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Abstract

Large language models (LMs) acquire substantial knowledge during pretraining
but often need adaptation to new contexts, tasks, or domains, typically achieved
through fine-tuning or prompting. However, fine-tuning incurs significant train-
ing costs, while prompting increases inference overhead. Inspired by fast weight
memory, we introduce GenerativeAdapter, an effective and efficient adapta-
tion method that encode test-time context into LM’s parameters with a single
forward pass. GenerativeAdapter augments a frozen pretrained LM with a
lightweight adapter generator, trained via self-supervised learning, to produce
parameter-efficient adapters. Notably, our generator is general-purpose, i.e., one
generator can adapt the corresponding base model for all langauge processing
scenarios. We apply GenerativeAdapter to two pretrained LMs (Mistral-7B and
Llama2-7B) and evaluate the adapted models across knowledge acquisition from
documents, learning from demonstrations, and personalization for users. Overall,
GenerativeAdapter provides a viable solution for adapting large LMs to evolv-
ing information and providing tailored user experience, while reducing training
and inference costs relative to traditional fine-tuning and prompting techniques.

1 Introduction

Adaptation is essential for language models (LMs) to acquire new world knowledge [16, 14, 26],
learn new tasks [27], and personalize to individual users [34]. The predominant adaptation methods
typically involve either prompting or fine-tuning [4]. As the scale of LMs continues to increase,
adapting them becomes increasingly difficult due to efficiency constraints during both training
and inference times [13, 5, 43, 1]. Thus, we are interested in exploring alternative approaches for
effectively and efficiently adapting pretrained LMs.

In this work, we present GenerativeAdapter, a novel method for training a neural network (adapter
generator) to generate adapters that contextualize pretrained LMs on-the-fly with temporary knowl-
edge from incoming contexts. Inspired by fast weights [2, 36, inter alia], our approach incorporates
a lightweight adapter generator on top of pretrained LM as the slow network to produce updated
parameters for the fast network (the adapted LM). As far as we know, we are the first to explore
this direction. Specifically, the pretrained base LM remains frozen while we train the LM-specific
adapter generator to generate layer-by-layer additive updates, similar to recent parameter-efficient
fine-tuning (PEFT) techniques [12, 13]. For each layer, a bilinear adapter generator network uses the
outer product of past context hidden states from the corresponding base LM layer to generate delta
weights. These generated delta weights are then added to the base LM weights to form an adapted
LM for future predictions. Similar to previous work on fast weights, our method achieves test-time
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Figure 1: Overview of GenerativeAdapter. Left: During test-time contextualization, the adapters
∆1, . . . ,∆t are generated sequentially for the stream of context chunks C1, . . . , Ct. At a given time step
t, the context chunk Ct is encoded by the base LM Θbase into hidden state vectors Ht. Then the generator
G produces a new adapter ∆t based on the collection of hidden state vectors H1, . . . ,Ht representing the
accumulated context. Right: During inference, we combine the latest adapter ∆t with the base LM Θbase to
generate responses for input prompts.

adaptation using only forward passes, allowing dynamic updates as new context arrives in sequential
chunks. We train the generator end-to-end in a self-supervised manner by compressing the context
into a generated adapter and then computing the next-token prediction loss on a target sequence
using the adapted LM. Once trained, our method can produce adapted LMs that effectively capture
knowledge from the context to solve multiple downstream tasks, thus improving the adaptability of
off-the-shelf pretrained LMs.

We evaluate our method on two scenarios where on-the-fly contextualizing pretrained LMs is cru-
cial: acquiring new factual knowledge and learning from demonstrations. These scenarios involve
diverse forms of context with varying lengths, including documents with background knowledge,
task-specific input-output examples and user-specific conversations. For knowledge acquisition,
GenerativeAdapter effectively memorizes factual knowledge from provided documents, with
minimal loss compared to full-context prompting at short context lengths. Notably, our method
excels in memorizing long-context documents, managing to handle context lengths up to 32K
on StreamingQA [24] and 8K on SQuAD [31] better than continual pretraining. On MetaICL,
GenerativeAdapter follows demonstrations effectively, achieving superior accuracy compared to
its base model’s in-context learning, underscoring the model’s ability to adapt to new tasks efficiently.
For cases with many queries from the same user on edge devices, the benefits of our method are more
evident, positioning our method as a viable tool for personalized LMs.

2 Method

We present GenerativeAdapter, an efficient and effective framework for directly generating
additive weight updates to contextualize the pretrained LM (a frozen base LM) at test time. Unlike
continual pretraining and supervised fine-tuning which update the pretrained LM via gradient descent,
our method achieves adaptation using one forward passes only.

Adaptation with Test-time Contextualization To contextualize a base model, Θbase, to a given
context C, our goal is to obtain an updated model, ΘC , that can respond to user instructions using
the information provided in the context C. The context can include different types of data, such as
documents, dialogues, or task-specific few-shot demonstrations. We specifically focus on test-time
contextualization, where context arrives incrementally as a stream of data, such as a continuous
flow of documents or dialogue sessions. We represent this streaming context up to time step t as
Σ(t) := (C1, . . . , Ct), where Ct is the context chunk arriving at time step t. In this online adaptation
scenario, the model must be efficiently adapted to each new context chunk as it becomes available.

