002
0.453
0.060

0.000
0.000
0.049
0.030
0.644
0.000
0.038
0.034
0.053
0.048
0.644
0.000
0.000
0.036
0.035
0.000
0.530
0.000
0.000
0.762
0.000
0.047
0.555
0.687
0.038
0.026
0.940
0.000
0.103

0.000
0.001
0.079
0.050
0.051
0.000
0.081
0.053
0.086
0.080
0.061
0.000
0.000
0.078
0.078
0.000
0.194
0.000
0.000
0.050
0.000
0.086
0.182
0.043
0.085
0.049
0.014
0.000
0.027
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A.4 UNTRAINED, OOD (14)

algorithm

transnar_mean

transnar_std

transformer_mean

transformer_std

activity_selector
articulation_points
bellman_ford

bfs

binary_search
bridges
bubble_sort
dag_shortest_paths
dfs

dijkstra
find_max_subarr
floyd_warshall
graham_scan
heapsort
insertion_sort
jarvis_march
kmp_matcher
Ies_length
matrix_chain_order
minimum
mst_kruskal
mst_prim
naive_string_matcher
quickselect
quicksort

scc
segments_intersect
task_scheduling
topological _sort

0.221
0.268
0.101
0.138
0.548
0.000
0.049
0.175
0.134
0.120
0.544
0.000
0.383
0.055
0.045
0.362
0.863
0.000
0.001
0.512
0.004
0.121
0.874
0.139
0.064
0.124
0.992
0.341
0.077

0.270
0.280
0.094
0.151
0.076
0.000
0.052
0.164
0.157
0.128
0.093
0.000
0.268
0.062
0.048
0.280
0.071
0.000
0.002
0.119
0.010
0.150
0.082
0.046
0.096
0.149
0.002
0.277
0.055

0.000
0.080
0.003
0.006
0.635
0.000
0.023
0.005
0.000
0.003
0.577
0.000
0.000
0.022
0.023
0.000
0.796
0.000
0.000
0.627
0.000
0.002
0.793
0.558
0.023
0.000
0.930
0.000
0.118

0.000
0.196
0.004
0.012
0.031
0.000
0.027
0.008
0.000
0.004
0.064
0.000
0.000
0.027
0.028
0.000
0.041
0.000
0.000
0.106
0.000
0.004
0.043
0.084
0.028
0.001
0.008
0.000
0.011
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A.5 PRETRAINED, OOD (10)

algorithm

transnar_mean

transnar_std

transformer_mean

transformer_std

activity_selector
articulation_points
bellman_ford

bfs

binary_search
bridges
bubble_sort
dag_shortest_paths
dfs

dijkstra
find_max_subarr
floyd_warshall
graham_scan
heapsort
insertion_sort
jarvis_march
kmp_matcher
Ies_length
matrix_chain_order
minimum
mst_kruskal
mst_prim
naive_string_matcher
quickselect
quicksort

scc
segments_intersect
task_scheduling
topological _sort

0.887
0.983
0.472
0.520
0.675
0.845
0.622
0.465
0.610
0.498
0.782
0.004
0.885
0.629
0.619
0.903
0.996
0.230
0.591
0.832
0.431
0.456
0.997
0.712
0.633
0.539
0.987
0.986
0.505

0.225
0.010
0.184
0.201
0.039
0.133
0.078
0.285
0.307
0.169
0.057
0.006
0.151
0.107
0.083
0.128
0.005
0.359
0.413
0.062
0.478
0.185
0.006
0.148
0.095
0.213
0.002
0.020
0.134

0.092
0.137
0.068
0.053
0.779
0.158
0.287
0.041
0.036
0.069
0.810
0.000
0.015
0.274
0.294
0.011
0.897
0.000
0.000
0.964
0.072
0.080
0.898
0.930
0.295
0.022
0.933
0.163
0.203

0.226
0.334
0.127
0.112
0.049
0.364
0.228
0.089
0.069
0.128
0.070
0.000
0.025
0.217
0.221
0.017
0.102
0.000
0.000
0.039
0.177
0.165
0.102
0.033
0.203
0.052
0.006
0.388
0.036
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A.6  UNTRAINED, OOD (10)

transnar_mean transnar_std transformer_mean transformer_std

algorithm

activity_selector 0.440 0.437 0.013 0.028
articulation_points 0.509 0.509 0.007 0.016
bellman_ford 0.165 0.200 0.016 0.019
bfs 0.204 0.213 0.013 0.025
binary_search 0.740 0.067 0.782 0.045
bridges 0.320 0.375 0.044 0.096
bubble_sort 0.414 0.134 0.230 0.148
dag_shortest_paths 0.096 0.115 0.010 0.010
dfs 0.330 0.318 0.011 0.012
dijkstra 0.169 0.210 0.013 0.018
find_max_subarr 0.832 0.026 0.779 0.051
floyd_warshall 0.001 0.001 0.000 0.000
graham_scan 0.565 0.391 0.006 0.012
heapsort 0.426 0.137 0.241 0.162
insertion_sort 0.385 0.145 0.230 0.153
jarvis_march 0.540 0.401 0.006 0.010
kmp_matcher 0.994 0.005 0.932 0.072
les_length 0.177 0.299 0.000 0.000
matrix_chain_order 0.230 0.389 0.000 0.000
minimum 0.902 0.082 0.850 0.082
mst_kruskal 0.241 0.369 0.000 0.000
mst_prim 0.138 0.195 0.033 0.055
naive_string_matcher 0.997 0.005 0.941 0.060
quickselect 0.551 0.166 0.849 0.065
quicksort 0.393 0.142 0.244 0.167
scc 0.150 0.183 0.001 0.001
segments_intersect 0.986 0.001 0.933 0.004
task_scheduling 0.592 0.384 0.001 0.001
topological _sort 0.453 0.167 0.220 0.062

