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ABSTRACT

We propose a new framework for evaluating the relationship between features
and generalization via a theoretical analysis of the out-of-distribution (OOD)
generalization problem, in which we simultaneously use two mathematical methods:
a generalization ratio that quantitatively characterizes the degree of generalization,
and a generalization decision process (GDP) that formalizes the relationship of loss
between seen and unseen domains. By combining the concepts of informativeness
and variation in the generalization ratio, we intuitively associate them with OOD
problems to derive the generalization inequality. We then introduce it to the GDP to
select the best loss from seen domains to gradient descent for backpropagation. In
the case where the classifier is defined by fully connected neural network, the entire
system is trained with backpropagation. There is no need for any model selection
criterion or operating on gradients during training. Experiments demonstrate the
potential of the framework through qualitative and quantitative evaluation of the
generalization ability.

1 INTRODUCTION

Traditional supervised learning is highly dependent on the proposition of independent and identically
distributed (i.i.d.), while ignoring out-of-distribution (OOD) scenarios commonly encountered in
real-word applications (Taori et al., 2020; Zhou et al., 2022; Wang et al., 2022; Yang et al., 2021;
Wang et al., 2024a). So far, research on the success of gradient operations in generalization algorithms
has emerged (Huang et al., 2020; Shi et al., 2021; Rame et al., 2022; Tian et al., 2022; Wang et al.,
2021), generally trying to learn generalized representations by directly operating on gradients. These
successes have primarily been based on the manipulation and transformation of features. However,
theoretical analysis for the OOD generalization problem has less impact, due to the difficulty of
providing a metric for evaluating the relationship between features and generalization when features
undergo shifts, and due to the complexity in integrating adjustments for generalization into the
training procedure. We propose a novel quantitative metric called “generalization ratio” and a new
estimation procedure called “generalization decision process” to sidestep these difficulties.

In the proposed generalization gradient descent (GGD) framework, an available domain set Eavail
includes both the training set Etra and the validation set Eval. The quantitative metric evaluates the
degree of generalization between Etra and Eavail. Our aim is to utilize Etra to generalize to Eval, and
then achieve generalization to a larger domain set Eavail, which includes all unseen domains. In other
words, we consider the validation set as an unseen domain, which is not utilized for backpropagation
during training. Firstly, we define ideal feature matrix function, generalization and non-generalization
models (Definition 3.1, 3.2 and 3.3), where we refer to the definition of generalization proposed in
the previous theoretical framework (See Ye et al. (2021)). Considering the actual distribution and
handling of features in gradient descent, we further clarify and redefine these definitions, i.e., we
define the “variation” and “informativeness” (Definition 3.4 and 3.5) of features for classification
task, and propose propositions (Proposition3.6 and 3.7). Meanwhile, to incorporate the definitions
of “variation” and “informativeness” of features, we quantitatively define the generalization ratio
(Definition 3.8 and Theorem 3.9) based on the definition of expansion function (Definition 3.3
in Ye et al. (2021)). In other words, the generalization ratio is a kind of metric to quantitatively
characterize the degree of generalization. Then, through the definition of learnability (Definition 3.4
in Ye et al. (2021)), the generalization ratio is also a learnable OOD problem (Theorem 3.10). In
our experiment, we will introduce easily computable definitions of “variation” and “informativeness”
through Bayes’ theorem for the estimation procedure (Theorem 2.1). As pointed out by previous
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theoretical framework (See Ye et al. (2021)), any high-dimensional joint distributions where the
marginal distributions in each dimension are close but non-overlapping. To address this challenge,
we theoretically confirm that even with variations in distribution, it is still possible to accurately
predict the Eavail dataset using a generalized model (Theorem 4.1), consistent with the definition of
generalized model (Definition 3.3). Meanwhile, we prove the generalization inequality (Theorem 4.2)
based on the generalization ratio and the linear top model theorem (Theorem 4.2 in Ye et al. (2021)),
formalizing the relationship between generalization error and loss on Etra and Eavail. Specifically,
we consider both nonlinear and linear neural networks to establish the structure of the model. Based
on these models, we derive a generalization inequality to create an estimation procedure.

To combine the generalization inequality with gradient descent in an algorithm, inspired by reinforce-
ment learning, we introduce the generalization decision process (GDP) as an estimation procedure.
In this process, we use the generalization inequality as the basis, defining deterministic transitions
(Definition 5.1 and 5.2) for both generalization and non-generalization based on changes in both
generalization error and loss on Etra, while providing various magnitudes of rewards. We consider the
generalization ratio as the state and the losses on Etra as the actions. This aims to find the maximum
rewards within the deterministic transitions to select the best action, and then utilizes backpropagation
with gradient descent to optimize this action. In addition, we use T as the stopping criterion of
iterations, allowing the process to stop at any time (not necessarily until total convergence). This
framework can provide specific training algorithms for all types of neural network and optimization
algorithm. In this article, we utilize quantitative metrics during model training in simple cases use the
GDP for backpropagation with gradient descent.

Contribution. In summary, this paper will provide the following: (1) We introduce a quantitative
metric called “generalization ratio” that characterizes the relation between Etra and Eavail in terms of
the variation and informativeness of features. (2) We theoretically prove the generalization inequality
in terms of generalization ratio and linear top model theorem. This inequality intuitively guarantees
an upper bound on the loss on Eavail, which consists of both seen and unseen domains. (3) We
theoretically confirm that accurate predictions remain possible even in the case of distributional
variations. (4) We propose an estimation procedure called the “Generalization Decision Process”, a
reinforcement learning approach to address the combined problem in the gradient descent algorithm.

2 RELATED WORKS

Domain generalization (Zhou et al., 2022) and OOD generalization (Yu et al., 2024; Yang et al., 2024)
have garnered significant attention in recent years, with extensive research addressing the challenge
of domain shift. Domain adaptation (DA) (Li et al., 2024; Fang et al., 2024), in particular, has been
a focal point of this literature, with numerous approaches proposed to mitigate the discrepancies
between the training (source) and the test (target) distributions (Chen, 2024; Moreno-Torres et al.,
2012; Recht et al., 2019; Ben-David et al., 2010; Taori et al., 2020; Blanchard et al., 2021). Since the
formal introduction of domain generalization in 2011 by Blanchard et al. (2011), several methods
have been developed to address the generalization of OOD, addressing the problem of distribution
change through various strategies (Yang et al., 2024; Teney et al., 2024; Zhou et al., 2021; Fan et al.,
2021; Zhang et al., 2021; Pandey et al., 2021; Shu et al., 2021; Zhou et al., 2024; 2023; Cha et al.,
2021).

