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SHOP-R1: REWARDING LLMS TO SIMULATE HUMAN
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Figure 1: Overview of the proposed reinforcement learning framework, Shop-R1, designed to simulate
real human behaviors in web-based shopping environments. Given an action history aq. ;—1 with
corresponding website observations c;. ¢—1, the model predicts the next action a; and its rationale r;
based on the history and the latest website observation ¢;. The generated responses are evaluated
from four perspectives: format correctness, self-certainty of the rationale, action type accuracy, and
sub-action (attribute and value) accuracy.

ABSTRACT

Large Language Models (LLMs) have recently demonstrated strong potential in
generating ‘believable human-like’ behavior in web environments. Prior work
has explored augmenting training data with LLM-synthesized rationales and ap-
plying supervised fine-tuning (SFT) to enhance reasoning ability, which in turn
can improve downstream action prediction. However, the performance of such
approaches remains inherently bounded by the reasoning capabilities of the model
used to generate the rationales. In this paper, we introduce Shop-RI, a novel
reinforcement learning (RL) framework aimed at enhancing the reasoning ability
of LLM:s for simulation of real human behavior in online shopping environments.
Specifically, Shop-R1 decomposes the human behavior simulation task into two
stages: rationale generation and action prediction, each guided by distinct reward
signals. For rationale generation, we leverage internal model signals (e.g., logit
distributions) to guide the reasoning process in a self-supervised manner. For
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action prediction, we propose a hierarchical reward structure with difficulty-aware
scaling to prevent reward hacking and enable fine-grained reward assignment. This
design evaluates both high-level action types and the correctness of fine-grained
sub-action details (attributes and values), rewarding outputs proportionally to their
difficulty. Experimental results show that our method achieves a relative improve-
ment of over 65% compared to the baseline. The project page is available at
https://damon-demon.github.io/shop-r1.html.

1 INTRODUCTION

Large Language Models (LLMs) have shown remarkable performance in planning, reasoning, and
decision-making tasks (Yao et al., 2023; Jin et al., 2025; Huang et al., 2024; Xu et al., 2025; Zhang
et al., 2024b; Sun et al., 2025; Li et al., 2024; Gu et al., 2024; Jia et al., 2024; Zhang et al., 2024c;
Chen et al., 2025b; Kong et al., 2025; Zhang et al., 2025). Recently, researchers have begun leveraging
LLMs to simulate human behaviors in web-based environments, aiming to generate realistic, user-like
action sequences on digital services (Chen et al., 2025a; Lu et al., 2025¢e; Wang et al., 2025a). This
capability has promising applications across domains such as e-commerce (Kasuga & Yonetani, 2024;
Khatuya et al., 2025), education (Yao et al., 2021), and social computing (Pan et al., 2006). Despite
these advances, current LLLM agents often fall short in producing behaviors that align with real
humans. The most straightforward baseline is zero-shot prompting (Kong et al., 2023), where models
are given textual instructions to imitate certain user types and output action sequences in a predefined
format. While simple to implement, this method lacks the personalization and adaptability needed
for high-fidelity behavior modeling (Lu et al., 2025a). To improve behavioral accuracy and reasoning
coherence, recent work such as (Lu et al., 2025a) has introduced synthetic training data augmentation.
Specifically, they use Claude 3.5 Sonnet (Anthropic, 2024) to generate rationales to create (context,
action, rationale) triplets. These triplets are then used to perform supervised fine-tuning (SFT),
enabling the model to learn both the actions and their underlying rationales. However, this approach
faces the key limitations: the quality and diversity of rationales are ultimately constrained by the
LLM used during data generation.

Since RL offers a flexible and effective training paradigm, particularly suited for settings with sparse
and delayed feedback, and allows for fine-grained control over behavioral outputs (Kaufmann et al.,
2024; Rafailov et al., 2023; Mu et al., 2024; Bai et al., 2022; Glaese et al., 2022), we utilize RL
for simulating human shopping behavior, in contrast to prior work that focuses primarily on task
completion (Lin et al., 2022; Zhou et al., 2023; Dong et al., 2025), where the user goal is clearly
specified. In this work, we propose Shop-R1, a novel RL framework with hierarchical reward scheme
designed to enhance LLMs for simulation of human online shopping behaviors. As shown in Fig. 1,
Shop-R1 decomposes the human behavior simulation task into two stages: (1) rationale generation
and (2) action prediction, with tailored reward signals for each component, since reasoning before
action prediction has been shown to improve performance (Zhang et al., 2024a). For the reward
design, we begin by introducing a binary format reward that encourages the model to produce
responses in a parse-friendly structure, thereby facilitating reliable downstream evaluation and reward
computation. Specifically, the model receives a non-zero reward only when its output conforms to
the expected format; otherwise, it is penalized with zero reward. A more detailed discussion on the
choice between zero and negative rewards is provided in Appx. A. For rationale generation, acquiring
ground-truth rationales is inherently difficult. Although efforts like OPeRA (Wang et al., 2025c¢)
attempt to collect self-reported rationales from real users, such annotations may omit implicit or
unconscious decision factors. To address this, we incorporate a self-certainty reward (Kang et al.,
2025; Zhao et al., 2025), quantified via the average Kullback—Leibler (KL) divergence (Csiszar,
1975) between the model’s output distribution and a uniform distribution. This signal captures the
model’s confidence in its generated rationales, providing a supervision-free alternative to ground-truth
rationales that contributes to training stability. For action prediction, we go beyond binary reward
signals by introducing a hierarchical reward scheme that accounts for both action type and sub-action
correctness. This design allows the agent to receive partial credit for plausible but imperfect behaviors,
promoting smoother and more robust learning. Furthermore, to mitigate reward hacking and reflect
the varying difficulty of different actions, we apply a difficulty-aware reward scaling strategy that
adjusts the reward magnitude based on action complexity. Our main contributions are summarized
as follows:


https://damon-demon.github.io/shop-r1.html

Published as a conference paper at ICLR 2026

* To the best of our knowledge, we are the first to introduce RL into a simulation-oriented
human behavior modeling task in web-shopping environments. We reformulate human
online shopping behavior simulation as a two-stage prediction problem, comprising rationale
generation and action prediction, and design distinct RL objectives for each.