Generative Adapter As shown in Figure 1, we propose GenerativeAdapter, a framework that
adapts the base model Θbase to new contexts through a single forward pass for each context chunk.
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Given test-time context Σ(t), the base model is adapted to ΘΣ(t) = Θbase + ∆t, where ∆t is a
context-dependent additive adapter. The adapted model ΘΣ(t) is then used for inference on inputs
relevant to Σ(t), such as summarizing or answering questions about a user’s past conversations. We
propose a learned adapter generator G to produce ∆ based on the streaming context Σ. The generator
converts context, encoded by the base LM, into the parameter matrices (e.g., key/query/value/output
layers of the multi-head attention and down/up projection layers of the feed-forward network).

A linear projection layer in the l-th Transformer block (l = 1, 2, . . . , L) is o = W(l)h, where
W(l) ∈ Rdout×din is the weight matrix, h ∈ Rdin is the input vector, and o ∈ Rdout is the output
vector. We omit the bias term for simplicity. For the adapted LM, W(l) = W

(l)
base +W

(l)
∆ , where

W
(l)
base and W

(l)
∆ are from the base model Θbase and the context-dependent adapter ∆, respectively.

The weights of ∆ are generated using the streaming context Σ encoded by Θbase, resulting in hidden
states h

(l)
1 ,h

(l)
2 , . . . ,h

(l)
M ∈ Rdh , packed in a matrix H(l) ∈ RM×dh . The weights W

(l)
∆ are then

generated as W(l)
∆ = G(l)(H(l−1)), where G(l)(·):R∗×dh → Rdout×din transforms any hidden state

sequence into a fixed-dimensional weight matrix. We omit the layer index l when unambiguous. To
avoid dependency on M , we use a bi-linear function:

W∆ = G(H) = (A1A2)H
⊤H(B1B2) = (A1A2)(

M∑
m=1

hm ⊗ hm)(B1B2), (1)

where ⊗ is the outer product, and A1 ∈ Rdout×dr , A2 ∈ Rdr×dh , B1 ∈ Rdh×dr , B2 ∈ Rdr×din are
learnable parameters, with dr ≪ din, dout, dh to limit the parameter count.

Learning to Update with Self-supervised Pretraining To preserve the language modeling ca-
pability of the adapted models ΘΣ(t) for t ∈ {1, 2, . . .}, we pretrain the weight generator G using
the next-token prediction loss of ΘΣ(t) in a self-supervised manner on web corpora. In other words,
the adapter generator is trained on top of the frozen base model Θbase in an end-to-end fashion.
Specifically, we use two self-supervision pretraining tasks: reconstruction and completion.

The reconstruction task [9, 30] draws inspiration from autoencoders and aims to train the weight
generator G to embed contextual information into the generated weights. This process compresses
the input context (x1, . . . , xm) into a generated adapter, G(x1:m), which is subsequently used to
reconstruct the input. Formally, this is accomplished by maximizing the log-likelihood of the
input tokens with the adapted LM, using weights updated from the same text: Lreconstruction(G) =
logP (x1, . . . , xm | Θbase + G(x1:m)). The completion task [44, 19] trains the adapted LM to
generate the continuation of the given context. The goal is to maximize the log-likelihood of
tokens xm+1, . . . , xn, which represent the continuation of the context x1, . . . , xm in the dataset:
Lcompletion(G) = logP (xm+1, . . . , xn | Θbase + G(x1:m)). We observe using both of the task
can make the generated adapter memorize and utilize the contextual information. Similar to prior
work [9], the generator is trained to maximize the sum of the objective functions of the two task:
maxG Lreconstruction(G) + Lcompletion(G).

Dynamic Streaming Updating In practice, the context can arrive in chunks sequentially. The
matrix of hidden states Ht at step t is computed based on all previous context chunks Σ(t− 1). This
hidden state is then used to generate an adapter for the current chunk Σ(t), which, in turn, is also used
to compute the hidden states for future context steps. Based on Equation 1, to compute the adapter of
Σ(t) we need to concatenate all hidden states (i.e., [H1; . . . ;Ht] ∈ R(M1+···+Mt)×dh ) of the context
chunks in Σ(t) to generate the adapter, i.e., W∆t = G([H1; . . . ;Ht]). Fortunately, our formulation
allows an efficient updating mechanism without explicitly storing history hidden states, noting that

W∆t = (A1A2)([H1; . . . ;Ht]
⊤[H1; . . . ;Ht])(B1B2) = (A1A2)

(
t∑

i=1

H⊤
i Hi

)
(B1B2). (2)

Thus, the update can be efficiently computed. See Appendix for details.

SVD Normalization In preliminary experiments, we find that using the naive outer product for
generating weights led to instability during training, causing convergence issues. When multiplying
the generated matrix with the input vector, the resulting output can either diminish to near-zero or
grow excessively large.
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To address this instability, we introduce normalization into the formulation, W∆t =

A1 norm
(
A2

(∑t
i=1 H

⊤
i Hi

)
B1

)
B2.

Our pilot experiments find that normalization based on singular value decomposition (SVD) is
particular effective, among other normalization strategies. The SVD normalization technique en-
sures the singular values of the outer product are normalized to 1. Given a matrix M, we define
SVD normalization as: norm(M) = UV⊤, where M = UΣV⊤ is the SVD factorization. This
normalization resets the positive singular values of the matrix to one, preventing the vectors from
excessively shrinking or exploding.