Many works have emerged from the perspectives of causal discovery, distributional robustness, and
conditional independence, with the aim of providing robust solutions to the OOD generalization
problem (Gui et al., 2024; Wang et al., 2024b; Ahuja et al., 2020a; Bai et al., 2021; Creager et al., 2020;
Chang et al., 2020; Jin et al., 2020; Koyama & Yamaguchi, 2020; Krueger et al., 2021; Parascandolo
et al., 2020; Sagawa et al., 2019; Xie et al., 2020). These approaches often focus on defining test
domains around the training domain using distribution distance measures or using causal frameworks
that remain invariant under interventions (Shao et al., 2024; Arjovsky et al., 2019; Heinze-Deml &
Meinshausen, 2021; Magliacane et al., 2018; Meinshausen, 2018; Müller et al., 2021; Pfister et al.,
2021; Rojas-Carulla et al., 2018; Schölkopf et al., 2012). The principle underlying these methods is
that a causal model, which achieves minimal worst-case risk, is invariant to distribution shifts (Wu
et al., 2024; Aldrich, 1989; Haavelmo, 1944; Pearl, 2009; Rojas-Carulla et al., 2018). However, the
unknown nature of test distributions necessitates additional assumptions for effective generalization
analysis.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Critically, some studies have highlighted the limitations of existing methods from both theoretical
and experimental perspectives, highlighting areas where current approaches fall short (Yu et al., 2024;
Feder et al., 2024; Ahuja et al., 2020b; Gulrajani & Lopez-Paz, 2020; Kamath et al., 2021; Nagarajan
et al., 2020; Rosenfeld et al., 2020). Recently, methods utilizing gradient information to enforce
generalized representations (Wang et al., 2022) and reinforcement learning-based techniques that
train agents to generalize to target environments (Ye et al., 2023) have been introduced, expanding
the scope of solutions beyond the environmental-focused strategies of traditional targets. For more
comprehensive discussions on domain adaptation and OOD generalization, including recent advances,
please refer to see Yang et al. (2024); Wang et al. (2022); Zhou et al. (2022); Yang et al. (2021).

The rest of the section is as follows: Section 3 is our preliminary. We give our quantitative metric of
the generalization ratio in Section 4 and the generalization inequality in Section 5. We propose the
generalization decision process (GDP) in Section6 and the generalization gradient descent (GGD)
algorithm in Section 7. We conduct our experiments and discuss further limitations and future
directions in Section 8, review related works in Section 2, and conclude in Section 9.

3 PRELIMINARY

We consider a multi-class task X → Y = {1, . . . ,K} . Let Etra be the training set used during
the training procedure, and Eval be the validation set not used for backpropagation during the
training procedure, where Eval

⋂
Etra = ϕ. The available set we ultimately want to generalize to is

Eavail = Eval∪̇Etra. In our paper, we denote (Xe, Y e) to be the input-label pair drawn from the data
distribution of domain e, and assume that ∀ei, ej ∈ E where ei ̸= ej , they are distinct domains. The
goal of risk minimization is to learn a prediction function f(x) that minimizes the expected loss, i.e.
minfE [ℓ (f (Xe) , Y e)], where ℓ(·, ·) is a loss function (e.g., the cross-entropy loss) that measure
output probabilities between classes and f is a classifier. Integrating the goal of out-of-distribution
(OOD) generalization, we find a classifier f∗ that minimizes the worst-domain loss on Eavail:

f∗ = argmin
f∈F

max
e∈Eavail

L (e, f) ,L (e, f) ≜ E [ℓ (f (Xe) , Y e)] (1)

where F : X → RK is a hypothetical space. Throughout the paper, we consider the nonlinear neural
network as the base model h and the linear neural network as the classifier f . Let H represent the set
of all types of nonlinear neural networks, and F represent the set of all types of linear neural networks.
With previous work, f ∈ F can similar to be decomposed into g ◦w, where g ∈ G : Rn → RK is the
top classifier, and w ∈ W : X → Rn is a n-dimensional feature extractor. Based on the linear neural
network composed of linear layers, given any i-th linear layer, we can decompose f into gi ◦ wi,
where gi is the top linear classifier, and wi is the linear feature extractor. We denote W as a feature
matrix function containing all linear feature extractors decomposed in f , where wij ∈W represents
a feature map on the j-th dimension in the i-th layer. Additionally, W is also a function of random
variable X , obtaining all features of f , i.e.,

W (X) = [wij(X)]d×N , N = max{ni}di=1 (2)

where each wij ∈ W map X to RN and d represents the total number of layers. The maximum
dimension N is found across all layers, and any deficient dimensions are padded with zeros to increase
all dimensions to N . Then, given a domain e ∈ E we denote the feature matrix function as W (Xe),
and the conditional distribution of W (Xe) given Y e = y as p (W (Xe)|y). Our framework can use
both balanced and imbalance data. For simplicity, we assume that the data distribution in any domain
is balanced, i.e., ∀y ∈ Y , e ∈ E , we have P (Y e = y) = 1

K . In our experiments, we transform the
conditional distribution of W (Xe) given Y e = y into experimental form p (W (Xe)|y) using Bayes’
theorem. The following theorem presents the conditional distribution:

Theorem 2.1 (Experimental Form of Features). Let e1, . . . , ek ∈ E be domains such that P (ei) > 0,
i = 1, 2, . . . , k. Assume further that e1, . . . , ek also form a partition of the domain E , and
∀ei, ej ∈ E where ei ̸= ej , they are distinct domains. Let y be any class in Y and W be a feature
matrix function. Then we have the conditional probability of features given a class as follows:

P (W (Xei)|y) = P (W (Xei))P (y|W (Xei))∑k
i=1 (P (W (Xei))P (y|W (Xei)))

. (3)

The detailed proof of Theorem 2.1 is included in the Appendix.
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4 QUANTITATIVE METRIC OF GENERALIZATION RATIO

We first define the “ideal feature matrix function”, then introduce the concepts of “generalized
model” and “non-generalized model”, which mathematically describe the generalized states of a
model. Specifically, we use the KL-divergence as the distance measure in the following paper. The
non-generalized model and generalized model are defined as follows:

Definition 3.1 (Ideal Feature Matrix Function). A feature matrix function W is called an ideal
feature matrix function if there exist e ′ ∈ Eval and e ′′ ∈ Etra, such that ∀y ∈ Y , we have
P
(
y
∣∣∣W (

Xe ′
))

= P
(
y
∣∣∣W (

Xe ′′
))

, where W ∈ W∗ andW∗ is the set of ideal feature matrix functions.
If ∃y ∈ Y such that P

(
y
∣∣∣W (

Xe ′
))
̸= P

(
y
∣∣∣W (

Xe ′′
))

, then W is called a non-ideal feature matrix
function, where W /∈ W∗.

