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Non-invasive electromyographic speech neuroprosthesis: a geometric perspective
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Abstract

In this article, we present a high-bandwidth ego-
centric neuromuscular speech interface for trans-
lating silently voiced speech articulations into text
and audio. Specifically, we collect electromyo-
gram (EMG) signals from multiple articulatory
sites on the face and neck as individuals articu-
late speech in an alaryngeal manner to perform
EMG-to-text or EMG-to-audio translation. Such
an interface is useful for restoring audible speech
in individuals who have lost the ability to speak in-
telligibly due to laryngectomy, neuromuscular dis-
ease, stroke, or trauma-induced damage (e.g., ra-
diotherapy toxicity) to speech articulators. Previ-
ous works have focused on training text or speech
synthesis models using EMG collected during
audible speech articulations or by transferring
audio targets from EMG collected during audi-
ble articulation to EMG collected during silent
articulation. However, such paradigms are not
suited for individuals who have already lost the
ability to audibly articulate speech. We are the
first to present an alignment-free EMG-to-text
and EMG-to-audio conversion using only EMG
collected during silently articulated speech in an
open-sourced manner. On a limited vocabulary
corpora, our approach achieves almost 2.4× im-
provement in word error rate with a model that is
25× smaller by leveraging the inherent geometry
of EMG.

1. Introduction
Electromyogram (EMG) signals gathered from the orofa-
cial neuromuscular system during the silent articulation of
speech in an alaryngeal manner can be synthesized into per-
sonalized audible speech, potentially enabling individuals
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Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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without vocal function to communicate naturally. Further-
more, such systems could seamlessly interface with virtual
environments where audible communication might disturb
others (e.g., multiplayer games) or facilitate telephonic con-
versations in noisy environments. A key enabler of such ad-
vancements is the rich information encoded in EMG signals
recorded from multiple spatially separated locations, which
capture muscle activation patterns across different muscles.
This richness allows for the decoding of subtle and intricate
details, such as nuanced speech articulations, likely with
higher bandwidth and lower latency compared to exocentric
or allocentric modalities, such as video-based lip-to-speech
synthesis. By leveraging this information, EMG-based sys-
tems offer a promising foundation for natural and efficient
communication across diverse applications.

In this article, we present EMG-to-language translation mod-
els with a focus on data geometry. We show that EMG-to-
language translation can be cast as a graph-connectivity
learning problem and provide a single-layer recurrent ar-
chitecture with connectionist temporal classification (CTC)
loss (Graves et al., 2006) on the manifold of symmetric
positive definite (SPD) matrices. Our alignment free trans-
lation method is similar to paradigms proposed for invasive
speech brain-computer interfaces described by Willett et al.
and Metzger et al. While invasive methods are viable for
individuals with anarthria or amyotrophic lateral sclerosis,
our EMG based non-invasive speech prosthesis is appropri-
ate for individuals who have undergone laryngectomy or
experience dysarthria or dysphonia.

On a limited English dataset with a vocabulary of 67 words,
we demonstrate that our model achieves a decoding accuracy
of 88% on word transcriptions. On a larger, general English
language corpus, we achieve a phoneme error rate (PER) of
56%, as measured using Levenshtein distance (between the
original and constructed phoneme sequences). Additionally,
we show that the model can be trained with minimal data,
achieving good performance even when tested on a dataset
nearly 5 times larger than the training set, where sentences
are spelled out using NATO phonetic codes. This capability
is crucial, as collecting large-scale datasets for such systems
is often challenging. These results highlight the potential
for the practical deployment of such interfaces at scale.
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2. Prior work
The current benchmark in silent speech interfaces is estab-
lished by Gaddy & Klein; Gaddy & Klein. Using elec-
tromyogram (EMG) signals collected during silently artic-
ulated speech (ES) and audibly articulated speech (EA),
along with corresponding audio signals (A), they develop
a recurrent neural transduction model to map time-aligned
features of EA or ES with A. In their baseline model, joint
representations between EA and A are learned during train-
ing, and the model is tested on ES . To improve performance,
a refined model aligns ES with EA and subsequently uses
the aligned features to learn joint representations with A.
The methods described above have significant shortcomings
that limit their practicality for real-world deployment. They
are, 1⃝ the unavailability of good quality EA and A in in-
dividuals who have lost vocal and articulatory functions,
2⃝ the need for a 2x sized training corpus for learning x

representations (both EA and ES), and 3⃝ the requirement
of aligned features, which are computationally expensive
and time-consuming to obtain, making near real-time imple-
mentation challenging. We overcome the above challenges
by training a model with only ES and corresponding pho-
netic transcription without any alignments, using CTC loss.
Besides, unlike Gaddy & Klein; Gaddy & Klein, we demon-
strate the efficacy of our models on multiple subjects.

Another notable approach is presented by Gowda et al., who
demonstrate that, unlike images and audio - which are func-
tions sampled on Euclidean grids - EMG signals are defined
by a set of orthogonal axes, with the manifold of SPD ma-
trices as their natural embedding space. We build upon the
methods described by Gowda et al. in our analysis and
introduce the following key improvements: 1⃝ we train a re-
current model for EMG-to-phoneme sequence-to-sequence
generation, as opposed to the classification models proposed
by Gowda et al., 2⃝ we operate in the sparse graph spectral
domain, effectively circumventing bottlenecks associated
with repeated eigenvalue computation in neural networks,
which, due to their iterative nature, often have limited paral-
lelization capabilities on GPUs, and 3⃝ demonstrate EMG-
to-language conversion on continuously articulated speech
as opposed to individual words or phonemes.

A substantial body of prior work (Jou et al., Schultz & Wand,
Kapur et al., Meltzner et al., Toth et al., Janke & Diener, and
Diener et al.) has laid the groundwork for the development
of silent speech interfaces. While these studies have been
instrumental in shaping the field, they place less emphasis
on understanding the data structure and the implementation
of parameter and data-efficient approaches.

In the following sections, 1⃝ we explain the inherent non-
Euclidean data structure of EMG signals, 2⃝ quantify the
signal distribution shift across individuals, and 3⃝ demon-
strate that high fidelity phoneme-by-phoneme translation of

EMG-to-language is possible using only ES without EA

and A.