* We introduce Shop-R1, a reinforcement-learning framework with a hybrid reward design. It
integrates a self-certainty signal for rationale generation with a hierarchical reward scheme
for action prediction. To ensure stable learning and prevent reward hacking, we further
introduce a format reward and a difficulty-aware reward scaling mechanism.

» Experiments show that our proposed training pipeline achieves an exact match accuracy
of 27.72%, outperforming supervised fine-tuning (16.76%) by over 65%, demonstrating
the strong effectiveness of our approach in simulation-oriented human shopping behavior
modeling. We further conduct a comprehensive ablation study to evaluate the contribution
of each component in our design.

2 RELATED WORK

LLM for human behavior simulation. Large Language Models (LLMs) have emerged as powerful
tools to simulate human behaviors in diverse real-world settings. Recent advances have led to the
development of agent systems capable of generating plausible user actions based on static personas
and interaction histories, enabling the modeling of behavior in contexts such as social science (Park
et al., 2023a; 2024), recommender systems (Wang et al., 2023), e-commerce (Wang et al., 2025d),
and user experience research (Lu et al., 2025d). These systems typically condition on user profiles
(e.g., preferences, demographics) and session histories (e.g., clickstreams, task sequences) to predict
the next likely user action, allowing for personalized and context-aware simulations. Beyond
behavior prediction, recent efforts have enriched these simulations by incorporating explicit reasoning
processes. Methods like ReAct (Yao et al., 2023) and reflection-based models (Shinn et al., 2023;
Park et al., 2023b) prompt LLMs to produce intermediate thought traces before action generation,
enhancing interpretability and decision quality. Systems such as WebAgent (Gur et al., 2023) and
UX-Agent (Lu et al., 2025d) further decompose tasks into sub-goals using dedicated reasoning
models, yielding improved control in complex environments like web interfaces. A parallel line of
research explores agent-based LLM frameworks that simulate multi-agent interactions in dynamic
environments (Ma et al., 2024; Wang et al., 2025b; OpenAl, 2025). These systems often adopt
modular roles (e.g., planners, executors) and collaborative reasoning (Qian et al., 2024; Luo et al.,
2024), offering insights into emergent social behaviors and teamwork dynamics. Despite recent
advances, there remains a significant gap in exploring how RL can be leveraged to further enhance
the simulation of human behavior using LLMs, particularly in the context of web-based shopping
environments.

Reward design for RL. Reward design plays a central role in the effectiveness and generalization of
RL algorithms, particularly in the context of aligning LLMs with desired behaviors. The prominent
paradigm is Reinforcement Learning from Human Feedback (RLHF), which has been widely adopted
to fine-tune LLMs using reward models trained on human preference data (Ouyang et al., 2022).
While RLHF has demonstrated strong alignment capabilities, it is often bottlenecked by the high cost
and limited scalability of collecting reliable human annotations (Touvron et al., 2023). Moreover,
reward models themselves can introduce alignment biases and inaccuracies, especially when trained
on limited or noisy preference comparisons (Gao et al., 2023). To alleviate these limitations, Direct
Preference Optimization (DPO) (Rafailov et al., 2023) proposes a more efficient alternative that
directly optimizes model parameters against human preference signals without an explicit reward
model. Though computationally lighter, DPO and its variants still depend on the availability and
quality of human-generated or approximated preference data, which can be inconsistent across
tasks and domains. A complementary direction has emerged through Reinforcement Learning with
Verifiable Rewards (RLVR), particularly suited for domains with deterministic correctness criteria
such as code generation and mathematical reasoning (Guo et al., 2025; Su et al., 2025). RLVR
frameworks employ rule-based verifiers to automatically compute reward signals based on strict
correctness (e.g., exact string matching or functional equivalence) bypassing the need for human
feedback. This shift toward automated objective reward functions has enabled the training of highly
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capable models such as DeepSeek-R1 (Guo et al., 2025) and inspired new policy optimization
methods such as GRPO (Shao et al., 2024) and its recent extensions (Yu et al., 2025; Liu et al., 2025).
Despite these advances, reward design remains a fundamental challenge in RL for human behaviors.
RLHF offers flexibility for modeling subjective tasks, but often suffers from scalability and reliability
issues (Alsagheer et al., 2025; Lee et al., 2023; Casper et al., 2023; Moskovitz et al., 2023). In
contrast, RLVR provides high precision by relying on clearly defined evaluation criteria, but is limited
to tasks where such criteria exist (Su et al., 2025; Mroueh, 2025; Wen et al., 2025; Lu et al., 2025c¢).
To address the unique challenges of simulating human online shopping behavior, we propose a hybrid
reward framework specifically tailored to this domain. For rationale generation, the framework
leverages internal model signals to compensate for the absence of ground-truth rationales in natural
settings. For action prediction, it adopts a hierarchical reward structure with difficulty-aware scaling,
which mitigates reward hacking and alleviates the inefficiency caused by prolonged zero-reward
feedback.