An additional benefit of SVD normalization is that it can naturally produce low-rank matrices. Instead
of performing a full-rank decomposition, we approximate the input matrix with a rank-r SVD
decomposition, where r is a hyperparameter set in advance. Consequently, the matrix can be written
as the product of two low-rank matrices, similar to a LoRA adapter [13]: W∆t

= A1 norm(St)B2 =
(A1U(H))(V ⊤(H)B2), where U(H) and V (H) are the matrices resulting from SVD normalization.
This low-rank approximation reduces both computational cost and memory usage.

3 Experiments

We experiment with using both Mistral-7B-Instruct (v0.2) [15] and Llama2-7B-Chat [40] as the base
LMs. We pretrain the model on 1B tokens from SlimPajama [38] and instruction fine-tune on a mixture
of tasks including question answering, summarization, etc. We evaluate GenerativeAdapter on
two representative scenarios: acquiring new factual knowledge from documents and learning from
demonstrations. We show more details about training and results on personalization and ablation
study in Appendix.

Document-based Question Answering with Varying Context Length. We evaluate the fact
memorization ability of the adapted model on two question answering (QA) datasets, SQuAD [31]
and StreamingQA [24]. We split the passages into groups with each group having an average length
of k tokens (k ∈ {512, 1K, 2K, 4K, 8K, 16K, 32K}). The base model is adapted on each group, and
the adapted model is evaluate on questions associated with the group. F1 score between the output
and gold answer is used as the metric for evaluation [31].

For baseline, we consider both full parameter fine-tuning and full context prompting using the same
base model. We use both full parameter fine-tuning and full context prompting on the same base
model as baselines. For fine-tuning, we consider two variants: supervised fine-tuning (SFT) trains the
model on a training set of question-answer pairs from articles distinct from the test set. Continual
pretraining (CPT) first trains on all documents in the test set, followed by SFT on the training set.
Inference is conducted in a closed-book manner, i.e., the model directly generates answers. For
prompting, if the context exceeds Llama2-7B-Chat’s 4K token limit, we truncate to the last 4K tokens.

We present QA accuracy results for SQuAD and StreamingQA and the computation costs for
StreamingQA in Figure 2 and Figure 4, respectively. Fine-tuning methods (SFT and CPT) show
constant QA performance in a closed-book setting, while GenerativeAdapter and prompting are
evaluated with varying context lengths, where recalling facts becomes harder with longer contexts.
GenerativeAdapter achieves improved QA accuracy, particularly with short contexts (< 1K
tokens), and avoids the additional inference cost of prompting, which grows with context length due
to attention (shown by green lines in Figure 4). GenerativeAdapter outperforms CPT for contexts
below 8K tokens and requires significantly less preprocessing time (Figure 4).

In-Context Learning with varying in-context examples We evaluate the in-context learning
ability of GenerativeAdapter on MetaICL [27], consisting of 26 test tasks. None of these test
tasks were seen during the training of adapter generator. For each task, we use 1, 2, 4, 8, and 16
demonstrations randomly sampled from the corresponding dev split following the MetaICL evaluate
pipeline. GenerativeAdapter encode the concatenation of the demonstrations into a generator.

We compare three baselines: 1) zero-shot prompting with the base LM using only task instructions; 2)
few-shot prompting with the base LM [27], where each test case is prepended with a few-shot example;
and 3) fine-tuning the base LM on each evaluation task using 16 input-output pairs, equivalent to the
maximum number of shots in our evaluation.
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(a) Mistral-7B-Instruct
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Figure 2: Document QA Performance on SQuAD and StreamingQA across varying context lengths.
For each point, the QA accuracy (F1 score) is calculated based on the same set of test questions.
Both fine-tuning methods (supervised fine-tuning and continuous pretraining) are evaluated in a
closed-book manner with constant QA performance across varying context lengths.
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Figure 3: Accuracy plots on MetaICL with varying K-shot in-context examples. Both fine-tuned and
zero-shot prompting baselines are instructed to complete the task without any in-context examples.

Figure 3 summarizes MetaICL results for classification and non-classification tasks with varying
numbers of in-context examples. Fine-tuned models (blue) and zero-shot baselines (grey) perform
consistently across shots without examples. Fine-tuning yields higher accuracy in classification but
struggles with non-classification, suggesting 16 shots are insufficient for learning the output style.
GenerativeAdapter consistently outperforms few-shot prompting, particularly on challenging
non-classification , indicating our method enhances the base model’s in-context learning.

4 Conclusion

In this work, we introduce GenerativeAdapter, a method for efficiently adapting pretrained LMs
on-the-fly using test-time context through forward passes only. We design a bilinear adapter generator
network on top of frozen pretrained LMs, transforming text contexts into updated model parameters.
Our adapter generator network is trained end-to-end with the frozen pretrained LM using two self-
supervised tasks on web corpora. We assess GenerativeAdapter across three scenarios that benefit
from contextualizing pretrained LMs: acquiring new factual knowledge, learning from demonstrations,
and personalizing to individual users. Our experiments indicate that GenerativeAdapter reduces
information loss compared to full-context prompting in retaining factual knowledge from context
documents. Additionally, the model effectively adapts to new task instructions when learning
from demonstrations. Finally, GenerativeAdapter achieves comparable fact recall performance
to efficient prompting methods while utilizing lower inference-time computation, showcasing its
feasibility for user-specific adaptation in personalization scenarios. For future work, it would be
interesting to further explore scaling up the adapter generator, such as by integrating adapters into
additional layers, and to investigate more selective update rules [35].

