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Abstract

We present information value, a measure which
quantifies the predictability of an utterance rel-
ative to a set of plausible alternatives. We in-
troduce a method to obtain interpretable esti-
mates of information value using neural text
generators, and exploit their psychometric pre-
dictive power to investigate the dimensions of
predictability that drive human comprehension
behaviour. Information value is a stronger pre-
dictor of utterance acceptability in written and
spoken dialogue than aggregates of token-level
surprisal and it is complementary to surprisal
for predicting eye-tracked reading times.1

1 Introduction

When viewed as information transmission, suc-
cessful language production can be seen as an act
of reducing the uncertainty over future states that a
comprehender may be anticipating. Saying a word,
for example, may cut the space of possibilities in
half, while uttering a whole sentence may restrict
the comprehender’s expectations to a far smaller
space. Measuring the amount of information
carried by a linguistic signal is fundamental to
the computational modelling of human language
processing. Such quantifications are used in
psycholinguistic and neurobiological models of
language processing (Levy, 2008; Willems et al.,
2016; Futrell and Levy, 2017; Armeni et al., 2017),
to study the processing mechanisms of neural
language models (Futrell et al., 2019; Davis and
van Schijndel, 2020; Sinclair et al., 2022), and as
a learning and evaluation criterion for language
modelling (under the guise of ‘cross-entropy loss’
or ‘perplexity’). The amount of information carried
by a linguistic signal is intrinsically related to its
predictability (Hale, 2001; Genzel and Charniak,
2002; Jaeger and Levy, 2007). This connection is
summarised in the definition of the surprisal, or

∗Shared first authorship.
1https://github.com/dmg-illc/information-value

information content, of a unit u (Shannon, 1948),
perhaps the most widely used measure of informa-
tion: I(u) =− log2 p(u). Predictable units carry
low amounts of information—i.e., low surprisal—
as they are already expected to occur given the
context in which they are produced. Conversely,
unexpected units carry higher surprisal.

Proper estimation of the surprisal of an utterance
is intractable, as it would require computing
probabilities over a high-dimensional, structured,
and ultimately unbounded event space. It is thus
common to resort to chaining token-level surprisal
estimates, nowadays typically obtained from
neural language models (Meister et al., 2021;
Giulianelli and Fernández, 2021; Wallbridge
et al., 2022). However, token-level autoregressive
approximations of utterance probability have a
few problematic properties. A well-known issue
is that different realisations of the same concept
or communicative intent compete for probability
mass (Holtzman et al., 2021), which implies that
the surprisal of semantically equivalent realisa-
tions is overestimated. Moreover, token-level
surprisal estimates conflate different dimensions of
predictability. As evidenced by recent studies (Are-
halli et al., 2022; Kuhn et al., 2023), this makes
it difficult to appreciate whether the information
carried by an utterance is a result, for example, of
the unexpectedness of its lexical material, syntactic
arrangements, semantic content, or speech act type.

We propose an intuitive characterisation of the
information carried by utterances, information
value, which computes predictability over the space
of full utterances to account for potential commu-
nicative equivalence, and explicitly models multi-
ple dimensions of predictability (e.g., lexical, syn-
tactic, and semantic), thereby offering greater in-
terpretability of predictability estimates. Given a
linguistic context, the information value of an ut-
terance is a function of its distance from the set of
contextually expected alternatives. The intuition is
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Figure 1: The information value I(Y = y|X = x)
of a target utterance y is lower—and its predictabil-
ity higher—when y is closer to the set of plausible al-
ternatives Ax = (a1, a2, . . . ). Here, alternatives are
generated by an LM conditioned on a context x.

that if an utterance differs largely from alternative
productions, it is an unexpected contribution to dis-
course with high information value (see Figure 1).
We obtain empirical estimates of information value
by sampling alternatives from neural text genera-
tors and measuring their distance from a target utter-
ance using interpretable distance metrics. Informa-
tion value estimates are evaluated in terms of their
ability to predict and explain human reading times
and acceptability judgements in dialogue and text.

We find information value to have stronger psy-
chometric predictive power than aggregates of
token-level surprisal for acceptability judgements
in spoken and written dialogue, and to be com-
plementary to surprisal aggregates as a predictor
of reading times. Furthermore, we use our inter-
pretable measure of predictability to gather insights
into the processing mechanisms underlying human
comprehension behaviour. Our analysis reveals, for
example, that utterance acceptability in dialogue is
largely determined by semantic expectations while
reading times are more affected by lexical and syn-
tactic predictions.

Information value is a new way to measure
predictability. As such, next to surprisal, it is a
powerful tool for the analysis of comprehension
behaviour (Meister et al., 2021; Shain et al., 2022;
Wallbridge et al., 2022, 2023), for the computa-
tional modelling of language production strategies
(Doyle and Frank, 2015; Xu and Reitter, 2018;

Verma et al., 2023) and for the design of processing
and decision-making mechanisms that reproduce
them in natural language generation systems (Wei
et al., 2021; Giulianelli, 2022; Meister et al., 2023).

2 Background

Surprisal theory. Expectation-based theories
of language processing define the effort required
to process a linguistic unit as a function of its
predictability. Surprisal theory, perhaps the most
prominent example, posits a direct relationship
between effort and predictability, quantified as
surprisal (Hale, 2001). The theory is supported
by broad empirical evidence across domains and
languages (Pimentel et al., 2021; de Varda and
Marelli, 2022), and serves as a foundation for
quantitative principles of language production and
comprehension such as Entropy Rate Constancy
(ERC; Genzel and Charniak, 2002) and Uniform
Information Density (UID; Levy and Jaeger, 2007).

The psychometric predictive power of surprisal.
Without direct access to the ‘true’2 conditional
probabilities of linguistic units, psycholinguists
have relied on statistical models of language to
estimate surprisal (Hale, 2001; McDonald and
Shillcock, 2003). More recently, large-scale lan-
guage models have emerged as powerful estimators
of token-level surprisal, reflected by their ability
to predict different aspects of human language
comprehension behaviour (their psychometric
predictive power). Psychometric variables include
self-paced and eye-tracked reading times (Keller,
2004; Goodkind and Bicknell, 2018; Wilcox et al.,
2020; Meister et al., 2021; Shain et al., 2022;
Oh and Schuler, 2023), acceptability judgements
(Lawrence et al., 2000; Heilman et al., 2014; Lau
et al., 2015, 2017; Warstadt et al., 2019; Wallbridge
et al., 2022), and brain response data (Frank et al.,
2015; Schrimpf et al., 2021).