3 METHODOLOGY

In this section, we first formulate the problem of human behavior simulation in the context of
web-based shopping. We then present the design of our proposed RL framework, Shop-R1, tailored
specifically for simulating human behavior in this setting. Although user persona and explicit
intention can influence human behavior, such information is neither collected nor observable in
real-world e-commerce logs, nor can it be reliably reconstructed from HTML content or clickstream
sequences. Crucially, the objective of our task is not to infer latent psychological states, but to
model how real users behave given the same observable environment. Since human behavior is
inherently non-deterministic, the goal is not to predict a single “correct” action; rather, it is to learn
the distributional tendencies that characterize real user decision-making.

Problem statement. In the context of web shopping, a user session is composed of a sequence
product purchase or a termination action (e.g., closing the browser). Following the setup of (Lu
et al., 2025b), the action space comprises three primary action types: ‘type_and_submit’, ‘click’, and
‘terminate’. More details about the action space can be found in Appx. B. Each action a; is paired
with a corresponding rationale r;, which captures the user’s underlying motivation or rationale at that
time step. The model also receives contextual information, i.e., the observation space, representing
the current state of the web environment. This context is encoded as a simplified HTML structure,
as introduced in (Lu et al., 2025¢), which preserves essential layout and content elements while
discarding non-informative components such as scripts and styles. The task of human online shopping
behavior simulation is formally defined as learning a function f that predicts the next rationale r; and
action a4, given the cumulative context ¢; . ; and action history a; ;—1:

flei t,a1.0-1) = 14, a4, Y]
where f denotes the model trained to simulate user behavior by generating the next-step rationale
r¢ and action a; conditioned on the past context c; 41, the corresponding past actions a;. ;—1,
and the current context c;. Thus, the model must jointly (a) understand the dynamic structure
of the current web page, (b) integrate long-horizon action history, and (c) reason about the next
plausible human action. This combination leads to long-horizon sequences and high-entropy free-
form text predictions, making the task substantially more challenging than typical WebArena-style
task-completion settings (Zhou et al., 2023). During the supervised fine-tuning stage, the rationales
in training data are generated using LLMs and serve as supervision signals for a cold start. Need to
note that no LLM-generated rationales are used during the subsequent RL stage.

Cold start with SFT. Following the approach of (Guo et al., 2025), we initialize the behavior simula-
tion model f through supervised fine-tuning (SFT) on annotated trajectories, where each rationale
is generated by Claude 3.5 Sonnet (Anthropic, 2024) via Amazon Bedrock, without leveraging any
user profile information. This SFT phase acts as a cold start for subsequent RL, grounding the model
in realistic rationale and action patterns. During this phase, the model is trained to jointly generate
rationales and corresponding actions. The training objective is to maximize the likelihood of the

ground truth rationale-action pairs, conditioned on the the input query ¢ = c¢1..¢,01.. ¢—1,71...t—1:
N

Ly = — Zlogp(rt, Qy | qt)a ()

t=1
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This supervised initialization plays a crucial role in helping the model internalize the structural
dependencies among context, rationale, and action early in the training pipeline. By grounding the
model in these patterns upfront, we significantly enhance both the stability and sample efficiency
of subsequent RL stages. More importantly, it provides an explicit signal for what constitutes a
high-quality long-text output, such as correctly naming a clicked button or specifying a meaningful
search query. These capabilities that are otherwise difficult to acquire solely through RL, especially
given the sparse and delayed reward structure.

Shop-R1. To better guide policy optimization in the human behavior simulation setting, we de-
compose each step into two sub-tasks: rationale generation and action prediction. Each sub-task
is assigned a tailored reward to improve alignment and interpretability. To ensure the ease and
correctness of parsing predicted rationales and actions from model outputs, we introduce a binary
format reward, which encourages the model to produce responses in a structured JSON format. This
format adheres to a dictionary schema with two keys: rationale and action. For rationale generation,
we employ a self-certainty score (Kang et al., 2025; Zhao et al., 2025), which quantifies the model’s
confidence in its generated rationale. Specifically, we compute the KL divergence between the
model’s predictive distribution over the vocabulary and a uniform distribution, averaged over the
entire output sequence:

N V|

s(re | ge) N‘V‘ ZZp” log (qu) 3)

j=11:=1

where N is the number of tokens in the generated rationale 7y, p;; is the predicted probability of
token ¢ at position j, and U; = ﬁ is the uniform distribution over the vocabulary V. Higher values

of s(+) indicate greater certainty and consistency in the model’s reasoning.

Table 1: Hierarchical reward schedule with Difficulty- Aware Reward Scaling (DARS). A response
earns a format reward of 0.5 if it is in a valid JSON format; otherwise, it gains no format reward. A
valid response can further gain partial credit for (i) the correct action type, (ii) the presence of the
required sub-action attribute, and (iii) any long-text value prediction, whose reward equals the DARS
factor multiplied by its ROUGE-L similarity to the ground truth.