5



References
[1] Z. Allen-Zhu and Y. Li. Physics of language models: Part 3.1, knowledge storage and extraction,

2024.

[2] J. Ba, G. E. Hinton, V. Mnih, J. Z. Leibo, and C. Ionescu. Using fast weights to attend to the
recent past. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[3] P. Bajaj, D. Campos, N. Craswell, L. Deng, J. Gao, X. Liu, R. Majumder, A. McNamara,
B. Mitra, T. Nguyen, M. Rosenberg, X. Song, A. Stoica, S. Tiwary, and T. Wang. Ms marco: A
human generated machine reading comprehension dataset, 2018.

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child,
A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray,
B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Lan-
guage models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,
and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
1877–1901. Curran Associates, Inc., 2020.

[5] A. Chevalier, A. Wettig, A. Ajith, and D. Chen. Adapting language models to compress contexts.
In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, pages 3829–3846, Singapore, Dec. 2023. Association
for Computational Linguistics.

[6] K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Q. Davis, A. Mohiuddin, L. Kaiser, D. B. Belanger, L. J. Colwell, and A. Weller. Rethinking
attention with performers. In International Conference on Learning Representations, 2021.

[7] K. Clark, K. Guu, M.-W. Chang, P. Pasupat, G. Hinton, and M. Norouzi. Meta-learning fast
weight language models. In Y. Goldberg, Z. Kozareva, and Y. Zhang, editors, Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pages 9751–9757,
Abu Dhabi, United Arab Emirates, Dec. 2022. Association for Computational Linguistics.

[8] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner. DROP: A reading com-
prehension benchmark requiring discrete reasoning over paragraphs. In J. Burstein, C. Doran,
and T. Solorio, editors, Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 2368–2378, Minneapolis, Minnesota, June 2019. Association
for Computational Linguistics.

[9] T. Ge, H. Jing, L. Wang, X. Wang, S.-Q. Chen, and F. Wei. In-context autoencoder for context
compression in a large language model. In The Twelfth International Conference on Learning
Representations, 2024.

[10] Z. Han, C. Gao, J. Liu, J. Zhang, and S. Q. Zhang. Parameter-efficient fine-tuning for large
models: A comprehensive survey, 2024.

[11] G. E. Hinton and D. C. Plaut. Using fast weights to deblur old memories. In Proceedings of the
ninth annual conference of the Cognitive Science Society, pages 177–186, 1987.

[12] N. Houlsby, A. Giurgiu, S. Jastrzebski, B. Morrone, Q. de Laroussilhe, A. Gesmundo, M. At-
tariyan, and S. Gelly. Parameter-efficient transfer learning for nlp. In Proceedings of the 36th
International Conference on Machine Learning, 2019.

[13] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022.

[14] N. Hu, E. Mitchell, C. Manning, and C. Finn. Meta-learning online adaptation of language
models. In H. Bouamor, J. Pino, and K. Bali, editors, Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pages 4418–4432, Singapore, Dec. 2023.
Association for Computational Linguistics.

6



[15] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. de las Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7b, 2023.

[16] Z. Jiang, Z. Sun, W. Shi, P. Rodriguez, C. Zhou, G. Neubig, X. Lin, W.-t. Yih, and S. Iyer.
Instruction-tuned language models are better knowledge learners. In L.-W. Ku, A. Martins,
and V. Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 5421–5434, Bangkok, Thailand,
Aug. 2024. Association for Computational Linguistics.

[17] Q. Jin, B. Dhingra, Z. Liu, W. Cohen, and X. Lu. PubMedQA: A dataset for biomedical research
question answering. In K. Inui, J. Jiang, V. Ng, and X. Wan, editors, Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2567–2577, Hong
Kong, China, Nov. 2019. Association for Computational Linguistics.

[18] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are RNNs: Fast autoregres-
sive Transformers with linear attention. In Proceedings of the 37th International Conference on
Machine Learning, 2020.

[19] J.-H. Kim, J. Yeom, S. Yun, and H. O. Song. Compressed context memory for online language
model interaction. In The Twelfth International Conference on Learning Representations, 2024.
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A Method Details

A.1 Dynamic Streaming Update

In practice, the context can arrive in chunks sequentially. The matrix of hidden states Ht at step t is
computed based on all previous context chunks Σ(t− 1). This hidden state is then used to generate
an adapter for the current chunk Σ(t), which, in turn, is also used to compute the hidden states for
future context steps. Based on Equation 1, to compute the adapter of Σ(t) we need to concatenate
all hidden states (i.e., [H1; . . . ;Ht] ∈ R(M1+···+Mt)×dh) of the context chunks in Σ(t) to generate
the adapter, i.e., W∆t

= G([H1; . . . ;Ht]). Fortunately, our formulation allows an efficient updating
mechanism without explicitly storing history hidden states, noting that

W∆t = (A1A2)([H1; . . . ;Ht]
⊤[H1; . . . ;Ht])(B1B2) = (A1A2)(

t∑
i=1

H⊤
i Hi)(B1B2). (3)

Thus, the update can be efficiently computed as

St ← St−1 +A2H
⊤
t HtB1 (4)

W∆t
← A1StB2 (5)

where Ht ∈ RMt×dh stores the hidden states for the t-th context chunk, and the partial sum
St ∈ Rdr×dr acts as the memory of history context chunks with S0 initialized as all zeros. Note
directly storing W∆t ∈ Rdout×din or

∑
i H

⊤
i Hi ∈ Rdh×dh would require much more memory

because we control dr ≪ min{din, dout, dh}.
Our preliminary experiments find that this architecture exhibits some empirical instability because
the generated matrix W∆t

can transform an input vector x into a vector containing values with either
extremely large or near-zero magnitudes, due to its skewed distribution of its singular values. In §A.2,
we will explain how normalization can address the instability issue.