To obtain estimates of utterance surprisal, differ-
ent aggregates of token-level surprisal have been
proposed, motivated by psycholinguistic theories
like ERC and UID. However, their behaviour
is far less understood (e.g., Wallbridge et al.,
2022). For example, divergences between how
model characteristics affect predictive power for
different comprehension tasks (e.g., Meister et al.,
2021) raise questions about whether token-level

2In this context, true refers to the—if at all existing—
unattainable conditional probabilities of linguistic units that a
human may experience during language comprehension.



aggregates appropriately capture expectations over
utterances in human language processing.

Alternatives in semantics and pragmatics. Our
proposed notion of information value takes inspi-
ration from the concept of alternatives in seman-
tics and pragmatics (Horn, 1972; Grice, 1975; Stal-
naker, 1978; Gazdar, 1979; Rooth, 1996; Levin-
son, 2000). Reasoning about alternatives has been
argued to be at the basis of the use of questions
(Hamblin, 1976; Groenendijk and Stokhof, 1984;
Ciardelli et al., 2018), focus (Rooth, 1992; Wagner
et al., 2005; Beaver and Clark, 2009), and implica-
tures (Carston, 1998; Degen and Tanenhaus, 2015,
2016; Zhang et al., 2023). Recently, alternative
sets generated with the aid of language models
have been used to provide empirical evidence that
pragmatic inferences of scalar implicature depend
on listeners’ context-driven uncertainty over alter-
natives (Hu et al., 2022, 2023). Hu et al. (2022)
generate sets of plausible words in context, within
scalar constructions, then embed and cluster the
resulting sentences to simulate conceptual alter-
natives. Reasoning over word- and concept-level
alternatives is operationalised through surprisal and
entropy. To our knowledge, ours is the first study
to use language models for the generation of full
utterance-level alternatives.

3 Alternative-Based Information Value

Given a context x, a speaker may produce a num-
ber of plausible utterances. We refer to these as
Ax, the alternative set. We define the information
value of an utterance y in a context x as the real
random variable which captures the distribution
of distances between y and the set of alternative
productions Ax, measured with a distance metric d:

I(Y =y|X=x) := d(y,Ax) (1)

This distribution characterises the predictability
of y in its context. Large distances indicate that
y differs substantially from expected utterances,
and thus that y is a surprising next utterance.

3.1 Computing Information Value

In Equation 1, we define information value as
a statistical measure of the unpredictability, or
unexpectedness of an utterance. In practice,
computing the information value of an utterance
requires (1) a method for obtaining alternative
sets Ax, (2) a metric with which to measure the

distance of an utterance from its alternatives, and
(3) a means with which to summarise distributions
of pairwise distances. We discuss these three
elements in turn in the following paragraphs.

Generating alternative sets. Since the ‘true’ al-
ternative sets entertained by a human comprehen-
der are not attainable, we propose generating them
algorithmically, via neural text generators. Be-
ing able to guarantee the plausibility, or human-
likeness of the generations is crucial. Our approach
builds on recent work (Giulianelli et al., 2023) find-
ing the predictive distribution of neural text gen-
erators to be well aligned to human variability, as
measured with the same distance metrics used in
this paper (see next paragraph): while not all gen-
erations are guaranteed to be of high quality, their
low-dimensional statistical properties (e.g., n-gram,
POS, and speech act distribution) match those of
human productions. This should allow us to obtain
faithful distance distributions d(y,Ax) and thus
accurate estimates of information value.

Measuring distance from alternatives. We
quantify the distance of a target utterance from
an alternative production using three interpretable
distance metrics, as defined by Giulianelli et al.
(2023). Lexical: Fraction of distinct n-grams in
two utterances, with n ∈ [1, 2, 3] (i.e., the num-
ber of distinct n-gram occurrences divided by the
total number of n-grams in both utterances). Syn-
tactic: Fraction of distinct part-of-speech (POS)
n-grams in two utterances. Semantic: Cosine and
euclidean distance between the sentence embed-
dings of two utterances (Reimers and Gurevych,
2019). These distance metrics characterise alter-
native sets at varying levels of abstraction (Katzir,
2007; Fox and Katzir, 2011; Buccola et al., 2022),
enabling an exploration into the representational
form of expectations over alternatives in human
language processing.

Summarising distance distributions. Informa-
tion value is a random variable that describes a
distribution over distances between an utterance y
and the set of plausible alternatives (Equation 1).
To summarise this distribution, we explore mean as
the expected distance (under a uniform distribution
over alternatives) or as the distance from a proto-
typical alternative, and min as the distance of y
from the closest alternative production, implicating
that proximity to a single alternative is sufficient to
determine predictability.



4 Experimental Setup

4.1 Language Models

We generate alternative sets using neural autore-
gressive language models (LMs). For the dialogue
corpora, we use GPT-2 (Radford et al., 2019), Di-
aloGPT (Zhang et al., 2020), and GPT-Neo (Black
et al., 2021). For the text corpora, we use GPT-2,
GPT-Neo, and OPT (Zhang et al., 2022). The text
models are pre-trained, while dialogue models are
fine-tuned on the respective datasets. Further de-
tails on fine-tuning and perplexity scores are in
Appendix A. The resulting dataset, which contains
1.3M generations, is publicly available.3

Generating alternatives. To generate an alter-
native set Ax, we sample from pLM (Y |X=x).
We experiment with four popular sampling algo-
rithms to ensure that the quality of our informa-
tion value estimates is not dependent on a par-
ticular algorithm—or, if it is, that we are not
overlooking it. We select (1) unbiased (ances-
tral or forward) sampling (Bishop, 2006; Koller
and Friedman, 2009), (2) temperature sampling
(α ∈ [0.75, 1.25]), (3) nucleus sampling (Holtz-
man et al., 2019) (p ∈ [0.8, 0.85, 0.9, 0.95]), and
(4) locally typical sampling (Meister et al., 2023)
(τ ∈ [0.2, 0.3, 0.85, 0.95]), for a total of 11 sam-
pling strategies. We post-process alternatives to
ensure that each contains only a single utterance.4

4.2 Psychometric Data

Using five corpora, we study two main types of
psychometric variables that rely on different under-
lying processing mechanisms (Gibson and Thomas,
1999; Hofmeister et al., 2014): acceptability judge-
ments and reading times.