3. Methods
EMG signals are collected by a set of sensors V and are
functions of time t. A sequence of EMG signals ES corre-
sponding to silently articulated speech, associated with au-
dio A and phonemic content L, is represented as ES = fv(t)
for all v ∈ V . Here, fv(t) denotes the EMG signal captured
at a sensor node v as a function of time t. The audio signal
A encodes both phonemic (lexical) content and expressive
aspects of speech, such as volume, pitch, prosody, and in-
tonation, while L represents purely the phonemic content -
a sequence of phonemes. For instance, the phonemic con-
tent L of the word <FRIDAY> is denoted by the phoneme
sequence <F-R-AY-D-IY>.

To model the mapping from ES to L, we employ a sequence-
to-sequence model trained using CTC loss. This approach
allows us to train the model with unaligned pairs of ES and
L, eliminating the need for precise alignment between the
input signals and their corresponding phoneme sequences.
During testing, a sample of ES not in the training set outputs
probabilities over all possible phonemes (40 of them in our
case) at every time step, and we construct L using beam
search. L is then converted to personalized audio A using
few-shot learning (Choi et al., 2021), which requires as
little as a single audio clip from the individual (an audio
clip of about 3-5 minutes, not necessarily containing the
same phonemic content as L, recorded before their clinical
condition). By leveraging this sample, we generate audio A
that captures both the predicted linguistic content and the
speaker’s unique vocal characteristics (we elaborate on this
topic in appendix G).

3.1. EMG data representation

Gowda et al. demonstrate that the manifold of SPD matrices
serves as an effective embedding space for EMG signals,
enabling the natural distinction of different orofacial move-
ments associated with speech articulation and all English
phonemes using raw signals. We make significant improve-
ments on their methods to perform phoneme-by-phoneme
decoding as opposed to classification paradigms and demon-
strate our methods on continuously articulated speech in the
English language as opposed to discrete word or phoneme
articulations.

We construct a complete graph G = (V, E(τ)) to repre-
sent the functional connectivity of EMG signals, where
E(τ) denotes the set of edges over a time window τ =
[tSTART, tEND] (Gowda et al., 2024). The edge weight be-
tween two nodes v1 and v2 ∈ V in a time window is defined
as e12 = e21 = fTv1 fv2 , which corresponds to the covari-
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ance of the signals at those nodes during the time interval.
Consequently, the edge (adjacency) matrix E(τ) is sym-
metric and positive semi-definite. Following Gowda et al.,
we convert semi-definite adjacency matrices into definite
ones by adding a shrinkage estimator. We then model these
symmetric positive definite (SPD) matrices using the Rie-
mannian geometry approach via Cholesky decomposition,
as described by Lin.

For any adjacency matrix E , we can express it as E =
UΣUT , where U is the matrix of eigenvectors, and Σ is a
diagonal matrix containing the corresponding eigenvalues.
However, instead of calculating U for each E at every time-
step τ , we fix an approximate common eigenbasis Q derived
from the Fréchet mean F (Lin, 2019) of all adjacency matri-
ces (at different time points) in the training set. Specifically,
we compute F as the geometric mean of all E , and decom-
pose it as F = QΛQT , where Q contains the eigenvectors
of F , and Λ is a diagonal matrix of its eigenvalues.

Using this fixed eigenbasis Q, any adjacency matrix E can
be approximately diagonalized as QTEQ, yielding a sparse
matrix σ. Gowda et al. show that such a matrix Q can be
learned using neural networks constrained on the Stiefel
manifold (Huang & Van Gool, 2017) and that such a Q
is different for different individuals. However, neural net-
works constrained on the Stiefel manifold require perform-
ing repeated eigendecomposition operations, which have
limited parallelization capability and lead to unstable gra-
dients while using CTC loss. Therefore, we simply derive
Q from the Fréchet mean F and use that Q to obtain sparse
matrices σ. In appendix D, we show that matrices σ are
indeed sparse by comparing the ratio of maximum value of
non-diagonal entries to maximum value of diagonal entries
of matrices before and after approximate diagonalization.
This formulation allows us to work in an approximate graph
spectral domain with a consistent orthogonal basis across
all time windows τ . For our task, we compute the graph
spectral sequences σ for all time windows τ and use these
as inputs for EMG-to-language translation. We illustrate
these concepts in figure 1.

3.2. Sequence-to-sequence modeling with a single
recurrent layer

We implement a single-layer gated recurrent unit (GRU)
architecture for EMG-to-phoneme sequence-to-sequence
modeling. The input to the GRU consists of a sequence of
approximately diagonalized matrices, denoted as σ, derived
over different time windows τ .

To investigate whether recurrent models defined on the man-
ifold provide a better representation of σ(τ) compared to
those defined in Euclidean space, we construct three distinct
GRU architectures:

Figure 1. Conceptual depiction of SPD edge matrices on a 3D
convex cone manifold. Edge matrices derived from a given individ-
ual can be represented using an approximate common eigenbasis.
Consider six edge matrices, corresponding to six different time
windows τ1 to τ6, for an individual A. These matrices are shown in
blue. The Fréchet mean of these SPD matrices, denoted as FA, is
represented in pink. Each edge matrix EA(τi) can be expressed as:
EA(τi) = UAiΣAiU

T
Ai

, where ΣAi is a diagonal matrix of eigen-
values, and UAi is an orthogonal matrix of eigenvectors (i ∈ [1, 6]).
Instead of representing each edge matrix with a separate eigen-
vector matrix, we transform all EA(τi) using a common basis QA,
which corresponds to the eigenvectors of the Fréchet mean FA.
Specifically, we calculate σAi = QT

AEA(τi)QA. Matrices σAi are
approximately diagonal. We use these approximately diagonalized
representations for EMG-to-language translation. Separately, edge
matrices from another individual B, shown in green, have their
Fréchet mean represented in yellow. Matrices belonging to differ-
ent individuals reside in distinct neighborhoods on the manifold,
and the common basis QA for individual A cannot approximately
diagonalize edge matrices from individual B. Instead, a separate
basis QB , derived from the eigenvectors of FB , is required for
individual B. Geometrically, the manifold is only locally Euclidean
and the tangent spaces for individuals A and B are distinct. That
is, transformation of the space R|V| induced by EMG signals of
subjects A and B are different and the approximate orthogonal
eigenbasis vectors that characterize such transformations are dif-
ferent for different individuals. This signal distribution shift can
be approximated as change of basis. An inset diagram illustrates
the eigenvectors of EA(τi).