A.2 Normalization for Generated Weights

In preliminary experiments, we find that using the naive outer product for generating weights led to
instability during training, causing convergence issues. When multiplying the generated matrix with
the input vector, the resulting output can either diminish to near-zero or grow excessively large.

To address this instability, we introduce normalization into the formulation, i.e.,

W∆t
← A1 norm(St)B2 = A1 norm

(
A2

t∑
i=1

(
H⊤

i Hi

)
B1

)
B2. (6)

Our pilot experiments find that normalization based on singular value decomposition (SVD) is
particular effective, among other normalization strategies.

SVD Normalization The SVD normalization technique ensures the singular values of the outer
product are normalized to 1. Given a matrix M, we define SVD normalization as:

norm(M) = UV⊤, (7)

where M = UΣV⊤ is the SVD factorization. This normalization resets the positive singular values
of the matrix to one, preventing the vectors from excessively shrinking or exploding.

Low-Rank SVD and LoRA An additional benefit of SVD normalization is that it can naturally
produce low-rank matrices. Instead of performing a full-rank decomposition, we approximate
the input matrix with a rank-r SVD decomposition, where r is a hyperparameter set in advance.
Consequently, the matrix can be written as the product of two low-rank matrices, similar to a LoRA
adapter [13]:

W∆t = A1 norm(St)B2 (8)

= (A1U(H))(V ⊤(H)B2), (9)

where U(H) and V (H) are the matrices resulting from SVD normalization. This low-rank approxi-
mation reduces both computational cost and memory usage.
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B Dataset Details

Pretraining. We pretrain our models using a randomly sampled subset of 1B tokens from the
SlimPajama corpus. For validation, we sample an additional 100 segments, each containing 2K
tokens, from the same corpus.

Instruction Tuning. We perform instruction tuning using a combination of question answering,
in-context learning, and instruction following datasets, following prior studies [23, 9, 44].

C Training Setup

We experiment with using both Mistral-7B-Instruct (v0.2) [15] and Llama2-7B-Chat [40] as the base
LMs. For efficiency, our main experiments train adapter generators to only update the output projec-
tion layers of the multi-head attention unit in Transformer. We study a more capable implementation
in §F and defer the full exploration of other modules for future work.

Hyperparameters For efficiency, our main experiments train adapter generators to only update the
output projection layers of the multi-head attention unit in Transformer. The intermediate dimension
dr and SVD rank r are set to 1,024 and 128, respectively. Approximately, this leads to 500 million
parameters for the generator, with the generated adapter of 32 million parameters.

Pipeline Following the standard training pipeline of LM development [15, 40], the training of our
adapter generator includes a pretraining phase described in §2 followed by instruction tuning. For
pretraining, we randomly sample 1 billion tokens from SlimPajama [38] which are split into segments
of 8,192 tokens each. For instruction tuning, we use a mix of tasks such as question answering,
in-context learning, and general instruction following, which we ensure that there is no overlap with
downstream tasks, with a detailed list provided in the appendix. The context is divided into chunks of
1,024 tokens to utilize the dynamic updating mechanism described in §2.

Implementation We empirically found that normalization is crucial for GenerativeAdapter to
function effectively. For SVD normalization, we implemented it using torch.svd_lowrank(),
setting the number of iterations to 1.

GenerativeAdapter is able to generate the adaptors for prefixes of chunks simultaneously by
processing the context chunks in parallel. The computation proceeds by processing the hidden
states of each Transformer block for all context chunks layer by layer. Given the hidden states of
Σ(1), . . . ,Σ(t) from the (l − 1)-th Transformer block, denoted by H

(l−1)
1:t , we first compute the

accumulated outer product S(l)
1:t using Equation 3. We then normalize this outer product to obtain

the additive matrix W
(l)
∆,1:t using Equation 6, and finally get the output of the l-th Transformer block

H
(l)
1:t by the base model.

Pretraining. For Mistral-7B-Instruct (hereafter referred to as Mistral), we use a learning rate of
5× 10−5, and for Llama2-7B-Chat (Llama2), we use 1× 10−4. We apply a weight decay of 0.01
and no dropout. The adapter added to the base model are scaled by 1/16 for Mistral and 1/8 for
Llama2. We employ a WarmupDecayLR learning rate scheduler with a 100-step warmup and use the
Adam optimizer. The global batch size is set to 8. Pretraining the adapter generator on 1B tokens
takes approximately 20 hours using 8 NVIDIA H100 GPUs.

Instruction Tuning. For instruction tuning, we largely follow the same configurations as in pre-
training, with some adjustments. We set the learning rate to 5× 10−5 for both Mistral and Llama2
models. We train the models for 2 epochs and use a batch size of 32.
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D Experiment Details

D.1 Document-based Question Answering with Varying Context Length

The factual knowledge stored in the parameters of a LM remains static after pretraining. Here, we
consider the scenario where the model needs to adapt to new knowledge based on documents. After
adaptation, it is expected to correctly answer information-seeking questions about these documents.