4.2.1 Acceptability judgements
Stimuli for acceptability judgements typically
consist of isolated sentences that are manipulated
automatically or by hand to assess a grammatical
notion of acceptability (Lau et al., 2017; Warstadt
et al., 2019). The effect of context on acceptability
is still relatively underexplored, yet contextualised
judgements arguably capture a more natural, in-
tuitive notion of acceptability. In this study, we use
some of the few datasets of in-context acceptability

3AltGen: https://doi.org/10.5281/zenodo.10006413.
4We use spaCy’s sentence segmentation algorithm (Honni-

bal et al., 2020) for the text corpora and split dialogue utter-
ances based on the position of the turn separator.

judgements which examine grammaticality as well
as semantic and pragmatic plausibility.

SWITCHBOARD and DAILYDIALOG. Partici-
pants were presented with a short sequence of dia-
logue turns followed by a potential upcoming turn,
and asked to rate its plausibility in context on a
scale from 1 to 5. Judgements were collected by
Wallbridge et al. (2022) for (transcribed) spoken di-
alogue and written dialogue from the Switchboard
Telephone Corpus (Godfrey et al., 1992) and Dai-
lyDialog (Li et al., 2017), respectively. For each
corpus, 100 items are annotated by 3-6 participants.
Annotation items consist of 10 dialogue contexts,
each followed by the true next turn and by 9 turns
randomly sampled from the respective corpus.5

CLASP. Participants were presented with sen-
tences from the English Wikipedia in and out of
their document context and asked to judge accept-
ability using a 4-point scale (Bernardy et al., 2018).
The original sentences are round-trip translated into
4 languages to obtain varying degrees of accept-
ability; the context is not modified. This dataset
contains 500 stimuli, annotated by 20 participants.6

4.2.2 Reading times
Previous literature regarding the predictive power
of language models for reading behaviour has fo-
cused on the relationship between per-word sur-
prisal and reading times (Keller, 2004; Wilcox
et al., 2020; Shain et al., 2022; Oh and Schuler,
2023). We define utterance-level reading time as
the total time spent reading the constituent words of
the utterance. This approach has been taken by pre-
vious studies of utterance-level surprisal (Meister
et al., 2021; Amenta et al., 2022).

PROVO. This corpus consists of 136 sentences
(55 paragraphs) of English text from a variety of
genres. Eye movement data was collected from 84
native American English speakers (Luke and Chris-
tianson, 2018). We use the summation of word-
level reading times (IA-DWELL-TIME, the total du-
ration of all fixations on the target word) of con-
stituent words to obtain utterance-level measures.

BROWN. This corpus consists of self-paced
moving-window reading times for 450 sentences
(12 passages) from the Brown corpus of American

5Acceptability ratings available at https://data.cstr.
ed.ac.uk/sarenne/INTERSPEECH2022/.

6We only use judgements collected in context, available at
https://github.com/GU-CLASP/BLL2018.

https://doi.org/10.5281/zenodo.10006413
https://data.cstr.ed.ac.uk/sarenne/INTERSPEECH2022/
https://data.cstr.ed.ac.uk/sarenne/INTERSPEECH2022/
https://github.com/GU-CLASP/BLL2018


Figure 2: Spearman correlation between semantic in-
formation value and mean acceptability judgements in
SWITCHBOARD. Confidence intervals display variabil-
ity over 11 sampling strategies.

English. Reading times were collected from 35
native English speakers (Smith and Levy, 2013).

5 Psychometric Predictive Power

We begin by evaluating our empirical estimates
of information value in terms of their psychomet-
ric predictive power: can they predict comprehen-
sion behaviour recorded as human acceptability
judgements and reading times? We test the robust-
ness of this predictive power to the alternative set
generation process and compare it to previously
proposed utterance-level surprisal aggregates in-
cluding mean, variance, and a range of summation
strategies; see Appendix B for full definitions.

For each corpus in Section 4.2, we measure the
correlation between information value and the re-
spective psychometric variable, which is the av-
erage in-context acceptability judgement for DAI-
LYDIALOG, SWITCHBOARD, and CLASP, and the
total utterance reading time normalised by utter-
ance length for PROVO and BROWN.7 Alterna-
tive sets are generated using the language models
and sampling strategies described in Section 4.1.
Lexical, syntactic, and semantic distances are com-
puted in terms of the distance metrics presented
in Section 3.1, for alternative sets of varying size
([10, 20, ..., 100]). The distributions of similarities
in Equation 1 are summarised using mean and min,
thus yielding scalar estimates of information value.

7We normalise by utterance length as it is an obvious corre-
late of total reading time and would have confounding effects
on this analysis. In Section 6, we confirm our findings using
mixed effect models that include utterance length as a predic-
tor and total unnormalised reading time as a response variable.

Information value Surprisal

Acceptability (x ∝ y−1)
SWITCHBOARD -0.702 (semantic) -0.506 (superlinear, k=4)
DAILYDIALOG -0.584 (semantic) -0.457 (superlinear, k=2.5)
CLASP -0.234 (syntactic) -0.559 (mean)

Reading times (x ∝ y)
PROVO 0.421 (syntactic) 0.495 (variance)
BROWN 0.223 (lexical) 0.220 (mean)

Table 1: Correlations of the most predictive variants (in
parentheses) of surprisal and information value across
model, sampling algorithm, and alternative set size with
psychometric data: mean acceptability judgements and
length-normalised reading times.

5.1 Predictive Power

For every corpus, we obtain a moderate to
strong Spearman correlation between information
value and the psychometric target variable. For
example, estimates of semantic information
value correlate with acceptability judgements at
strengths approximately between −0.4 and −0.7
for SWITCHBOARD and between −0.3 and −0.6
for DAILYDIALOG across models and sampling
strategies from Section 4.1 (see Figure 2 for
SWITCHBOARD; Appendix C for all datasets).
Estimates obtained with the best information value
estimators for each corpus, shown in Table 1, yield
substantially higher correlations with acceptability
in dialogue than the best token-level aggregates
of utterance surprisal, both as computed in
our experiments and as reported in prior work
(Wallbridge et al., 2022, 2023). Reading times, on
the other hand, which are aggregates of word-level
psychometric data points, should naturally be
easier to capture with word-level measures of
predictability. Nevertheless, our best information
value estimates correlate with reading times only
slightly less strongly or comparably to surprisal;
and additionally, they give us indications about the
dimensions of unexpectedness (in this case, lexical
and syntactic) that mostly affect reading behaviour.

Overall, beyond building trust in our information
value estimators, this evaluation demonstrates the
benefit of their interpretability. The predictive
power for lexical, syntactic, and semantic distances
varies widely between corpora. Semantic distances
are much more predictive for dialogue datasets
than lexical or syntactic distances, while the
inverse is true for the reading times datasets.
We explore differences between the underlying
perceptual processes employed for these two
comprehension tasks further in Section 6.