Action Type | Type Reward Sub-action Attribute Reward Text-Similarity Value Reward
terminate 0.3 None None
click 0.3 +0.2 (if name # @) +DARS x ROUGE-L(name)
type_and_submit 0.3 +0.1 (if name # @) +0.1 (if text # @)  +0.1 x ROUGE-L(name) +DARS x ROUGE-L(text)

For action prediction, we replace the brittle binary signal with a hierarchical reward scheme that
credits both the coarse-grained action type and its fine-grained sub-actions to stabilize training
and discourage degenerate reward hacked policies. This hierarchical scheme densifies the reward
landscape: it expands the set of profitable trajectories, lifts the agent out of the ‘no-reward’ plateau
that typically stalls policy search, and makes reward hacking uneconomical. Concretely, every action,
easy or hard, earns the same coarse-level reward once its high-level type is correct; only the more
complex actions can unlock additional gains through their long-text sub-components. As a result,
naively spamming the trivial ‘terminate’ action no longer yields a competitive payoff, while executing
the full (‘click’, ‘type_and_submit’) sequence becomes the most lucrative strategy. Concretely, a
‘click’ action containing a sub-action, specifying the button name to be clicked; partial rewards are
granted for the correctly predicted components. Likewise, ‘type_and_submit’ contains sub-action,
providing the intended textual content. In contrast, ‘ferminate’ has no sub-actions and is scored only
at the action-type level. Prediction accuracy is measured with task-specific metrics: discrete action
types use an exact-match criterion, whereas free-form sub-actions are evaluated with ROUGE-L. A
text-based sub-action, such as a button label or search query, earns a soft reward proportional to its
ROUGE-L similarity to the ground truth, but only when that similarity exceeds a preset threshold
(e.g., 0.75). Because long-text sub-actions are substantially harder, where modern webpages can
expose thousands of candidate elements, we introduce a difficulty-aware reward scaling (DARS)
factor that amplifies rewards for correctly predicting these components. This prevents reward hacking
behaviors in which the agent repeatedly selects the trivial ‘ferminate’ action to secure easy points.
The proposed hierarchical reward scheme is summarized in Tab. 1. Bringing these components
together, the objective of Shop-RIis to maximize the combined reward signal derived from multiple
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sources, while regularizing with a KL divergence to a reference policy:

max By omy (q) [v(a) + as(r) + =BKL (mo(r,a | @) | mer(r, a | ¢))], Q)

where 7. denotes a fixed reference policy, v(a;) denotes the reward for action prediction and «
and J are hyperparameters that control the strength of the corresponding regularization terms. Need
to note that because the action space used in our paper reflects general interaction patterns in Web
GUISs, the proposed reward design can naturally generalize to different webpages and even to other
simulation-oriented tasks involving Web GUI interactions. Importantly, the reward weights are not
tuned for specific pages or environments. They function only as normalization constants to balance
reward magnitudes, prevent trivial solutions (e.g., repeatedly predicting terminate), and ensure stable
optimization rather than encoding task-specific biases.

4 EXPERIMENTS

4.1 EXPERIMENT SETUPS

Datasets and models. Our study is built on S-CART dataset consisting of a corpus of 52,137
real-world shopping sessions collected from a leading global e—commerce service (Lu et al., 2025b).
Each session logs the multi-turn interaction between a human customer and the website interface.
More dataset details can be found in Appx. C. We enrich each recorded action with a natural language
rationale automatically generated by Claude 3.5 Sonnet (see Appx. D for the prompting details).
The provided observation context is formatted as simplified HTML (Lu et al., 2025¢), which retains
essential structural elements while filtering out irrelevant content such as scripts, styling information,
and user-specific data. For SFT dataset, we keep each session intact. The model is asked to produce
the assistant response, which contains both the rationales and the structured action prediction. For
RL dataset, we convert a session into a sequence of <context, action> pairs. The context is the
concatenation of (i) all previously observed contexts and (ii) the actions already taken; the target is
the next action only. Because every session begins on the home page, there is always at least one
observed <context, action> pair before the first prediction step, eliminating the open-world ambiguity
of the very first move. To provide the model with slightly richer supervision on the harder behaviors,
the two complex actions (click and type_and_submit) each occur about 10% more frequently than the
simple ferminate action. This mild skew prevents the learner from over-fitting to the trivial case while
still maintaining near-uniform coverage, thereby supporting fair and informative per-class evaluation.
All experiments fine-tune the publicly available Qwen-2.5-3B-Instruct model. The default
3B parameter backbone offers a favourable compute—performance trade-off.

Baselines for comparison. We evaluate our approach against several baseline schemes: (a) Zero-
shot prompting, where the model generates outputs based solely on instruction prompts without
additional training; (b) RL (Binary), where the base model is optimized directly with RL, using only
a sparse binary reward signal; (c) SFT-only, where the model is trained via supervised fine-tuning on
data with LLM-generated rationales; (d) SFT + RL (Binary), which extends SFT with reinforcement
learning using a binary reward based on exact action match; and (e) Shop-R1, our proposed RL
framework with hybrid reward design for the simulation-oriented human behavior modeling task.

Training setups. Our codebase is built on verl (Sheng et al., 2024), and all experiments were
conducted on NVIDIA A100 GPUs (80 GB). We leveraged Fully Sharded Data Parallelism (FSDP)
in PyTorch (Zhao et al., 2023) to maximize training efficiency. The default policy optimization
algorithm is Group Relative Policy Optimization (GRPO) (Shao et al., 2024). Input sequences were
padded or truncated to a maximum context length of 32k tokens, and the default sampling temperature
is 0.6. We set the per-device batch size to 1, yielding a global batch size of 64. For supervised
fine-tuning (SFT) we trained for 4 epochs with a learning rate of 2 x 10~?; for reinforcement learning
(RL) we trained for 500 steps with a learning rate of 1 x 10~7. By default, we set the DARS factor to
1000, and use « = 0.005 and 3 = 0.001 to weight the corresponding reward terms.