Setup and Baselines To evaluate the fact recall ability of the adapted model, we use two question
answering (QA) datasets, SQuAD [31] and StreamingQA [24], where each test case consists of a
passage and a corresponding question about some information from that passage. To analyze the
impact of context length on performance, we conduct an evaluation using contexts of varying lengths.

We divide the documents in the corresponding test set evenly into groups, with each group having
an average length of k tokens (k ∈ {512, 1K, 2K, 4K, 8K, 16K, 32K}). Thus, the model should
contextualize on the article in each group and evaluate fact recall by the question associated with the
articles. The QA accuracy is evaluated by comparing the generated output with the gold answer for
all questions associated with the documents within the group. Following [31], F1 score is used as the
metric for evaluation.

We also analyze the computational and storage requirements of GenerativeAdapter, which com-
prises three phases: general-purpose pretraining, contextualization, and inference. The generator
is pretrained once and can subsequently be used for any task. During the contextualization phase,
GenerativeAdapter encodes the context into an adapter with a single forward pass. In the inference
phase, the adapted model generates responses based on the input. Beyond the LM parameters, the
extra storage required includes the parameters of the generative adapter.

Here, we consider both full parameter fine-tuning and full context prompting using the same base
model as baselines. For fine-tuning, we consider two variants. The first approach, supervised fine-
tuning (SFT), trains the base model exclusively on a training set of question-answer pairs sourced from
articles distinct from those in the test set. The second variant, known as continual pretraining (CPT),
involves first training the base model on all documents in the test set, followed by further adaptation
through SFT using the the training set of question-answer pairs. During inference, we evaluate the
fine-tuned model in a closed-book manner, i.e., the model is tasked with directly producing the answer
to a given question. For prompting, we simply concatenate all documents in the group as a single
context and prompt the base model to respond accordingly. Specifically, for Llama2-7B-Chat, if the
context length exceeds the maximum limit of 4K tokens, we truncate the prompt to include only the
last 4K tokens. For GenerativeAdapter, we create an adapted model for each document group,
which is similar to how the context is encoded as prompting. After that, the adapted model is asked
to answer the question again in a closed-book fashion, akin to fine-tuning.

We set up experiments for document-based question answering (QA) using both supervised fine-
tuning and continuous pretraining. For supervised fine-tuning on question-answer pairs, we train
on the training split of each dataset, evaluate on a validation set, and employ early stopping when
the validation loss increases. We use a learning rate of 1× 10−5 and a global batch size of 64. For
continuous pretraining, we train for 8 epochs using the log-likelihood of the document as the training
loss, with learning rates of 1× 10−5 for Mistral and 3× 10−5 for Llama2. Each passage is treated as
a training sample, and we use a global batch size of 16.

For closed-book prompting and in-context prompting, we apply an instruction template to encourage
the model to generate a short answer. The prompts are shown in Figure 7.

D.2 In-Context Learning with varying in-context examples

In the prompting paradigm, one emerging ability of pretrained LMs is that they can perform a task
with a few task-specific input-output examples as context on unseen cases, also known as in-context
learning [4]. Here, we are interested to see whether GenerativeAdapter can provide further
benefits in enhancing the base LM’s in-context learning ability.

We conduct experiments using MetaICL [27], consisting of 26 test tasks. We also ensure that none of
these test tasks were seen during the training of adapter generator. For each task, we use 1, 2, 4, 8,
and 16 demonstrations randomly sampled from the corresponding development split following the
MetaICL evaluate pipeline. To reduce evaluation variance, we repeat the sampling process five times
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Figure 4: Computation and storage requirements for GenerativeAdapter and baseline methods on
StreamingQA. For GenerativeAdapter, the context is converted into an adaptor during contextual-
ization and then stored for inference. For the prompting method, the key-value (KV) cache can be
generated during contextualization and reused during inference.

for each few-shot setting. We report separate average accuracy for classification and non-classification
tasks. For classification tasks, achieving high accuracy requires the model to learn both the candidate
options and the input-output relationships from the provided examples. For non-classification tasks,
the model also needs to learn the output style.

We explore in-context learning using both fine-tuning and prompting methods. For fine-tuning, we
conduct task-specific fine-tuning on 16 samples for each dataset. We use a learning rate of 5× 10−6

for Mistral and 1× 10−5 for Llama2. A validation set of 16 samples, disjoint from the training set, is
collected from the same dataset. We train the model for a maximum of 40 epochs, employing early
stopping if the validation loss increases for three consecutive epochs.

For in-context prompting, we observe that omitting additional instructions yields better performance
for Mistral, whereas adding an instruction template improves performance for Llama2. The prompts
are shown Figure 7.

E Additional Results: Personalization

Using LMs to analyze users’ behaviours and memorize their preferences is the key to unlocking
a tailored and engaging user experience, i.e., personalized LMs. Towards this goal, we focus on
evaluating the LM’s ability to memorize user information in conversations.

Setup and Baselines We use the Multi-Session Conversation (MSC) dataset [42] for our experiments,
following [28]. Each test case comprises a multi-session human-human conversation between two
participants, along with a question regarding information mentioned within the conversation. The
average length of the conversational context is 2.5K tokens, which makes it inefficient to prompt the
model repeatedly with the entire conversation history for the same user. Similar to document-based
QA (§D.1), we evaluate the model quality using the F1 score by comparing the generated answers to
the ground truth. We also report computation and memory costs. Here, we use Mistral-7B-Instruct as
the base LM.