1⃝ GRUA: A GRU layer defined in the Euclidean domain,
following the implementation described by Chung et al.
(2014),

2⃝ GRUB: A GRU layer formulated on the manifold of
SPD matrices, as proposed by Jeong et al. (2024), and

3⃝ GRUC : A GRU layer defined on the manifold of SPD
matrices, plus an implicit layer solved using neural ordinary
differential equations, integrating methodologies from Jeong
et al. (2024), Chen et al. (2018), and Lou et al. (2020).
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GRUB and GRUC directly accept SPD matrices, σ, as input,
whereas GRUA processes the vectorized representations of
σ. At each time step, the GRU models output probability
distributions over 40 phonemes in the English language. The
models are trained using CTC loss, and during inference,
the most probable phoneme sequence is reconstructed using
beam search decoding. The end-to-end EMG-to-language
translation model is depicted in figure 2.

Figure 2. Illustration of multivariate EMG-to-phoneme sequence
translation. Bandpass-filtered and z-normalized raw signals are
converted to SPD edge matrices, E(τ), over a time window τ .
These edge matrices are then transformed into approximately diag-
onalized matrices, σ(τ), which are fed into a bidirectional GRU
layer. At each time step (every 20 ms), the GRU outputs probability
distributions P over 40 phonemes in the English language. During
inference, the most probable phoneme sequence is reconstructed
using beam search decoding.

3.3. Geometric perspective aligns well with biology

We study multivariate EMG signals collected at |V| sensor
nodes in different time windows τ using edge matrices E(τ),
which capture the relationship between every pair of nodes
in |V|.

This can be understood as studying the transformation of the
space R|V| given by the transformation matrix E(τ). Such a
transformation can equivalently be expressed in a coordinate
system where the eigenvectors serve as the basis vectors.
This change of basis is described by UTE(τ)U = Σ(τ),
where Σ(τ) is a diagonal matrix. In this eigenbasis coor-
dinate system, transformation of space induced by EMG

signals can be interpreted as a linear combination of the
columns of U , with the diagonal values of Σ acting as coef-
ficients. By fixing an approximate eigenbasis Q, we obtain
an approximately diagonal matrix σ(τ) and an approximate
linear combination. This formulation aligns well with the bi-
ological process underlying EMG signal generation, which
involves a purely additive combination of muscle activations
which contrasts with processes such as speech production,
which can be modeled as the application of a time-varying
filter to a time-varying source signal (Sivakumar et al.). For
a given individual, we fix the approximate eigenbasis vec-
tors and focus on analyzing the approximate eigenvalues
σ(τ). These matrices can then be studied using a single
layer recurrent neural network. EMG signals from differ-
ent individuals induce different transformations of R|V| and
have different eigenbasis vectors. The signal distribution
shift across different individuals can thus be interpreted
as change of basis in R|V|. It should be noted that while
a shallow single layer network is sufficient to learn mul-
tivariate EMG-phoneme translation using sparse matrices
σ, and while such an architecture works consistently well
across subjects, the weights of the recurrent networks must
be fine-tuned for different individuals, as σ from different
individuals correspond to different basis vectors Q.

4. Data
We evaluate our models using three datasets, referred to
as Data SMALL-VOCAB, Data LARGE-VOCAB, and Data NATO-WORDS,
which are described below. We use Data SMALL-VOCAB and
Data LARGE-VOCAB to evaluate naturally articulated speech in
a silent manner. We use Data NATO-WORDS to demonstrate
that, by using a small codeword set such as NATO codes,
we can construct a generalizable language-spelling model
that requires very little data for training. Additionally,
Data NATO-WORDS is used to show that our models work con-
sistently well across individuals. This paradigm is useful
for rapid training (or fine-tuning) and deployment of speech
prostheses.

4.1. Data SMALL-VOCAB

Following Gaddy & Klein, we create a limited vocabulary
dataset consisting of 67 unique words. These words include
weekdays, ordinal dates, months, and years. Sentences are
constructed from these words in the format <WEEKDAY-
MONTH-DATE-YEAR>. A single individual articulated 500
such sentences silently, and the resulting EMG data, ES , is
translated into output phoneme sequences. We have times-
tamps to demarcate the beginning and the end of words
within a sentence.

We collect EMG data from 31 muscle sites at a sampling
rate of 5000 Hz. Of these, 22 electrode sites are identical to
those used by Gowda et al., while the remaining 9 electrodes

4
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are placed symmetrically on the opposite side of the neck.
The experimental setup is same as that described by Gowda
et al.

4.2. Data LARGE-VOCAB

We adapt the language corpora from Willett et al., who
demonstrated a speech brain-computer interface by translat-
ing neural spikes from the motor cortex into speech. The
dataset comprises an extensive English language corpus
containing approximately 6,500 unique words and 11,000
sentences. Unlike Gaddy & Klein; Gaddy & Klein, we
collect only ES (excluding EA and A) and perform ES-
to-language translation without time-aligning with EA and
A. The data collection setup follows the methodology de-
scribed for Data SMALL-VOCAB. This corpus includes sentences
of varying lengths, with the subject articulating sentences
at a normal speed, averaging 160 words per minute. Times-
tamps were used solely to mark the beginning and end
of each sentence, with the subject clicking the mouse at
the start of articulation and again upon completion (unlike
Data SMALL-VOCAB, there are no timestamps to demarcate be-
tween words within a sentence).

4.3. Data NATO-WORDS

We use the dataset provided by Gowda et al.1 Specif-
ically, we use data from their second experiment, in
which 4 individuals articulated English sentences in a
spelled-out manner using NATO phonemic codes in a silent
manner. For instance, the word <RAINBOW> was ar-
ticulated as <ROMEO-ALFA-INDIA-NOVEMBER-BRAVO-
OSCAR-WHISKEY> with phonemic transcription <R-OW-
M-IY-OW|AE-L-F-AH | IH-N-D-IY-AH | N-OW-V-EH-M-B-
ER | B-R-AA-V-OW | AO-S-K-ER | W-IH-S-K-IY>. Subjects
articulated phonemically balanced RAINBOW and GRAND-
FATHER passages in this spelled-out format. In total, 1968
NATO code articulations were recorded across both pas-
sages.

The EMG data was collected from 22 muscle sites in the
neck and cheek regions at a sampling rate of 5000 Hz. We
present results for Data NATO-WORDS in appendix A.

