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ABSTRACT

The domain generalization (DG) setup considers the problem where models are
trained on data sampled from multiple domains and evaluated on test domains
unseen during training. In this paper, we formulate DG as a sample selection
problem where each domain is sampled from a common underlying population
through non-random sampling probabilities that correlate with both the features
and the outcome. Under this setting, the fundamental iid assumption of the em-
pirical risk minimization (ERM) is violated, so it often performs worse on test
domains whose non-random sampling probabilities differ from the domains in the
training dataset. We propose a Selection-Guided DG (SGDG) framework to learn
the selection probability of each domain and the joint distribution of the outcome
and domain selection variables. The proposed SGDG is domain generalizable as
it intends to minimize the risk under the population distribution. We theoretically
prove that, under certain regular conditions, SGDG can achieve smaller risk than
ERM. Furthermore, we present a class of parametric SGDG (HeckmanDG) es-
timators applicable to continuous, binary, and multinomial outcomes. We also
demonstrate its efficacy empirically through simulations and experiments on a set
of benchmark datasets comparing with other well-known DG methods.

1 INTRODUCTION

In statistical learning theory, the standard assumption behind many supervised learning algorithms
is that both training and test instances are independently and identically distributed (iid) according
to the same underlying data distribution (Vapnik, 1991). In other words, most statistical models
assume that the training and test data are both random samples chosen randomly from the same pop-
ulation. Unfortunately, this assumption is often violated in real-world applications rendering model
performance to deteriorate on out-of-distribution (OOD) test data (Koh et al., 2021). Recently, the
Domain Generalization (DG) problem (Blanchard et al., 2011) has gained particular attention, where
it is assumed that learning systems have access to training data sampled from multiple domains, and
the ultimate goal is to extrapolate to new instances sampled from previously unseen test domains.

In this paper, we consider DG as a non-random sample selection problem. Let PXY represent the
population data distribution, and Sk denote a binary random variable indicating whether a subject
is selected from the population into domain k. In a random sampling process, P (Sk

i = 1) is inde-
pendent and identically distributed (iid). Under a non-random sample selection, the distribution of
(X,Y ) in domain k is a conditional distribution of (X,Y ) given Sk = 1, which often does not equal
to PXY . Consequently, this leads to distributional shifts across domains: Pj

XY ̸= Pk
XY for k ̸= j.

Mathematically, distribution shifts across domains Pk
XY may contain shifts in distributions of X

(Pk
X , covariate shift (Bickel et al., 2009)), and in the distributions of Y conditional on X (Pk

Y |X ,
concept shift (Moreno-Torres et al., 2012)). We present a graphical model in Figure 1 to conceptu-
ally illustrate the sources of distribution shifts, assuming the existence of latent factors confounding
the relationship between X , Y , and domain (Sk). In Figure 1, C1 represents unobserved latent
factors that correlate with X and Sk, resulting in covariate shift. C2 correlates with X , Y , and S si-
multaneously, entailing both covariate and concept shifts. The goal of DG is to estimate the domain
generalizable (agnostic) edge f : X → Y in the presence of the two types of latent confounders.

∗This work was mostly done while the author was with NYU.
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Figure 1: A graphical model illustrating the source of dis-
tributional shifts. X: covariates, Y : outcome, Sk: domain. C1

represents latent factors that correlate with X and Sk, resulting
in covariate shift. C2 correlates with X , Y , and Sk, entailing
both covariate and concept shifts. Our goal is to estimate the do-
main generalizable (agnostic) edge f : X → Y in the presence
of the two types of latent confounders.

The vast majority of DG methods are developed to identify f that is robust to C1. However in
practice, C2 type of confounders often exist which make P (Sk = 1) related to both X and Y . For
example, when we train a model to predict tumor status (Y ) from histological images (X) using
patients from different hospitals (Sk), there may be variations in X due to inconsistent acquisition
processes such as staining differences (C1) across hospitals, and differences in patient characteristics
such as age, gender, race, and disease severity (C2) that correlate with hospital, covariates and the
outcome. As a result, a model trained in an oncology specialist hospital may not be generalizable
to a hospital serving veterans. Similarly, when we train a model to predict wealth index (Y ) from
satellite images (X) taken from different countries (Sk), there may be latent factors such as the
economic status (C2) correlating with X, Y and domains simultaneously. Therefore, a model trained
on one country may not perform well in another country with a different rural/urban proportion or
economic status (Koh et al., 2021).

In this paper, we propose a new class of Selection Guided Domain Generalization (SGDG) models
to first estimate the selection probability that an instance is sampled into a training domain, and then
use the joint distribution of the outcome Y and selection S to learn a domain generalizable model.
In particular, SGDG is built on Heckman’s bias correction framework (Heckman, 1979) which is a
very powerful tool to learn an unbiased model from non-randomly selected samples in the presence
of both C1 and C2 confounders. The unique contributions of this paper are summarized as follows:

• To the best of our knowledge, we are the first paper to formulate the DG problem using
a non-random sample selection framework, and to propose a Selection Guided Domain
Generalization (SGDG) method under this framework.

• We present a class of parametric SGDG (HeckmanDG) estimators applicable to continuous,
binary, and multinomial outcomes†.

• We demonstrate the efficacy of our method both theoretically and empirically on simulated
data and four challenging benchmarks.

2 RELATED WORK

Domain Generalization. DG has been studied under various contexts. Many studies are devoted to
learning domain-invariant features which are discriminative and independent of the domain, such as
kernel-based methods (Muandet et al., 2013), matching moments (Sun & Saenko, 2016), adversarial
learning (Ganin et al., 2016; Deng et al., 2020), entropy regularization (Zhao et al., 2020), and
contrastive learning (Motiian et al., 2017; Kim et al., 2021). Other works exploit invariant causal
effects across domains (Arjovsky et al., 2019; Ahuja et al., 2020; Rosenfeld et al., 2021). Another
family of robust optimization methods seek to minimize the worst-case error (Sagawa et al., 2020;
Xie et al., 2020; Krueger et al., 2021). More recently, other prominent directions of methods improve
DG by model averaging (Cha et al., 2021; Arpit et al., 2022), gradient matching (Shi et al., 2022),
meta learning (Li et al., 2018), data augmentation (Robey et al., 2021), and generating novel domains
(Zhou et al., 2020).