Evaluation metrics. We apply an exact match criterion for the accuracy evaluation of predicted user
actions. A prediction is deemed correct only when every relevant component exactly matches the
ground truth. For instance, in the case of ‘click’ actions, both the specific subtype (such as clicking
on a filter, search area, or another UI element) and the selected target must align with the true label.
Similarly, for ‘type_and_submit’ actions, the model should reproduce the similar meaning of input
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text. Additionally, We report accuracy and F1 on the coarse-grained action type alone. Comparing
these scores with exact-match accuracy highlights whether residual errors stem from misclassifying
the high-level action type or from mistakes in the fine-grained label (button name or query text).

4.2 EXPERIMENTAL RESULTS

Performance comparison with baselines. Main performance comparison results are shown in
Tab. 2. Firstly, zero-shot prompting yields low performance: without any task-specific adaptation
Qwen-2.5-3B-Instruct achieves only 0.32% exact-action accuracy, confirming that long-horizon web
behavior cannot be recovered from generic instruction tuning alone. Second, RL with sparse binary
rewards on their own still fail to give the agent meaningful guidance. When we train the policy
from scratch under this signal, it reaches only 1.01% exact-match action accuracy and 6.17% type
accuracy. Third, a straightforward round of SFT is more effective, boosting performance to 16.76%
exact match accuracy and 22.25% type accuracy. This confirms that dense, teacher-forced trajectories
are crucial for injecting the structural knowledge (context — rationale — action) and illustrating
the shape of the long-text fields (button labels or search queries) that the binary signal alone cannot
convey. Fourth, appending an additional binary-reward RL phase after SFT delivers only mixed
results: exact-match action accuracy actually slips to 16.55%, while type-level F1 rises to 28.07%.
The agent thus learns to guess the coarse intent better, but it still struggles to reproduce the long-text
values that drive the exact-match metric. In other words, the policy becomes better at guessing
the coarse action type, but slightly worse at reproducing the fine-grained, long-text values required
for an exact match.
Lacking finer-grained
credit assignment,
the binary objective
cannot push the model
beyond what SFT
already achieves and

Table 2: Simulation accuracy under different fine-tuning methods across
models of different sizes. There are three complementary metrics: exact
action accuracy (all sub-fields must match the label); action type accuracy,
and action type F1 to disentangle mistakes in coarse intent classification
from those in long-text arguments.

. . Exact Action Action e
in some respects even Model | Settings | A A Ty[})q
pulls it backwards. | | e e

Training with this ob- Zero-shot prompting 0.32% 1533% 16.15%
jective is furthermore ~ Qwen-2.5-3B-Instruct EPET(Bmary) 1160716%0 262'1275‘@ 294952;2
prone to instability SFT + RL (Binary) 16.55% 23.74%  28.07%
and converges sub- Shop-R1 (Ours) 27.72% 36.40% 31.28%
stantially more slowly Zero-shot prompting | 0.53% 3.94%  6.16%
than optimization with Qwen-2.5-1.5B-Instruct | SFT 10.86% 23.58%  29.02%
richer, structured re- Shop-R1 (Ours) 24.11% 34.54%  29.19%
wards. Our proposed Zero-shot prompting 6.76% 12.88%  15.55%
Shop-R1 framework  Qwen-2.5-0.5B-Instruct | SFT 9.90% 17.72%  21.61%
closes most of this Shop-R1 (Ours) 27.72% 31.83% 21.20%

gap. By combining

hierarchical rewards, self-certainty signals, format rewards and difficulty-aware scaling, it delivers
27.72% exact-action accuracy (+65% relative to SFT) and pushes action-type accuracy and F1
to 36.40% and 31.28%, respectively. The simultaneous rise of both the coarse (type-level) and
fine-grained (exact-match) metrics indicates that Shop-R1 not only identifies the correct intent more
often, but also reproduces the long-text values (button labels, text queries) with higher fidelity. More
performance comparison results on OPeRA dataset (Wang et al., 2025¢) can be found in Appx. E.

As shown in Tab. 3, we decompose accuracy by action type. Zero-shot prompting shows the classic
“intent—content” split. For example, it can guess that a ‘click’ is needed (38.7% type accuracy) yet
almost never names the exact Ul target (0.58 % exact). Even if SFT can boost the performance but the
gain remains uneven, which suggests that teacher forcing alone does not give the model enough credit
assignment signal for predicting high-entropy arguments such as search queries. Appending a sparse
binary RL phase after SFT still fails to boost these harder text-generation cases. Shop-R1 reshapes
those incentives, higher exact match accuracy is achieved, indicating that the model is no longer
satisfied with merely selecting correct type but is learning to identify the correct widget and query text
as well. To be summarized, dense and structured feedback is essential: it overcomes the no-reward
plateau, and makes reward hacking uneconomical.
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Table 3: Exact action accuracy and action type accuracy for each action type: ‘click’,
‘type_and_submit’, and ‘terminate’, across different models and finetuning methods.