Definition 3.2 (Non-generalized Model). We say the classifier f ∈ F is a non-generalized model if
there exists a non-ideal feature matrix function W /∈ W∗, such that: ∀e ′ ∈ Eval, ∀e ′′ ∈ Etra, ∃y ∈ Y ,
we have P

(
y
∣∣∣W (

Xe ′
))
̸= P

(
y
∣∣∣W (

Xe ′′
))

and P
(
y
∣∣∣W (

Xe ′
))
̸= P

(
y
∣∣∣W ∗

(
Xe ′

))
, where W ∗ ∈ W∗.

Definition 3.3 (Generalized Model). We say the classifier f ∈ F is a generalized model if there exists
an ideal feature matrix function W ∈ W∗, such that: ∀e ′ ∈ Eval, ∀e ′′ ∈ Etra, ∀y ∈ Y , we have
P
(
y
∣∣∣W (

Xe ′
))

= P
(
y
∣∣∣W (

Xe ′′
))

= P
(
y
∣∣∣W ∗

(
Xe ′

))
, where W ∗ ̸= W and W ∗ ∈ W∗.

Under balanced data, regardless of which ideal feature matrix function and input Xe are used, the
distribution of the output y remains unchanged. Hence, the generalized model ensures that the output
distribution of y remains consistent when the different feature matrix functions can be represented
by the ideal feature matrix functions. In contrast, the output y of the non-generalized model has a
different output distribution. Therefore, we use this characteristic to optimize the non-generalized
model and converge it towards a generalized model.

To achieve domain generalization across the available domains, we redefine the definitions in Ye et al.
(2021) and utilize the feature matrix function to encompass all the features in the model. Regardless
of the variation and informativeness in the domain, the model can effectively generalize to Eval. The
definitions are as follows:

Definition 3.4 (Variation). The variation of the set of scalar maps W (·) from the training set Etra to
the validation set Eval is

VKL (W, Eavail) = max
y∈Y

sup
e ′∈Eval ,
e ′′∈Etra

KL
(
P
(
W
(
Xe ′

)∣∣∣y) ,P(W (
Xe ′′

)∣∣∣y)), (4)

where KL is KL-divergence and we concern the set relation rather than the method used for splitting.

Definition 3.5 (Informativeness). The informativeness of the set of scalar maps W (·) across the
training set Etra is

IKL

(
W, Etra

)
=

1

n(n− 1)

( ∑
y ̸=y ′

y,y ′∈Y

min
e ′′∈Etra

KL
(
P
(
W
(
Xe ′′) ∣∣ y),P(W (Xe ′′) ∣∣ y ′

)))
+ ϵ̄, (5)

where ϵ̄ > 0 is approximately equal to zero positive value, and KL is KL-divergence.

The variation VKL (W, Eavail) measures the features in the feature matrix function that we expect
to preserve in Etra. The informativeness IKL (W, Etra) measures the features in the feature matrix
function that we expect to use in Etra. The calculation of informativeness is based on Etra, aiming
for low variance while maintaining a certain amount of informativeness. To avoid misclassifying a
non-generalized model as a generalized model, we state our propositions as follows:

Proposition 3.6 Suppose Eval ̸= ϕ and Etra ̸= ϕ, where Eval and Etra are not i.i.d. If Eval is the
domain set we want to generalize to, such that ∀e ′ ∈ Eavail, ∀e ′′ ∈ Etra, and ∃y ∈ Y , where
p
(
y
∣∣∣W (

Xe ′
))
̸= p

(
y
∣∣∣W (

Xe ′′
))

, then KL
(
P
(
W
(
Xe ′

)∣∣∣y) ,P(W (
Xe ′′

)∣∣∣y)) ̸= 0.

Proposition 3.7 Suppose the conditions of Eval and Etra in Proposition3.6. hold. If we can
get a generalized model f ∈ F such that ∀e ′ ∈ Eval, ∀e ′′ ∈ Etra, and ∀y ∈ Y , we have
p
(
y
∣∣∣W (

Xe ′
))

= p
(
y
∣∣∣W (

Xe ′′
))

, then it follows that KL
(
P
(
W
(
Xe ′

)∣∣∣y) ,P(W (
Xe ′′

)∣∣∣y)) = 0.
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Proposition3.6 states that the variation VKL (W, Eavail) in a non-generalized model requires non-
empty and not i.i.d. domain sets as a condition. In contrast, Proposition3.7 states that if the condition
in Proposition3.6 is hold, we can find a generalized model with no variation VKL (W, Eavail) between
the outputs on Etra and Eval. The detailed proof of propositions is included in the Appendix.

Now we introduce the quantitative metric “generalization ratio”. We define the following:

Definition 3.8 (Generalization Ratio). The generalization capability of classifier f is

GRKL (W, Eavail) =
VKL (W, Eavail) (IKL (W, Etra) + 1)

IKL (W, Etra)
, (6)

where GR(·) > V(·) and GR(·) follow properties hold: 1) GR(·) is monotonically increasing
and GR(·) ≥ V(·),∀V(·) ≥ 0; 2) limV(·)→0+ GR(·) = 0 (We omit the subscript KL in case of no
ambiguity).

Theorem 3.9 (Expansion Function). The generalization ratio is an expansion function (Definition 3.3
in Ye et al. (2021)).

Generalization ratio uses the variation between Etra and Eval, along with the informativeness, to adjust
the variation. We combine the variation VKL (W, Eavail) and the informativeness IKL (W, Etra),
satisfying the properties of the expansion function (Definition 3.3 in Ye et al. (2021)) to quantitatively
measure the generalized states and guarantee OOD generalization. We give our proof in the Appendix.

Furthermore, generalization ratio is also a (s(·), δ)-learnable OOD problem, as defined in Ye et al.
(2021), intuitively associating them with OOD problems. This ensures that the generalization
ratio quantifies the generalized states, ensuring that when minimizing variation, the importance
of maintaining a certain level of informativeness is not compromised. The following theorem
demonstrates that the generalization ratio is also a (s(·), δ)-learnable OOD problem:

Theorem 3.10 (Learnability on Non-generalized Model). Let W be a feature matrix function of
the non-generalized model f ∈ F defined in 3.2. Assuming Eavail to be the available domain set
and Etra = Eavail\Eval to be the training set, we say that the non-generalized model is learnable
if there exists a generalization ratio GRKL (W, Eavail) and ϵ̄ > 0, such that: given W satisfy
IKL (W, Etra) ≥ ϵ̄, we have GRKL (W, Eavail) > VKL (W, Eavail). If such the generalization ratio
GRKL (W, Eavail) and ϵ̄ exist, we also call this model (GRKL (W, Eavail) , ϵ̄)-learnable.

We prove that the generalization ratio is a learnable OOD problem through the definition of learn-
ability (Definition 3.4 in Ye et al. (2021)), and demonstrate that under the framework condition,
the generalization ratio can serve as a learnability criterion for the OOD problem. Specifically, the
statement of this theorem introduces the Definition 3.8 and satisfies the Propositions 3.6 and 3.7,
which serve as definitions within the statement of the theorem. We give our proof in the Appendix.

