
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEPENTHE: ENTROPY-BASED PRUNING AS A NEU-
RAL NETWORK DEPTH’S REDUCER

Anonymous authors
Paper under double-blind review

ABSTRACT

While deep neural networks are highly effective at solving complex tasks, their
computational demands can hinder their usefulness in real-time applications and
with limited-resources systems. Besides, it is a known fact that, for many down-
stream tasks, off-the-shelf models are over-parametrized. While classical struc-
tured pruning can reduce the network’s width, the computation’s critical path,
namely the maximum number of layers encountered at forward propagation, ap-
parently can not be reduced.
In this paper, we aim to reduce the depth of over-parametrized deep neural net-
works: we propose an eNtropy-basEd Pruning as a nEural Network depTH’s
rEducer (NEPENTHE) to alleviate deep neural networks’ computational burden.
Based on our theoretical finding, NEPENTHE leverages “unstructured” pruning
to bias sparsity enhancement in layers with low entropy to remove them entirely.
We validate our approach on popular architectures such as MobileNet, Swin-T and
RoBERTa, showing that, when in the overparametrization regime, some layers are
linearizable (hence reducing the model’s depth) with little to no performance loss.
The code will be publicly available upon acceptance of the article.

1 INTRODUCTION

Layer's index

En
tro

py

En
tro

py

En
tro

py

Layer's index Layer's index

Figure 1: In this work we show that the average neuron’s entropy
calculated at the layer scale reduces as we induce some sparsity in
the model.

Artificial Intelligence has undergone
a transformative evolution propelled
by the advent of Deep Neural Net-
works (DNNs), which have emerged
as instrumental in achieving state-of-
the-art outcomes across pivotal com-
puter vision domains, including se-
mantic segmentation Chaudhry et al.
(2022), classification Barbano et al.
(2022), and object detection Mazzeo
et al. (2022). Notably, the perva-
sive impact of DNNs extends be-
yond conventional computer vision
tasks, showcasing absolute potential
in realms such as natural language
processing Touvron et al. (2023), and multi-modal tasks Sun et al. (2019). The employment of
DNNs is becoming massive in our lives and looks unstoppable.

While DNNs’ performance has exhibited scalability concerning model and dataset size Hestness
et al. (2017), the inherent computational burden is one major downside. Notably, contemporary
state-of-the-art models are characterized by millions (or even billions) of parameters, demanding
billions (or trillions) of floating-point operations (FLOPs) for a single input prediction Guo et al.
(2022). Consequently, the substantial resource requirement for training and deploying large neural
networks, both in terms of pure hardware capability and energy consumption, poses challenges for
real-time applications and edge devices.

Over the past decade, the research landscape has witnessed the emergence of compression tech-
niques as a crucial avenue to address the resource-intensive nature of DNNs. Intrinsically, there ex-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ists a link between the generalization capability of DNNs and the model’s complexity: off-the-shelf
architectures employed in downstream tasks are, in many cases, over-parametrized, representing a
threat for generalization Hestness et al. (2017). One possibility to counter this effect resides in prop-
erly removing parameters in excess, providing gains both computation and generalization-wise Han
et al. (2015); Tartaglione et al. (2021; 2022). Most of the popular approaches, however, are unable
to reduce the number of layers in a DNN.

The impact of removing individual parameters or whole filters on recent computing resources,
such as GPUs, is relatively marginal. Due to the parallelization of computations, the size of lay-
ers, whether larger or smaller, is primarily constrained by memory caching and core availability.
The bottleneck in computation lies in the critical path that forward-propagation must traverse Ali
Mehmeti-Göpel and Disselhoff (2023), a challenge that can be addressed by strategically removing
layers. While some existing works implicitly address this concern Hinton et al. (2015), they fail
to guarantee a-priori no performance loss (given that they impose a target shallow model) or avoid
substantial perturbations. This motivates the exploration of designing an iterative pruning strategy,
aimed at reducing the model’s depth while preserving optimal performance.

In this work, we present NEPENTHE, an approach that iteratively attempts to remove layers from a
DNN. More specifically, given the large use of rectifier activation functions such as ReLU, GELU,
and Leaky-ReLU, we can identify the average state of a given neuron for the trained task, and from
that, we can maximize the utilization of one of the two regions identifiable in these activations by
minimizing an entropy. We find that vanilla unstructured pruning is already implicitly minimizing
such entropy, but is hardly able to completely make a whole layer utilizing one of these two regions.
Through the design of our entropy-weighted pruned parameter budget at the layer’s scale, we can
favor solutions where the layer’s entropy drops to zero, hence becoming linearizable (Fig. 1). We
summarize, here below, our key messages and contributions.

• We propose a measure of entropy at the single neuron’s scale, which indicates how much
such neuron uses its linear part(s): through its minimization, it is in principle possible to
linearize it, and by making the average entropy drop to zero, it is possible to linearize the
whole layer (Sec. 3.1).

• We theoretically show that “unstructured” pruning, in rectifier-activated layers, naturally
reduces the layer’s entropy (Sec. 3.1 and Appendix A), validating such result also empiri-
cally (Sec. 4.2).

• We propose NEPENTHE, a new method aiming to decrease a neural network’s depth
(Sec. 3.3) through a proper entropy-guided reweighting of the pruning budget at the layer’s
scale (Sec. 3.2).

• We test NEPENTHE in a variety of setups and with some popular architectures (Sec. 4.3),
showcasing that it can achieve layer removal with little or no performance loss when over-
parametrized networks are employed.