5. Results
We describe the experimental setup and results for
Data SMALL-VOCAB and Data LARGE-VOCAB, providing a compar-
ative analysis with previous benchmarks.

5.1. Results for Data SMALL-VOCAB

Raw EMG signals are bandpass filtered between 80 and
1000 Hz and are z-normalized per channel along the time

1The dataset is available at Gowda et al. dataset.

dimension. Then, a complete time dependent graph (E(τ)
and σ(τ)) is constructed using the EMG signals. We follow
the same train-validation-test split outlined by Gaddy &
Klein. All parameters are detailed below in table 1.

Table 1. Experimental setup for Data SMALL-VOCAB.

DataA properties
τ 50 ms (a sliding window with an

overlapping context size of 100 ms
and a step size of 50 ms)

E(τ) and σ(τ) SPD matrices of dimensions 31× 31
Train-validation-test
split

370 - 30 - 100 sentences

Beamsearch width Top-5

The Fréchet mean, computed from the training set, is utilized
to calculate σ(τ) for all τ in the training, validation, and
test datasets. Figure 3 illustrates the Levenshtein distances
between target and predicted phoneme sequences for three
GRU models with varying model sizes. To decode the
articulated word(s), we identify a word or a set of words
from the vocabulary corpus whose phonemic sequence best
matches the predicted sequence, using Levenshtein distance
as the metric.

Decoding accuracy for EMG-to-text translation is evalu-
ated as 1 −WER and is presented in figure 4 for models
of different sizes. Model size is controlled exclusively by
adjusting the GRU hidden unit dimensionality, which is the
only hyperparameter in our setup. On this limited vocab-
ulary corpus, we achieve a WER as low as 12%, with the
average Levenshtein distance between target and predicted
sequences below 1. These results underscore the feasibil-
ity and practical potential of EMG-to-language translation
technology.
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Figure 3. Model size versus Levenshtein distance. Models are
evaluated over 10 random seeds. Lower is better.
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Figure 4. Decoding accuracy = 1 - WER versus model size. Models
are evaluated over 10 random seeds. Higher is better.

Now, we compare our results with the results given by
Gaddy & Klein. Gaddy & Klein recorded EMG signals us-
ing 8 electrodes at a sampling rate of 1000 Hz. To enable a
direct comparison with their approach, we downsample our
EMG signals from 5000 Hz to 1000 Hz and select a subset
of 8 electrodes from the original 31. The placement of these
electrodes is approximately aligned with those specified by
Gaddy & Klein to ensure consistency in the experimental
setup.

We compare our results with their baseline approach, where
models were trained for EA-to-A translation and evaluated
on ES-to-A translation. In contrast, our approach empha-
sizes direct ES-to-L translation. Additionally, their im-
proved framework incorporates both EA and ES signals,
relying on time alignment between them. However, they do
not propose a paradigm that independently translates ES

without leveraging EA or A. In this case, E(τ) and σ(τ)
are 8×8 matrices. The rest of the training paradigm is same
as in table 1. We provide the comparison in table 2. Our
approach achieves almost 2.4× improvement in WER with
a model that is 25× smaller.

Table 2. Comparison with Gaddy & Klein. Our approach achieves
almost 2.4× improvement in WER with a model that is 25×
smaller. WER is averaged over 10 random seeds. Results are for
DataSMALL-VOCAB using 8 electrodes with signals downsampled to
1000 Hz.

Ours Baseline of Gaddy &
Klein

WER - 27%, using
GRUB

WER - 64%

Model size - about
1.4 million

Model size - about 40
million

5.2. Results for Data LARGE-VOCAB

As in Data SMALL-VOCAB, we filter, z-normalize, and construct
σ(τ). The properties of the dataset are detailed in table 3.
Sentences in the validation and test sets do not occur in the
training set. On this general English language corpus con-
sisting of approximately 6500 words, spoken at an average
rate of 160 words per minute, we perform EMG-to-phoneme
sequence translation and measure the Levenshtein distances
between the target and predicted phoneme sequences. The
phoneme error rates (PER) are presented in table 4. Tran-
scription examples are given in table 5.

Table 3. Experimental setup for Data LARGE-VOCAB.

Data LARGE-VOCAB properties
τ 20 ms (a sliding window with an

overlapping context size of 50 ms
and a step size of 20 ms)

E(τ) and σ(τ) SPD matrices of dimensions 31× 31
Train-validation-test
split

8000 - 1000 - 1970 sentences

Beamsearch width Top-5

Table 4. We achieve a PER of 56% for speech articulated at 160
words per minute using 31 electrodes. Average phoneme sequence
length of sentences is 24.5, and the chance decoding accuracy of a
sequence (that is, chance 1 - PER) is ( 1

40
)24.5. While the results are

modest compared to high density invasive speech brain-computer
interfaces, we showcase significant potential of a non-invasive
method. Willett et al. report a PER of 21% using 128 intracortical
arrays at a slower speech rate of 62 words per minute. Metzger
et al. report a PER of 30% on a smaller corpora of 1024 words
articulated at a slower rate of 78 words per minute using 253 ECoG
electrodes. In future work, we would like to verify if higher density
EMG and more training data can lead to better PER.

Ours - 31 electrodes
PER - 56%, using GRUA

Model size - about 4.4 mil-
lion

6. Observations and discussions
1⃝ From Data SMALL-VOCAB and Data LARGE-VOCAB and their

corresponding results, we observe that continuously artic-
ulated silent speech - where subjects naturally articulate
sentences in English but inaudibly - can be translated into
phonemic sequences at a fine-scale resolution of 50 ms or 20
ms. This resolution is comparable to state-of-the-art (SOTA)
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automatic speech recognition (ASR) models, such as those
described by Baevski et al. and Hsu et al., which operate at
a 20 ms resolution. These findings highlight the potential
for real-time EMG-to-language translation, akin to audio-
to-audio (language translation) and audio-to-text translation.
Furthermore, achieving a word transcription accuracy of ap-
proximately 88% on limited-vocabulary corpora and a PER
of 56% on open-vocabulary corpora demonstrates that high-
fidelity translation is achievable, reinforcing the viability of
this approach.

