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ABSTRACT

Unsupervised domain adaptation (UDA) aims to bridge the gap between source and
target domains in the absence of target domain labels using two main techniques:
input-level alignment (such as generative modeling and stylization) and feature-
level alignment (which matches the distribution of the feature maps, e.g. gradient
reversal layers). Motivated from the success of generative modeling for image
classification, stylization-based methods were recently proposed for regression
tasks, such as pose estimation. However, use of input-level alignment via generative
modeling and stylization incur additional overhead and computational complexity
which limit their use in real-world DA tasks. To investigate the role of input-level
alignment for DA, we ask the following question: is generative modeling or styl-
ization really needed? In other words, motivated from the title of the workshop:
what do we not need for successful domain adaptation? Surprisingly, we find
that input-alignment has little effect on regression tasks as compared to classifica-
tion. Based on these insights, we develop a non-parametric feature-level domain
alignment method — Implicit Stylization (ImSty) — which results in consistent
improvements over SOTA both for regression and classification tasks, without the
need for computationally intensive stylization and generative modeling. Our work
conducts a critical evaluation of the role of generative modeling and stylization, at
a time when these are also gaining popularity for domain generalization.

1 INTRODUCTION

With the burst of interest and applicability of deep learning applications in real-world settings, there
is a growing need to transfer knowledge from a source domain with labeled data to a target domain
without labeled data, specifically in data scarce regimes. Unsupervised domain adaptation (UDA) has
emerged as a critical line of inquiry to address this challenge since reliable labeling of real-world
datasets is often expensive and/or prohibitive.

UDA can largely be divided into two levels of alignment: feature-level alignment, and input-level
alignment. Feature-level alignment such as statistical moment matching |Long et al.| (2017) and
normalization statistics (Csurka (2017); [Zhao et al.|(2018;2020a)) aim to generate intermediate feature
map representations that are similar in statistical distribution between the source and target domain.
While input-level alignment such as domain style transfer Sankaranarayanan et al.| (2018]); [Huang &
Belongie|(2017) and adversarial learning Ganin et al.[(2016); Liu et al.|(2018));|He et al.[(2020) aims to
a) either stylize the source domain images in the style of target domain images or b) generate training
data for the target domain. For instance, in image classification, generative modeling has shown
promising results Russo et al.| (2018)), and to this day still shows SOTA results in the challenging
MNIST Deng|(2012) — SVHN Netzer et al.| (201 I)task. Based on the this success, recently input-
alignment has also been applied to regression task such as pose estimation Kim et al.|(2022) where
stylization Huang & Belongie|(2017) was employed. However, the isolated effect of image stylization
still remains ambiguous.

Given this ambiguity, our key observations is that input-level alignment via generative models and
stylization are computationally expensive and in some data scarce regimes impractical. Consequently,
a natural question emerges based on this observation: is generative modeling or image stylization
necessary for domain adaptation?
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Figure 1: Comparison of pose estimation and image classification accuracy for target domain
respective to the number of trainable parameters used in domain alignment. Our method
achieves SOTA results in both image classification and pose estimation while significantly reducing
the number of trainable parameters for domain alignment used in UDA. Hand, Human, & Animal
refers to pose estimation while Digits refer to image classification.

To begin addressing this question, we investigate the role of input-alignment and show that it does
not consistently improve the results as opposed to a no-stylization baseline with a mean-teacher
training scheme Tarvainen & Valpola (2017). Moreover, we propose a computationally efficient
implicit stylization method, ImSty. Building on the concept of adaptive instance normalization
(AdalN)|Huang & Belongie| (2017) blocks, we incorporate AdaIN blocks into downstream tasks of
image classification and pose estimation where the mini-batch level statistics of source domain and
target domain are swapped. Our method avoids the need for explicitly training a generative model
and generating input data in the style of the target domain, saving significant amounts of inefficient
computations and training time.

We evaluate our proposed implicit stylization (ImSty) method on three pose estimation datasets with
different levels of domain gaps and achieve SOTA results on all three datasets (Appendix [A.4) while
completely removing the number of trainable parameters and reducing the number of computations
(MACs) by 99.99% for domain alignment compared against the explicit stylization used in |Kim et al.
(2022) (as shown in Figure E]) In addition, we experiment on MNIST Deng|(2012) — SVHN |Netzer
et al.| (2011), which is known for being notoriously difficult French et al.|(2017); Shu et al.|(2018);
Dai et al|(2020); Kumar et al.|(2018)) without specific data augmentations such as intensity flipping
and standardization. We show that with implicit stylization, we achieve SOTA results with minimal
data augmentation and no specific data augmentation to reflect real-world scenarios where it can be
costly and time consuming to find the right data augmentation that works for the target domain.