2 RELATED WORKS

Neural Network Pruning. Neural network pruning has gained considerable attention in recent
years due to its potential to enhance model performance and reduce over-fitting. Its goal is to re-
duce a cumbersome network to a smaller one while maintaining accuracy by removing irrelevant
weights, filters, or other structures, from neural networks. While structured pruning removes entire
neurons, filters, or channels Tartaglione et al. (2021); He and Xiao (2023); Lin et al. (2020), un-
structured pruning algorithms remove weights without explicitly considering the neural network’s
structure Han et al. (2015). Magnitude-based pruning, where the importance score to prune pa-
rameters is based on their magnitude Han et al. (2015); Louizos et al. (2018); Zhu and Gupta
(2017), and gradient-based pruning, where the ranking or the penalty term is a function of the gra-
dient magnitude (or to higher order derivatives) Lee et al. (2019); Tartaglione et al. (2022), are the
main types of unstructured pruning approaches. Blalock et al. (2020) compared the effectiveness
of these approaches and concluded that, in general, gradient-based methods are less accurate than
magnitude-based methods. Moreover, Gale et al. (2019) showed that simple magnitude pruning
approaches achieve comparable or better results than complex methods, making them a good trade-
off between complexity and competitiveness. Computationally-wise, it is broadly known that, in
general-purpose hardware setup, structured pruning can provide larger benefits, in terms of both

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

memory and computation, than unstructured approaches, despite the achieved sparsity rate can be
substantially lower Bragagnolo et al. (2021).

Entropy-Guided Pruning. Some works have already tried to propose entropy-based approaches
to guide pruning. For convolutional neural networks, Luo and Wu (2017) put forward an iterative
filter pruning strategy in which the importance of each filter is calculated by their entropy-based
channel selection metric. To recover performance, the pruned model is then fine-tuned. Also for
CNNs, Hur and Kang (2019) suggested an entropy-based method that determines dynamically dur-
ing training the threshold by considering the average amount of information from the weights to
output. Moreover, Min et al. (2018) proposed a two-stage filter pruning framework, first intra-layer
and then extra-layer. Given that the entropy is a measure of disorder, evidently, it identifies filters
that mutually have low entropy: these can be considered redundant and for instance, can be removed
from the model. These approaches, despite reducing the layer’s width, are not designed to tackle
our aim: removing entire layers to reduce DNNs’ depth.

Neural Network Depth Reduction. Towards neural network depth reduction, Chen and Zhao
(2019) inspect the possibility of having a layer-wise pruning method based on feature represen-
tation, a-posteriori employing a retraining strategy that utilizes knowledge distillation. This work
reinforces the possibility of designing a layer-pruning algorithm. Endorsing this, Dror et al. (2022)
proposed a method that learns whether non-linear activations can be removed, allowing the folding
of consecutive linear layers into one. More specifically, ReLU-activated layers are replaced with
PReLU activations, showcasing a regularized slope. Post-training, the PReLUs almost linear are
removed, and the layer can be folded with its subsequent one. Ali Mehmeti-Göpel and Disselhoff
(2023) proposes a similar channel-wise approach that enables reducing more non-linear units in the
network while maintaining similar performance. While these works sought to shrink the neural net-
work’s depth by working at the activation level and forcing it to stay either linear or non-linear, our
approach does not directly enforce any of that. In rectifier-activated networks, we perform a targeted
unstructured pruning that off-line favors either the neuron’s shutdown or the use of its linear part.
By prioritizing pruning connections in low-entropy layers, Liao et al. (2023) also develop an un-
structured entropy-guided pruning method which reduces DNNs’ depth. Nevertheless, EGP only
enables the removal of a limited number of layers, notwithstanding its effectiveness. Indeed, the
accuracy drastically decreases when several layers are removed. This will be confirmed in Sec. 4 by
contrasting this approach with NEPENTHE.

3 NEPENTHE

In this section, we present our method NEPENTHE, which focuses on pruning connections in lay-
ers with low entropy to remove them entirely. First, we show that unstructured pruning naturally
minimizes the neuron’s entropy (in rectifier-activated layers). This will motivate our entropy-guided
pruning approach, which allows a gradual layer removal.

3.1 ENTROPY FOR RECTIFIER ACTIVATIONS

Let us assume ψ is the rectifier of the l-th layer, populated byNl neurons. We can monitor the output
yxl,i of the i-th neuron from a given input x of the dataset D and write it as:

yxl,i = ψ(zxl,i), (1)

where zxl,i is the output of the i-th neuron inside the l-th layer. From equation 1, we can define three
possible “states” for the neuron:

sxl,i =





+1 if yxl,i > 0
−1 if yxl,i < 0
0 if yxl,i = 0

(2)

More synthetically, for the output of the i-th neuron, we can easily identify in which of these states
we are by simply applying the sign function to zxl,i, obtaining sxl,i = sign(zxl,i). Informally, we can
say that the neuron is in the ON State when sxl,i = +1 (as it is typically the linear region) while it