Sample Selection Bias Correction. Zadrozny (2004) formalized sample selection bias in machine
learning terms and presented a bias correction method when selection only depends on the input
features. Cortes et al. (2008) proposed a sample reweighting approach to tackle the same problem
but assumed the availability of additional data drawn from the true population. Du & Wu (2021)
proposed a framework for robust and fair learning under biased sample selection, but assumes con-
ditional independence of Y and S given X .

†code available: https://github.com/hgkahng/domain-generalization-lightning
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3 SELECTION MODEL-GUIDED DOMAIN GENERALIZATION

3.1 DOMAIN GENERALIZATION

Suppose there exists L distinct but relevant domains and let S = (S1, · · · , SL) ∼ PS denote a
binary random vector that indicates the domain membership where Sk = 1 implies belonging to
domain k. Let PXY represent the population data distribution, and each domain’s data distribution
be a conditional distribution of the population distribution given Sk = 1, i.e., Pk

XY = PXY |Sk=1.

Assumption 1 (Mutually Exclusive Domain Membership). We assume that if Sk = 1, then Sj = 0
for all j ̸= k so that an instance can belong to one and only one domain.
Assumption 2 (Independent Domain Sampling Processes). We assume that Sk ⊥⊥ Sj for all j ̸= k.

In the supervised domain generalization context, we are allowed to observe the joint distribution of
X and Y , Pk

XY for K out of L domains, and refer the K domains as source or training domains
observed during the training phase. The remaining L−K domains are referred to as target or testing
domains whom we may observe in the testing phase. Under this setting, we aim to learn a prediction
model that generally performs well on both source and target domains. We formalize the problem
as follows.
Definition 1 (Domain Generalization (Blanchard et al., 2011)). Domain generalization refers to as
the problem of learning f : X → Y that has the minimum expected loss across all possible domains,
which can be further summarized as the following optimization problem:

min
f∈F

L∑
k=1

E
(X,Y )∼Pk

XY

[
ℓ(f(X), Y )

]
P (Sk = 1), (1)

where ℓ : Y × Y → R+(= {r ∈ R : r ≥ 0}) is a loss function and F is a hypothesis set. We note
that some other papers have considered the same problem setting (Muandet et al., 2013; Deshmukh
et al., 2019; Blanchard et al., 2021).

We first introduce a proposition that claims the equivalence of the domain generalization and the
risk minimization under the population distribution:
Proposition 1 (Equivalence of Domain Generalization and Population Risk Minimization). Problem
(1) is equivalent to the risk minimization under the population distribution PXY . That is,

min
f∈F

L∑
k=1

E
(X,Y )∼Pk

XY

[
ℓ(f(X), Y )

]
P (Sk = 1) = min

f∈F
E

(X,Y )∼PXY

[
ℓ(f(X), Y )

]
, (2)

which straightforwardly follows from the law of total expectation. We define fPRM as the minimizer
of the population risk minimization problem, as well as the best (hypothetical) model for the domain
generalization problem.

Proposition 1 is important as it establishes that the best model for the domain generalization problem
should minimize the risk under the population distribution PXY . However, in practice we have
no access to the population data distribution and are only given the source domains during model
training. A naive learning model is minimizing the risk under the source domain data distribution:
Definition 2 (Source Domain Risk Minimization). Given the source domains whose data distribu-
tions are Pk

XY = PXY |Sk=1, for k = 1, · · · ,K, we refer to the following learning problem as the
source domain risk minimization problem

min
f∈F

K∑
k=1

E
(X,Y )∼Pk

XY

[
ℓ(f(X), Y )

]
P (Sk = 1). (3)

We denote its minimizer as fSDRM. The empirical form of fSDRM is denoted as empirical risk mini-
mization (ERM).

The generalization performance of fSDRM depends on how well the source domains represent the
population (or the target domains). If the source domains well approximate the population distri-
bution, then the generalization performance of fSDRM will be sufficiently close to that of fPRM. On
the other hand, if Pk

XY ̸= PXY , one cannot guarantee that models trained on the source domains to
effectively generalize to the population. Therefore, it is necessary to model the selection probability
to bridge the gap between Pk

XY and PXY .
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3.2 SELECTION MODEL-GUIDED DOMAIN GENERALIZATION

Now we derive our selection model-guided domain generalization problem, starting from decompos-
ing the objective function of the domain generalization problem by introducing a domain selection
model g = {gk : X → [0, 1], k = 1, · · · , L}which predicts the selection probabilities of an instance
being observed in domain k.
Assumption 3 (Decomposable Loss Function). We assume that the loss function ℓ can be decom-
posed into two components - one exclusively about the selection model and the other involving both:

ℓ(f(X), Y ) =

L∑
k=1

I(Sk = 1)Λ(f(X), g(X);Y, Sk = 1) +

L∑
k=1

I(Sk = 1)ℓs(g(X), Sk = 1),

where ℓs : [0, 1]L×{0, 1}L → R+ is the loss function for learning the domain selection models and
Λ : (Y × [0, 1]L)× (Y × {0, 1}L)→ R+ is the joint loss function, which assigns to the prediction
and domain selection models a pair of true outcome Y and domain membership indicator S.

For example, the negative log-likelihood under the probabilistic framework satisfies Assumption 3:
if we let ℓ(f(X), Y ) = − log p(Y |X), then Λ = − log p(Y |X,Sk = 1) and ℓs = − log p(Sk =
1|X), respectively. We provide the full derivation in Appendix A.1 and present a specific parametric
form in Section 4.