5.2 Robustness to Estimator Parameters

We now study the extent to which our estimates
are affected by variation in three important pa-
rameters of alternative set generation: the alterna-
tive set size ([10, 20, ..., 100]), the language model,
and the sampling strategy. We find a slight pos-
itive, asymptotic relationship between predictive
power, reflected by correlations between informa-
tion value and psychometric data, and alternative
set size for semantic information value in the di-
alogue corpora—information value estimates be-
come more predictive as alternative set size in-
creases (see, e.g., Figure 2). Set size does not sig-
nificantly affect correlations for the reading times
corpora. Moreover, while we do observe differ-
ences between models, and larger models tend to
obtain higher correlations with psychometric vari-
ables, these results are not consistent across corpora
and distance metrics (Figures 4 and 5, Appendix C).
In light of recent findings regarding the inverse re-
lationship between language model size and the
predictive power of surprisal (Shain et al., 2022;
Oh and Schuler, 2023), we consider it an encourag-
ing result that the predictive power of information
value does not decrease with the number of model
parameters.8 We do not observe a significant im-
pact of decoding strategy on predictive power, re-
gardless of alternative set size, as indicated by the
confidence intervals in Figures 2, 4 and 5.

In sum, estimates of information value do
not display much sensitivity to alternative set
generation parameters.9 Therefore, for each corpus,
we select the estimator (a combination of model,
sampling algorithm, and alternative set size) that
yields the best Spearman correlation with the
psychometric data (Table 5 in Appendix E). We use
these estimators throughout the rest of the paper.

6 In-Depth Analysis of Psychometric Data

Using information value, we now study which
dimensions of predictability effectively explain
psychometric data. This allows us to qualitatively
analyse the processes humans employ while read-
ing and assessing acceptability. We also examine
the effect of contextualisation on comprehension
behaviour by defining two additional measures
derived from information value (Section 6.1) and

8It remains to be seen whether this trend extends to larger
language models, for which we lack computational resources.

9We obtain similar evidence of robustness to parameter
settings using an intrinsic evaluation, reported in Appendix D.

using them as explanatory variables in linear mixed
effect models to predict per-subject psychometric
data. For the dialogue corpora and CLASP, our
mixed effect models predict in-context acceptabil-
ity judgements. For the reading times corpora, our
models predict the total time spent by a subject
reading a sentence, as recorded in self-paced
reading and eye-tracking studies. This is the
sum, over a sentence, of word-level reading times
(more details in Appendix F). We include random
intercepts for (context, target) pairs in all models.

Analysis Procedure. For every corpus, we first
test models that include a single predictor beyond
the baseline: i.e., information value measured with
each distance metric and either mean and min as
summary statistics (see Section 3.1). Based on
the fit of these single-predictor models, we select
the best lexical, syntactic, and semantic distance
metrics (with the corresponding summary statistics)
to instantiate three-predictor models for each of the
derived measures of information value.

Following Wilcox et al. (2020), we evaluate each
model relative to a baseline model which includes
only control variables. Control variables are
selected building on previous work (Meister et al.,
2021): solely the intercept term for acceptability
judgements and the number of fixated words
for reading times (more details in Appendix F).
As an indicator of explanatory power, we report
∆LogLik, the difference in log-likelihood between
a model and the baseline: a positive ∆LogLik
value indicates that the psychometric variable
is more probable under the comparison model.
We also report fixed effect coefficients and their
statistical significance. The full results are shown
in Table 6 (Appendix F), according to which the
best metrics for each linguistic level are selected
and used throughout the rest of the paper.

6.1 Derived Measures of Information Value

Inspired by information-theoretic concepts used in
previous work to study the predictability of utter-
ances (e.g., Genzel and Charniak, 2002; Giulianelli
and Fernández, 2021; Wallbridge et al., 2022), we
define two additional derived measures of infor-
mation value and assess their explanatory power.

Out-of-context information value is the distance
between an utterance y and the set of alternative
productions Aϵ expected given the empty context ϵ:

I(Y =y) := I(Y =y|X = ϵ) (2)



Figure 3: Explanatory power of information value and
its derived measures (out-of-context information value
and context informativeness; defined in Section 6.1).

It reflects the plausibility of y regardless of its
context of occurrence. An analogous notion is
decontextualised surprisal.

Context informativeness is the reduction in infor-
mation value for y contributed by context x:

C(Y =y;X=x) := I(Y =y)− I(Y =y|X=x)
(3)

This quantifies the extent to which a context re-
stricts the space of plausible productions such that
y becomes more predictable. An analogous notion
is the pointwise mutual information.

6.2 Acceptability
We generally expect an inverse relationship
between information value and in-context accept-
ability judgements: information value is lower
when a target utterance is closer to the set of
alternatives a comprehender may expect in a given
context (see Figure 1). Furthermore, we expect
grammaticality and semantic plausibility—two
factors known to affect acceptability (Sorace and
Keller, 2005; Lau et al., 2017)—to play different
roles in dialogue and text. For the dialogue corpora,
we expect semantic-level variables to have high
explanatory power, as they can identify utterances
with incoherent content such as implausible
underlying dialogue acts (Searle, 1969, 1975;
Austin, 1975). Lexical and syntactic information
value may be more explanatory of acceptability in
CLASP, where stimuli are generated via round-trip
translation and thus may contain disfluent or
ungrammatical sentences (Somers, 2005).

SWITCHBOARD and DAILYDIALOG. For both
dialogue corpora, semantic information content

is by far the most predictive variable (Table 6,
Appendix F), especially when min is used as a
summary statistic. Responses to the same dialogue
context can exhibit great variability and being
close to a single expected alternative—in terms of
semantic content and dialogue act type—appears
to be sufficient for an utterance to be considered
acceptable. Our analysis of derived measures (Fig-
ure 3) further indicates that acceptability is mostly
determined by the in-context predictability of an
utterance. The high explanatory power of context
informativeness (almost twice that of out-of-
context information value) suggests that contextual
cues override inherent isolated plausibility.

CLASP. Syntactic information value is the best
explanatory variable for acceptability judgements
in CLASP (Table 6, Appendix F). This suggests
that comprehenders entertain expectations over
syntactic structures (here, represented as POS
sequences)—a result which could complement find-
ings on the processing of lexicalised constructions
in reading (e.g., Tremblay et al., 2011) and eye-
tracking studies (e.g., Underwood et al., 2004). In
contrast to the dialogue corpora, estimates of in-
context information value are less predictive than
their out-of-context counterparts (Figure 3), which
may be due to the previously discussed artificial
nature of the CLASP negative samples. In sum, our
results indicate that the acceptability judgements
in the CLASP corpus, even if collected in context,
are mostly determined by the presence of startling
surface forms rather than by semantic expectations.