Models \ Settings | Exact Action Acc. Per Action Type | Action Type Acc. Per Action Type

\ click  type_and_submit  terminate \ click type_and_submit  terminate

Zero-shot prompting | 0.58% 0.15% 0.00% 38.7% 1.62% 0.00%

Qwen-2.5-3B-Instruct SFT 4.93% 3.84% 49.80% 8.55% 15.36% 49.80%
’ SFT + RL (Binary) 8.12% 3.25% 4551% | 17.25% 13.88% 45.51%
Shop-R1 (Ours) 7.39% 7.53% 81.84% | 10.29% 28.66% 81.84%

Zero-shot prompting | 1.01% 0.15% 0.39% 10.00% 0.44% 0.39%

Qwen-2.5-1.5B-Instruct | SFT 4.49% 7.83% 23.44% | 15.07% 32.35% 23.44%
Shop-R1 (Ours) 3.62% 8.12% 72.85% 6.52% 34.12% 72.85%

Zero-shot prompting | 0.43% 0.15% 24.02% 12.90% 4.43% 24.02%

Qwen-2.5-0.5B-Instruct | SFT 3.19% 7.68% 21.88% 5.94% 26.59% 21.88%
Shop-R1 (Ours) 0.72% 3.99% 97.07% 1.01% 17.87% 97.07%

4.3 ABLATION STUDY AND ANALYSIS

Model size. Tab. 2 and Tab. 3 reveal a consistent scaling trend. In the zero-shot regime, the 3B
backbone already outperforms its 1.5B and 0.5B counterparts by a factor of x4 ~ 5 on coarse
action—type accuracy, confirming that larger models possess stronger out-of-the-box priors for
human behavior simulation at the setting of website shopping. After SFT, all sizes gain, yet the
improvement is more pronounced for the two smaller backbones than for the 3B model, suggesting
that demonstration learning compensates for limited capacity. Shop-R1 lifts every backbone to its
best operating point, but the shape of the gains differs by scale. The 3B variant reaches the highest
overall numbers while distributing its improvements evenly across the two complicated action types.
By contrast, the 0.5B model achieves a comparable headline exact match accuracy (27.72%) almost
entirely by over-predicting the easiest ‘terminate’ action (97.07% exact) and largely ignoring the more
semantically demanding classes. The 1.5B backbone sits in between, recovering moderate fidelity on
‘click’ and ‘type_and_submit’ while retaining a strong but not overwhelming bias toward ‘tferminate’.
In short, scaling primarily augments the model’s ability to handle long-text, high-entropy actions;
smaller networks can still match aggregate accuracy by exploiting the high-reward termination branch,
but they do so at the cost of behavioral diversity. These findings underscore that, although Shop-
R1 markedly mitigates capacity limitations, genuine mastery of simulation-oriented web-shopping
action prediction tasks continues to benefit from larger backbones.

Sampling temperature. Fig. 2 shows that Shop-R1 is 38
robust to sampling temperature, yet the three evalu- 3640 36,30

ation metrics react in distinct ways that reveal how 36 WZ
temperature sampling propagates through the decision
hierarchy. Action-type accuracy remains almost con-
stant (36%) across the entire temperature sweep be-
cause this metric aggregates all predictions: small mis-
classifications in one direction are largely offset by
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fixes in another, leaving the overall hit rate unchanged. * 3° 2025 291 5905 -
By contrast, the F1 score declines steadily (31.28% — 2836
28.36%) as temperature rises; class-averaging penalizes 28] o= % w4 g, e 2058
any asymmetric increase in confusion. Interestingly,

a modest boost from the default 7 = 0.6 to 7 = 0.7 0% 07 08 09 1o 11 12
improves exact-match accuracy to its peak of 28.63%: Temperature (1)

a trace of stochasticity helps the generated response es-
cape local maxima and occasionally assemble the full
long-text argument that greedy decoding would miss.
When 7 > 0.8 the added entropy no longer uncovers new correct completions; instead it corrupts
fine-grained fields faster than it fixes them, so exact-match plateaus while F1 continues to erode.
This pattern is expected since the SFT stage already anchors the model to dataset-specific behavior,
privileging faithful simulation over creativity. Taken together, these trends indicate that temperatures
in the 0.6-0.8 band offer the best trade-off, preserving robust intent classification, maximizing strict
exact-match, and avoiding the metric degradation that emerges once the sampler becomes overly
exploratory.

Figure 2: Sampling temperature ablation
study.

Training component. Tab. 4 makes clear that every element of Shop-R1 addresses a different
pathology. Removing the SFT warm-start cripples the agent: despite having all RL signals, exact-
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Table 4: Ablation study on different training component configurations, evaluated by exact match
action accuracy and action type accuracy / F1.

Model | Training Scheme Components | Exact Action Action Type

\ SFT Format Reward Rationale Reward Reward Scale  Action Reward \ Acc. Acc. F1
X hierarchical 4.63% 36.56% 21.92%
X hierarchical 2.87% 3.19% 5.04%
Qwen-2.5-3B-Instruct X hierarchical 26.93% 37.25%  33.74%
i ) X hierarchical 27.83% 27.20%  11.70%
binary 27.04% 27.46% 12.11%

| hierarchical | 27.72% 36.40% 31.28%

match drops to 4.63%, underscoring that a supervised prior is indispensable for learning the shape
of long-text arguments. Omitting the format reward is even more destructive, where exact accuracy
plunges to 2.87% and type-level metrics fall below 6% since unparseable JSON outputs earn zero
credit, starving the learner of gradient signal. When the self-certainty (rationale) reward is ablated,
coarse intent prediction remains strong but exact-match lags the full system by 0.8%, indicating
that explicit feedback on the generated rationales mainly tightens the long-text portion of an action
rather than its top-level label. Disabling the difficulty-aware reward scaling or reverting to a binary
action reward leads to a different failure mode: the model still attains around 27% exact accuracy, yet
type-level F1 degrades to 11-12%. Inspection shows that, without either scaling or hierarchical credit,
the agent gravitates toward the easy high-reward ‘terminate’ action and rarely ventures into harder
‘click’ or ‘type_and_submit’ cases, which is a classic reward-hacking pattern. The full configuration
combines all signals and delivers the best balance demonstrating that each component is necessary:
SFT injects linguistic priors, the format reward safeguards parsability, the self-certainty term refines
long-text precision, and hierarchical difficulty-scaled rewards prevent degenerate policies while
promoting fine-grained action fidelity.