Under Assumption 3, the population risk can be expanded as follows:

E
(X,Y )∼PXY

[ℓ(f(X), Y )] =

L∑
k=1

E
(X,Y )∼Pk

XY

[
Λ(f(X), g(X);Y, Sk = 1) + ℓs(g(X), Sk = 1)

]
P (Sk = 1)

=

K∑
k=1

E
(X,Y )∼Pk

XY

[
Λ(f(X), g(X);Y, Sk = 1)

]
P (Sk = 1) +

L∑
k=1

E
X∼Pk

X

[
ℓs(g(X), Sk = 1)

]
P (Sk = 1)

+

L∑
k=K+1

E
(X,Y )∼Pk

XY

[
Λ(f(X), g(X);Y, Sk = 1)

]
P (Sk = 1). (4)

Based on the expansion, we introduce our selection model-guided domain generalization problem.
Definition 3 (Selection Model-Guided Domain Generalization (SGDG)). Given access to the data
distribution of K source domains, Pk

XY for k = 1, · · · ,K and to the unlabeled data distribution
from all L domains, PX|Sk=1 for k = 1, · · · , L. We define the selection model-guided domain
generalization problem as a joint learning problem of f : X → Y and g = {gk}Lk=1,

min
f∈F,g∈G

K∑
k=1

E
(X,Y )∼Pk

XY

[
Λ(f(X), g(X);Y, Sk = 1)

]
P (Sk = 1)+

L∑
k=1

E
X∼Pk

X

[
ℓs(g(X), Sk = 1)

]
P (Sk = 1),

(5)
where F and G are hypothesis sets.

The SGDG problem is a minimization of the expected loss of the prediction model f under the joint
distribution of X and Y of the source domains, and the expected loss of the domain selection model
g under the joint distribution of X and S. Under this formulation, the domain selection model g
guides f to be corrected through Λ, considering the probability of being drawn from certain do-
mains. In Section 4, we will introduce specific forms of this problem under parametric assumptions.
Theorem 1 (Performance Improvement of SGDG over SDRM). Let fSDRM and fSGDG be defined as
in Definition 2 and 3. fSGDG has lower risk than that of fSDRM. That is,

E
(X,Y )∼PXY

[ℓ(fSGDG(X), Y )] ≤ E
(X,Y )∼PXY

[ℓ(fSDRM(X), Y )], (6)

which implies SGDG is expected to show better generalization performance compared to SDRM.
By Proposition 1, SGDG is expected to perform better than SDRM for the domain generalization
problem equivalently. The sketch of proof of this theorem is that SGDG performs as well as SDRM
on the source domains and offers performance improvement on the target domains. Proof of this
theorem is given in Appendix A.2.

In reality, we may have no access to the distribution Pk
X for all domains (k = 1, · · · , L) but only

have access to the source domains’ distributions (k = 1, · · · ,K). In such cases, we use Pk
X for

k = 1, · · · ,K to learn the selection model g as in Problem (7).
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Assumption 4. Let g∗ be the optimal selection model that has the minimum expected ℓs,

g∗ = (g∗1 , · · · , g∗L) = argmin
g

L∑
k=1

EX∼Pk
X
[ℓs(g(X), Sk = 1)]P (Sk = 1).

We assume that the first K coordinates (g∗1 , · · · , g∗K) minimize
∑K

k=1 EX∼Pk
X
[ℓs(g(X), Sk =

1)]P (Sk = 1).

Conceptually, Assumption 4 means that the same selection models gk can be learned by contrasting
domain k to the remaining domains in the training data (K \ {k}) as by contrasting domain k to the
remaining domains in the population (L \ {k}). Under Assumption 4, Problem (5) reduces to

min
f∈F,g∈G

K∑
k=1

E
(X,Y )∼Pk

XY

[
Λ(f(X), g(X);Y, Sk = 1)

]
P (Sk = 1)+

K∑
k=1

E
X∼Pk

X

[
ℓs(g(X), Sk = 1)

]
P (Sk = 1).

(7)

4 HECKMAN-TYPE SELECTION-GUIDED DOMAIN GENERALIZATION

In this chapter, we present parametric models for Λ embodying fSGDG presented in the previous
section. The essence of Λ is to model the conditional distribution of P (Y |X,Sk = 1). Consider
the setting where we are given training data from multiple source domains in the form of D =
{xi, si, yi}Ni=1, where si = [si1, si2, . . . , sik, . . . , siK ] ∈ {0, 1}K is a binary vector indicating
domain membership. By formulating the loss function as the negative log-likelihood, the empirical
form of Equation 7 becomes

min−
N∑
i=1

K∑
k=1

[
siklog p(yi|xi, sik = 1) + sik log p(sik = 1|xi)+(1−sik)log p(sik = 0|xi)

]
. (8)

Heckman (1979) proposed to model the joint distribution P (Y, S̃|X) of the selection latent variable
S̃, where S = I[S̃ > 0], and the continuous outcome Y via a bivariate normal distribution with a
correlation coefficient ρ and the mean as a linear functions of X . Building upon his work, we make
the following assumption on the joint distribution of the outcome and the selection variables.

Assumption 5 (Joint Distribution of Y (or latent variables Ỹ ) and S̃). Let Y be the outcome variable
and S̃k be the latent continuous variable where Sk = I[S̃k > 0] for each domain k. We assume that
Y and S = (S1, · · · , SK) are jointly distributed as a multivariate normal distribution with mean
(f(X), gk(X)), and correlation coefficients {ρk}Kk=1, given X .

For binary and multinomial outcomes, this assumption is on Ỹ as the latent continuous variables
underlying the observed outcomes. Under this assumption, g = {gk}Kk=1 can be modeled as a set of
independent probit models. In all three cases, the joint log-likelihoods have closed forms. Hence-
forth, we refer to the specific parametric form of fSGDG as the Heckman-type DG (HeckmanDG)
estimator.