6.3 Reading Times
When reading, humans continually update their ex-
pectations about how the discourse might evolve
(Hale, 2001; Levy, 2008; Yan and Jaeger, 2020).
This is reflected, for example, in the faster process-
ing of more expected words and syntactic structures
(Demberg and Keller, 2008; Smith and Levy, 2013).
High predictive power for lexical and syntactic
information value would support these findings.
However, comprehenders also reason about seman-
tic alternatives, e.g., to compute scalar inferences
(Van Tiel et al., 2014; Hu et al., 2023). Our inter-
pretable measures of information value help clarify
the contribution of different types of expectations.

PROVO and BROWN. Syntactic information
value is a strong predictor of eye-tracked reading
times in PROVO, while lexical information value
(in particular, based on trigram distances) is the



SWITCHBOARD DAILYDIALOG PROVO

Surprisal 6.63 5.08 59.04
Information value
Lexical 8.32 10.88 12.17
Syntactic 2.49 6.71 21.80
Semantic 34.20 30.41 6.86
All 43.11 35.42 45.19

Joint
+ Lexical 14.08 10.23 72.60
+ Syntactic 9.77 8.05 75.70
+ Semantic 34.37 26.98 68.61
+ All 44.11 30.55 93.08

Table 2: ∆LogLik for surprisal, information value, and
joint mixed effect models. We report the best infor-
mation value metrics (as per Section 6) and surprisal
aggregates for each dataset: maximum for SWITCH-
BOARD, and super-linear for DAILYDIALOG (k = 1.5)
and PROVO (k = 0.5).

only significant explanatory variable for the self-
paced reading times in BROWN (Table 6), and only
weakly so. Expectations over full semantic alter-
natives have a limited effect on reading times in
both corpora, suggesting anticipatory processing
mechanisms at play during reading operate at lower
linguistic levels. For both corpora, out-of-context
estimates are at least as predictive as in-context
estimates and higher than context informativeness
(Figure 3), indicating that context modifications
only moderately dampen the negative effects of un-
usual syntactic arrangements and lexicalised con-
structions on reading speed.

7 Relation to Utterance Surprisal

We have shown alternative-based information
value to be a powerful predictor for contextualised
acceptability judgements and reading times. In fact,
information value is substantially more predictive
of acceptability than utterance surprisal (Section 5).
We conclude with a focused comparison between
these measures, considering whether they are
complementary and why they might diverge.

7.1 Complementarity
Differences in predictive power between informa-
tion value and surprisal (see Table 1) may reflect
variations between the dimensions of predictability
captured by the two measures. To investigate
this possibility, we use both measures jointly
for psychometric predictions. We focus on the
dialogue corpora and PROVO, where we observed
the highest explanatory power for information
value (Section 6). For each corpus, we fit linear
mixed effect models with control variables, using

the most predictive surprisal and information value
estimators (one per linguistic level) in isolation
and jointly as fixed effects. Table 2 summarises
the results of this analysis.

In isolation, information value is a better pre-
dictor for the dialogue corpora. Including lexical,
syntactic, and semantic information value on top of
the best surprisal predictor (Joint) improves model
log-likelihood substantially. Separately including
each linguistic level reveals that semantic distance
is largely responsible for improved fit, suggest-
ing that surprisal fails to capture expectations over
high-level linguistic properties of utterances such
as speech act type, which are crucial for modelling
contextualised acceptability in dialogue. This is
true regardless of the aggregation function used.

For PROVO, surprisal is the best explanatory
variable. However, including the best information
value predictors further improves model fit by
58%, demonstrating the complementarity of the
two measures in predicting reading times (Table 2).
Separately adding information value predictors
shows the strongest boost comes from syntactic
factors, which are known to have higher weight
in human anticipatory processing than in language
models’ (Arehalli et al., 2022).

Overall, combining predictive information value
with surprisal yields better models for all tested cor-
pora, indicating that these measures capture distinct
and complementary dimensions of predictability.

7.2 Effects of Discourse Context

While language comprehension is known to be a
function of context (e.g., Kleinschmidt and Jaeger,
2015; Chen et al., 2023), little attention has been
given to its impact on surprisal estimates. We ex-
amine whether the dissimilar predictability esti-
mates of information value and surprisal stem from
differences in their sensitivity to context, compar-
ing how they behave under congruent, incongru-
ent, and empty context conditions. In each con-
dition, alternative sets and token-level surprisal
are computed in the true context (congruent), a
context randomly sampled from the respective cor-
pus (incongruent), or with no conditioning (empty)
as used to compute out-of-context information
value10. We quantify effects on the best informa-
tion value and surprisal predictors as ∆LogLik, us-
ing single-predictor models described in Section 6.

10To ensure that all stimuli in this analysis are contextu-
alised, first sentences in PROVO paragraphs were excluded.



Dataset Summ. Level Metric
Context Condition

Congruent Empty Incongruent

SWITCHBOARD

Mean Lexical Trigram 8.32 5.55 7.18
Mean Syntactic POS Trigram 2.49 3.00 2.65
Min Semantic cosine 34.20 7.64 10.94

Surprisal (in context, max) 6.63 2.56 3.12

DAILYDIALOG

Min Lexical Bigram 10.88 3.16 1.42
Mean Syntactic POS Unigram 6.71 6.89 6.16
Min Semantic Cosine 30.41 1.43 2.90

Surprisal (in context, superlinear k=1.5) 5.08 0.99 2.35

PROVO

Mean Lexical Trigram 12.97 12.94 11.86
Mean Syntactic POS Trigram 25.86 15.20 12.94
Mean Semantic Euclidean 8.53 10.88 8.33

Surprisal (in context, superlinear k=0.5) 35.75 37.88 39.00

Table 3: ∆LogLik of single-predictor models for infor-
mation value and surprisal across context conditions.