2 RELATED WORKS

Unsupervised Domain Adaptation (UDA) provides a suitable solution for data scarce domains. The
aim of UDA is to associate a given labeled source domain, with abundant data, to an unlabeled
target domain. Prevailing approaches for UDA often utilize adversarial learning methods|S & Fleuret
(2021); |Yang et al.| (2022); [Zhang & Davison|(2021)), pseudo-labeling methods Yan et al.; |Chu et al.
(2022); [Dubourvieux et al.|(2021));[Huang et al.| or both as a foundation. These methods allow for a
wide variety of focused implementations that provide reliable adaptation results.

Various attempts aim to remedy scarce source datasets with variations of domain adaptation (DA).
With the development of generative adversarial networks, GenDA, [Yang et al.| (2021) propose an
alternative approach to generative domain adaptation (GDA) applications. By freezing the parameters
of a pre-trained GAN, Yang et al.|(2021) reuse the prior information from the source GAN model



Published at ICLR 2023 Workshop on Domain Generalization

Explicit Stylization Implicit Stylization (Ours)
Ts @
'—* StyleNet —— z,_; S
Tt Ys 3
z 2
Ys B Tt
@ StyleNet —> 2
° Student § §
Tt c 9
z g8
> © >
EMA 3 3 £
P’}
g3
StyleNet —— Teacher | —> 2
=] Student Teacher EMA
(a) Explicit stylization in [Kim et al.| (2022) (b) Ours (Implicit stylization)

Figure 2: Comparison between explicit stylization and our proposed implicit stylization. Observe
that explicit stylization (left) pre-trains a stylization model (i.e. StyleNet or neural style transfer
model) before the downstream task. Then, the style transfer model is used to generate batches of
source domain images stylized in target domain, and target domain images stylized in source domain.
In comparison, our proposed implicit stylization method does not require any extra models (trainable
parameters) and only requires a small amount of computation for the statistics in equation

to adapt-to and generate new content in the target domain space. Moreover, a novel GDA approach
Zhou et al.| (2022)) improves generalizability and reduces gaps within the domain by leveraging neural
consistency in statistics to guide the generator, incorporating dual-level semantic consistency, while
proposing intra-domain spectrum mixup. In addition to alignment at the input level, methods involving
alignment at the feature level have been explored in numerous ways. One such pathway involves
methods centered around the use of divergence measures such as maximum mean discrepancy,
correlation alignment, contrastive domain discrepancy and Wasserstein Distance, which all share the
goal of minimizing domain discrepancy at the feature level(Chen et al.|(2020); Rozantsev et al.| (2018));
Kang et al.|(2019); [Liu et al.|(2020)). Furthermore, studies have also employed adversarial methods
Bousmalis et al.| (2017) generally comprising of three modules: a feature classifier, discriminator, and
label classifier.

Kim et al.|(2022) achieved SOTA results in unsupervised domain adaptation for 2D pose estimation
by unifying a framework that generalizes well on various poses with different levels of input and
output variance. To merge the gap between source and target domain, the authors proposed stylizing
the source images to target images for the student model, and stylizing the target images to the source
images for the teacher model. However, the explicit stylization requires one to train a stylization
model and generate new images every batch, causing computational inefficiency in training.

3 IMPLICIT STYLIZATION (IMSTY)

In this section, we develop a feature-level alignment method called the implicit stylization module
ImSty that replaces generative modeling (i.e. explicit stylization or generative models) in various
domain adaptation tasks. Our method does not require training an explicit stylization model or require
any additional trainable parameters.

Notation. Given a labeled pose dataset from the source domain S = {(z%,y$)} for i =
{1,2,...,N,} with N, pairs of images =, € R¥*W*3 and corresponding keypoint labels 3, €
RE*2_along with unlabeled pose dataset from the target domain T = {z¢} fori = {1,2,..., N;}
with N, images 2, € RT*Wx3 the goal is to generalize a model h to the target domain T based on
learning from a source domain S.