Definition 4 (Heckman-Type Domain Generalization Estimator). We formulate HeckmanDG as a
joint learning problem of f and g = {gk}Kk=1 with the following learning objective:

min
f,g,Σ

N∑
i=1

K∑
k=1

[
sikΛ (f(xi), gk(xi); yi, sik; Σ)−

{
sik log Φ(gk(xi)) + (1− sik) log Φ (−gk(xi))

}]
(9)

where Φ(·) is the cumulative distribution function of the standard normal distribution ϕ, such that
Φ(gk(xi)) = P (Sk = 1|X = xi) is the selection probability w.r.t domain k, and Φ(−gk(xi)) =
P (Sk = 0|X = xi). Meanwhile, Λ(f(xi), gk(xi); yi, sik; Σ) is the conditional negative log prob-
ability of yi given sik = 1, i.e., − log p(yi|sik = 1,xi).

The specific form of Λ and miscellaneous model parameters Σ depends on the prediction task (either
continuous-valued, binary, or multinomial outcome prediction). For example, the objective function
(9) for the continuous outcome is listed below in Equation 10, where we assume Y = f(X) + ε,

5



Published as a conference paper at ICLR 2023

Outcome prediction model 

 
(feature extractor)

 
(feature extractor)

Step 1) Learn 

Step 2) Learn 

Domain selection model Figure 2: Schematic
overview of HeckmanDG,
with K training do-
mains. Step 1) We learn
g = {ωg,k ◦ φg}Kk=1

to predict the selection
probabilities for each
training domain. Step
2) The estimated domain
selection model ĝ guides
f = ωf ◦ φf to be cor-
rected by considering the
selection probability of
instances being drawn from
the training domains.

Sk = I[gk(X) + ηk > 0], and [ηk, ε] ∼ N (0, [1, σ; ρk]). The details of its derivation and for other
types of outcomes can be found in Appendix A.3.

min
f,g,Σ

−
N∑
i=1

K∑
k=1

sik

(
log Φ

(
ρk

yi − f(xi)

σ
+ gk(xi)

)
+ log

ϕ( yi−f(xi)
σ

)

σ

)
+ (1− sik) log Φ(−gk(xi)).

(10)
Ultimately, f̂ is the outcome prediction model of primary interest. For any input x from unseen
domains, the HeckmanDG prediction is f̂(x).

The proposed HeckmanDG differentiates from Heckman’s bias correction method in the following
perspectives. First, it allows and models multiple domain-specific sample selection mechanisms.
Second, by utilizing the multiple domains in the training data, HeckmanDG does not need auxiliary
data (features of instances from the target population but not sampled in the domain), which is a
required input for the original Heckman model. Third, HeckmanDG alleviates the linear assump-
tions in Heckman’s bias correction model to allow flexible forms for both prediction and selection
functions including neural networks.

5 OPTIMIZATION

In this section, we consider the hypothesis sets F and G are neural networks, and present an efficient
algorithm to optimize Equation 9. Specifically, we propose a two-step approach that primarily trains
g to optimum (Step 1), then updates the remaining parameters of f and Σ (Step 2). In Step 1, we
learn the selection model parameters based on the following objective function:

ĝ = argmin
g
−

N∑
i=1

K∑
k=1

[
sik log Φ(gk (xi)) + (1− sik) log Φ (−gk(xi))

]
(11)

which essentially learns to predict the source domain memberships for training instances. In Step
2, we freeze the selection model ĝ, and learn the remaining parameters of f and Σ. The proposed
optimization algorithm is in part motivated by Heckman’s two-step estimator for bias correction,
which was devised as a means of avoiding the non-linearity of estimating both selection and out-
come equations simultaneously (Heckman, 1979). We provide pseudocode describing the overall
optimization procedure in Algorithm 1 in Appendix A.4, and an ablation study in Section 7 to sup-
port the necessity of two-step optimization.

Neural Network Architecture. We use a common feature extractor φg : X → Zg for the domain
selection models g = {gk}Kk=1, which only differ in the last linear predictors ωg,k : Zg → [0, 1],
thus gk = ωg,k ◦φg . This prevents the number of parameters of g from growing with the number of
training domains K, and reduces computational complexity by requiring only a single forward pass
φg(·). Similarly, we define f = ωf ◦φf , where φf : X → Zf is the feature extractor of the outcome
prediction model and ωf : Zf → Y is the final linear predictor. In general, φg and φf are allowed
to have different neural architectures with different numbers of parameters. However, we found
that simply using the same architecture (but learning different parameters) works well in practice.
Therefore, in all our experiments, HeckmanDG has roughly twice as much trainable parameters as
other comparative methods. An overview of our neural network architecture is provided in Figure 2.
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Train ID OOD Random

ERM (oracle) 1.57 (0.46) 1.30 (0.49) 1.30 (0.40) 1.01 (0.04)
ERM 0.84 (0.09) 0.89 (0.12) 14.65 (6.00) 6.84 (1.83)

IRM 0.83 (0.09) 0.88 (0.11) 16.45 (6.40) 7.42 (1.86)
GroupDRO 0.91 (0.39) 0.88 (0.12) 15.83 (5.22) 7.33 (1.67)
VREx 0.85 (0.08) 0.89 (0.13) 14.47 (4.91) 6.96 (1.68)

HeckmanDG (ours) 1.40 (0.24) 1.37 (0.29) 8.71 (3.96) 3.70 (0.96)

Table 1: Predictive performance on simulated data, measured in terms of the mean squared error
(lower is better) averaged over 30 trials. Standard deviations are given in parentheses.

6 EXPERIMENTS

Simulation. We simulate a linear regression problem to assess HeckmanDG’s predictive perfor-
mance. We simulate two covariates (X1, X2) and two training domains (K = 2) based on the
following setting of domain selection and outcome mechanisms:

Sk = I[αk
0 + αk

2X2 + ηk > 0], Y = 1 + 1.5X1 + 3X2 + ε[
X1

X2

]
∼ N (0, I2), and

[
ηk
ε

]
∼ N

([
0
0

]
,

[
1 ρkσ

ρkσ σ2

])
(12)

where we assume a normal prior over the selection coefficient αk
2 ∼ N (µα2

, σ2
α2
) in order to implic-

itly control the similarity between domains by differing its parameters. We consider a true population
of 100000 instances, from which we sample data for each domain with nk ∼ Uniform(1000, 2000).
In each trial, we sample the selection coefficient αk

2 ∼ N (5, 32) for the two training domains and
a held-out in-distribution (ID) test set (similar to the training domains), and αk′

2 ∼ N (−5, 32) for
another held-out out-of-distribution (OOD) test set (dissimilar to the training domains). We also
simulate a random test set from the population. We assumed ρk = 0.8 and σ = 1.