As baselines, we include both closed-book and full-conversation prompting based on the base LM,
where the former involves random guesses and the latter incurs higher computation and memory
costs by storing the entire long conversation. We also include the state-of-the-art prompt compression
method, UltraGist [44], which reduces the context into fewer token embeddings, thereby saving
computation and memory costs.

Results The results on MSC are summarized in Table 1. As expected, the closed-book approach,
which does not memorize any user information performs very poorly. In contrast, methods that utilize
proper user conversations as context can accurately recall user information, achieving reasonable
answer accuracy. Although using the entire conversation leads to better accuracy, full conversation
prompting incurs significant computation and storage costs, i.e., 4x those of GenerativeAdapter.
Such costs are highly undesirable for personalizing LMs for individual users, especially since most
computations occur on edge devices without power GPUs. Comparing to UltraGist at the same level
of storage cost (compressed into 512 tokens), GenerativeAdapter further reduces inference cost
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Table 1: Performance comparison on MSC. A higher F1 indicates better performance, and lower
inference computation and extra storage costs are preferable. For Ultragist [44], fewer compressed
tokens (noted in parentheses) correspond to lower computation and memory costs.

Model F1
Inference

Computation
(TFLOPS)

Extra
Storage

(M floats)

Closed-book 8.1 0.505 0
Full-conversation Prompting 66.0 2.059 128+

Ultragist (64 Tokens) 26.5 0.514 4
Ultragist (128 Tokens) 32.2 0.552 8
Ultragist (256 Tokens) 38.3 0.627 16
Ultragist (512 Tokens) 40.8 0.772 32
Ultragist (1K Tokens) 44.4 1.067 64
Ultragist (2K Tokens) 42.4 1.658 128

Generative Adapter 40.2 0.505 32

without performance drop. In real world scenarios with many queries from the same user, the benefits
of our method are even more pronounced.

F Additional Results: Ablation Study

Here, we examine how different design choices with GenerativeAdapter affect model perfor-
mance. Specifically, we train adapter generators for Mistral-7B-Instruct under various configurations
and evaluate them using two metrics—reconstruction perplexity and completion perplexity—on a
validation set drawn from the same distribution as the pretraining corpus. As we observe in our
preliminary study, the quality of the resulting adapter generator is highly correlated with these metrics.
The results are presented in Table 2, where the default setting is described in §2.

Mix of both pretraining tasks is necessary. As we can see, relying solely on one task does
not yield good perplexity on the validation set for both metrics. In particular, training with only
reconstruction task results in a significant drop in completion perplexity, indicating a loss of general
language modeling capabilities and overfitting to memorization. Thus, the completion task acts as
data regularization for GenerativeAdapter, enabling the model to distill contexts into generated
adapters and effectively utilize them in future predictions.

SVD is a more effective normalization. We explore an alternative normalization for Equation 6 using
the Frobenius norm, defined as norm(M) = M/∥M∥F , where ∥M∥F =

√∑
i,j M

2
ij . Compared to

SVD used in our default setting, the Frobenius norm is computationally simple and helps bound the
matrix scale. However, our results indicate that the Frobenius norm is not as effective. Observing
substantial disparities in the scale of singular values, we hypothesize that applying the Frobenius
norm may unnecessarily shrink certain directions, reducing the model’s expressiveness.

More update parameters lead to better performance. By default, we add the adapter into the
output projection layer of the attention module. We also experiment with adding the adapter to the
down projection layer within the feedforward module, which introduces more update parameters
(3x those of default). We observe that placing the adapter on the feedforward layer indeed leads to
slightly improved reconstruction and completion perplexities. Due to computational constraints, a
more thorough exploration was not feasible and we leave this for future investigation.

G Related Works

Fast Weights: Our proposed method is closely related to the idea of “fast weights” [11, 2, 35],
which makes the model weights being adaptive to the model input. Context-dependent fast weight
programmers (FWPs) introduced by (author?) [36, 37] use a slow network with slow weights to
reprogram the fast weights of the corresponding fast network. [35] point out that self-attention
without softmax and other linear Transformer variants [41, 18, 6, 29] can be viewed as FWPs.

[7] propose fast weight layers which are added on top of the Transformer model after the last attention
layer for language modeling. Different from previous work mainly focusing on specific tasks, our goal
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Table 2: The validation set perplexity of the pretrained model under different design choices.

Factor Setting Reconstruction
Perplexity

Completion
Perplexity

- Default 1.75 7.40

Pretraining
Task

Reconstruction 1.75 34.34
Completion 6.38 6.71

Normalization Frobenius 7.72 7.32

Module Feedforward 1.68 7.26

Table 3: Statistics of data used in the instruction tuning.

Type Dataset #Docs #Instructions Context len Instruction len Response len

Question Answering

COQA [32] 1798 57.2 1083.5 5.5 2.7
DROP [8] 1379 38.4 848.6 11.0 1.4

NarrativeQA [20] 1047 29.4 574.5 8.5 4.4
PubMedQA [17] 1000 1.0 200.2 12.9 40.7

Quail [33] 560 16.2 332.7 8.7 4.9
MS MARCO [3] 4832 16.5 1152.1 6.0 14.0

In-context Learning MetaICL [27] 11888 3.5 1776.8 84.3 2.9

Instruction Following BookSum [21] 2914 1.0 1158.6 7.0 205.3
PwC [9] 13102 12.4 348.1 10.3 23.3

is to enhance frozen pretrained LMs with fast associative memory for general language processing.
Instead of using a slow network to program a separate fast model, our method can be viewed as a
self-programming model, i.e., context encoded by the base LM is used to update the base LM itself.