Whole-session v.s. latest-step context. Tab. 5 isolates the impact of including the simplified HTML
of each visited page in the action history. Removing this structural cue slashes exact-match accuracy
from 27.72% to 14.74%, a nearly 50% relative loss, while coarse action-type accuracy drops more
modestly. The sharp divergence indicates that, although the model can still infer which action type
of interaction is likely next from the dialogue trace alone, it struggles to generate the fine-grained
arguments, the precise button label or query string, without access to the page’s detailed context.
Interestingly, the class-balanced F1 score rises slightly, suggesting that the only latest-step context

variant compensates by spreading prob- .
ability mass more evenly across action Table 5: Comparison of model performance when us-

types, however, this redistribution does not ing either the whole-session context or only the latest-
translate into correct long-text completions. S{€P context as mput.

In short, supplying even a token-efficient,
pruned HTML view is critical for high-  Context Settings

| Exact Action Action Type

fidelity simulation: it grounds the language ‘ Acc. Acc. F1
model in the concrete Ul affordances re- whole-session 27.72% 36.40% 31.28%
quired for exact replay, and although it im- latest-step 14.74% 30.46% 33.48%

poses a substantial overhead on the context
window, this cost is justified by its necessity for accurate simulation.

5 CONCLUSION

In this work, we introduced Shop-R1, a novel reinforcement learning framework tailored for simu-
lating real human behavior in web-based environments using LLMs. By decomposing the task into
two sub-problems, rationale generation and action prediction, and equipping each with carefully
designed, structured reward signals, Shop-R1 addresses key limitations of prior approaches relying
solely on supervised fine-tuning or sparse binary rewards. Our hybrid reward scheme incorporating
self-certainty scoring, hierarchical credit assignment, format regularization, and difficulty-aware
scaling leads to substantial improvements in exact match accuracy and robustness across model
sizes. Extensive experiments demonstrate that Shop-R1 not only surpasses existing baselines by wide
margins, but also mitigates common pathologies such as reward hacking and over-reliance on trivial
actions. These findings highlight the promise of structured RL frameworks in enabling language
agents to perform fine-grained, interpretable, and high-fidelity behavior simulation, paving the way
for more realistic and personalized virtual user modeling in future interactive systems.
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LLM USAGE STATEMENT

Large Language Models (LLMs) were used solely as writing assistants. Specifically, the authors
drafted the initial paragraphs of the paper, and then employed an LLM to polish the language for
clarity and readability. The final paragraphs were obtained after multiple rounds of human-LLM
interaction, with the authors carefully reviewing, editing, and approving all content. The research
ideas, experimental design, implementation, and analysis were entirely conducted by the authors.
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APPENDIX

A THEORETICAL ANALYSIS: NEGATIVE REWARDS VS. ZERO REWARDS IN
GRPO

A common concern in reinforcement learning is that shifting rewards by a constant value can
introduce biases related to episode length (e.g., “survival” or “suicide” incentives) when optimizing
for discounted cumulative returns (Gy = Y 7*r;, ). However, in the context of Group Relative
Policy Optimization (GRPO), we demonstrate that the optimization landscape is invariant to affine
transformations of the reward function. Consequently, setting the failure penalty to zero or a negative
value yields mathematically identical gradients.

A.1 PROOF OF AFFINE INVARIANCE

Let R = {r1,r2,...,rc} be a set of rewards generated by a group of G outputs for a single input
query. GRPO computes the advantage A; for the i-th output via group-wise standardization:

A== (A0)

where p = E[R] is the group mean and 0 = /Var(R) is the group standard deviation.

Consider two reward schemes: Scheme A with rewards r (e.g., failure penalty 0) and Scheme B with
rewards 7’ (e.g., failure penalty n < 0). We assume Scheme B maintains the relative order of Scheme
A, meaning 7’ is an affine transformation of 7:

r=ar+ 3, wherea >0 (A0)

For example, if Scheme A uses {1, 0} for success/failure and Scheme B uses {1, —1}, then o = 2
and § = —1. We now derive the advantage A’ for Scheme B.

First, the new mean p is:

w =Elar + 8] = aE[r] + 8 =au+ 3 (A0)

Second, the new standard deviation ¢’ is:

o' = \/Var(ar + ) = \/a?Var(r) = |a|o = ac (A0)

Substituting ¢’ and ¢’ into the advantage formula:

A= ri */M’ _(aritB)—(ap+pB)  alri—p) _ri—p _yy (AO)
g oo ao g

Since A, = A;, the advantage values—and thus the policy gradients—are identical.

A.2 NUMERICAL EXAMPLE

To illustrate this property with a realistic, unbalanced distribution, consider a group of G' = 4 samples
containing 1 success and 3 failures.

* Scheme A (Zero Penalty): Rewards are {1,0,0,0}.
- n=0.25, 0 ~ 0.433.