2⃝ Additionally, results from Data NATO-WORDS (WER of 59%
averaged across all 4 subjects) indicate that by leverag-
ing NATO phonetic codes, we can establish a generaliz-
able EMG-to-language spelling paradigm. Although this
approach does not replicate natural speech, it enables a
practical mode of limited communication for individuals
who have lost speech articulation capabilities. Notably,
this paradigm is efficient, requiring only a small corpus
for training - our model trained on just 10 minutes of data,
demonstrates robust generalization on a much larger test set.

3⃝ The key contribution of this article lies in the devel-
opment of efficient architectures for multivariate EMG-to-
phoneme sequence translation. We show that EMG signals
can be approximately decomposed into linear combinations
of a set of orthogonal axes, represented by the matrices
σ(τ). This decomposition enables the analysis of time-
varying graph edges in a sparse graph spectral domain using
a single recurrent layer. Notably, our model relies on only
one hyperparameter - the dimension of the hidden unit in
the GRU. Across different datasets and subjects, the models
exhibit consistent and predictable behavior with respect to
the hidden unit dimension. Specifically, the decoding ac-
curacy of GRUA and GRUB improves as the hidden unit
dimension increases, eventually plateauing, while GRUC

demonstrates a peak in performance before diminishing
(figures 4 and 6). Also, GRUC outperforms other GRU
models for Data NATO-WORDS. It also outperforms other GRU
models for Data SMALL-VOCAB at smaller model sizes. This
demonstrates that modeling dynamics of EMG signals using
neural ODEs is beneficial and allows for better abstraction
of the data. Importantly, although different datasets and
individuals are characterized by distinct orthogonal basis
vectors, the same model architecture can be applied across
individuals without the need for extensive hyperparameter
tuning.

4⃝We achieve a word error rate (WER) of approximately
12% on a 67-word vocabulary, not too far from the 9.1%
WER reported by Willett et al. on a 50-word vocabulary.
Notably, our results are achieved using only 31 non-invasive
electrodes, in contrast to the 128 intracortical electrodes
employed by Willett et al. On Data LARGE-VOCAB, we achieve
a phoneme error rate (PER) of 56% for speech articulated

at an average rate of 160 words per minute, whereas Willett
et al. report a PER of 21% using 128 intracortical arrays
at a slower speech rate of 62 words per minute. In future
work, we would like to verify if higher density EMG and
more training data can lead to better PER. These findings
demonstrate the feasibility of a non-invasive approach for
translating silent speech into language. While Willett et al.
and Metzger et al. showcase brain-computer speech inter-
faces for individuals with anarthria or amyotrophic lateral
sclerosis, our method provides a viable alternative for indi-
viduals who have undergone laryngectomy or experience
dysarthria or dysphonia, where invasive recordings may not
be a practical solution. We highlight the significant potential
of non-invasive techniques for broad clinical applicability.

5⃝Défossez et al. demonstrate methods for decoding speech
perception from non-invasive neural recordings using mag-
netoencephalography (MEG) and electroencephalography
(EEG). They show that listened speech segments can be
predicted from MEG with an accuracy of 41%. However,
such interfaces are not useful for initiating communication.
We go beyond these models to demonstrate that, using non-
invasive EMG signals, we can decode speech articulation
at the phonemic level with a higher accuracy of 44% on a
large English language corpus.

6⃝We envision EMG-based non-invasive neuroprostheses
having a user-friendly form factor that is easy to don and
doff. However, even minor variations in electrode place-
ment introduce a covariate signal shift, which can be math-
ematically represented as a change of basis (Gowda et al.,
2024). Additional factors, such as variations in subcuta-
neous fat and changes in neural drive characteristics, con-
tribute to covariate signal drift over time. To address these
challenges, modeling EMG signals using SPD covariance
matrices proves advantageous. Our models show consistent
performance across subjects, as demonstrated here, and out-
perform Euclidean-space models (Gaddy & Klein, Gaddy &
Klein) in terms of both decoding accuracy and model param-
eter efficiency. Moreover, considering the idiosyncrasies of
individuals, the difficulty of collecting large-scale data, and
the need for frequent fine-tuning due to circumstantial vari-
ations, a streamlined approach is crucial. A simple model
leveraging a single GRU layer, as presented here, offers an
effective solution for adaptability.

7. Conclusion
We present an efficient data representation for orofacial
EMG signals and demonstrate that our approach enables
effective EMG-to-language translation. Our method outper-
forms previous benchmarks on limited-vocabulary corpora,
showcasing its potential for practical applications. Notably,
we demonstrate the ability to translate EMG collected during
silently voiced speech (ES) to language without requiring

7
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corresponding audio (A) and EMG collected during audibly
voiced speech (EA), marking a significant advancement in
the translation paradigm and paving the way for real-world
deployment of such devices. By providing open-source
data and code, this work lays a solid foundation for the
development of efficient neuromuscular speech prostheses.

In future work, we plan to augment our methods with lan-
guage models and test their applicability for individuals
with clinical etiologies that affect voicing and articulator
movement in real time.

Table 5. Examples of EMG-to-phoneme sequence translations. We do translations using EMG collected during silent articulations (ES)
with CTC loss without making use of corresponding time aligned audio (A) and EMG collected during audible articulation (EA). Ground
truth sentences with corresponding timestamps. Ground truth phonemic transcriptions. Decoded phonemic transcriptions.

3 transcribed sentences in Data SMALL-VOCAB

T-START <WEDNESDAY>T-END T-START <JULY>T-END T-START <TWENTY SIXTH>T-END T-START <NINETEEN SIXTY SEVEN>T-END

W-EH-N-Z-D-IY SPACE J-UW-L-AY SPACE T-W-EH-N-T-IY-S-IH-K-S-TH SPACE N-AY-N-T-IY-N-S-IH-K-S-T-IY-S-EH-V-AH-N
W-AH-N-Z-D-IY SPACE J-UW-L-AY SPACE T-W-EH-N-T-IY-S-IH-K-S-TH SPACE N-AY-N-T-IY-N-S-IH-K-S-T-IY-S-EH-V-AH-N

T-START <THURSDAY>T-END T-START <OCTOBER>T-END T-START <TWENTY NINTH>T-END T-START <TWO THOUSAND NINE>T-END

TH-ER-Z-D-EY SPACE AA-K-T-OW-B-ER SPACE T-W-EH-N-T-IY-N-AY-N-TH SPACE T-UW-TH-AW-Z-AH-N-D-N-AY-N
TH-ER-Z-D-EY SPACE AA-K-T-OW-B-ER SPACE T-W-EH-N-T-IY-N-AY-N-TH SPACE T-UW-TH-AW-Z-AH-N-D-T-N-AY-N