Table 3 displays results for SWITCHBOARD,
DAILYDIALOG, and PROVO. Congruent context
produces a substantial effect on the predictive
power of semantic information value for both di-
alogue datasets; for DAILYDIALOG, we see a 20-
fold increase over the empty context condition. Sur-
prisal shows a similar trend, though far less pro-
nounced. Syntactic information value is the least
affected by context modulations. Though surprisal
is a powerful predictor for reading times in PROVO,
the incongruent and empty context conditions are
more predictive than the true context. Perhaps most
concerning is the fact that estimates in incongruent
contexts are the most predictive. In contrast, the
most predictive information value (syntactic) is sig-
nificantly more predictive for congruent contexts.
Interestingly, information value in the control con-
ditions is not uninformative, likely reflecting the
inherent plausibility of utterances.

Both information value and utterance surprisal
display sensitivity to context, however, the effects
on surprisal are less predictable and perhaps even
undesirable for certain psychometric variables.

8 Discussion and Conclusion

Humans constantly monitor and anticipate the tra-
jectory of communication. Their expectations over
the upcoming communicative signal are influenced
by factors spanning from the immediate linguistic
context to their interpretation of the speaker’s goals.
These expectations, in turn, determine aspects of
language comprehension such as processing cost,
as well as strategies of language production. We
present information value, a measure which quan-
tifies the predictability of an utterance relative to
a set of plausible alternatives; and we introduce
a method to obtain information value estimates
via neural text generators. In contrast to utterance
predictability estimates obtained by aggregating

token-level surprisal, information value captures
variability above the word level by explicitly ac-
counting for more abstract communicative units
like speech acts (Searle, 1969, 1975; Austin, 1975).
We validate our measure by assessing its psychome-
tric predictive power, its robustness to parameters
involved in the generation of alternative sets, and
its sensitivity to discourse context.

Using interpretable measures centred around in-
formation value, we investigate the underlying di-
mensions of uncertainty in human acceptability
judgements and reading behaviour. We find that
acceptability judgements factor in base rates of ut-
terance acceptability (likely associated with gram-
maticality) but are predominantly driven by seman-
tic expectations. In contrast, reading time is more
influenced by the inherent plausibility of lexical
items and part-of-speech sequences. We further
compare information value to aggregates of token-
level surprisal, finding differences in the dimen-
sions of predictability captured by each measure
and their sensitivity to context. Information value is
a stronger predictor of acceptability in written and
spoken dialogue and is complementary to surprisal
for predicting eye-tracked reading times.

Information value is defined in terms of plau-
sible continuations of the current linguistic context,
taking inspiration from the tradition of alternatives
in semantics and pragmatics (Horn, 1972; Grice,
1975; Stalnaker, 1978). Although the ideal set
of alternatives would be derived directly from
humans, neural text generators have demonstrated
their potential to act as useful proxies, particularly
when multiple generations are considered. Vari-
ability among their productions has been shown
to align with human variability (Giulianelli et al.,
2023), and decision rules that operate over sets of
alternative utterances, rather than next tokens, have
been shown to improve generation quality (e.g.,
Eikema and Aziz, 2022; Guerreiro et al., 2023). We
release our full set of 1.3M generated alternatives,
obtained with a variety of models and sampling
algorithms, to facilitate research in this direction.

Our information value framework allows consid-
erable flexibility in defining alternative set gener-
ation procedures, distance metrics, and summary
statistics. We hope it will enable further investiga-
tion into the mechanisms involved in human lan-
guage processing, and that it will serve as a basis
for cognitively inspired learning rules and inference
algorithms in computational models of language.



Limitations

Our framework for the estimation of utterance in-
formation value allows great flexibility. Modellers
can experiment with a variety of alternative set gen-
eration procedures, distance metrics, and summary
statistics. While our selection of distance metrics
characterises the relation of an utterance to its al-
ternative sets at multiple interpretable linguistic
levels, there is a large space of metrics that we
have not tested in this paper. Syntactic distances,
for example, can be computed using metrics that
capture structural differences between utterances
in a more fine-grained manner (e.g., tree edit dis-
tance or difference in syntactic tree depth); seman-
tic distances can be computed with a more taxo-
nomical approach (e.g., Fellbaum, 2010) or using
NLI models to capture semantic equivalence (Kuhn
et al., 2023); and distances between dialogue act
types can be detected using dialogue act classifiers
(Stasaski and Hearst, 2023). We chose metrics
based on prior work validating them as probes for
the extraction of uncertainty estimates from neural
text generators (Giulianelli et al., 2023), but we
hope future work will explore this space more ex-
haustively. Similarly, though the current work has
been constrained to English data, our framework
can be directly applied to other languages. We hope
to see work in this direction.

Moreover, due to computational constraints, we
selected a single information value estimator per
corpus for our analyses in Sections 6 and 7. Al-
though we assessed the sensitivity of information
value to parameters of alternative set generation
extensively in Appendices C and D, the effect of
estimator parameters on the explanatory power of
information value predictors can be assessed more
widely in future work.

A further aspect of our method for the estimation
of information value that we have not highlighted
in the paper is its computational cost. Because
it involves drawing multiple full utterance sam-
ples from language models, our method is clearly
less efficient than traditional surprisal estimation,
which requires only a single forward pass. While
we have observed that the psychometric predictive
power of information value reaches satisfactory lev-
els even with relatively low numbers of alternatives
and small language model architectures (see, e.g.,
Figure 2), designing more efficient methods for
the estimation of information value is an important
direction for future research.

Ethics Statement

In the Limitations section, we have mentioned that
an important direction for future work is designing
more computationally efficient methods for the es-
timation of information value. This is crucial to the
application of this method to larger datasets, which
may be prohibitively expensive in some research
communities and in any case, perhaps unnecessar-
ily, environmentally unfriendly.

The limited size of the corpora of psychometric
data used in this paper has further ethical implica-
tions, as the corpora have not been collected to be
representative of a wide and diverse range of com-
prehenders. We hope to see efforts in this direction.
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A Language Models

For the dialogue corpora, we use GPT-2 (Radford
et al., 2019), DialoGPT (Zhang et al., 2020), and
GPT-Neo (Black et al., 2021). For the text corpora,
we use GPT-2 (Radford et al., 2019), GPT-Neo
(Black et al., 2021), and OPT (Zhang et al., 2022).
The text models are pre-trained while the dialogue
models are fine-tuned for 5 epochs with early stop-
ping on the respective datasets, using “</s> <s>”
as a turn separator. Preliminary experiments on
the pre-trained models show that </s> <s> is the
turn separator that yields lowest perplexity on the
dialogue datasets. For text models, using no sepa-
rator is the option that yields the lowest perplexity.
When generating out of context, we set x to be
either the dialogue turn separator “</s> <s>” or a
white space for the text models.