Discussion. We denote Etra ⊆ Eavail as the training set during the training process, and utilize Eavail
as the target domain set for generalization. The non-generalized model obtained during this process is
to minimize the variation between the outputs on Etra and Eavail, indicating variation across different
domain sets.

5 GENERALIZATION INEQUALITY

In this section, we establish an architecture of the relationship between Etra to Eavail through the
generalization ratio. We first consider that our goal is to generalize Etra to Eavail, and analyze the
classifier f for minimizing generalization error defined by

err(f) = max
e∈Eavail

L (e, f)− max
e∈Etra

L (e, f) , (7)

where if the loss function ℓ(·, ·) is bounded by [0, C] , we can get the upper bound for err(f) in Ye
et al. (2021). Before the inequality, we will demonstrate that despite differences in the distributions
of the two ideal feature matrix functions, it is still possible to accurately predict the distribution
of the output y in Eavail, that is, regardless of variations in the distributions of the feature matrix
functions, as long as the output y within Eavail can be accurately predicted, the models are considered
generalized models defined in the Definition 3.3. We prove the following:

5
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Theorem 4.1 (Variation on Distribution). Let Definition 3.3 hold. Suppose W and W ′ are ideal fea-
ture matrix functions of a model f ∈ F . If VKL (W, Eavail) = VKL (W ′, Eavail) = 0, then regard-
less of the distributions of the ideal feature matrix functions, even if P(W (Xe ′′

)) ̸= P(W ′(Xe ′′
))

for all e ′′ ∈ Etra, the model is still a generalized model.

The variations of the ideal feature matrix functions are zero, although the distributions may differ, the
model can still output the distribution of y which remains consistent in Eavail. Thus, a generalized
model still makes accurate predictions even in the presence of different distributions. Based on our
formulation and previous work (Appendix 9 in Ye et al. (2021)), the following theorem demonstrates
the upper bound for the loss on Eavail, which is the set of domain we want to generalize to:

Theorem 4.2 (Generalization Inequality). Let Proposition3.6. and Theorem 4.1 hold. Suppose we
have learned a base model x ′ = h(x) and a classifier f(x ′) = gi(wi(x ′)). Consider any loss
satisfying l (ŷ, y) =

∑K
k=1 l0 (ŷk, yk) and is bounded by [0, C]. For any linear top classifier gi ∈ G

decomposed from the non-generalized model f ∈ F , i.e.,
f(x ′) = Aiwi(x ′) + bi, (8)

with Ai ∈ RK×d, bi ∈ RK , wi ∈ W , where Ai =
d∏

j=i+1

wj is the product of all weight matrices,

and bi =
∑d

j=i+1

(∏j
k=1 wk

)
· bj is bias vector, if (Etra,Eavail) is (GRKL(W, Eavail),ϵ̄)-learnable under

W with average variation and informativeness, then we can have

max
e∈Eavail

L(e, f) ≤ O

(
C · 1

d

d∑
i=1

GRKL(wi, Eavail)

)
+ max

e∈Etra

L(e, f), (9)

where O(·) is positive function and depends only on d.

In calculating the upper bound for the loss on Eavail, we use the generalization ratio combined with the
linear top model theorem in Ye et al. (2021). This theorem calculates the average generalization ratio,
and uses it to approximate the upper bound, with an additional term C corresponding to imbalance,
thus increasing the generalization bound. The above theorem applies to all types of neural networks
combined with any type of classifier (linear neural network). By calculating the upper bound of errors
from both seen and unseen domains for model training, each training iteration takes into account the
concept of generalization, thereby enabling the model to have generalization capabilities. The proof
of Theorems 4.1 and 4.2 is in the Appendix.

Discussion. We reasonably connect the generalization ratio with Eavail using inequalities, intuitively
expressing that the generalization problem is related to both variation and informativeness, with
implications for the loss in unseen domains. Due to practical application limitations, Theorem 4.2
has certain constraints, as it only explains the behavior of the boundary in unseen domains under the
assumptions of the corresponding domain. This may not fully reflect performance across all domains.

6 GENERALIZATION DECISION PROCESS (GDP)

In this section, we introduce the Generalization Decision Process (GDP), which incorporates the
reinforcement learning method. In GDP, we set the generalization ratio as the environment, and select
different losses from the training set L (e ′′, f), e ′′ ∈ Etra to minimize the loss from the available set
L (Eavail, f) based on the maximum cumulative reward.

We consider GDP that consists of (G,A, U, r), where G is a generalization ratio space G ∈ R+,
and A = {L (ei, f)|ei ∈ Etra} constitutes a finite action set of different losses from the train-
ing set, with the number of ei fixed. Specifically, we further let Gt ∈ G denote the state
of generalization ratio at time t, and At ∈ A denote the action at time t. Let U denote
the action dependent transition function U for the underlying process of generalization ratios
{Gt}t≥0, where U : G × G ×A×A → G ′ ×A ′ , and U outputs the pair (g ′, a ′) ∈ G ′ × A ′,
i.e., U ((gt−1:t) , (at−1:t)) = (g ′

t , a
′
t ). Finally, we define the one-stage reward at time t as

R (G ′
t , A

′
t ), where the reward function R : G ′ ×A ′ → R is defined to be uniformly bounded,

i.e., ∀ (g ′, a ′) ∈ G ′ ×A ′, we haveR (g ′, a ′) ∈ [−rmax, rmax].

Then, we define a stationary policy that maps a state g ∈ G to a probability distribution π (·|g) over
A, which does not depend on time. Given a policy π, we define the corresponding value function
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Vπ : R→ R as the expected total reward from before obtained by actions executed according to
π : V π (g0) = Eπ

[∑t
i=0R (g ′

i , a
′
i )
∣∣∣G0 = g0

]
. We also define action-value function Qπ : G ′ ×A ′ → R as

Qπ (g ′
t , a

′
t ) = Vπ (g0) +R (U (gt, gt−1at, at−1)). Our goal is to use maximum the value from the

value function to find an optimal policy that minimizes the loss on available set L (Eavail, f) for
backpropagation. The optimal policy π∗ is then greedy with respect to Q∗.

To combine the concept of transitions on generalized states with U , we use the generalized ratio andA
across preceding and subsequent time steps to get their respective changes, i.e., U is also a real-valued
function defined on G×G×A×A, which outputs the change in generalization ratio G ′ and the change
in training loss A ′ between different iterations, i.e., ∀t ∈ T , t ≥ 1, ∃ (Gt, Gt−1, At, At−1) ∈ G×G×
A×A, we have U (Gt, Gt−1, At, At−1) = ((Gt −Gt−1) , (At −At−1)) = (G ′, A ′) ∈ G ′ ×A ′.
Then, we input (G ′, A ′) into the reward function R and introduce Theorem 4.2 to get the change in
L (Eavail, f). Based on the change in L (Eavail, f) is positive or negative, we define “generalized
transition” and “non-generalized transition”:

Definition 5.1 (Generalization Transition). The transition from (Gt−1, At−1) to (Gt, At) is a
generalization transition if there exists a ∆max

e∈Etra

L (e, f), we have a generalization inequality such that

∆O (GRKL (W, Eavail)) < 0.