B EFFECT OF RANDOMIZED POSITIONAL ENCODING

Using randomized positional encoding has benefitted both our model and the baseline. In particular,
combining them with NAR hiddens led to improvements OOD, most prevalently in the interpoloa-
tion regime (at length 10), but also, to some extent, in the extrapoloation regime (at length 14).
One result we found interesting, was that before instating randomized positional encoding, the OOD
performance of our hybrid models was limited (in fact thresholded) by the performance of the base
LLM. Concretely, if the base LLM achieved near-zero performance, the hybrid architecture would
fatally share the same fate. We can see that this is no longer the case: if the base LLM uses ran-
domized positional encoding, even if its performance is near-zero, that of the hybrid architecture can
still be reasonably good. This is illustrated in the second column of the figure 4, for example on the
Graham Scan, Jarvis March, MST Prim algorithms.

C PARSE SCORES

Please see Figure [C|for the parse scores of various models at various sizes.

D SOFT- AND HARD-OOD RESULTS OF DISTILLATION

We compare the performances across various distillation coefficients on the soft- and hard-OOD
problem sizes in Figure[§] Critically, distillation almost-always significantly improves performance
compared to the baseline (irrespective of distillation loss coefficient). As we drift further out-of-
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Algorithm

1051
1052
1053 Length: 6 Length: 10
1054 algorithm baseline (distill 0.0) distill 0.5 distill 1.0 algorithm baseline (distill 0.0) distill0.5 distill 1.0
1055 activity_selector 0.005 +-0.003 0.252+-0.057 0.196+-0.067  activity_selector 0.020+-0.014 0.247 +-0.041 0.313 +- 0.060
1056 dag_shortest_paths 0.015+-0.003 0.219 +-0.053 0.216+-0.051  dag_shortest paths 0.007 +-0.002 0.655 +- 0.023 0.639 +- 0.033
1057 graham_scan 0.103 +-0.027 0.300 +-0.072 0.227+-0.080 ~ graham_scan 0140 +-0.032 0.259 +-0.040 0.334 +- 0.066
1058 jarvis_march 0.103 +-0.027 0.308 +-0.066 0.238+-0.086  Jarvis_march 0.132+-0.033 0.268 +-0.050 0.352 +- 0.065
1059 minimum 0.272 +-0.009 0.433+-0.021 0.463+-0.014  Minimum 0.167 +-0.008 0.319 +-0.022 0.358 +-0.018
1060 naive_string_matcher 0.438 +-0.014 0.416+-0.023 0.413+-0.024  haive string_matcher 0.258 +-0.013 0.258 +-0.011 0.247 +-0.014
1061 quickselect 0.168 +-0.004 0.172+-0.006 0.170+ 0006  Guickselect 0.093 +-0.003 0.110 +-0.008 0.102 +-0.009
1062 task_scheduling 0.119+-0.046 0.378 +-0.087 0.239+-0.073  task scheduling 0.121+-0.040 0.382+-0.058 0.511 +-0.065
1063

Length: 14 Length: 16
1064
1065 algorithm baseline (distill 0.0) distill 0.5 distill 1.0 algorithm baseline (distill 0.0) distill 0.5 distill 1.0
1 066 activity_selector 0.000 +- 0.000 0.069 +-0.016 0.085 +- 0.020 activity_selector 0.001 +- 0.001 0.043 +-0.017 0.062 +- 0.032
1067 dag_shortest_paths 0.010 +- 0.003 0.573 +- 0.029 0.555 +- 0.049 dag_shortest_paths 0.002 +-0.001 0.004 +-0.001 0.013 +- 0.006
1068 graham_scan 0.017 +-0.011 0.336 +- 0.063 0.287 +- 0.056 graham_scan 0.002 +- 0.002 0.026 +- 0.008 0.036 +-0.016
1069 jarvis_march 0.015+-0.009 0.346 +-0.071 0.294+-0.053  jarvis_march 0.001 +-0.001 0.020 +-0.006 0.036 +-0.016
1070 minimum 0.138+-0.011 0.223+-0.011 0.230+-0.011  minimum 0.114+-0.005 0.187 +-0.011 0.203 +-0.011
1071 naive_string_matcher 0.184 +- 0.008 0.182 +-0.006 0.172 +- 0.009 naive_string_matcher 0.164 +- 0.003 0.166 +- 0.003 0.167 +- 0.003
1072 quickselect 0.065 +-0.003 0.075+-0.003 0.074+-0.002  quickselect 0.065 +- 0.003 0.069 +-0.002 0.071 +-0.005
1073 task_scheduling 0.051+-0.024 0.296 +-0.093 0.187+-0.077  task_scheduling 0.037+-0.019 0.151 +-0.061 0.165 +-0.061
1074 . T .
1075 Figure 8. Distillation results across several soft- and hard-OOD sizes.
1076
1077

distribution, distillation fully on logits (1.0) outperforms partially combining distillation with next-
1078 token prediction (0.5).
1079
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