Now, we describe the details of our proposed implicit stylization method. The main idea if ImSty is to
incorporate the adaptive instance normalization block into the training pipeline to merge domain gaps
without having the need of a generative model with a full auto-encoder structure for pixel-to-pixel
generation. A mini-batch size of n < N and n < N, are sampled from both the source domain S
and target domain T. Given a set of source domain images X = {x!,22,... 2"} and a set of target
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Table 1: Digits classification results on MNIST — SVHN. It is well established from [French et al.
(2017) that MNIST — SVHN is much more challenging than SVHN — MNIST. In addition, the
results of many works vary greatly depending on a specific data augmentation. Since manually
searching for data augmentations that work for the target domain is costly and time-consuming,
we compare SOTA methods on minimal data augmentations. Observe that given minimal data
augmentations, our method achieves SOTA results on UDA digits classification without generative
methods. "SBADA-GAN®” indicates the reproduced values.

Method Accuracy  Generative
RevGrad (Ganin & Lempitsky|(2015) 35.7
DCRN |Ghifary et al.[(2016])) 40.1
G2A [Sankaranarayanan et al.| (2018)) 36.4 v
SE [French et al.|(2017) 37.5
ATT [Saito et al.| (2017) 52.8
SBADA-GAN*|Russo et al.|(2018) 47.9 +£1.7 N
SBADA-GANRusso et al.|(2018) 61.1 v
PFAN |Chen et al. (2019) 57.6 £ 1.8
DIRT-T|Shu et al.| (2018) 54.5
Ours (ImSty) 57.8 3.2

domain images X; = {z},z7,..., 27}, X, and X, are passed through a ResNet-101 He et al. (2016)
backbone R to obtain highly-semantic feature maps F; = R(X;) and F; = R(X;). Each channel
of C'in F, € RF'™>W'*C and F, € R¥'*W'%C are normalized to (0, 1) while keeping the mean
p € RY and standard deviation ¢ € R® of each channel used for the normalization for j € {s,t}:

N’;’ = Mean(Fj[:,:,i]), U;’ - STD(Fj[:v:vi])a Hj = [,u'jla,u'?, : -a,u'jc]v 0 = [0']1-,0'?,. . -ao—jc]

Fs — us F, —
s ,us’ Fnorm,t: t t

Os Ot

Fnorm 8 =

ey
Then, the mean and standard deviation from the opposite domain are utilized to reverse the normal-
ization in the following way building on the concept of AdaIN:

Foi = OK(Fnorm,s -0+ Mt) + (1 — Oé)FS

2
Ftﬁs = a<Fnorm,t c0s + Ms) + (1 - a)Ft )

F._,; and F, are passed to the student decoder Dy, that up-samples the feature maps to jj, € R *w>/
and §; € R"***J with height h, width w, and number of joints K. Then, F;_,, is passed to the
teacher decoder Dy, to generate pseudo-labels y;. Formally, we have:

Qs = Dstu(Fs—>t)7 e = Dslu(Ft); Yt = Dtea(Ft—>s) 3)

Mean-squared error (MSE) metric is used as the loss function for both supervised Ly, and unsuper-
vised Lynsup loss with a weighting factor A for the overall loss Lol

£sup = MSE(ys; Z)s), Lunsup = MSE(yta ?;t), Liotal = £sup + /\‘Cunsup “4)

Remaining details on the overall mean-teacher pipeline such as pseudo-label masking, normalization,
adaptive occlusions, data augmentations, and reverse augmentations can be found in Kim et al.| (2022)).
Refer to Figure [2] for a diagram of the comparison between explicit stylization and our proposed
implicit stylization method.

4 EXPERIMENTS

In this section, we begin to incrementally reveal the excessive nature of generative methods for UDA
by showing either on-par or better results on both image classification and pose estimation datasets
with close to zero additional computations and trainable parameters.