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

is in the OFF State when sxl,i = −1 (given that limx→−∞ ψ(x) = 0).1 The third State sxl,i = 0 is
a special case, as it can be either mapped as an ON or OFF State. From the average over a batch
of outputs for the neuron, we can obtain the probability (in the frequentist sense) of the i-th neuron
of being in either the ON or the OFF States. For instance, we can obtain the probability of the ON
State as:

p(sl,i=+1) =

{
1

Sl,i

∑∥D∥0

j=1 s
xj

l,iΘ(s
xj

l,i) if Sl,i ̸= 0

0 otherwise,
(3)

where

Sl,i =

∥D∥0∑

j=1

∣∣∣sxj

l,i

∣∣∣ (4)

counts how many times the ON and the OFF states are encountered, ∥D∥0 is the number of the input
samples, and Θ is the Heaviside function.2 Evidently, we exclude the third state from this count as
it can be associated with being either within ON or OFF. Given that we are either interested in the
ON or the OFF States, we can then deduce that, when Sl,i ̸= 0, p(sl,i=−1) = 1− p(sl,i=+1).
Given this, we can calculate the entropy of the i-th neuron in the l-th layer as follows:

Hl,i = −
∑

sl,i=±1

p(sl,i) log2 [p(sl,i)] (5)

With the definition in equation 5,Hl,i can be zero in two possible cases:

• sl,i =−1 ∀j. In this case, zl,i ≤ 0 ∀j. When employing a ReLU, the output of the i-th
neuron is always 0, and in this specific case, the neuron can be simply pruned.

• sl,i =+1 ∀j. In this case, zl,i ≥ 0 ∀j. The output of the i-th neuron is always the same
as its input,3 this neuron can in principle be absorbed by the following layer as there is no
non-linearity between them anymore.

By averaging the entropy values for the total number of neurons Nl inside the l-th layer, we can
define the average entropy of the l-th layer as:

Ĥl =
1

Nl

∑

i

Hl,i. (6)

Since we aim to minimize the depth of deep neural networks by eliminating zero-entropy layers,
we would like to have Ĥl = 0. Unfortunately, directly minimizing equation 6 in the optimization
function is hard as it relies on non-differentiable measures like equation 3. However, unstructured
pruning can surprisingly be a promising choice for such a goal.

Under the assumptions of having weights distributed according to a Gaussian fW , after applying
a threshold t on their magnitude, their distribution will become f

Ŵ
(Fig. 2a). Assuming as well

that the input is Gaussian, we will have the post-synaptic potential distribution fZ as pictured in
Fig. 2b. Its dependence on the threshold parameter allows us to also derive the entropy as a function
of t (Fig. 2c): as we observe, the entropy decreases given that the threshold increases: through
unstructured pruning, the neuron’s output entropy is naturally minimized when employing rectified
activations, even in the oversimplified case here treated. The derivation leading to the results in Fig. 2
is provided in Appendix A , and the Gaussian assumption is validated empirically in Appendix B.

In the following, we will present how we are exploiting such a property of unstructured pruning
towards layer entropy minimization.

3.2 A LAYER ENTROPY-AWARE PRUNING SCORE

Driven by the promising theoretical results presented in Sec. 3.1 and Appendix A, we will design
here a relevant metric that will guide the unstructured pruning to lower the whole layer’s entropy

1There are few exceptions, such as LeakyReLU. In these cases, although the activation doesn’t converge to
zero, we still call it the OFF state since the output’s magnitude is lower for the same input magnitude.

2For convolutional layers, it is necessary to sum and average over the entire feature map generated per input.
3or very close as in GeLU.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

-4 -2 −t 0 t 2 4
w

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ro

b
ab

ili
ty

d
en

si
ty

fW (w)

f
Ŵ

(w)

(a)

−4 −2 0 2 4
z

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
ab

ili
ty

d
en

si
ty

fo
r
f Z

(z
,t

)

t = 0

t = 0.2

t = 0.5

t = 1

t = 2

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
t

0.0

0.2

0.4

0.6

0.8

1.0

H
(t

)

(c)

Figure 2: Distribution of a layer’s parameters with magnitude pruning at threshold t (a); pre-activation distri-
bution at varying t under the assumption of independence and centering of the Gaussian distributed input and
layer’s parameters (b); entropy of the rectifier-activated neuron’s output as a function of t (c), all in the large N
limit.

Ĥl. As we aim to increase the number of zero-entropy layers, intuitively more pruning should be
applied to layers with lower entropy, as they are the best candidates to be removed. Concurrently, to
minimize the impact on performance, only low-magnitude weights should be removed, as they are
typically those providing the lowest contribution to the neural network’s output Han et al. (2015);
Tartaglione et al. (2021). To reach these two objectives, we first define an intra-layer’s pruning
irrelevance score

Il =
1

Nl

Nl∑

i=1

Ĥl,i ·
1

∥wl∥0
|wl,i|, (7)

where ∥wl∥0 is the current layer’s parameters cardinality (hence, not accounting for the already
pruned weights, if any). This metric accounts for the average parameter’s magnitude and the layer’s
entropy at the same time: layers with few parameters but high entropy are less prone to be removed
than layers with more parameters but lower entropy (under the same parameter’s norm constraint).
Besides, the parameter’s magnitude of neurons with zero entropy is not accounted for in the im-
portance score calculation. Symmetrically, to remove parameters from layers having lower pruning
irrelevance, we define the inter-layer’s pruning relevance scoreRl as:

Rl =

{
1
Il

∑
j∈L Ij if Il ̸= 0
0 otherwise.

(8)

This measure is as large as the l-th layer’s pruning irrelevance score is smaller compared to the other
layer’s. Noticeably, Rl ∈ [1; +∞): to exactly establish how many parameters ∥wl∥pruned

0 should
be removed inside each layer l at a given pruning iteration, we have the entropy-weighted pruned
parameter budget

∥wl∥pruned
0 = ∥w∥pruned

0 · exp[Rl]∑
j exp[R(j)]

. (9)

Here follows an overview of NEPENTHE.