Simulation Results. We observed that HeckmanDG not only outperforms ERM, but also other
DG methods including IRM (Arjovsky et al., 2019), GroupDRO (Sagawa et al., 2020), and VREx
(Krueger et al., 2021) (Table 1). Note that ‘ERM (oracle)’ is trained on iid training data, which serves
as a theoretical lower bound on model performance. We highlight that not only does HeckmanDG
perform well on the random test set, but also on the OOD test set. In contrast, other methods tend
to fit well to the train domains (ID performance is high), but generalize poorly to random and OOD
test domains.

Benchmark Datasets. To further demonstrate the effectiveness of HeckmanDG on high-
dimensional data regimes, we conducted experiments on four datasets from the WILDS benchmark
(Koh et al., 2021): 1) CAMELYON17, 2) POVERTYMAP, 3) IWILDCAM, and 4) RXRX1. We used
the same neural network architecture for selection and outcome feature extractors φg and φf , which
are followed by linear predictors ωg and ωf . For the domain selection model, we tuned hyperparam-
eters to obtain the best domain selection model returning the highest macro F1 score on the training
data, which in all cases achieve near-perfect accuracy. For the outcome prediction model, we ad-
hered to the official guidelines and used the OOD validation set provided in the WILDS repository
for hyperparameter tuning and model selection based on the recommended metrics. Detailed de-
scriptions of dataset statistics are presented in Table 5 of Appendix A.4. Details on hyperparameters
and model training are presented in Table 6 of Appendix A.4.

Benchmark Datasets Results. We summarized the results on the WILDS benchmark in Tables
2,3, and 4. All methods apply the same network architectures based on the WILDS guideline for
fair comparison. Also, we point out that we exclude methods that deviate from the DG setting such
as those centered on test time adaptation and using additional unlabeled data. We observed that
HeckmanDG outperforms other methods on two out of four datasets, while performing on par with
other methods on the remaining two. We make the following key observations. First, HeckmanDG
often robustly performs on the test domain although it may not generate the best performance on
the validation domains. For example, on the CAMELYON17 dataset, the performance gap between
the validation and test datasets for HeckmanDG is 3.3, which is substantially smaller than 14.1 of
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Method Validation Test

ERM (scratch) 84.9 (3.1) 70.8 (7.2)
ERM (ImageNet) 91.3 (0.2) 84.2 (1.7)

CORAL 86.2 (1.4) 59.5 (7.7)
IRM 86.2 (1.4) 64.2 (8.1)
GroupDRO 85.5 (2.4) 68.4 (7.3)
VREx 82.3 (1.3) 71.5 (8.3)
LISA 81.8 (1.3) 77.1 (6.5)
Fish 82.5 (1.2) 79.5 (6.0)
SWAD 88.1 (1.5) 83.9 (0.9)
L2A-OT 86.3 (3.4) 77.5 (6.7)

HeckmanDG (ours) 90.6 (2.4) 87.3 (2.4)

Table 2: CAMELYON17: We report predictive performance measured in terms of average accuracy on both
the OOD validation and test set. Standard deviation across 10 replicates are given in parentheses. ‘ERM
(scratch)’ is trained from random initial parameters, whereas we also report ‘ERM (ImageNet)’ trained from
ImageNet-pretrained weights (Russakovsky et al., 2015).

Average Worst Group

Method Validation Test Validation Test

ERM 0.80 (0.04) 0.78 (0.03) 0.51 (0.06) 0.45 (0.06)

CORAL 0.80 (0.04) 0.77 (0.05) 0.52 (0.06) 0.44 (0.06)
IRM 0.81 (0.03) 0.77 (0.05) 0.53 (0.05) 0.43 (0.07)
GroupDRO 0.78 (0.05) 0.75 (0.07) 0.46 (0.04) 0.39 (0.06)
DANN 0.77 (0.04) 0.69 (0.04) 0.44 (0.11) 0.33 (0.10)
Fish 0.81 (0.01) 0.81 (0.01) - -
SWAD 0.78 (0.03) 0.77 (0.04) 0.48 (0.09) 0.45 (0.11)

HeckmanDG (ours) 0.81 (0.03) 0.81 (0.03) 0.53 (0.06) 0.51 (0.04)

Table 3: POVERTYMAP: We report predictive performance measured in terms of both the average and worst-
group Pearson correlation coefficient, on both the OOD validation and test sets. Standard deviation across 5
replicates are given in parentheses. We use the original 5 folds provided in the WILDS repository. We do not
report worst-group performance for ‘Fish’, since it has not been reported in Shi et al. (2022).

‘ERM (scratch)’ and 7.1 of ‘ERM (ImageNet)’. This pattern is similar to what we observed in the
simulation studies. Because HeckmanDG is designed to predict for the underlying population, it
may not produce the best prediction performances for the (non-randomly selected) source domains.
Although we do not know the specific selection probability of the test domain, HeckmanDG is
often more robust for the testing domains by optimizing for the population distribution. Second,
HeckmanDG effectively works for both the domain shift and the subpopulation shift problems. This
can be observed by looking at either the average or worst-group performance on the POVERTYMAP
dataset (i.e., 0.51). This again supports the robustness of HeckmanDG against a range of non-
random selection probabilities of the testing domains.

7 ANALYSIS

Necessity of two-step optimization. To demonstrate the necessity and effectiveness of the pro-
posed two-step optimization, we performed an ablation study on the POVERTYMAP dataset. For
comparison, we trained g and f in one-step to simultaneously minimize Equation 8. We observed
that one-step obtained comparable performances on training domains (Figure 3a), but yielded worse
test performance on the OOD domains (Figure 3b). We believe that a suboptimal ĝ may mislead f̂
to a deficient solution in the one-step optimization (more details in Appendix A.6).