Main Results. In Table[2] we compare our implicit stylization model (ImSty) with SOTA models
for UDA pose estimation on three sets of 2D pose estimation datasets for domain adaptation. On
average over the three datasets, we achieve 0.4% improvements in PCK@0.05. Moreover, it is further
demonstrated in Table [3|that implicit stylization reduces the required computation by over 99.99%
and completely removes the number of trainable parameters needed for domain merging compared
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Table 2: Pose Estimation Comparison for hand pose, animal pose, and human pose estimation.
Our proposed ImSty method achieves SOTA results in pose estimation across three different domains
(hand pose, human pose, and animal pose). In hand pose and human pose we achieve the highest
accuracy while achieving competitive results in animal pose. In the table, the superscripts “P” and “R”
denote the published metrics (reported in the papers) and the reproduced values, respectively. For hand
pose estimation, MCP, PIP, DIP are acryonyms for metacarpophalangeal, proximal interphalangeal,
and distal interphalangeal respectively.

Rendered Hand Pose Dataset —Hand-3D-Studio

Method MCP PIP DIP Fingertip ~ All
CCSSLMu et al.|(2020) 81.5 79.9 74.4 64.0 75.1
UDA-Animal|L1 & Lee|(2021) | 82.3 79.6 72.3 61.5 74.1
RegDA Jiang et al.[(2021) 79.6 74.4 71.2 62.9 72.5
UniDAT [Kim et al.|(2022) | 86.7 84.6 78.9 68.1 79.6
UniDA fKim et al.|(2022) 87.1 85.1 79.3 68.5 79.9
Ours (ImSty) 87.6 85.5 78.9 68.7 80.1

Synthetic Animal Dataset — TigDog Dataset
Horse
Method Eye Chin Hoof Hip Knee Shd Elbow All
CCSSL|Mu et al.|(2020) 893 926 650 781 731 695 70.0 73.1
UDA-Animal|L1 & Lee|(2021) | 869 93.7 726 819 791 764 70.6 775
RegDA |Jiang et al.|(2021) 89.2 923 632 775 727 705 715 732
UniDAY Kim et al.|(2022) 913 925 666 742 770 740 758 764
UniDA® Kim et al.|(2022) 915 936 672 83 770 731 748 75.6
Ours (ImSty) 91.6 928 662 771 765 72,6 747 754

Tiger
Method Eye Chin Hoof Hip . Knee Shd  Elbow All

CCSSLMu et al.|(2020) 943 913 702 702 59.1 495 539 66.7
UDA-Animal|Li & Lee[(2021) | 984 872 734 749 620 494 498 677
RegDA [Jiang et al.|(2021) 933 928 60.7 678 554 503 502 618
UniDAY [Kim et al.|(2022) 985 969 728 637 628 562 523 679
UniDA* [Kim et al.|(2022) 983 970 721 717 622 534 530 67.1
Ours (ImSty) 977 963 721 725 613 529 522 669

SURREAL — Leeds Sports Pose

Method Shd Elbow Wrist  Hip Knee  Ankle All
CCSSLMu et al.|(2020) 36.8 66.3 63.9 59.6 67.3 70.4 60.7
UDA-Animal|Li & Lee|(2021) | 61.4 71.7 75.5 65.8 76.7 78.3 69.2
RegDA Jiang et al.[(2021) 62.7 76.7 71.1 81.0 80.3 75.3 74.6
UniDA?|Kim et al.|(2022) 69.2 84.9 83.3 85.5 84.7 84.3 82.0
UniDA [Kim et al.|(2022) 68.4 85.6 83.1 86.2 85.0 84.2 82.0
Ours (ImSty) 71.1 85.2 83.4 85.2 86.1 85.1 82.6

against the current SOTA UDA pose estimation Kim et al.|(2022)). In addition, Table E] demonstrates
the superior performance of our implicit stylization method in image classification compared to both
generative and non-generative methods given minimal data augmentations.

5 DISCUSSION

Domain alignment is an essential part of UDA, shifting the distribution of source and target domains
closer to each other. Given the necessity of domain alignment, it was unclear if the mean-teacher
scheme in pose estimation really needed input-level alignment via stylization and if image classifica-
tion needed generative modeling. By achieving SOTA results in both UDA for pose estimation and
image classification, we demonstrate that input-level alignment via generative methods and stylization
may not be necessary. The resulting impact reduces the work, time, and computational cost required
for the generative model by a significant margin. In addition, any instability caused by generative
adversarial networks can be avoided with implicit stylization. Finally, this opens doors for use of
domain adaptation in data scarce regimes.