_ 1-0.25
- Asuccess — T0.433 1.73.

- Afailure = % ~ —0.57.
* Scheme B (Negative Penalty): Rewards are {1, —1, —1, —1}.

- p/ = —0.5, ¢/ = 0.866 (Note that o’ = 20).
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/ _ 1-(=05)
- Asuccess — 7 0.866 1.73.
/ _ —1-(=0.5)
failure — 0.866 ~ —0.57.

As shown, the computed advantages are identical. This confirms that within the GRPO framework,
the choice between zero penalty and negative penalty does not affect the optimization trajectory,
provided the relative ranking of rewards is preserved.

B SYSTEM PROMPT AND ACTION SPACE

<IMPORTANT>

Your task is to predict the next action and provide rationale for the
action based on the previous actions and context.

You need to pretend that you are a user, browsing amazon.com and
searching for a product to purchase.

The history action (with details described below) and context will be
provided to you.

You need to predict the next action and provide rationale for the action.

</IMPORTANT>

# Action Space

An action is represented in JSON format, and there are three primary
types of actions:

#H#4## 1. ‘type_and_submit‘:

Type text into an input field and immediately submit the form. Equivalent
to typing text into an input and pressing enter key.

{

}

#### 2. ‘click’:
Click on a button or clickable element identified by ‘name’.

{

}

#### 3. ‘terminate’:

When you are unsatisfied with the current search result and you don’t
want to buy anything, use ‘terminate' to indicate that you want to
close the browser window and terminate the task.

{
}

# Context

Your context will be an **simplified version** of the raw HTML of the
amazon page you are looking at. Some interactable elements will be
added a unique attribute, which you can use to identify the
element to interact with (click or type_and_submit) .

# Rationale

The rationale is a first-person sentence of what you are thinking when
you make the action. It should be a short sentence that explains why
you are making the action.

# Output Format

You need to predict the next action and provide rationale for the action.
Your output should follow a strict JSON form:

{

, // rationale goes here, a string
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// action goes here

I4

by
}
<IMPORTANT>
OUTPUT A SINGLE JSON OBJECT, NOTHING ELSE.
</IMPORTANT>

As shown in the above system prompt, the human-behavior simulation task in web shopping is to
predict the next rationale and action conditioned on (a) the entire past action history (past obser-
vations + past actions) and (b) the current web-page observation. The action space contains three
types: ‘type_and_submit’, ‘click’, and ‘terminate’. For ‘type_and_submit’, the model must generate
an open-ended long-text argument (e.g., search queries), making this a high-entropy prediction task.
For ‘click’, the model must identify the correct clickable element name among hundreds to thousands
of possible UI elements, which varies across pages and depends entirely on the current HTML
observation.

C DATASET DETAILS

Our dataset is constructed from S-
CART dataset, which contains ap-
proximately 52k real-world shop-  Train 64,578 68,000 44,371
ping sessions collected from a global Test 690 677 512
e-commerce platform (Lu et al.,
2025a). The dataset spans a wide
range of page layouts and user inter-
action behaviors. Each action is formatted as a parseable JSON object (action type + sub-action
fields) and paired with the corresponding web-page observation. The raw HTML is further simpli-
fied to remove non-essential content (e.g., scripts, CSS, visual-only elements) while preserving the
interactive structure, enabling LLMs to process it more efficiently. From these real user sessions,
we construct 176,949 training examples and 1,879 testing examples, where each example includes:
(1) historical (observation, action) pairs, and (ii) the current simplified HTML observation. Basic
action-type statistics are shown in Table Al.

Dataset Split\ click  type_and_submit terminate

Table Al: Action-type distribution of our large-scale web-
shopping dataset.

D REASONING SYNTHESIZE PROMPT

You will be given a customer’s shopping journey on one of the largest e-
commerce services globally.

You will be given the context (what the user is looking at), the action (
what the user did), and your job is to predict the user’s rationale
for the action.

The rationale should follow

Here is an example:
{example}

For each action in the input, output a rationale.

If the action is , it means that you didn’t find any desired
product and you decided to leave the website by closing the browser
window.
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E EXPERIMENTS ON OPERA DATASET

To verify the generality of our method, we have re-implemented Shop-R1 on the public OPeRA
dataset (Wang et al., 2025c), which contains 692 real human web-shopping sessions, result-

ing in 8,212 training and 1,508 testing examples.

in Tab. A2. As shown in Tab. A3, the performance
trends on OPeRA are consistent with those observed on
our in-house dataset: (1) Zero-shot prompting performs
poorly; (2) SFT substantially improves results; (3) Our
proposed Shop-R1 (SFT + RL) yields the largest gain,
particularly in exact-action accuracy, which is the most
challenging metric. These findings confirm that Shop-
R1 generalizes effectively to public datasets.

The dataset statistics are summarized

Dataset Split  input  click  scroll

Train 499 4379 3334
Test 107 856 545

Table A2: Statistics of the OPeRA dataset
used in our re-implementation.

Model | Settings | Exact Action Acc. Action Type Acc.  Action Type F1
Zero-shot Prompt 6.41% 34.45% 38.79%
Qwen2.5-VL-3B-Instruct SFT 20.23% 60.86% 53.95%
SFT + RL 38.44% 57.27% 57.69%
Claude-3.5-Sonnet | Zero-shot Prompt | 7.66% 58.83% 45.61%

Table A3: Performance comparison on the public OPeRA dataset.
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