T-START <TUESDAY>T-END T-START <DECEMBER>T-END T-START <FIFTH>T-END T-START <NINETEEN SEVENTY EIGHT>T-END

T-UW-Z-D-IY SPACE D-IH-S-EH-M-B-ER SPACE F-IH-F-TH SPACE N-AY-N-T-IY-N-S-EH-V-AH-N-T-IY-EY-T
T-UW-Z-D-IY SPACE D-IH-S-EH-M-B-ER SPACE F-IH-F-TH SPACE N-AY-N-T-IY-N-S-EH-V-AH-N-T-IY-AY-N-T

Top-3 (best) transcribed sentences in Data LARGE-VOCAB

T-START <ITS KIND OF FUN>T-END

IH-T-S SPACE K-AY-N-D SPACE AH-V SPACE F-AH-N
IH-T-S SPACE K-AY-N-D SPACE F-AH-N

T-START <PROBABLY SEVENTIES>T-END

P-R-AA-B-AH-B-L-IY SPACE S-EH-V-AH-N-T-IY-Z
P-R-AH-B-L-IY SPACE S-EH-V-AH-N-T-IY

T-START <IS IT LEGEND>T-END

IH-Z SPACE IH-T SPACE L-EH-JH-AH-N-D
IH-T SPACE IH-T SPACE S-EH-JH-AH-N

Bottom-3 (worst) transcribed sentences in Data LARGE-VOCAB

T-START <MEMBER OF THE AMERICAN METEOROLOGICAL SOCIETY>T-END

M-EH-M-B-ER SPACE AH-V SPACE DH-AH SPACE AH-M-EH-R-AH-K-AH-N SPACE

M-IY-T-IY-AO-R-AH-L-AA-JH-IH-K-AH-L SPACE S-AH-S-AY-AH-T-IY
DH-AH-M-AH SPACE F-AH-B-AE-T-AH SPACE UW SPACE K-L SPACE S-AH SPACE T-IY SPACE D-IH

T-START <PICTURES AND PROJECTS THAT YOU CAN MAKE YOURSELF>T-END

P-IH-K-CH-ER-Z SPACE AH-N-D SPACE P-R-AA-JH-EH-K-T-S SPACE DH-AE-T SPACE Y-UW SPACE

K-AE-N SPACE M-EY-K SPACE Y-ER-S-EH-L-F
AH SPACE P-R-IY SPACE T-ER-S-AH SPACE P-R-AA SPACE DH-IH-K SPACE DH-AH SPACE T-UW-K-AH SPACE M SPACE Y-UW

T-START <HE EXPECTED CONCLUSIONS AT THE END OF THE YEAR>T-END

HH-IY SPACE IH-K-S-P-EH-K-T-AH-D SPACE K-AH-N-K-L-UW-ZH-AH-N-Z SPACE AE-T SPACE

DH-AH SPACE EH-N-D SPACE AH-V SPACE DH-AH SPACE Y-IH-R
G-EH-P-IH SPACE AH-K-L-UW-ZH-AH SPACE AH-N SPACE AY-D SPACE AH SPACE TH-Y
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Impact statement
This article provides data and methods for developing non-
invasive EMG based neuroprosthesis. Such devices have
the potential to restore natural communication in individ-
uals who have lost the ability to speak intelligibly due to
causes such as neuromuscular disease, stroke, trauma, and
head/neck cancer surgery (e.g. laryngectomy) or treatment
(e.g. radiotherapy toxicity to the speech articulators).

IRB was approved for human subject research. IRB details
and its terms and conditions will be made available if the
manuscript is accepted.

We are unable to publish the data and codes in an
anonymized format. Data and codes will be made publicly
available if the manuscript is accepted.
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A. Results for Data NATO-WORDS

Raw EMG signals are bandpass filtered between 80 and
1000 Hertz and are z-normalized per channel along the time
dimension. Then, a complete time dependent graph is con-
structed using the EMG signals. We follow the same train-
validation-test split outlined by Gowda et al. All parameters
are detailed in table 6.

Like before, the Fréchet mean, computed from the training
set, is utilized to calculate σ(τ) for all τ in the training, vali-
dation, and test datasets. Figure 5 illustrates the Levenshtein
distances between target and predicted phoneme sequences
for three GRU models with varying model sizes across all
4 individuals. To decode the articulated NATO phonetic
code, we identify a code from the corpus of 26 codes whose
phonetic sequence best matches the predicted sequence, us-
ing Levenshtein distance as the metric. Decoding accuracy
for EMG-to-text translation is evaluated as 1 −WER and
is presented in figure 6 for models of different sizes across
all four subjects. For each subject, the best decoding accu-
racy across all three GRU models and all model sizes are
summarized in table 7.

Table 6. Experimental setup for Data NATO-WORDS.

Data NATO-WORDS properties
τ 30 ms (a sliding window with an

overlapping context size of 150 ms
and a step size of 30 ms).

E(τ) and σ(τ) SPD matrices of dimensions 22×
22.

Train set 416 NATO alphabet articulations
(26 words, each repeated 16 times)

Validation set 104 NATO alphabet articulations (26
words, each repeated 4 times)

Test set 1968 NATO alphabet articulations
(entire GRANDFATHER and RAIN-
BOW passages articulated in a
spelled-out manner).

Beamsearch
width

Top-5

We compare our results obtained by constructing the most
probable phoneme sequences using beam search over the
output probability distributions at every time step to that of
classification models presented by Gowda et al. in table 7.
We see a slight decrease in decoding accuracy. This might
be due to the fact that these are single word articulations
and classification models have the context of the articulation
duration of the entire word as opposed to 150 ms context size
in phoneme-by-phoneme sequence-to-sequence modeling.

Table 7. Best decoding accuracy across all GRU models and model
sizes of all four subjects (calculated by averaging over 10 random
seeds). Random chance accuracy is only 3.85%.