Definition 5.2 (Non-generalization Transition). The transition from (Gt−1, At−1) to (Gt, At) is
a non-generalization transition if there exists a ∆max

e∈Etra

L (e, f), we have a generalization inequality

such that ∆O (GRKL (W, Eavail)) > 0. If ∆max
e∈Etra

L (e, f) > 0, we call it an underfitting transition. If
∆max

e∈Etra

L (e, f) < 0, we also call it the overfitting transition.

We assign positive rewards to generalized transitions and negative rewards to non-generalized
transitions, allowing them to effectively integrate within the action-value function space. The reward
function R is defined in G ′ ×A ′, which inputs the changes in the generalization ratio and provides
different rewards based on whether the transitions are positive or negative. Therefore, we let the lowest
L (e ′′, f) correspond to the highest positive reward in a generalization transition. Conversely, we let
the highest L (e ′′, f) correspond to the highest negative reward in a non-generalization transition.

In the generalization transition, we minimize L (e ′′, f) to allow the model to achieve a good general-
ization performance in L (Eavail, f). However, in the non-generalization transition, we maximize
L (e ′′, f) to negate this round of backpropagation, thereby regaining the generalization transition
and allowing subsequent backpropagation to proceed. Although minimizing L (e ′′, f) during the
non-generalization transition may also reduce the loss on Eavail, the primary focus during backpropa-
gation is on reducing the loss on Etra. Therefore, the final model after backpropagation is unable to
achieve good generalization ability.

The probability distribution π (·|g) of the stationary policy assigns equal probabilities to every action
At ∈ A. If we only use a∗ = maxaQπ(g, a) as the criterion, it removes the impact of the chance
on other actions. To address this, we introduce the ϵ-greedy policy to replace it. After the process
of action-value function, for each state Gt ∈ G, we select the best action based on the action-value
function with the probability of 1− ϵ, i.e.,

π (a|g) =
{

1− ϵ+ ϵ
∥A∥ , if a∗ = argmaxa∈AQπ(g, a)

ϵ
∥A∥ , otherwise (10)

where ϵ ∈ [0, 1] is a hyperparameter, and ∥A∥ = k ≥ 2 denotes the number of actions. ϵ is the
exploration factor that controls the probability of selecting a random action. argmaxa∈AQπ(g, a)
represents the action a∗ that maximizes the action-value function Qπ(g, a) in the state g.

7 GDP FOR BACKPROPAGATION WITH GRADIENT DESCENT

We introduce a generalization gradient descent (GGD) algorithm (see Algorithm 1), which is a
framework on GDP for backpropagation and uses gradient descent to train the model. GGD can use
L (e ′′, f) for backpropagation to find the gradient and optimize each weight using gradient descent.
This not only considers the loss itself on Etra during model training, but also takes into account
the loss generalized to Eavail. In addition, Algorithm 1 for training the model, we calculate its
generalization ratio and L (e ′′, f). We then incorporate them into GDP. Using the ϵ-greedy strategy,
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Algorithm 1: Generalization Gradient Descent (GGD)

Input: Small ϵ̄ > 0, base model h, classifier fW , observations ē ′=
{(

h(Xe ′
i ), Y e ′

i

)}n ′

i=1
from unseen

domains ē ′ ⊆ Eval, observations ē ′′=
{(

h(Xe ′′
i ), Y e ′′

i

)}n ′′

i=1
from seen domains ē ′′ ⊆ Etra,

epoches E, batch_size b, training iterations T = n ′′E/b, number of actions k and
available set Eavail = Eval∪̇Etra ( n ′′ > n ′ ≥ 1 are positive integers).

Initialization: ∀Gt ∈ G,∀ai ∈ A,
{
e ′′
j

}i+k−1

j=i
⊆ ē ′′ and e′′j ̸= e′′j′ for all j ̸= j′

π ← an ϵ-greedy policy
A0 ← Randomly select L (e ′′, f), where e ′′ ∈ ē ′′

G0 ← 0
for time t from 1 to T do

{# batch_size = 1}
for number i from 1 to (n ′′ − k + 1) do

Gt ← GRKL (W, Eavail) {# Definition 3.8 (Generalization Ratio)}
for number j from i to (i+ k − 1) do

Compute empirical risk:aj ← L
(
e ′′
j , f

)
end
Q (Gt, ai)← Q (Gt−1, At−1) +R (U (Gt−1, GtAt−1, aj))
A∗ ← argmaxaj∈AQ (Gt, aj)
For all ai ∈ A:

π (aj |Gt)←
{
1− ϵ+ ϵ/ ∥A∥ , if aj = A∗

ϵ/ ∥A∥ , if aj ̸= A∗

At ← π (aj |Gt)
Backpropagate gradients∇WAt in the classifier f with standard PyTorch

end
end

we select the optimal loss to adjust the weights and obtain the best model, with T as the fixed number
of iterations and b as the batch size.

8 EXPERIMENT

In our experiment, we demonstrate the Generalization Gradient Descent (GGD) algorithm on Colored
MNIST (Arjovsky et al., 2019) and CIFAR10 (Ho-Phuoc, 2018) datasets, and use two neural networks,
LLNet and LANet. The LLNet model consists of 7 linear layers acting as the classifier. The first
layer flattens the input image of size 3×28×28 for Colored MNIST (3×32×32 for CIFAR10) and
outputs 1000 neurons. The subsequent layers respectively produce outputs of 500, 100, 50, 25, 20,
and 10 neurons. The LANet model is composed of a base model and a classifier. The base model
consists 5 linear layers and 4 ReLU activation layers, while the classifier consists of 2 linear layers.
The first layer flattens the input image of size 3×28×28 (3×32×32 for CIFAR10) and outputs 1000
neurons. The subsequent layers respectively produce outputs of 500, 100, 50, 25, 20, and 10 neurons.

Settings We use the GGD algorithm and the traditional gradient descent (TGD) algorithm to train
our models. The function R (g ′, a ′) operates within [−1, 1] with k = 2 actions. We employ
CrossEntropyLoss and Adam optimizer with learning rate = 0.001 and batch_ size = 5. In addition,
we use the experimental form of features (Theorem 2.1) to calculate the generalization ratio. Our
experiments are conducted on the Google Colab platform using an L4 GPU, aim to evaluate the
effectiveness of the GGD algorithm in these models.