Adapting LMs via Meta-Learning: One line of work focuses on adapting pre-trained LMs for
an online stream of documents using meta-learning. Observing that naively fine-tuning on the
documents using the negative log-likelihood loss is not effective for downstream question answering,
[14] propose context-aware meta-learned loss scaling to re-weight the loss for individual tokens based
on their importance during the online fine-tuning. [39] use a meta-learned amortization network to
directly predict parameter efficient fine-tuning modulations of the base LM for individual context
documents. The modulations are then aggregated into a single output for downstream question
answering. Unlike those methods that typically require a nested training loop, our adapter generator
augments pretrained LMs and our model can be trained in an end-to-end fashion with self-supervised
objectives.

Parameter-Efficient Fine-Tuning (PEFT): GenerativeAdapter employs a low-rank adapter akin
to LoRA [13], which was originally designed for PEFT. Several derivatives of LoRA exist such as
AdaLoRA [45] and DoRA [25], along with various other PEFT strategies such as serial adapters [12]
and prefix tuning [22]. A thorough survey of PEFT methods is presented by [10]. Most work focuses
on task-specific fine-tuning scenarios. Instead, GenerativeAdapter is a general LM and does not
require a downstream dataset for adaptation.

Table 4: Training and test datasets of MetaICL.
Train piqa, hate_speech_offensive, google_wellformed_query, social_i_qa, circa, quoref,

glue-sst2, scitail, emo, cosmos_qa, freebase_qa, ag_news, art, paws, kilt_ay2, glue-qnli,
quail, ade_corpus_v2-classification, sciq, hatexplain, emotion, glue-qqp, kilt_fever,
kilt_nq, dbpedia_14, kilt_zsre, hellaswag, squadwith_context, hotpot_qa, glue-mnli,
ropes, squad-no_context, kilt_hotpotqa, discovery, superglue-record, race-middle,

race-high, lama-trex, swag, gigaword, amazon_polarity, biomrc, tab_fact,
tweet_eval-emoji, tweet_eval-offensive, tweet_eval-sentiment, tweet_qa, imdb,

lama-conceptnet, liar, anli, wiki_qa, kilt_trex, wikisql, wino_grande, wiqa, search_qa,
xsum, yahoo_answers_topics, yelp_polarity, yelp_review_full

Test quarel, financial_phrasebank, openbookqa, codah, qasc, glue-mrpc, dream, sick,
commonsense_qa, medical_questions_pairs, quartz-with_knowledge, poem_sentiment,

quartz-no_knowledge, glue-wnli, climate_fever, ethos-national_origin, ethos-race,
ethos-religion, ai2_arc, hate_speech18, glue-rte, supergluecb, superglue-copa,

tweet_eval-hate, tweet_eval-stance_atheism, tweet_eval-stance_feminist
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Figure 5: In-context learning evaluation of GenerativeAdapter, based on Llama2-7B-Chat, across
26 test datasets from MetaICL.
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Figure 6: In-context learning evaluation of GenerativeAdapter, based on Mistral-7B-Instruct,
across 26 test datasets from MetaICL.
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F1
Model Dataset Methods 512 1K 2K 4K 8K 16K 32K

Zero-Shot Prompting 10.8

Supervised Fine-tuning 20.7

Continuous Pretraining 30.0

In-context Prompting 45.4 44.9 43.6 42.6 42.5 38.6 35.1SQuAD

GenerativeAdapter 48.8 43.0 39.9 35.9 33.8 30.3 28.0

Zero-Shot Prompting 13.6

Supervised Fine-tuning 19.5

Continuous Pretraining 22.2

In-context Prompting 47.2 48.7 48.1 48.7 48.0 46.0 39.3

Mistral

StreamingQA

GenerativeAdapter 51.5 49.3 44.7 40.9 36.7 32.7 32.0

Zero-Shot Prompting 14.6

Supervised Fine-tuning 20.7

Continuous Pretraining 23.9

In-context Prompting 64.8 60.6 55.4 44.9 25.2 9.6 6.4SQuAD

GenerativeAdapter 36.2 32.5 31.0 28.9 28.2 24.9 23.6

Zero-Shot Prompting 18.0

Supervised Fine-tuning 18.9

Continuous Pretraining 20.5

In-context Prompting 61.2 61.3 58.0 46.8 27.8 17.5 11.6

LLama2

StreamingQA

GenerativeAdapter 42.9 37.8 34.4 32.6 28.7 26.0 25.7

Table 5: All results of the QA accuracy on SQuAD and StreamingQA.

Prompting for Document-based Question Answering

{Context}

## Instruction: Answer the question based on the context above. Respond with a short phrase only.
Keep the answer short and concise, without any explanation or additional words

Question: {Question}
Answer:

Prompting for MetaICL

Input: {demo input}
Output: {demo output}
{ . . . k-shot demonstrations . . . }

## Instruction: Based on the demonstration above, provide a short and concise answer, with-
out any explanation or additional words.

Input: {input}
Output:

Figure 7: Prompts used in the document-based QA and in-context learning evaluation.
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