3.3 ENTROPY-BASED ITERATIVE PRUNING

Depicted in Alg. 1,4 we guide our entropy-based iterative pruning algorithm to remove layers with
zero entropy. Indeed, if a layer has an entropy equal to zero, then all of its neurons have an entropy
equal to zero: Ĥl = 0⇔ Hl,i = 0 ,∀i. Hence, this layer doesn’t necessarily need to have a rectifier:
this layer can be removed entirely without the need for future pruning. Towards this end, we first
train the neural network, represented by its weights at initialization winit, on the training set Dtrain
(line 2) and evaluate it on the validation setDval (line 3). As defined in equation 6, we then calculate
the entropy Ĥ on the training set Dtrain for each layer l of the considered list of layers L (line 6).
This list is initialized to all the layers of the neural network having a rectifier activation (hence, the
output layer is excluded).
Considering that ζ represents the percentage of parameters to remove at each pruning iteration and

4the function Weights to prune is presented in the Appendix C.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Our proposed method NEPENTHE.

1: function NEPENTHE(wINIT , L, D, ζ , θ)
2: w ← Train(winit, Dtrain)
3: dense acc←Evaluate(w, Dval)
4: current acc← dense acc
5: while current acc > θ· dense acc do
6: Ĥ ← Entropy(w, L, Dtrain)
7: ∥w∥pruned

0 ← ζ · ∥w∥0
8: ∥wL∥pruned

0 ←Weights to prune(L, Ĥ, ∥w∥pruned
0 , Dtrain)

9: w ← Prune(∥wL∥pruned
0)

10: w ← Train(w, Dtrain)
11: current acc← Evaluate(w, Dval)
12: end while
13: return w
14: end function

∥w∥0 the total weight parameters of the considered L layers in the model, we can define the number
of weight parameters to be pruned at each iteration ∥w∥pruned

0 (line 7) as:

∥w∥pruned
0 = ζ · ∥w∥0. (10)

To determine the parameters to prune in each layer, we define a function Weights to prune. This
function calculates the weights to remove for each layer and returns a list indicating the number of
neurons that need to be removed from each layer, as discussed in Sec. 3.2. At this point, for each
layer l, the neurons having non-zero entropy are first selected and then ∥wl∥pruned

0 non-zero weights
having the lowest absolute magnitude are removed (line 9). The model is then retrained (line 10) and
re-evaluated on the validation set Dval (line 11). The final model is obtained once the performance
on the validation set drops below some relative threshold θ.

4 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of our proposed approach, NEPENTHE,
across multiple architectures and datasets for traditional image classification and natural language
processing setups. We compare our results with the iterative magnitude pruning (IMP) method
from Han et al. (2015). Additionally, in image classification tasks, we compare our results with
two other approaches: removing the layers having the lowest sum weights/gradients. Then, we also
induce sparsity inside layers with Hrank Lin et al. (2020), a filter pruning method which removes
filters with low-rank feature maps. Then, we also minimize the group lasso penalty for each layer
using the method outlined in Ochiai et al. (2017). We also compare our results with the existing
approaches: EGP Liao et al. (2023) and Layer Folding Dror et al. (2022), both effectively removing
layers for image classification models.

4.1 EXPERIMENTAL SETUP

A variety of setups is covered by evaluating our method on three popular models: ResNet-18 He
et al. (2016), MobileNet-V2 Howard et al. (2017), and Swin-T Liu et al. (2021), trained on five
datasets: CIFAR-10 Krizhevsky et al. (2009), Tiny-ImageNet Le and Yang (2015), and PACS,
VLCS, and SVIRO from DomainBed Gulrajani and Lopez-Paz (2020), following the same train-
ing policies as Quétu and Tartaglione (2024) and Xu et al. (2021). Moreover, two natural language
processing models: BERT Kenton and Toutanova (2019) and RoBERTa Liu et al. (2019) are trained
on three datasets: SST-2 Socher et al. (2013), QNLI Williams et al. (2018), and RTE Bentivogli
et al. (2009), with the training strategies of Peer et al. (2022). In all the setups, we set ζ = 0.5
for ResNet-18, ζ = 0.25 for Swin-T, and ζ = 0.1 for MobileNet-V2. Moreover, we set ζ = 0.25
(respectively ζ = 0.15) for the models trained on QNLI and RTE (respectively SST-2). The results
of Layer Folding (respectively EGP) are obtained using the same aforementioned training policy,
with the hyper-parameters declared in Dror et al. (2022) (respectively in Liao et al. (2023)). All the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Trend in the bottom six layer’s entropies for ResNet-18 trained on CIFAR-10.

Approach Ĥ1 Ĥ2 Ĥ3 Ĥ4 Ĥ5 Ĥ6 top-1
Dense 0.647 0.680 0.728 0.785 0.791 0.797 91.66

IMP (iter #1) 0.585 0.650 0.699 0.725 0.767 0.778 92.29
IMP (iter #2) 0.506 0.580 0.647 0.654 0.700 0.722 92.25
IMP (iter #3) 0.256 0.623 0.658 0.672 0.682 0.737 92.46
IMP (iter #4) 0.192 0.660 0.667 0.676 0.698 0.763 92.27
IMP (iter #5) 0.136 0.589 0.648 0.727 0.728 0.791 92.44
IMP (iter #6) 0.093 0.447 0.640 0.650 0.764 0.765 91.89
IMP (iter #7) 0.055 0.335 0.487 0.592 0.640 0.775 91.66

NEPENTHE 0 0 0 0.014 0.121 0.942 92.55

hyperparameters, augmentation strategies, learning policies, and how we choose ζ are provided in
the Appendix C. We also implement our method for ResNet-50, ResNet-152, MobileNetV2-0.75
models trained on CIFAR-10 and ResNet-18 trained on Imagenet Deng et al. (2009). The results of
these setups are shown in Appendix D.2.