Future Work. Although ImSty achieved SOTA performance on regression tasks, while significantly
reducing the amount of computation and trainable parameters (by replacing the input-level alignment
model with a new feature-level alignment module), the effect on image classification remains small.
This raises an interesting question about the role and limitations of domain alignment in the mean-
teacher training scheme for various machine learning tasks, which we aim to investigate next.
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A APPENDIX

A.1 SOCIETAL IMPACT STATEMENT

Our work questions the use of generative modeling and stylization which require large amount of
data and compute capabilities which has an adverse impact on the environment. As a result, our
work contributes towards sustainable machine learning. Moreover, by developing a technique that
does not rely on generative modeling or stylization, our work makes domain adaptation amenable for
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Table 3: Comparison of trainable parameters and computational costs (MACs) for merging
domain gaps. Our implicit stylization method requires no additional trainable parameters and
minimal computations to calculate feature-level statistics to merge the gap between source and target
domain. For fair comparison, all the methods use image resolution of 256 x 256.

Method Params. (M) MACs (G) Generative
SBADA-GAN Russo et al.[(2018)) 51.73 42.54 v
StyleNet|[Huang & Belongie| (2017) 3.51 63.11 v
RevGrad |Ganin & Lempitsky|(2015) 2.75 0.34
Ours (ImSty) 0.00 1.84e-3

data-scare regimes. That being said, since we investigate role of these techniques in the context of
computer vision, applications to surveillance by public or private entities raises privacy invasion and
human rights concerns. Privacy preserving machine learning offers a way to address these risks. At
the same time, there is a need develop legal protections for users, and regulations for organizations
utilizing their data.

A.2 EVALUATION METRICS

For 2D pose estimation, the standard metric is Percentage of Correct Keypoint (PCK). Following the
work of |Kim et al.| (2022) and |Li & Lee|(2021), all experiments are reported with PCK@0.05 that
measures the ratio of correct keypoints that are within 5% of the image resolution.

For image classification, we report on the overall accuracy without class balancing following recent
recommendations [French et al.[(2017);Shu et al.|(2018)); [Da1 et al.| (2020); [Kumar et al.| (2018)).

A.3 ABLATION STUDIES

The main goal of this work is to investigate the role of generative modeling/stylization for domain
alignment. From table 4] we see a clear distinction between the importance of stylization for
classification tasks versus pose estimation. Stylization applied to pose estimation offers lackluster
results as we see a maximum difference of only two percent between stylized and unstylized accuracy.
This suggests a need to revisit the role of domain alignment in the mean-teacher training scheme.
However, when applied to a classification task, the impact of stylization cannot be understated. When
applying ImSty to the MNIST — SVHN task, we see a considerable improvement of 19.8% against
the SOTA generative method increasing from 38.0% to 57.8%. This improvement demonstrates the
ability of ImSty to achieve theses results without any specific data augmentation.

A.4 DATASETS

We first evaluate our implicit stylization pipeline using three sets of commonly used UDA pose
estimation datasets to cover high variances in both input and output settings: Rendered Hand Pose
Dataset Zimmermann & Brox|(2017) — Hand-3D-Studio [Zhao et al.| (2020b)), SURREAL |Varol
et al. (2017) — Leeds Sports Pose Johnson & Everingham|(2010), and Synthetic Animal Dataset
Mu et al.|(2020) — TigDog Dataset Del Pero et al.|(2015). In addition, we evaluate a challenging set
of image classification datasets for UDA: MNIST Deng| (2012) — SVHN |Netzer et al.|(2011). Based
on multiple works [French et al.|(2017); |Shu et al.| (2018)); Dai et al.| (2020); Kumar et al.| (2018]),
it has been established that SVHN — MNIST is a much easier task where SOTA results are close
to supervised learning. However, MNIST — SVHN is a much more challenging task where the
common consensus is that each proposed method needs a specific data augmentation such as intensity
flipping or image standardization to achieve SOTA results. In the real-world setting, it can be time
consuming, non-trivial, and not guaranteed to find a data augmentation that works for a particular
dataset. Therefore, it is our goal to demonstrate that implicit stylization works without specific data
augmentation. Our method trains with only minimal amount of data augmentations.
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Table 4: Role of stylization in pose estimation vs classification. Observe the minimal difference
between pose estimation accuracy with and without stylization. This small difference is apparent
across all pose estimation tasks questioning the role of domain alignment in pose estimation. However,
for MNIST — SVHN ImSty far outperforms our baseline without stylization highlighting the
importance of domain alignment.