Result We discuss the experiments and results in in-distribution and out-of-distribution experiments.
In our in-distribution experiments on both Colored MNIST and CIFAR10, we divide each dataset
into training, validation, and test sets, ensuring that all sets are i.i.d. in the experiments. We train
our models over 5 epochs, with the results shown in Table 1, 2. The experiments demonstrate that
GGD has in-distribution generalization capabilities. On the other hand, in our out-of-distribution
experiments, we mainly used the Colored MNIST task to predict whether a digit is correct. Crucially,
the color of the digit is spuriously correlated with the label: the correlation strength varies between
the two training domains E = {90%, 80%}. To test whether the model learned to ignore the color,
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Table 1: In-Distribution Experiments Results. We present the best results achieved during training,
and the results “(R)” after final training, when overfitting occurs. “C_MNIST” denotes the Colored
MNIST dataset.

Model Accuracy C_MNIST CIFAR10 C_MNIST (R) CIFAR10 (R)
LLNet (GGD) Train acc. 90.44% 42.25% 86.72% 40.65%
LLNet (GGD) Test acc. 87.37% 39.58% 84.31% 38.74%
LLNet (TGD) Train acc. 90.33% 42.41% 76.33% 39.68%
LLNet (TGD) Test acc. 87.99% 39.79% 73.45% 37.43%
LANet (GGD) Train acc. 93.61% 74.51% 92.48% 73.59%
LANet (GGD) Test acc. 91.58% 54.47% 90.34% 52.89%
LANet (TGD) Train acc. 91.02% 58.79% 91.32% 56.69%
LANet (TGD) Test acc. 89.89% 51.98% 88.91% 50.10%

Table 2: In-Distribution Experiments Results. “(avg)” denotes the average of the best results achieved
during training and the results after final training, when overfitting occurs. “inc” represents the
improvement “↑” brought by the GGD algorithm.

Model Metric C_MNIST (avg) acc. inc CIFAR10 (avg) acc. inc
LLNet (GGD) Train acc. 88.58% 5.25%↑ 41.45% 0.41%↑
LLNet (GGD) Test acc. 85.84% 5.12%↑ 39.16% 0.55%↑
LLNet (TGD) Train acc. 83.33% - 41.04% -
LLNet (TGD) Test acc. 80.72% - 38.61% -
LANet (GGD) Train acc. 93.04% 1.87%↑ 74.05% 16.31%↑
LANet (GGD) Test acc. 90.96% 1.69%↑ 53.68% 2.64%↑
LANet (TGD) Train acc. 91.17% - 57.74% -
LANet (TGD) Test acc. 89.40% - 51.04% -

Table 3: Out-of-Distribution Experiments Results. We present the best results achieved during
training. “Er” denotes the experiment where red is used as the test set, while blue and green are used
as the training set. “(80%)” indicates the correlation Propositionwithin the training set. “LL” refers
to the LLNet, and “LA” refers to the LANet.

Model Accuracy Er(80%) Er(90%) Eg(80%) Eg(90%) Eb(80%) Eb(90%)
LL(GGD) Train acc. 93.73% 95.33% 93.81% 94.66% 90.49% 94.71%
LL(GGD) Test acc. 61.86% 69.48% 63.43% 68.04% 68.23% 68.26%
LL(TGD) Train acc. 93.59% 95.48% 93.30% 93.73% 90.27% 95.10%
LL(TGD) Test acc. 55.07% 67.08% 62.62% 55.35% 62.42% 67.28%
LA(GGD) Train acc. 93.99% 94.99% 94.11% 94.54% 90.57% 95.19%
LA(GGD) Test acc. 59.91% 60.65% 63.01% 67.18% 64.97% 66.01%
LA(TGD) Train acc. 94.96% 95.81% 94.57% 94.42% 91.54% 94.00%
LA(TGD) Test acc. 56.47% 56.20% 58.37% 60.59% 59.87% 59.44%

we reversed this correlation during the testing. In brief, a model biased towards considering only
the color achieves a test accuracy of 10%, whereas an oracle model that perfectly predicts the shape
achieves a test accuracy of 75%. Furthermore, we tested with blue, green, and red as test sets (unseen
domains), maintaining a correlation 80% or 90% between the digit’s color and the label. We train our
models over 10 epochs, with the results summarized in Table 3, 4 the dynamics shown in Figure 1.
The experiments demonstrate that GGD has out-of-distribution generalization capabilities and that
the Generalization Ratio can serve as an indicator of generalization. Our algorithm effectively selects
the optimal loss function in both in-distribution and out-of-distribution experiments, resulting in the
best testing accuracy. In addition, sources of variability, such as the epoch, the reward size, and the
amount of data in the validation set, can also lead to different results.

Limitations and Future Works In our formulation, we used the conditional probabilities of features
to address the generalization problem, with less focus on discussing the relationship between model
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Table 4: Out-of-Distribution Experiments Results. “(avg∗)” denotes the average of the correlation
assumptions (80%) and (90%) in the training set. “avg∗” represents the average of the experiments
where red, green, and blue are used as the test set.

Model Accuracy Er(avg∗) Eg(avg∗) Eb(avg∗) avg∗ acc. inc
LL(GGD) Train acc. 94.53% 94.23% 92.60% 93.78% 0.21% ↑
LL(GGD) Test acc. 65.67% 65.73% 68.24% 66.54% 4.91% ↑
LL(TGD) Train acc. 94.53% 93.51% 92.68% 93.57% -
LL(TGD) Test acc. 61.07% 58.98% 64.85% 61.63% -
LA(GGD) Train acc. 94.49% 94.32% 92.88% 93.89% 0.32% ↓
LA(GGD) Test acc. 60.28% 65.09% 65.49% 63.62% 5.14% ↑
LA(TGD) Train acc. 95.38% 94.49% 92.77% 94.21% -
LA(TGD) Test acc. 56.33% 59.48% 59.65% 58.48% -

parameters and the generalization state of the classifier model to obtain precise information about
the overall features. The proposed GDP might lead to uncertainty in the generalization results of the
model due to varying rewards. We hope to address these issues in future research.

Figure 1: Training Dynamics. We observed the model training dynamics on the E = {90%}
Colored MNIST dataset. In the GGD algorithm, the Generalization Ratio (red) clearly highlights
steps where the training accuracy (blue) and test accuracy (orange) are low, indicating improved
performance (double arrow). In contrast, the TGD algorithm, which does not use this metric, showed
no such correlation (double arrow). The GGD algorithm outperforms TGD in both test accuracy and
generalization ratio, demonstrating more consistent performance and fewer fluctuations.

9 CONCLUSION

We take the first step towards combining generalization with reinforcement learning to train models,
and propose a generalization ratio to quantitatively characterize the degree of generalization and
a Generalization Decision Process to formalize the relationship between loss in seen and unseen
domains. Based on our framework, we derive a generalization inequality and design a Generalization
Gradient Descent algorithm to optimize loss selection for backpropagation. Finally, the results of our
experiments show that our algorithm significantly outperforms traditional gradient descent methods.
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A APPENDIX

In this section, we provide complete proofs of our assumptions and theorems.