Relationship between the performance of g and f . To further investigate how the performance of
a domain selection model influences the final outcome prediction, we take intermediate snapshots for
ĝ, and learned f based on each snapshot. On all five data split folds, we always observed a positive

8
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(a) RXRX1

Method Validation Test

ERM 19.4 (0.2) 29.9 (0.4)
CORAL 18.5 (0.4) 28.4 (0.3)
IRM 5.6 (0.4) 8.2 (1.1)
GroupDRO 15.2 (0.1) 23.0 (0.3)
LISA 20.1 (0.4) 31.9 (1.0)
Fish 7.5 (0.6) 10.1 (1.5)
SWAD 14.2 (0.5) 22.9 (0.7)
L2A-OT 17.5 (0.3) 27.8 (0.9)

HeckmanDG (ours) 20.5 (0.7) 32.1 (0.8)

(b) IWILDCAM

Method Validation Test

ERM 37.4 (1.3) 31.0 (1.3)
CORAL 37.0 (1.2) 32.8 (0.1)
IRM 20.2 (7.6) 15.1 (4.9)
GroupDRO 26.3 (0.2) 23.9 (2.1)
DANN - 31.9 (1.4)
Fish 25.8 (0.5) 24.2 (0.9)
SWAD 31.6 (0.2) 29.1 (0.1)
L2A-OT 22.8 (2.9) 18.1 (3.2)

HeckmanDG (ours) 34.5 (0.9) 31.8 (0.3)

Table 4: A summary of results on RXRX1 and IWILDCAM. Note that the OOD validation macro F1
score for DANN was not reported since it has not been provided in Sagawa et al. (2022).
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Figure 3: Analysis based on the POVERTYMAP dataset. 3a) Pearson correlation measured on the training
data for HeckmanDG learned by one-step (gray) and two-step (blue, proposed) optimization. 3b) Comparison
between one-step (gray) and two-step (blue, proposed) optimization, where performance is averaged across all
five folds provided in the WILDS repository. 3c) Relationship between the performance of domain selection
and outcome prediction (colors indicate different folds).

correlation between the performances of ĝ and f̂ (Figure 3c), demonstrating that a well-performing
selection model is necessary to correctly guide the outcome prediction model.

8 CONCLUSIONS

We propose a Selection Guided Domain Generalization (SGDG) framework, in which we formulate
domain generalization as a non-random sample selection problem and propose to jointly learn the
prediction model f and the domain selection model g to achieve generalization on the true popula-
tion. DG is a challenging problem as the particular structure of the distribution shift in the testing
domains is unknown. In the presence of this uncertainty, we propose and theoretically justify the ob-
jective of minimizing the risk targeting the population distribution through SGDG. Furthermore, we
have provided a set of Heckman-type SGDG estimators for various outcome types under parametric
assumptions. Although it is still an open question if a single general-purpose training algorithm
can produce models that do well on all of the DG datasets (Koh et al., 2021), we observed robust
performances of the proposed HeckmanDG on four benchmark datasets.

Note that SGDG can naturally utilize all domains in the training data, including the (outcome)
labeled and unlabeled domains. The unlabeled domains will contribute to the estimation of ĝ in
Equation 9, which indirectly improves generalization performance as we showed in Section 7. An
intriguing direction for future research is to explore whether we can improve SGDG performances
by adapting ĝ(X) for domains in the test data. In that way, we may further refine the prediction for
the unseen domains guided by their similarities to the source domains.
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A APPENDIX

A.1 DERIVATION OF EXAMPLE OF DECOMPOSABLE LOSS

ℓ(f(X), Y ) = − log p(Y |X)

=

L∑
k=1

− log p(Y, Sk = 1|X)

=

L∑
k=1

{
− log

[
p(Y |X,Sk = 1)p(Sk = 1|X)

]}
=

L∑
k=1

{
− log p(Y |X,Sk = 1)− log p(Sk = 1|X)

}
=

L∑
k=1

− log p(Y |X,Sk = 1)︸ ︷︷ ︸
Λ

+

L∑
k=1

− log p(Sk = 1|X)︸ ︷︷ ︸
ℓs

.

A.2 PROOF OF THEOREM 1

The following chain of inequalities completes the proof:

E
(X,Y )∼PXY

[ℓ(fSDRM(X), Y )] =

L∑
k=1

E
(X,Y )∼Pk

XY

[ℓ(fSDRM(X), Y )]P (Sk = 1)

=

L∑
k=1

E
(X,Y )∼Pk

XY

[Λ(fSDRM(X), gSGDG(X);Y, Sk)] +

L∑
k=1

EX∼Pk
X
[ℓs(gSGDG(X), Sk = 1)]P (Sk = 1)

≥
K∑

k=1

E
(X,Y )∼Pk

XY

[Λ(fSGDG(X), gSGDG(X);Y, Sk)] +

L∑
k=1

EX∼Pk
X
[ℓs(gSGDG(X), Sk = 1)]P (Sk = 1)

+

L∑
k=K+1

E
(X,Y )∼Pk

XY

[Λ(fSDRM(X), gSGDG(X);Y, Sk)] (13)

≥
K∑

k=1

E
(X,Y )∼Pk

XY

[Λ(fSGDG(X), gSGDG(X);Y, Sk)] +

L∑
k=1

EX∼Pk
X
[ℓs(gSGDG(X), Sk = 1)]P (Sk = 1)

+

L∑
k=K+1

E
(X,Y )∼Pk

XY

[Λ(fSGDG(X), gSGDG(X);Y, Sk)] (14)

= E
(X,Y )∼PXY

[ℓ(fSGDG(X), Y )].

Note that 13 follows from the definition of SGDG. 14 holds if Y and S are dependent and if we let
ℓ(f(X), Y ) = − log p(Y |X), Λ = − log p(Y |X,Sk = 1), and ℓs = − log p(Sk = 1|X).