Rendered Hand Pose Dataset —Hand-3D-Studio
Method | UniDA w.o. Stylization Ours (ImSty)

MCP 86.5£0.5 87.1£ 0.6
PIP 8524+ 0.6 85.4 £ 0.2
DIP 78.1 £ 04 78.8 £ 0.2

Fingertip 66.6 £0.3 68.4 + 0.3
All 79.1 £04 80.0 + 0.1

Synthetic Animal Dataset — TigDog Dataset

Horse

Method UniDA w.o. Stylization Ours (ImSty)
Eye 89.8 £0.5 90.9 + 1.2
Chin 92.8 + 0.2 92.7+0.2
Hoof 67.5 + 0.7 65.5+ 0.6
Hip 77.6 + 0.9 756 £ 1.5
Knee 76.3 + 0.8 75.7+0.8
Shoulder 722 +£1.1 71.6 £1.2
Elbow 724+ 1.0 73.9 + 0.7
All 75.5+ 04 75.2+0.2

Tiger

Method UniDA w.o. Stylization  Ours (ImSty)
Eye 972+ 10 973+ 0.5
Chin 95.6 £0.2 96.1 + 0.2
Hoof 70.7 £ 0.8 71.2 +1.2
Hip 72.7 + 2.6 715 £ 1.1
Knee 61.1 + 0.3 60.6 + 0.8
Shoulder 49.2 £0.8 51.8 + 0.9
Elbow 51.0 + 1.7 508 £ 1.5
All 66.3 + 0.8 66.5 + 0.8

SURREAL — Leeds Sports Pose
Method | UniDA w.o. Stylization Ours (ImSty)

Shoulder 663+ 1.3 67.9 + 3.1
Elbow 83.1£1.38 845+ 1.2
Wrist 80.7 £ 1.8 824 +1.3

Hip 84.8 +0.3 84.9 + 0.2
Knee 83.4£0.8 85.0 +1.1
Ankle 83.1+1.3 84.4 + 0.9

All 80.2 £ 0.7 81.5+1.2

MNIST — SVHN

Method Ours w.o. stylization ~ Ours (ImSty)
All 38.0£40 57.8 £33
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A.5 IMPLEMENTATION AND REPRODUCIBILITY DETAILS

The implementation is done with PyTorch with three random seeds 22, 42, and 102. Following
the work of [Kim et al.| (2022) we use the following data augmentations. Code is attached for
reproducibility.

Human Pose Data Augmentation. Random data augmentations used: 60 degree rotations, shear
(-30, 30), translations (0.05, 0.05), scaling (0.6, 1.3), and 0.25 contrast.

Hand Pose Data Augmentation. Random data augmentations used: 180 degree rotations, shear (-30,
30), translations (0.05, 0.05), scaling (0.6, 1.3), and 0.25 contrast.

Animal Pose Data Augmentation. Random data augmentations used: 60 degree rotations, shear
(-30, 30), translations (0.05, 0.05), scaling (0.6, 1.3), and 0.25 contrast.

Digits Data Augmentation. Random data augmentations used: rotations, translations, scaling, adjust
brightness, adjust contrast.

Learning parameters. For all pose estimation tasks, Adam with base learning rate of 1e~* and
learning rate decay of 0.1 at 45 and 60 epochs is chosen as the optimizer for training. For digits
classification task, Adam with base learning rate of 1e 2 is chosen as the optimizer for training.

Pre-training. With pose estimation, source-only training is done for 40 epochs and 1 epoch for digits
classification.

Compute Infrastructure. A batch size of 32 for pose estimation and 64 digits classification is fed to
a single NVIDIA A100 GPU for accelerated training with AMD Milan 7413 CPU available via the
shared high performance computing infrastructure.

Hyperparameters. With pose estimation, standard ResNet-101 is used as the backbone and three
blocks of upsampling blocks with 256 channels (comprised of 2D transpose convolution, 2D batch
norm, ReLU) are used in the decoder. The whole network is trained for 70 epochs.

With digits classification, standard LeNet-5 is used for the backbone and two linear blocks (Linear(500
units), ReLU, Linear(10 units)) are used as a classification head. The whole network is trained for
300 epochs.
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