LM validation: perplexity. Table 4 reports the
perplexity of these models on the SWITCHBOARD

and DAILYDIALOG test sets, as well as on the Wiki-
Text test set (the CLASP dataset and the reading
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DailyDialog Switchboard WikiText

GPT-2 Small (124M) 7.34 11.86 25.62
GPT-2 Medium (355M) 6.03 10.50 19.69
GPT-2 Large (774M) 5.26 10.09 17.39
GPT-Neo 125M 7.39 12.54 25.37
GPT-Neo 1.3B 4.94 10.11 14.01
DialoGPT Small 7.94 12.50 -
DialoGPT Medium 6.53 10.96 -
DialoGPT Large 6.23 11.00 -
OPT 125M 17.80 22.68 46.85
OPT 350M 14.88 21.46 40.39
OPT 1.3B 12.58 20.30 27.45

Table 4: Language model perplexity results. The models
tested on the dialogue datasets are finetuned for 5 epochs
with early stopping; the models tested on WikiText are
pre-trained.

time datasets are too small to allow for robust eval-
uation, but their style is sufficiently similar enough
to that of WikiText). Perplexity scores are the low-
est for the dialogue datasets. This is to be expected
as the dialogue models are fine-tuned. The perplex-
ity of the pre-trained models on WikiText is in line
with state-of-the-art results; OPT obtains higher
perplexity than GPT-2 and GPT-Neo, but still in an
appropriate range.

B Utterance-Level Surprisal

Given an utterance y as a sequence of tokens in a
context x, token-level surprisal can be defined as
s(yt) = − log p(yt|y<t,x). Multiple works have
proposed quantifying utterance-level surprisal as
functions of token-level surprisal (Genzel and Char-
niak, 2002; Keller, 2004; Xu and Reitter, 2018;
Meister et al., 2021; Giulianelli et al., 2021; Wall-
bridge et al., 2022). We compare the predictive
power of information value to a number of these
utterance-level surprisal aggregates.

Mean surprisal and total surprisal account for
all token-level surprisal estimates with and without
normalising by utterance length:

Smean(y|x) =
1

N

N∑
n=1

[s(yn)] (4)

Stotal(y|x) =
N∑

n=1

[s(yn)] (5)

Superlinear surprisal posits a superlinear effect
of token-level estimates:

Ssuperlineark(y|x) =
N∑

n=1

[s(yn)]
k (6)

We experiment with k ∈ [0.5, 0.75, . . . , 5].
Maximum surprisal captures the idea that a

highly surprising element drives the overall sur-
prisal of an utterance:

Smax(y|x) = max[s(yn)] (7)

Surprisal variance across an utterance has been
defined in a number of ways; we consider surprisal
variance as the regression to the utterance-level
mean and surprisal difference as the variability
between contiguous token-level estimates:

Svariance(y|x) =
1

N − 1

N∑
n=2

[s(yn)− Smean(y)]
2

(8)

Sdifference(y|x) =
N∑

n=2

|s(yn)− s(yn−1)| (9)

C Psychometric Predictive Power and
Sensitivity of Information Value
Estimates

We study the extent to which our estimates of infor-
mation value are affected by variation in three main
factors: the alternative set size ([10, 20, ..., 100]),
the language model, and the sampling strategy.
Figures 4 and 5 show Spearman correlation be-
tween information value and psychometric data,
averaged over subjects. These results complement
Sections 5.1 and 5.2 in the main paper.

D Intrinsic Robustness Analysis

In Section 5.1, we evaluate the robustness of infor-
mation value to parameters involved in the alterna-
tive set generation in terms of its psychometric pre-
dictive power. We additionally assess their intrinsic
robustness by measuring the correlation between
information values assigned to target utterances by
estimators with different parameter settings.

The parameters which we consider are alter-
native set size ([10, 20, ..., 100]), the generative
model, and the decoding strategy. Models and de-
coding strategies are detailed in Section 4.1. For
each of the corpora described in Section 4.2, we
compute the information value for the target utter-
ances based on alternative sets generated under dif-
ferent parameter settings. Robustness is quantified
through the distribution of the pairwise Spearman



Figure 4: Spearman correlation between information value and average acceptability judgements.



Figure 5: Spearman correlation between information value and average reading times (length-normalised).



correlation ρ obtained between the information val-
ues for each parameter setting; strong pairwise cor-
relation indicates that information value is robust
to the varying parameter. Results are displayed in
Figures 6 and 7.

Information value defined as lexical, syntactic,
and semantic distance becomes highly robust as
alternative set size increases; mean correlations be-
tween decoding strategies for each model converge
towards perfect correlation as alternative set size
increases. This pattern holds for all datasets. De-
coding strategies do not produce much variation
across correlations, regardless of alternative set size
(see confidence intervals in Figures 6 and 7). For
mean-based definitions and models, information
values generated from different decoding strategies
correlate at strengths > 0.8 from sets with fewer
than 50 alternatives. Although their mean correla-
tions still converge to 0.9, the dialogue datasets are
slight exceptions.

As expected, correlations between parameter set-
tings for min-based distances are more variable.
Although they converge to weaker correlations as
alternative set size increases when compared to
mean-based distances, we still find strong to very
strong correlations between decoding strategies for
large alternative sets across all models.

E Selecting the Best Information Value
Estimators

For each corpus and each surprisal type (lexical,
syntactic, semantic), we select the estimator that
yields the best Spearman correlation with the psy-
chometric data. An estimator is a combination
of model, sampling algorithm, and alternative set
size. Psychometric data are in-context acceptabil-
ity judgements for DailyDialog, Switchboard and
Clasp, and the mean of all word reading times in a
sentence for Brown and Provo. Table 5 shows the
best estimators.

F Linear Mixed Effect Models

In this section, we include further details about the
linear mixed effect models used in Sections 6 and 7.
All results for single information value predictors
are in Table 6. Results for the comparison with
surprisal and joint models are in Table 2.

Response variables. For PROVO, we use the to-
tal dwell time, i.e., the cumulative duration across
all fixations on a given word. We filter away any ob-
servation that contains ‘outlier’ words, i.e., words

with a z-score > 3 when the distribution of reading
times is modelled as log-linear (following Meister
et al., 2021).

Control predictors. Following Wilcox et al.
(2020), we evaluate each model relative to a base-
line model which includes only control variables.
Control variables are selected building on previous
work (Meister et al., 2021): we include solely an
intercept term as a baseline for acceptability judge-
ments and the number of fixated words for reading
times. Meister et al. (2021) report similar trends
when including summed unigram log probability or
sentence length as baseline predictors of acceptabil-
ity judgements, and word character lengths or word
unigram log probabilities for reading times. For
reading times, we also test sentence length as a pre-
dictor but baseline models that include, instead, the
number of fixated words (readers sometimes skip
words while reading) achieve higher log-likelihood.