A.3 DETAILS OF HECKMAN CORRECTION-GUIDED DOMAIN GENERALIZATION

In this section, we present the exact form of our loss functions for continuous, binary, and multino-
mial outcomes, based on their specific parametric assumptions.

Continuous Outcomes For regression tasks where y ∈ R, we assume that the selection and out-
come is generated by the following data generation process:

Sk = I[S̃k > 0] = I[gk(x) + ηk > 0] (15)
Y = f(x) + ε (16)
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[
ηk
ε

]
∼ N

(
0,

[
1 σρk

σρk σ2

])
(17)

where I(·) ∈ {0, 1} is the indicator function, ρk is the correlation between ηk and ε, and σ ∈ R+

is the standard deviation of ε. Being consistent with the notation in the main text, we hereby define
Σ = {ρ1, . . . , ρK , σ}. Denoting model parameters as θ = {f, g1, . . . , gK ,Σ}, we formulate the
data likelihood as follows:

Lc(θ;D) =
N∏
i=1

K∏
k=1

[
p(yi|xi, sik = 1) · p(sik = 1|xi)

]sik
· p(sik = 0|xi)

1−sik (18)

and we take the negative log likelihood to formulate the loss function:

ℓc(D; θ) = −
N∑
i=1

K∑
k=1

sik

[
log Φ1

(
gk(xi) + ρk

yi−f(xi)
σ√

1− ρ2k

)
− 1

2
log 2πσ2 − 1

2

{
yi − f(xi)

σ

}2
]

−
N∑
i=1

K∑
k=1

(1− sik) log Φ1(−gk (xi))

(19)

Binary Outcomes For binary outcomes where y ∈ {0, 1}, we assume a probit model for both
selection and outcome:

Sk = I[S̃k > 0] = I[gk(x) + ηk > 0]

Y = I[f(x) + ε > 0][
ηk
ε

]
∼ N

(
0,

[
1 ρk
ρk 1

]) (20)

where ρk is the correlation between ηk and ε. Herein, Σ = {ρ1, . . . , ρK}. Denoting model parame-
ters as θ = {f, g1, . . . , gK ,Σ}, we formulate the data likelihood for binary outcomes as follows:

Lb(θ;D) =
N∏
i=1

K∏
k=1

{
p(yi = 1, sik = 1|xi)

yi · p(yi = 0, sik = 1|xi)
1−yi

}sik
p(sik = 0|xi)

1−sik

(21)

and take the negative log likelihood to define the loss function for binary outcomes:

ℓb(D; θ) = −
N∑
i=1

K∑
k=1

sik · yi · log Φ2 (gk(xi), f(xi), ρk)

−
N∑
i=1

K∑
k=1

sik · (1− yi) · log
(
Φ1 (gk(xi))− Φ2 (gk(xi), f(xi); ρk)

)
−

N∑
i=1

K∑
k=1

(1− sik) · log Φ1 (−gk(xi))

(22)

where Φ2(·, ·; a) is the cumulative density function of the bivariate standard normal given correlation
a ∈ [−1, 1].

Multinomial Outcomes For multinomial outcome tasks where y ∈ {1, . . . , J}, we assume a
multinomial probit outcome model (McFadden, 1989):

Sk = I[S̃k > 0] = I[gk(x) + ηk > 0]

Ỹj = fj(x) + εj , ∀j ∈ {1, . . . , J}
Y = argmax

j∈{1,...,J}
Ỹj[

ηk
εj

]
∼ N

(
0,

[
1 ρk
ρk 1

]) (23)
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where [ηk, εj ] ∼ N (0, [1, 1; ρkj ]) and ρkj is the correlation between ρk and εj . We fur-
ther assume that the outcome error terms are independently distributed: ε = [ε1, . . . , εJ ]

⊤ ∼
N (0, I). Consequently, Σ = {ρ11, . . . , ρKJ}. Denoting model parameters as θ =
{f1, . . . , fJ , g1, . . . , gK , ρ11, . . . , ρKJ}, we formulate the multinomial outcome data likelihood as
follows:

Lm(θ;D) =
N∏
i=1

K∏
k=1

J∏
j=1

{
p(sik = 1, yi = j|xi)

I[yi=j]
}sik

p(sik = 0|xi)
1−sik (24)

where I[·] ∈ {0, 1} is the indicator function. We use the negative logarithm of the data likelihood
for the loss function:

ℓm(D; θ) = −
N∑
i=1

K∑
k=1

J∑
j=1

[
sik · I[yi = j] · log

∫
T

ϕ(u|⃗0, Σ̃)du+ (1− sik) · log Φ (−gk(xi))

]
(25)

where T = [−gk(xi),∞
)
× [ξj,1(xi),∞

)
× . . . × [ξj,j−1(xi),∞

)
× [ξj,j+1(xi),∞

)
× . . . ×

[ξj,J(xi),∞
)
⊆ RJ is the half-open J-dimensional hyperrectangular domain and ξj,j′(xi) =

−fj(xi) + fj′(xi). We use the GHK algorithm (Hajivassiliou & Ruud, 1994) to compute the mul-
tivariate normal integrals.

A.4 OPTIMIZATION, DATASETS, AND MODEL TRAINING

Algorithm 1 Two-Step Optimization for HeckmanDG
1: Input: Data D = {(xi, yi, si) ∈ X × Y × S : i = 1, · · · , N}, Batch size B, Learning rate γ.
2: Output: f̂ , ĝ = {ĝk}Kk=1, and Σ̂.
3: Initialize: f, g,Σ
4: Step 1: Learn the Domain Selection Models (g)
5: for all k = 1, . . . ,K do
6: Dk ← {(xi, sik) ∈ X × [0, 1] : i = 1, . . . , N}
7: end for
8: while g = {gk}Kk=1 Not Converged do
9: for all k = 1, · · · ,K do

10: Bk ← BatchSampler(Dk, B)
11: gk ← gk + γ

B∇
∑

(xi,sik)∈Bk
[sik log Φ(gk(xi)) + (1− sik) log Φ(−gk(xi))]