4.2 TREND OF LAYER’S ENTROPY

As a preliminary experiment, we will study here the effect of pruning on the layer’s entropy. Table 1
reports the entropy trend of the six layers showing the lowest entropy.

The iterative magnitude approach removes progressively, in this setup, the 50% of the parameters
from the model, following a vanilla global unstructured magnitude pruning approach. As expected
from the derivation as in Sec. 3.1, as the pruning progresses (and implicitly t grows), the entropy is
naturally decreased, showcasing very small values after some pruning iterations. However, we also
observe that as the entropy Ĥ1 decreases, the top-1 accuracy begins to deteriorate. This happens
as there is no proper pruning re-allocation, that instead happens with NEPENTHE according to
equation 8: indeed, in such case not only does the performance remain high, but we can successfully
remove three layers from the model.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Layers

0

100

200

300

400

500

N
um

be
r o

f n
eu

ro
ns

OFF (= 0)
ON (= 0)

0

Figure 3: Neuron states per layer for ResNet-18 trained on CIFAR-
10 pruned by NEPENTHE.

Noticeably, Ĥ4 and Ĥ5 are also very
low, while already starting from Ĥ6

the entropy is very high. Contrarily to
magnitude pruning where the entropy
is in general in intermediate-range
values, NEPENTHE tries to push all
the encoded information toward lay-
ers having already high entropy, en-
abling effective layer removal with
little (or in this case no) performance
loss. This is also illustrated in Fig. 3,
showing the distribution of the neu-
ron states per layer for ResNet-18 on
CIFAR-10 trained with NEPENTHE.
Our unstructured pruning approach
effectively removes three layers by
pushing all the neurons inside low-
entropy layers to be either in the ON or in the OFF state. Besides, we also notice that in some
layers (like 13 and 17) there are entire units at zero entropy- we also achieve some structured spar-
sity by an unstructured approach, as already reported in some works Han et al. (2015); Tartaglione
et al. (2021).

We also analyzed the layers pruned from a ResNet-18 trained on CIFAR-10. We observed dif-
ferences in the layers pruned by our entropy-based method compared to other pruning methods.
Indeed, with our method, the layers with the lowest entropy are typically found near the deepest
layers of the network. Similarly, in layer folding and EGP methods, the layers near the output are

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Test performance (top-1), lowest non-zero layers’ entropy (Ĥmin) and the number of removed layers
(Rem.) for all the considered image classification setups. The results achieved by our method are in italic.

Dataset Approach ResNet-18 MobileNet-V2 Swin-T
Ĥmin top-1 Rem. Ĥmin top-1 Rem. Ĥmin top-1 Rem.

CIFAR-10

Dense model 0.647 91.66 0/17 0.386 93.68 0/35 0.028 91.54 0/12
Smallest weights 0.582 10.00 1/17 0 10.00 1/35 0.031 89.22 2/12

Smallest gradients 0.314 9.29 1/17 0 10.00 1/35 0.03 89.21 2/12
Hrank 0.001 91.70 0/17 0.055 91.73 0/35 0.048 91.87 0/12

Group lasso 0.130 92.11 1/17 0.001 83.00 4/35 0.028 91.68 0/12
IMP 0.055 91.66 0/17 0.046 93.50 0/35 0.286 90.53 0/12
EGP - 92.18 3/17 - 92.22 6/35 - 92.01 1/12

Layer folding - 90.65 1/17 - 87.84 6/35 - 85.73 2/12
NEPENTHE 0.121 92.55 3/17 0.001 93.26 7/35 0.362 92.29 2/12

Tiny-ImageNet

Dense model 0.471 41.44 0/17 0.076 45.86 0/35 0.067 75.60 0/12
Smallest weights 0 0.5 1/17 0 0.5 1/35 0.07 75.12 1/12

Smallest gradients 0 0.5 1/17 0.099 46.62 1/35 0.07 74.54 1/12
Group lasso 0.418 41.92 0/17 0.001 47.1 0/35 0.124 71.3 0/12

IMP 0.464 39.14 0/17 0.013 45.24 0/35 0.104 67.56 0/12
EGP - 39.50 4/17 - 47.52 6/35 - 71.48 1/12

Layer folding - 37.86 4/17 - 25.88 12/35 - 50.54 1/12
NEPENTHE 0.129 39.56 5/17 0.002 47.92 12/35 0.126 72.58 1/12

PACS

Dense model 0.332 94.70 0/17 0.207 93.20 0/35 0.057 97.10 0/12
Smallest weights 0.122 16.20 1/17 0 18.5 1/35 0.078 96.1 2/12

Smallest gradients 0.115 16.20 1/17 0.063 16.2 1/35 0.069 95.7 2/12
Group lasso 0.831 81.2 0/17 0.176 95.10 0/35 0.063 96.3 0/12