Subject Decoding accuracy
(1 - WER) via
phoneme-by-phoneme
reconstruction

Gowda et al.
classification
model accuracy

1 44.29% 51.34%
2 44.97% 42.89%
3 29.58% 37.21%
4 43.59% 42.79%
Average 40.61% 43.56%
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Figure 5. Average Levenshtein distance between target and predicted phoneme sequences of all four subjects (subject 1 to subject 4,
starting from top left in a clockwise manner). Models are evaluated over 10 random seeds. Lower is better.
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Figure 6. Average decoding accuracy = 1 - WER of all four subjects (subject 1 to subject 4, starting from top left in a clockwise manner).
Models are evaluated over 10 random seeds. Higher is better.
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B. Training paradigms
We trained our models on the training set and validated
them on the validation set. For testing on the test set, we
selected the model weights corresponding to the epoch with
the minimum validation loss, provided the losses in the im-
mediately preceding and succeeding epochs did not exceed
more than 20% of the minimum loss. All GRU models
were trained for 100 epochs on Data SMALL-VOCAB and 500
epochs on Data LARGE-VOCAB. For Data NATO-WORDS, GRUA

was trained for 250 epochs, while GRUB and GRUC were
each trained for 150 epochs. Model training is completed in
just a few minutes, whether using a GPU or CPU.

For WER calculation, we compute the Levenshtein dis-
tance between the predicted phoneme sequence and all
entries in the word corpora (or combinations of them).
When multiple entries share the lowest distance with the
predicted sequence and the ground truth is among them,
we classify it as a wrong prediction. For instance, the
predicted sequence <T-TH-UW-AH-Z-D-EY> could be de-
coded as either <TUESDAY> or <THURSDAY>, whose
phonetic transcriptions are <T-UW-Z-D-IY> and <TH-ER-
Z-D-EY>, respectively. In this case, the ground truth text
prompt is <THURSDAY>. However, both <TUESDAY>
and <THURSDAY> yield the same minimum Levenshtein
distance from the predicted sequence within the 67-word
corpora.

Since the articulation is silently produced by the individ-
ual, there is no ground truth audio to verify the accuracy
of the actual articulation (for example, the subject might
have started with TUESDAY and then corrected for THURS-
DAY). Therefore, recognizing the inherent ambiguity and
emphasizing the model’s ability to closely approximate the
intended word, we can classify such predictions as cor-
rect. We denote word error rate calculated in this man-
ner as WER∗. In this case, the best decoding accuracy on
Data SMALL-VOCAB is 91% (WER∗ of just 9%, as opposed to
12% with the previous way of calculating WER).

When such predictions are classified as correct, the genera-
tion accuracy of Data NATO-WORDS significantly increases and
is summarized in table 8.

B.1. Beam search algorithm

We use an algorithm that performs beam search decoding
solely on the CTC output probabilities, without incorporat-
ing any external language models or prior linguistic knowl-
edge. At each timestep, it evaluates the likelihood of extend-
ing existing sequences based purely on the symbol probabili-
ties provided by the CTC output, maintaining a fixed number
of the most probable beams (defined by beam width), and
ultimately returns the most likely sequence based on the
CTC probabilities.

Table 8. Best decoding accuracy across all GRU models and model
sizes of all four subjects (best value is calculated by averaging over
10 random seeds). When multiple entries in the word corpora
share the lowest Levenshtein distance with the predicted sequence
and the ground truth is among them, we classify it as a correct
prediction. Results are for Data NATO-WORDS

.

Subject Best accuracy (1 - WER∗)
1 54.48%
2 59.45%
3 38.90%
4 56.29%
Average 52.28%

C. Background on Riemannian geometry of
SPD matrices

Speech articulation involves the coordinated activation of
various muscles, with their activation patterns defined by the
functional connectivity of the underlying neuromuscular sys-
tem. Consequently, EMG signals collected from multiple,
spatially separated muscle locations exhibit a time-varying
graph structure. Gowda et al. demonstrate that the graph
edge matrices corresponding to orofacial movements under-
lying speech articulation are inherently distinguishable on
the manifold of SPD matrices. Through experiments with
16 subjects, they highlight the effectiveness of using SPD
manifolds as an embedding space for these edge matrices.
Building on this foundation, we investigate the temporal evo-
lution of graph connectivity using edge matrices to enable
EMG-to-language translation.

Directly working with SPD matrices using affine-invariant
or log-Euclidean metrics (Arsigny et al., 2007) involves
computationally expensive operations, such as matrix expo-
nential and matrix logarithm calculations. These operations
make mappings between the manifold space and the tan-
gent space, and vice versa, computationally intensive. To
address this, Lin proposed methods to operate on SPD ma-
trices using Cholesky decomposition. They established a
diffeomorphism between the Riemannian manifold of SPD
matrices and Cholesky space, which was later utilized by
Jeong et al. to develop computationally efficient recurrent
neural networks. In Cholesky space, the computational bur-
den is significantly reduced: logarithmic and exponential
computations are restricted to the diagonal elements of the
matrix, making them element-wise operations. Additionally,
the Fréchet mean is derived in a closed form.

Given a set of SPD edge matrices E(τ) over different
time windows τ , we first calculate their corresponding
Cholesky decompositions L(τ) = CHOLESKY(E(τ)), such

13
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that E(τ) = L(τ)L(τ)T . Then, the Fréchet mean of the
Cholesky decomposed matrices L(τ) is given by

FCHOLESKY =
1

n

n∑
i=1

⌊L(τi)⌋ +

exp

(
1

n

n∑
i=1

log(D(L(τi)))

)
.

The Fréchet mean F on the manifold of SPD matrices is
calculated as

F = FCHOLESKYFT
CHOLESKY.

In the above equation, ⌊L(τ)⌋ is the strictly lower triangular
part of the matrix L(τ), and D(L(τ)) is the diagonal part of
the matrix L(τ).

GRUA is a standard GRU (Chung et al., 2014). GRUB

is constructed from GRUA by replacing the arithmetic op-
erations of GRUA defined in the Euclidean domain with
the corresponding operations on the SPD manifold. Gates
of GRUB as defined by Jeong et al. are given below.
Given the sparse SPD edge matrices σ(τ) over different
time windows τ , we first calculate their corresponding
Cholesky decompositions l(τ) = CHOLESKY(σ(τ)), such
that σ(τ) = l(τ)l(τ)T .