12: end for
13: end while
14: ĝk = gk, for k = 1, . . . ,K.
15: Step 2: Learn the Outcome Model (f,Σ)
16: DO = D
17: while f Not Converged do
18: B = BatchSampler(DO, B)

19: f ← f − γ
B∇

∑
(xi,yi,si)∈B

∑K
k=1 sikΛ(f(xi), ĝk(xi); yi, sik; Σ)

20: Σ← Σ− γ
B∇

∑
(xi,yi,si)∈B

∑K
k=1 sikΛ(f(xi), ĝk(xi); yi, sik; Σ)

21: end while
22: f̂ ← f
23: Σ̂← Σ
24: return f̂
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Dataset CAMELYON17 POVERTYMAP IWILDCAM RXRX1

X 3 × 96 × 96 (tissue slide) 8 × 224 × 224 (satellite image) 3 × 448 × 448 (photo) 3 × 256 × 256 (cell)
Y 2 (tumor) continuous (asset wealth) 182 (animal species) 1139 (genetic treatments)

Training examples 302,436 10,000 129,809 40,612
Domain 5 Hospitals (3, 1, 1) 23 countries (13, 5, 5) 323 camera traps (243, 32, 48) 51 batches (33, 4, 14)

Evaluation metric Average accuracy Pearson (average, worst-group) Macro F1 Average accuracy

Table 5: A summary on the four datasets from WILDS benchmark. In the ‘Domain’ row, the three
numbers in parentheses denote the number of train, validation, and test domains.

Dataset CAMELYON17 POVERTYMAP IWILDCAM RXRX1

Feature Extractor DenseNet-121 ResNet-18-MS ResNet-50 ResNet-50
Epochs 5, 5 100, 100 12, 12 10, 10

Batch Size 32, 32 64, 64 16, 16 75, 75
Optimizer Adam, SGD Adam, SGD Adam, SGD Adam, SGD

Learning Rate 10−5, 10−3 10−5, 10−3 10−5, 10−3 10−5, 10−3

Weight Decay 0, 10−4 0, 10−5 0, 10−5 0, 10−5

ImageNet Weights True, True False, False True, True True, True
Data Augmentation N/A Color jittering RandAugment RandAugment

Table 6: Details on training configurations of HeckmanDG. Cells with two entries (i.e., learning rate,
weight decay) denote that we used different values for training domain selection and outcome mod-
els. Hyperparameters were determined through grid search on the OOD validation set. For optimiz-
ers we searched between {Adam,SGD}. Learning rates were searched among {10−5, 10−4, 10−3},
and weight decay among {0, 10−5, 10−3, 10−1}. Note that since HeckmanDG training is two-phase,
we searched for hyperparameters sequentially. On all datasets, Σ is optimized with the Adam opti-
mizer with a learning rate of 10−2 and no weight decay.

A.5 IMPLEMENTATION DETAILS FOR SWAD AND L2A-OT

In Tables 2, 3, and 4, the numbers for SWAD (Cha et al., 2021) and L2A-OT (Zhou et al., 2020)
are reproduced based on our implementation. For SWAD, we set the optimum patient parameter
Ns = 3, the overfitting patient parameter Ne = 6, and the tolerance rate r = 1.2, which are the
default values used in the original paper. The evaluation frequency was set to 100. On all four
datasets, models were trained with SGD, using the same learning rates and weight decay factors as
ERM (Koh et al., 2021). For L2A-OT, we set λDomain = 0.5, λCycle = 10, and λCE = 1. On all three
datasets (excluding POVERTYMAP), the generator G is trained with Adam using a constant learning
rate of 3 · 10−4, while the prediction model F is trained with SGD, using the same learning rates
and weight decay factors as ERM (Koh et al., 2021). We faithfully refer the readers to the original
papers for the details regarding the hyperparameters.
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A.6 ADDITIONAL ANALYSIS ON TWO-STEP OPTIMIZATION

We provide further details on the analysis in Section 7, conducted to demonstrate the necessity and
effectiveness of the proposed two-step optimization approach. For both one-step (jointly optimizing
for Equation 8) and two-step, we kept the number of training epochs to 30, with the same batch
size, in order to make a valid comparison. In Figure 4, we plot the training loss trajectories using
different metrics. We observed that g tends to converge to a suboptimal point if we optimize f , g,
and Σ simultaneously by a one-step optimization approach (Figure 4a). We suspect that this happens
because the gradient of g (involving sik = 1) depends on Σ, which changes during the joint one-
step optimization process. This will often result in a suboptimal ĝ, as shown in Figure 4d. Note that
the original Heckman correction (Heckman, 1979) also proposed a two-step approach to avoid the
computational burden of having to estimate both f and g jointly. One way to avoid this problem is
to use an alternating optimization algorithm which alternately minimizes Equation 8 with respect to
g, Σ, and f until convergence. Our two-step approach can be regarded as a one-iteration alternating
minimization procedure as it stops after a single iteration. In Figure 4c, the one-step method yields
comparable (MSE) loss values for f as those obtained from the two-step method on the training
dataset. However Equation 8 converged to a larger value by the one-step method, implying that it
converged to a suboptimal point for g. On the test datasets, the suboptimal solution of the one-
step method resulted in worse domain generalization performance compared to the two-step method
(Figure 3b).

0 5 10 15 20 25 30
Epochs

0.1

0.2

0.3

0.4

0.5

Tr
ai

n 
lo

ss

one step
two step

(a) Train loss (Equation 8)

0 5 10 15 20 25 30
Epochs

1.0

1.5

2.0

2.5

3.0

Tr
ai

n 

one step
two step

(b) Train Λ

0 5 10 15 20 25 30
Epochs

0.2

0.4

0.6

0.8

1.0

Tr
ai

n 
M

SE
 (f

)

one step
two step

(c) Train MSE

0 5 10 15 20 25 30
Epochs

0.0

0.1

0.2

0.3

0.4

Tr
ai

n 
lo

ss
 (g

)

one step
two step

(d) Train loss of g (Equation 11)

Figure 4: Training loss of one-step (gray) vs. two-step (blue) optimization on POVERTYMAP.
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