IMP 0.280 90.80 0/17 0.170 95.40 0/35 0.101 93.90 0/12
EGP - 84.30 2/17 - 17.7 3/35 - 93.5 1/12

Layer folding - 82.90 3/17 - 79.70 1/35 - 87.70 2/12
NEPENTHE 0.030 90.10 3/17 0.080 92.20 1/35 0.335 95.10 2/12

VLCS

Dense model 0.382 80.89 0/17 0.258 81.83 0/35 0.070 86.58 0/12
Smallest weights 0.122 46.13 1/17 0 6.43 1/35 0.063 84.62 1/12

Smallest gradients 0.122 46.13 1/17 0.176 46.13 1/35 0.064 84.15 1/12
Group lasso 0.831 67.85 0/17 0.176 78.84 0/35 0.063 84.81 0/12

IMP 0.357 74.09 0/17 0.273 80.43 0/35 0.139 80.06 0/12
EGP - 74.28 2/12 - 45.85 2/35 - 82.95 1/12

Layer folding - 64.87 1/17 - 68.87 2/35 - 70.92 1/12
NEPENTHE 0.224 78.38 2/17 0.001 80.06 2/35 0.411 85.27 1/12

SVIRO

Dense model 0.336 99.93 0/17 0.187 99.95 0/35 0.060 99.95 0/12
Smallest weights 0.122 35.55 1/12 0.014 35.55 1/35 0.039 99.70 4/12

Smallest gradients 0.122 35.55 1/12 0.014 35.55 1/35 0.0154 99.55 4/12
Group lasso 0.803 99.77 0/12 0.795 99.93 0/35 0.014 99.79 0/35

IMP 0.308 99.95 0/17 0.146 99.95 0/35 0.260 99.75 0/12
EGP - 99.88 5/17 - 35.05 2/35 - 99.64 5/12

Layer folding - 99.46 8/17 - 99.83 2/35 - 99.66 5/12
NEPENTHE 0.001 99.61 8/17 0.020 99.98 2/35 0.162 99.75 5/12

often pruned first. This is because their nonlinear activations have minimal robustness, making them
suitable candidates for pruning. In contrast, methods that prune layers based on the lowest sum
of weights/gradients tend to remove layers near the input of the model first. These layers usually
have fewer parameters and, thus, a lower cumulative weight or gradient sum. As a result, they are
identified as less important by these pruning criteria. The visualization of layer removal by different
methods is presented in Fig. 14, Appendix D.1.

Here follows an extensive analysis of more datasets and architectures.

4.3 RESULTS

Image classification tasks. Table 2 shows the test performance (top-1), the lowest non-zero layer’s
entropy (Ĥmin) as well as the number of removed layers (Rem.) for all the considered image clas-
sification setups. Since Layer Folding is changing the architecture by hand, it is inconvenient to
calculate Ĥmin. Moreover, the entropy in EGP Liao et al. (2023) is calculated differently: the Ĥmin
for models obtained with EGP are hence omitted in the table to avoid confusion. It appears that
removing layers with the lowest sum weights/gradients is very effective with Swin-T. However, af-
ter removing one layer by applying these methods on ResNet-18 and MobileNet-V2, the models’

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Test performance (top-1), lowest non-zero layers’ entropy (Ĥmin) and the number of removed layers
(Rem.) for all the considered NLP setups.

Dataset Approach BERT RoBERTa
Ĥmin top-1 Rem. Ĥmin top-1 Rem.

QNLI
Dense model 0.173 90.48 0/12 0.190 92.18 0/12

IMP 0.307 85.87 0/12 0.263 89.04 0/12
NEPENTHE 0.251 88.69 4/12 0.001 87.41 2/12

RTE
Dense model 0.211 61.01 0/12 0.236 66.79 0/12

IMP 0.335 57.76 0/12 0.314 62.82 0/12
NEPENTHE 0.001 58.12 4/12 0.001 66.06 1/12

SST-2
Dense model 0.114 92.20 0/12 0.131 92.66 0/12

IMP 0.301 88.65 0/12 0.125 91.51 0/12
NEPENTHE 0.001 88.99 3/12 0.001 89.79 4/12

Table 4: Ablation study on ResNet-18 trained
on CIFAR-10. Each component contributes to
the effectiveness of NEPENTHE.

Entropy Don’t care Neurons top-1 Rem.state Selection
91.66 0/17
92.18 3/17
92.33 3/17
92.55 3/17

Table 5: MFLOPs, Inference time [ms], Memory usage
[MBs] and Energy consumption [mJ] of ResNet-18 on
CIFAR-10 on NVIDIA A4500.

Rem. MFLOPs Inference Mem.usage Energy top-1time [ms] [MBs] [mJ]
0/17 725.47 3.32 230 498.7 91.66
1/17 258.24 3.27 202 490.2 92.25
3/17 231.79 2.96 170 444.0 92.55
5/17 159.05 2.60 60 389.7 89.30

performances degrade to the level of random guesses. Since Hrank operates at the level of the neu-
ron, even though it can help models maintain a good (or even better) performance after pruning, no
layer can be removed with this method. Therefore, in order to save computational resources, we
only perform this method on CIFAR-10. Also, although minimizing the group lasso penalty has
little impact on the performance, its effectiveness in layer removal is not significant. The IMP ap-
proach, although not leading to significant performance degradation, does not support the removal
of any layers. Conversely, Layer Folding and EGP enable the removal of some layers but at the
expense of compromising generalizability. In contrast, NEPENTHE produces models with a sub-
stantial number of removable layers with little (or no) performance loss with respect to the dense
model’s performance. It is also noticeable that in most cases, compared to Layer Folding and EGP,
NEPENTHE yields better results, either better top-1 accuracy, more removable layers, or both.