Update-gate zτ at time-step τ is

zτ = SIGMOID(wz⌊lτ⌋+ uz⌊hτ−1⌋+ bz)+

SIGMOID(bz′ [exp(wz′ log(D(lτ ))+
uz′ log(D(hτ−1))]). (1)

Reset-gate rτ at time-step τ is

rτ = SIGMOID(wr⌊lτ⌋+ ur⌊hτ−1⌋+ br)+

SIGMOID(br′ [exp(wr′ log(D(lτ ))+
ur′ log(D(hτ−1))]). (2)

Candidate-activation vector ĥτ is

ĥτ = TANH(wh⌊lτ⌋+ uh(⌊rτ⌋ ∗ ⌊hτ−1⌋) + bh)+

SOFTPLUS(bh′ exp(wh′ log(D(lτ ))
+ uh′ log(D(rτ ) ∗ D(hτ−1)))). (3)

Output vector hτ is

hτ = (1− ⌊zτ⌋) ∗ ⌊hτ−1⌋+ ⌊zτ⌋ ∗ ⌊ĥτ⌋+
exp((1− D(zτ )) ∗ log(D(hτ−1))+

D(zτ ) ∗ log(D(ĥτ ))). (4)

In the above equations, hτ−1 is the hidden-state at time-step
τ − 1.

In GRUC , we define an additional implict layer solved using
neural ODEs. The dynamics f of EMG data is modeled by
a neural network with parameters Θ. The output state hτ is
updated as,

hτ−1 ← ODESOLVE(fΘ, L̃OG(hτ−1), (τ − 1, τ))

hτ = GRU(lτ , ẼXP(hτ−1)), (5)

where L̃OG is the logarithm mapping from the mani-
fold space of SPD matrices to its tangent space and
ẼXP is its inverse operation as defined by Lin. GRU is a
gated recurrent unit whose gates are given by equations 1 - 4.

Previous work by Gowda & Miller demonstrated the
effectiveness of SPD matrices in decoding discrete hand
gestures from EMG signals collected from the upper
limb. Furthermore, SPD matrix representations have been
extensively utilized to model electroencephalogram (EEG)
signals, although they have never been applied to complex
tasks such as sequence-to-sequence speech decoding. For
example, Barachant et al.; Barachant et al. employed
Riemannian geometry frameworks for classification tasks
in EEG-based brain-computer interfaces, while Sabbagh
et al. developed regression models based on Riemannian
geometry for biomarker exploration using EEG data.

The novelty of our work lies in the algebraic interpreta-
tion of manifold-valued data through linear transformations,
and the development of models for complex sequence-to-
sequence tasks. This approach moves beyond the conven-
tional applications of classification and regression.
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D. σ(τ) are sparse matrices
We show that σ(τ) are indeed sparse matrices in figure 7.

DataA DataB (S1) DataB (S2) DataB (S3) DataB (S4)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

m
ax

(n
on

 d
ia

go
na

l)
m

ax
(d

ia
go

na
l)

Figure 7. Blue: Average value of max(ABS((NON DIAG(Σ(τ)))
max(DIAG(Σ(τ))

for
all τ in train-validation-test set. Red: Average value of
max(ABS((NON DIAG(σ(τ)))

max(DIAG(σ(τ))
for all τ in train-validation-test set. As

we can see, σ(τ) are approximately diagonal compared to Σ(τ).
We use sparse matrices σ(τ) for EMG-to-language translation.
Subjetcs are abbreviated with notation S1, S2, S3, S4.

E. Effect of training data size on decoding
accuracy

We train the GRUA model with varying train dataset sizes
for Data SMALL-VOCAB and present the decoding accuracy and
Levenshtein distance in figure 8. As we can see, decoding
accuracy demonstrates a plateauing trend with increase in
train dataset size, but importantly, has not saturated yet. In
future, we would like to explore if more training data can
lead to better decoding accuracy.
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Figure 8. Decoding accuracy and Levenshtein distance versus train-
ing dataset size for Data SMALL-VOCAB. All experiment parameters
are same as in table 1 except for the varying train set size. We use
GRUA for training.

F. Electrode position versus decoding accuracy
The form factor of an EMG-based neuroprosthesis plays
a critical role in its usability, particularly in facilitating
ease of application and removal. Here, we evaluate three
electrode configurations. We have 31 electrodes placed on
the throat, neck and the left cheek. The configurations are
defined as follows:

1⃝ ConfigurationA: We consider electrodes placed on the
throat and left neck only (10 electrodes).
2⃝ ConfigurationB: We consider electrodes placed on

the left cheek, with the neck electrodes excluded (11
electrodes).
4⃝ ConfigurationC : We consider electrodes on the throat

and left neck and cheek, excluding those on the right neck
(22 electrodes).

This exploration aims to assess the practicality and perfor-
mance of each configuration to inform design choices for an
optimal neuroprosthetic interface. Electrode placement on
the throat, the left neck and left cheek is same as described
in Gowda et al. Electrode placement on the right neck is
symmetrical to that of left neck. Decoding accuracy for
various configurations are shown in table 9. The training
paradigm is same as in table 1, except for the varying num-
ber of electrodes. Decoding accuracy are obtained using
GRUA for Data SMALL-VOCAB.

Table 9. Decoding accuracy with various electrode configurations.

Configuration Accuracy (1 - WER)
ConfigurationA 86.00%
ConfigurationB 84.24%
ConfigurationC 85.96%

Above results show that EMG based neuroprosthesis can
have a small form factor (such as neck only or cheek only),
and still provide good decoding accuracy (decoding accu-
racy using all 31 electrodes is 88%).

G. Text to personalized audio synthesis
The generated personalized audio files will be made
available as part of the open-sourced codes.

We synthesize constructed phoneme sequences into person-
alized audio using methods described by Choi et al. For
this, we train the model proposed by Choi et al. on speech
corpora provided by Panayotov et al. (LibriSpeech TRAIN-
CLEAN-360 and TRAIN-CLEAN-100) and Veaux et al.
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(VCTK corpus). For few-shot learning, we use a 40-second
reference audio clip from the subject (Data SMALL-VOCAB) to
capture the speaker’s vocal characteristics.

The process involves converting the predicted text into audio
using Google Text-to-Speech (gTTS). The gTTS-generated
audio is then personalized using the model by Choi et al.,
leveraging the 40-second reference audio data (the refer-
ence audio includes linguistic content L that is absent from
the Data SMALL-VOCAB). This approach ensures that the syn-
thesized audio closely mimics the speaker’s unique vocal
attributes.
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