A.1 PROOF OF THEOREM 2.1

Theorem 2.1 (Experimental Form of Features). Let e1, . . . , ek ∈ E be domains such that P (ei) > 0,
i = 1, 2, . . . , k. Assume further that e1, . . . , ek also form a partition of the domain E , and
∀ei, ej ∈ E where ei ̸= ej , they are distinct domains. Let y be any class in Y and W be a feature
matrix function. Then we have the conditional probability of features given a class as follows:

P (W (Xei)|y) = P (W (Xei))P (y|W (Xei))∑k
i=1 (P (W (Xei))P (y|W (Xei)))

. (11)

proof: Given that W contains many linear feature extractors, we assume W is a one-to-one func-
tion, ie ∀Xei , Xej ∈ X , W (Xei) ̸= W (Xej ). Base on the Propositionthat for all ei, ej ∈ E
where ei ̸= ej , we have Xei ̸= Xej , such that P (W (Xei)|y) ≥ 0, P (y|y) = 1, and

P
(

k⋃
i=1

W (Xei)

∣∣∣∣y) =
∑k

i=1 P (W (Xei)|y). Using the definition of conditional probability, we have

P (W (Xei)|y) = P (W (Xei)
⋂
y)

P (y)
(12)

Hence, by the law of total probability, the result follows

P (W (Xei)|y) = P (W (Xei)
⋂
y)

P (y)

=
P
(
W
(
Xei

))
P
(
y
∣∣W (Xei

))∑k
i=1

(
P
(
W
(
Xei

))
P
(
y
∣∣W (Xei

))
+ P

(
W
(
Xe ′

i

))
P
(
y
∣∣W (Xe ′

i

))) (13)

The proof is finished. ■
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A.2 PROOF OF PROPOSITION3.6

Proposition3.6. Suppose Eval ̸= ϕ and Etra ̸= ϕ, with Eval and Eval are not i.i.d. If Eval is the
domain set we want to generalize to, such that ∀e ′ ∈ Eval, ∀e ′′ ∈ Etra, and ∃y ∈ Y , where
p
(
y
∣∣∣W (

Xe ′
))
̸= p

(
y
∣∣∣W (

Xe ′′
))

, then KL
(
P
(
W
(
Xe ′

)∣∣∣y) ,P(W (
Xe ′′

)∣∣∣y)) ̸= 0.

Proof. Base on the definition that KL (P ||Q) =
∑
x
P (x)log

(
P (x)
Q(x)

)
= 0⇔ P = Q . If there ex-

ists y ∈ Y , such that for all e ′ ∈ Eval, and e ′′ ∈ Etra, P
(
y
∣∣∣W (

Xe ′
))
̸= P

(
y
∣∣∣W (

Xe ′′
))

,

we have KL
(
P
(
W
(
Xe ′

)∣∣∣y) ,P(W (
Xe ′′

)∣∣∣y)) ̸= 0 Hence, for any P
(
y
∣∣∣W (

Xe ′
))
̸= P

(
y
∣∣∣W (

Xe ′′
))

,

KL
(
P
(
W
(
Xe ′

)∣∣∣y) ,P(W (
Xe ′′

)∣∣∣y)) ̸= 0. The proof is finished. ■

A.3 PROOF OF PROPOSITION3.7

Proposition3.7. Suppose the conditions of Eval and Etra in Proposition3.6. hold. If we can
get a generalized model f ∈ F such that ∀e ′ ∈ Eval, ∀e ′′ ∈ Etra, and ∀y ∈ Y , we have
p
(
y
∣∣∣W (

Xe ′
))

= p
(
y
∣∣∣W (

Xe ′′
))

, then it follows thatKL
(
P
(
W
(
Xe ′

)∣∣∣y) ,P(W (
Xe ′′

)∣∣∣y)) = 0.

Proof. Base on the definition that KL (P ||Q) =
∑
x
P (x)log

(
P (x)
Q(x)

)
= 0⇔ P = Q . If there ex-

ists y ∈ Y , such that for all e ′ ∈ Eval, and e ′′ ∈ Etra, P
(
y
∣∣∣W (

Xe ′
))

= P
(
y
∣∣∣W (

Xe ′′
))

,

we have KL
(
P
(
W
(
Xe ′

)∣∣∣y) ,P(W (
Xe ′′

)∣∣∣y)) = 0 Hence, for any P
(
y
∣∣∣W (

Xe ′
))
̸= P

(
y
∣∣∣W (

Xe ′′
))

,

KL
(
P
(
W
(
Xe ′

)∣∣∣y) ,P(W (
Xe ′′

)∣∣∣y)) = 0. The proof is finished. ■

A.4 PROOF OF THEOREM 3.9

Theorem 3.9 (Expansion Function). The generalization ratio is an expansion function (Definition 3.4
in Ye et al. (2021)).

Proof. In the following, we show that GRKL satisfies the mathematical and functional properties of
an expansion function.

First, GRKL : R+ ∪ {0} → R+ ∪ {0,+∞} is a function with the following properties: 1) GRKL(·)
is monotonically increasing and GRKL(·) ≥ V(·),∀V(·) ≥ 0; 2) limV(·)→0+ GRKL(·) = 0. Hence,
GRKL is mathematically an expansion function.

Next, we know that the variation and informativeness in the domain set Eall ⊇ Eavail are defined as
follows:

Definition (Variation). The variation of the set of scalar maps W (·) from the available domain set
Eavail to the all domain set set Eall is

VKL (W, Eall) = max
y∈Y

sup
e ′∈Eall\Eavail ,

e ′′∈Eavail

KL
(
P
(
W
(
Xe ′

)∣∣∣y) ,P(W (
Xe ′′

)∣∣∣y)), (14)

where KL is KL-divergence and we concern the set relation rather than the method used for splitting.

Definition (Informativeness). The informativeness of the set of scalar maps W (·) across the available
domain set Eavail is

IKL

(
W, Eavail

)
=

1

n(n− 1)

( ∑
y ̸=y ′

y,y ′∈Y

min
e ′′∈Eavail

KL
(
P
(
W
(
Xe ′′) ∣∣ y),P(W (Xe ′′) ∣∣ y ′

)))
+ ϵ̄,

(15)
where ϵ̄ > 0 is approximately equal to zero positive value, and KL is KL-divergence.