NLP tasks. The results for all NLP setups are presented in Table 3. Similarly to what was observed
for image classification setups, we observe that while the IMP method does not significantly harm
performance, it does not support whole-layer removal, despite minimizing the layer’s entropy. In
contrast, NEPENTHE produces models with a significant number of removable layers while main-
taining a performance comparable to the dense models.

4.4 ABLATION STUDY

We will perform, in this section, several different studies: the first is a classical ablation, where we
analyze the contribution of each term employed within NEPENTHE, and the second where we will
test NEPENTHE with some of the most popular rectifiers. Finally, we showcase the energy-saving
and efficiency improvement imposed by NEPENTHE.

Table 4 provides an ablation study on the three key components identifiable within NEPENTHE: the
entropy-based weighted pruned parameter budget equation 8, the presence of the don’t care state in
the entropy formulation equation 2 and the filtering mechanism of non-zero entropy neurons equa-
tion 7. Every component contributes towards the effectiveness of NEPENTHE.

Table 6 shows the test performance of ResNet-18 on CIFAR-10, for different rectifiers. NEPENTHE
is not dependent on any particular rectifier and can be effective with any since our method removes
three layers without performance loss for all the tested activations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Different activation functions on
ResNet-18 trained on CIFAR-10.

Activation Method top-1 Rem.
Dense 91.66 0/17ReLU NEPENTHE 92.55 3/17

Dense 91.66 0/17SiLU NEPENTHE 92.77 3/17

Dense 91.25 0/17PReLU NEPENTHE 92.27 3/17

Dense 91.66 0/17LeakyReLU NEPENTHE 92.49 3/17

Dense 91.89 0/17GELU NEPENTHE 92.57 3/17

Table 7: Test performance (top-1) and the number of
removed layers (Rem.) for models trained on CIFAR-
10 dataset and pruned by the NEPENTHE-finetuning
method.

Model Approach top-1 Rem.
Dense model 91.66 0/17ResNet-18 NEPENTHE-finetuning 91.63 1/17

Dense model 91.54 0/12Swin-T NEPENTHE-finetuning 86.93 1/12

Dense model 93.68 0/35MobileNet-V2 NEPENTHE-finetuning 93.08 6/35

Finally, Table 5 showcases the potential savings in terms of FLOPS and inference time on an
NVIDIA A4500 GPU for a ResNet-18 trained on CIFAR-10 with NEPENTHE: the fewer layers
the network has, the shorter the inference time and the smaller the number of FLOPs.

4.5 LIMITATIONS AND FUTURE WORK

NEPENTHE is a successful approach to alleviate deep neural networks’ computational burden by
decreasing their depth. Nevertheless, this method also presents some limits.

Due to its iterative nature, NEPENTHE leads to longer training time: the more iterations, the higher
the training time. However, compared to Iterative Magnitude Pruning (IMP) we observe that our
entropy-based term introduces a negligible overhead (in Table 13, Appendix. D.3, a little bit more
than 1 minute per iteration). Including the entropy in the minimized objective function could be a
way to design a one-shot approach, which would be more efficient at training time. Nevertheless,
this approach is not directly suitable as it relies on a non-differentiable expression and is therefore
left as future work.

We acknowledge that our approach should extend to larger models such as large language models
to provide insights into its scalability and effectiveness in more complex scenarios. Due to time
and resource limitations, we focused our experiments on the tested models. To break the limitation
coming from the training cost, we consider replacing full retraining in each iteration with shorter
fine-tuning. We performed tests on different models on CIFAR-10 dataset, in which we employed a
short fine-tuning process that focused only on the final stage of training. We refer to this approach
as NEPENTHE-finetuning. As shown in Table 7, even though the ability of NEPENTHE-finetuning
to remove layers and preserve performance is not as remarkable as NEPENTHE. NEPENTHE-
finetuning is still functional. This result shows that our method has the potential to be extended
to larger language models, and our approach is scalable and effective in more complex situations.
Further exploration and refinement of this approach are left for future work.

5 CONCLUSION

In this work, we have presented NEPENTHE, an iterative unstructured approach towards layer re-
moval in rectifier-activated deep neural networks. Leveraging on some theoretical results showing
that unstructured pruning has the potential to reduce the neural network’s depth, an entropy-based
weighting mechanism has been designed to select parameters to prune from the network toward
depth reduction and attempt to preserve high performance in the considered tasks. Experiments
were conducted on popular architectures, including the Transformer-based Swin-T and architec-
tures for NLP like BERT and RoBERTa, showcasing the potential of NEPENTHE to reduce the
number of layers in the model concretely. This work has a practical impact even in computation
on parallel architectures such as GPUs or TPUs, as it inherently reduces the critical path forward
propagation undergoes.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

C. H. Ali Mehmeti-Göpel and J. Disselhoff. Nonlinear advantage: Trained networks might not be
as complex as you think. In ICML, 2023.

C. A. Barbano, E. Tartaglione, C. Berzovini, M. Calandri, and M. Grangetto. A two-step radiologist-
like approach for covid-19 computer-aided diagnosis from chest x-ray images. In ICIAP, 2022.