G More Derived Measures of Information
Value

We also tested the following measures derived from
information value but found them to be less predic-
tive than those in the main paper.

Expected information value. The expected dis-
tance of plausible productions given a context x
from the alternative set:

E(I(Y |X=x)) := Ea∈A′
x
[I(Y =a,X=x)]

(10)

We assume a uniform probability distribution over
alternatives. This quantifies the uncertainty over
next utterances determined by the context alone.
Because the alternative set Ax is the set of plausi-
ble productions given x, in practice, we compute
expected information value using only one alterna-
tive set—both in the expectation Ea∈Ax and in the
distance calculation d(y,Ax).

Deviation from the expected information value.
The absolute difference between the information
value for the next utterance y and the expected
information value for any next utterance:

D(Y =y|X=x) := |I(Y =y|X=x)

− E(I(Y |X=x))| (11)

This quantifies the information value of an utter-
ance relative to the information value expected for



Figure 6: Intrinsic robustness evaluation on acceptability judgements corpora.



Figure 7: Intrinsic robustness evaluation on reading times corpora.

Corpus Level Metric Summary N Language Model Sampling ρ

SWITCHBOARD

Lexical Bigram Min 70 DialoGPT Medium Temperature 1.25 -0.436*
Syntactic POS bigram Min 100 DialoGPT Small Ancestral -0.440*
Semantic Cosine Min 100 DialoGPT Large Temperature 1.25 -0.702*

DAILYDIALOG

Lexical Unigram Min 80 DialoGPT Small Ancestral -0.383*
Syntactic POS trigram Min 90 DialoGPT Large Temperature 1.25 -0.359*
Semantic Cosine Min 100 GPT-2 Large Nucleus 0.9 -0.584*

CLASP

Lexical Trigram Min 90 GPT-2 Large Temperature 1.25 -0.210*
Syntactic POS Bigram Min 100 GPT-2 Large Nucleus 0.95 -0.234*
Semantic Cosine Min 90 OPT 1.3B Temperature 0.75 -0.221*

PROVO

Lexical Unigram Min 10 OPT 125M Typical 0.3 0.379*
Syntactic POS Trigram Min 10 GPT-2 Small Nucleus 0.95 0.421*
Semantic Euclidean Min 100 OPT 125M Nucleus 0.95 0.181

BROWN

Lexical Bigram Min 90 GPT-2 Small Typical 0.3 0.223*
Syntactic POS Trigram Mean 10 GPT-2 Medium Typical 0.3 0.185*
Semantic Cosine Min 100 GPT-Neo 125M Nucleus 0.95 0.048

Table 5: Best information value estimator per corpus and metric. Spearman rank-correlation coefficients ρ, statistical
significance (p < 0.001) is marked with a star. The highest correlations per dataset are in bold; the estimators (a
combination of set size N , model, and sampling strategy) that generate them are taken as the ‘best estimators’ for
that corpus and are used in Sections 6 and 7.



Summ. Level Metric SWITCHBOARD DAILYDIALOG CLASP PROVO BROWN

β ∆LogLik β ∆LogLik β ∆LogLik β ∆LogLik β ∆LogLik

Mean

Lexical
Unigram -0.273 1.874 -0.683 2.152 0.594 0.206 2.309 9.967 2.409 9.679
Bigram -1.35 4.687 -2.761* 7.179 -1.573 2.717 1.976 10.971 1.622 9.076
Trigram -2.401 8.315 -1.843 7.089 -2.514 5.857 1.982 12.169 1.891 11.974

Syntactic
POS Unigram 0.204 0.605 3.399** 6.707 0.914 0.106 1.902 8.413 0.958 6.627
POS Bigram 0.398 1.366 1.835 3.147 -0.648 -0.073 3.813** 13.861 1.331 7.291
POS Trigram -0.159 2.488 0.767 2.505 -2.011 2.274 5.527** 21.798 1.475 8.194

Semantic
Cosine -8.664** 29.034 -6.988** 21.207 -1.235 0.030 0.237 6.661 0.714 6.633

Euclidean -8.665** 29.263 -7.11** 21.994 -1.535 0.617 0.221 6.864 0.766 6.833

Min

Lexical
Unigram -3.927** 7.701 -4.454** 10.244 -0.866 0.005 2.219 9.649 2.39 9.059
Bigram -1.017 1.629 -4.614** 10.876 -1.937 1.639 1.882 9.490 2.121 8.426
Trigram -1.774 3.396 -1.969 3.311 -2.757* 3.714 1.997 10.337 3.689** 13.913

Syntactic
POS Unigram -0.52 0.927 0.356 1.985 -2.931* 4.915 5.45** 21.187 1.947 8.633
POS Bigram 1.052 0.901 -2.933* 5.067 -5.356** 13.539 4.494** 16.292 1.404 6.854
POS Trigram 0.758 0.993 -3.26* 5.732 -3.104* 4.124 4.956** 18.394 1.362 6.706

Semantic
Cosine -9.888** 34.204 -9.01** 30.408 -1.982 0.979 0.548 6.476 0.661 6.164

Euclidean -7.696** 23.375 -8.901** 29.868 -2.501 2.094 0.507 6.567 0.699 6.020

Table 6: Results of single-predictor linear mixed effect models: fixed effect coefficients β and ∆LogLik. Statistical
significance of fixed effects is marked with one (p < 0.01) or two stars (p < 0.001). Information value estimates
are obtained according to Equation 1. For each corpus and each level (lexical, syntactic, and semantic), the best
∆LogLik is marked in bold. These are the level-specific metrics used whenever we talk about ‘best predictors’
in the main paper.

plausible productions given x. An analogous no-
tion is the deviation of surprisal from entropy. The
token-level version of this forms the basis of the
local typicality hypothesis (Meister et al., 2023).

Expected context informativeness. The ex-
pected informativeness of context x is the reduction
in information value contributed by x with respect
to any plausible continuation:

E(C(Y =y;X=x)) := E(I(Y =y))

− E(I(Y =y|X=x))
(12)

This quantifies the extent to which a context re-
stricts the space of plausible productions. An anal-
ogous notion is the expected pointwise mutual in-
formation between X = x and Y , where the value
of X is fixed. Similarly to out-of-context infor-
mation value, out-of-context expected information
value E(I(Y =y)) is computed with respect to the
alternative set Aϵ.