Then, if we have a non-generalized model f ∈ F , for any Etra ⊆ Eavail ⊆ Eall, we have

VKL (W, Eavail) ≤ VKL (W, Eall) (16)

and
IKL

(
W, Etra

)
≥ IKL

(
W, Eavail

)
(17)
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at initialization. Thus, we can obtain

VKL (W, Eavail)
IKL

(
W, Etra

) ≤ VKL (W, Eall)
IKL

(
W, Eavail

) . (18)

Plugging VKL (W, Eavail) and VKL (W, Eall) into both sides, we can rewrite the inequality as

VKL (W, Eavail) +
VKL (W, Eavail)
IKL

(
W, Etra

) ≤ VKL (W, Eall) +
VKL (W, Eall)
IKL

(
W, Eavail

) . (19)

Since we aim to generalize to the entire domain set Eall, and our final goal is VKL (W, Eall)→ 0 and
IKL

(
W, Eavail

)
→ +∞ in Eall, we have

VKL (W, Eavail) +
VKL (W, Eavail)
IKL

(
W, Etra

) ≤ VKL (W, Eall) . (20)

Finally, we also observe that VKL (W, Eavail)→ 0 and IKL

(
W, Etra

)
→ +∞ during the training

process, so we have
VKL (W, Eavail) ≤ VKL (W, Eall) . (21)

Given the assumed properties of the expansion function, the generalization of OOD can be guaranteed
because we can predict whether an invariant and informative feature in Eavail will vary significantly
in the unseen domain Eall. The proof is finished. ■

A.5 PROOF OF THEOREM 3.10

Theorem 3.10 (Learnability on Non-generalized Model). Let W be a feature matrix function of
the non-generalized model f ∈ F defined in 3.2. Assuming Eavail to be the available domain set
and Etra = Eavail\Eval to be the training set, we say that the non-generalized model is learnable
if there exists a generalization ratio GRKL (W, Eavail) and ϵ̄ > 0, such that: given W satisfy
IKL (W, Etra) ≥ ϵ̄, we have GRKL (W, Eavail) > VKL (W, Eavail). If such the generalization ratio
GRKL (W, Eavail) and ϵ̄ exist, we also call this model (GRKL (W, Eavail) , ϵ̄)-learnable.

Proof. Given the generalization ratio GRKL (W, Eavail) and ϵ̄ > 0, we can derive that the gener-
alization ratio GRKL (W, Eavail) is an expansion function through the properties in the definition
of expansion function (Definition 3.3 in Ye et al. (2021)). Then, W is the feature matrix function
containing all linear feature extractors from the model f ∈ F , and IKL (W, Etra) ≥ ϵ̄. Thus, we
have GRKL (W, Eavail) > VKL (W, Eavail) by the definition of learnability (Definition 3.4 in Ye
et al. (2021)). Hence, this model is GRKL(W, Eavail),ϵ̄)-learnable. The proof is finished. ■

A.6 PROOF OF THEOREM 4.1

Theorem 4.1 (Variation on Distribution). Let Definition 3.3 hold. Suppose W and W ′ are ideal fea-
ture matrix functions of a model f ∈ F . If VKL (W, Eavail) = VKL (W ′, Eavail) = 0, then regard-
less of the distributions of the ideal feature matrix functions, even if P(W (Xe ′′

)) ̸= P(W ′(Xe ′′
))

for all e ′′ ∈ Etra, the model is still a generalized model.

Proof. Base on the Definition 3.3, we assume a generalized model f ∈ F . Given two different ideal
feature matrix functions W,W ′ ∈ W∗, ∀e ′ ∈ Eval, ∀e ′′ ∈ Etra, ∀y ∈ Y , we can obtain

P
(
y
∣∣∣W (

Xe ′
))

= P
(
y
∣∣∣W ′

(
Xe ′

))
= P

(
y
∣∣∣W (

Xe ′′
))

(22)

and
P
(
y
∣∣∣W ′

(
Xe ′

))
= P

(
y
∣∣∣W (

Xe ′
))

= P
(
y
∣∣∣W ′

(
Xe ′′

))
. (23)

Therefore, we have
P
(
y
∣∣∣W (

Xe ′′
))

= P
(
y
∣∣∣W ′

(
Xe ′′

))
(24)

By the definition of variation (Definition 3.4) and Proposition3.7, the model f is VKL (W, Eavail) = 0,
but W ̸= W ′. Hence, W causes the distribution to vary a lot in Etra or not, the model is still a
generalized model. ■
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A.7 PROOF OF THEOREM 4.2

Theorem 4.2 (Generalization Inequality). Let Proposition3.6. and Theorem 4.1 hold. Suppose we
have learned a base model x ′ = h(x) and a classifier f(x ′) = gi(wi(x ′)). Consider any loss
satisfying l (ŷ, y) =

∑K
k=1 l0 (ŷk, yk) and is bounded by [0, C]. For any linear top classifier gi ∈ G

decomposed from the non-generalized model f ∈ F , i.e.,

f(x ′) = Aiwi(x ′) + bi, (25)

with Ai ∈ RK×d, bi ∈ RK , wi ∈ W , where Ai =
d∏

j=i+1

wj is the product of all weight matrices,

and bi =
∑d

j=i+1

(∏j
k=1 wk

)
· bj is bias vector, if (Etra,Eavail) is (GRKL(W, Eavail),ϵ̄)-learnable under

W with average variation and informativeness, then we can have

max
e∈Eavail

L(e, f) ≤ O

(
C · 1

d

d∑
i=1

GRKL(wi, Eavail)

)
+ max

e∈Etra

L(e, f), (26)

where O(·) is positive function and depends only on d.

Proof. Suppose we have learned a base model x ′ = h(x) .Given a non-generalized model f , it can
be decomposed similarly to g ◦ w. Combining all kind of gi ◦ wi, i = 1, . . . , d into one formula to
represent f(x ′) we get

f(x ′) = Aiwi(x ′) + bi (27)

with Ai ∈ RK×d, bi ∈ RK , wi ∈ W , where Ai =
d∏

j=i+1

wj is the product of all weight matrices,

and bi =
∑d

j=i+1

(∏j
k=1 wk

)
· bj is the bias vector. Based on Theorem 4.1 and the linear top model

theorem presented in Ye et al. (2021), as well as the learnability results for the non-generalized model
(Theorem 3.1), for any kind of gi ◦wi, where gi is the top linear classifier, and wi is the linear feature
extractor, we have the following inequality:

max
e∈Eavail

L(e, f) ≤ O

(
C ·

d∑
i=1

GRKL(wi, Eavail)

)
+ max

e∈Etra

L(e, f). (28)

Then, summing all kind of inequalities, we can get

d∑
i=1

max
e∈Eavail

L (e, f) ≤ O

(
C ·

d∑
i=1

GRKL (wi, Eavail)

)
+

d∑
i=1

max
e∈Etra

L (e, f). (29)

Hence, averaging these inequalities over d different gi ◦ wi, we obtain

max
e∈Eavail

L(e, f) ≤ O

(
C · 1

d

d∑
i=1

GRKL(wi, Eavail)

)
+ max

e∈Etra

L(e, f). (30)

The proof is finished. ■
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