L. Bentivogli, P. Clark, I. Dagan, and D. Giampiccolo. The fifth pascal recognizing textual entail-
ment challenge. TAC, 2009.

D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag. What is the state of neural network
pruning? MLSys, 2020.

A. Bragagnolo, E. Tartaglione, A. Fiandrotti, and M. Grangetto. On the role of structured pruning
for neural network compression. In ICIP, 2021.

H. A. H. Chaudhry, R. Renzulli, D. Perlo, F. Santinelli, S. Tibaldi, C. Cristiano, M. Grosso, A. Fian-
drotti, M. Lucenteforte, and D. Cavagnino. Lung nodules segmentation with deephealth toolkit.
In ICIAP, 2022.

S. Chen and Q. Zhao. Shallowing deep networks: Layer-wise pruning based on feature representa-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.

C. C. Craig. On the frequency function of xy. The Annals of Mathematical Statistics, 1936.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical
image database. In CVPR, 2009.

A. B. Dror, N. Zehngut, A. Raviv, E. Artyomov, R. Vitek, and R. Jevnisek. Layer folding: Neural
network depth reduction using activation linearization. BMVC, 2022.

T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural networks. arXiv preprint
arXiv:1902.09574, 2019.

I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. In ICLR, 2020.

J. Guo, K. Han, H. Wu, Y. Tang, X. Chen, Y. Wang, and C. Xu. Cmt: Convolutional neural networks
meet vision transformers. In CVPR, 2022.

S. Han, J. Pool, J. Tran, and W. Dally. In NeurIPS, 2015.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.

Y. He and L. Xiao. Structured pruning for deep convolutional neural networks: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2023.

Z. He, Z. Xie, Q. Zhu, and Z. Qin. Sparse double descent: Where network pruning aggravates
overfitting. In ICML, 2022.

J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A. Patwary, Y. Yang,
and Y. Zhou. Deep learning scaling is predictable, empirically. arXiv preprint arXiv:1712.00409,
2017.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861, 2017.

C. Hur and S. Kang. Entropy-based pruning method for convolutional neural networks. The Journal
of Supercomputing, 2019.

J. D. M.-W. C. Kenton and L. K. Toutanova. Bert: Pre-training of deep bidirectional transformers
for language understanding. In NAACL-HLT, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images, 2009.

Y. Le and X. Yang. Tiny imagenet visual recognition challenge. CS 231N, 2015.

N. Lee, T. Ajanthan, and P. Torr. Snip: Single-shot network pruning based on connection sensitivity.
In ICLR, 2019.

Z. Liao, V. Quétu, V.-T. Nguyen, and E. Tartaglione. Can unstructured pruning reduce the depth in
deep neural networks? In ICCV, 2023.

M. Lin, R. Ji, Y. Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao. Hrank: Filter pruning using
high-rank feature map. In CVPR, 2020.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoy-
anov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019.

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical
vision transformer using shifted windows. In ICCV, 2021.

C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural networks through l0 regulariza-
tion. In ICLR, 2018.

J.-H. Luo and J. Wu. An entropy-based pruning method for cnn compression. arXiv preprint
arXiv:1706.05791, 2017.

P. L. Mazzeo, E. Frontoni, S. Sclaroff, and C. Distante. Image Analysis and Processing. ICIAP.
2022.

C. Min, A. Wang, Y. Chen, W. Xu, and X. Chen. 2pfpce: Two-phase filter pruning based on
conditional entropy. arXiv preprint arXiv:1809.02220, 2018.

T. Ochiai, S. Matsuda, H. Watanabe, and S. Katagiri. Automatic node selection for deep neural
networks using group lasso regularization. In ICASSP, 2017.

D. Peer, S. Stabinger, S. Engl, and A. Rodrı́guez-Sánchez. Greedy-layer pruning: Speeding up
transformer models for natural language processing. Pattern Recognition Letters, 2022.

V. Quétu and E. Tartaglione. Dsd2: Can we dodge sparse double descent and compress the neural
network worry-free? In AAAI, 2024.

A. Seijas-Macı́as and A. Oliveira. An approach to distribution of the product of two normal variables.
Discussiones Mathematicae Probability and Statistics, 2012.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive deep
models for semantic compositionality over a sentiment treebank. In EMNLP, 2013.

D. Sun, M. Wang, and A. Li. A multimodal deep neural network for human breast cancer prognosis
prediction by integrating multi-dimensional data. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2019.

E. Tartaglione, A. Bragagnolo, F. Odierna, A. Fiandrotti, and M. Grangetto. Serene: Sensitivity-
based regularization of neurons for structured sparsity in neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 2021.

E. Tartaglione, A. Bragagnolo, A. Fiandrotti, and M. Grangetto. Loss-based sensitivity regulariza-
tion: towards deep sparse neural networks. Neural Networks, 2022.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

A. Williams, N. Nangia, and S. R. Bowman. A broad-coverage challenge corpus for sentence un-
derstanding through inference. In NAACL, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Q. Xu, R. Zhang, Y. Zhang, Y. Wang, and Q. Tian. A fourier-based framework for domain general-
ization. In CVPR, 2021.

M. H. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. stat, 2017.

13

	Introduction
	Related Works
	NEPENTHE
	Entropy for Rectifier Activations
	A Layer Entropy-Aware Pruning Score
	Entropy-Based Iterative Pruning

	Experiments
	Experimental setup
	Trend of Layer's Entropy
	Results
	Ablation study
	Limitations and Future Work

	Conclusion

