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ABSTRACT

As a fundamental and practical problem, long-tailed recognition has drawn burn-
ing attention. In this paper, we investigate an essential but rarely noticed issue in
long-tailed recognition, Class-Conditional Distribution (CCD) shift due to scarce
instances, which exhibits a significant discrepancy between the empirical CCDs
for training and test data, especially for tail classes. We observe empirical evi-
dence that the shift is a key factor that limits the performance of existing long-
tailed learning methods, and provide novel understanding of these methods in the
course of our analysis. Motivated by this, we propose an adaptive data augmenta-
tion method, Distributionally Robust Augmentation (DRA), to learn models more
robust to CCD shift. A new generalization bound under mild conditions shows
the objective of DRA bounds balanced risk on test distribubtion partially. Exper-
imental results verify that DRA outperforms related data augmentation methods
without extra training cost and significantly improves the performance of some
existing long-tailed recognition methods.

1 INTRODUCTION

Recently, visual recognition has achieved significant progress, driven by the development of deep
neural networks (He et al., 2016) as well as large-scale datasets (Russakovsky et al., 2015). However,
in contrast with manually balanced datasets, real-world data often has a long-tailed distribution over
classes i.e. a few classes contain many instances (head classes), whereas most classes contain only
a few instances (tail classes) (Liu et al., 2019; Van Horn & Perona, 2017). Training models on
long-tailed datasets usually leads to degenerated results, including over preference to head classes,
undesired estimation bias and poor generalization (Zhou et al., 2020; Cao et al., 2019; Kang et al.,
2019).

To solve above issues, various solutions have been proposed. Many of them focus on addressing
imbalanced label distribution for simulating class-balanced model training. Direct re-balancing,
like re-sampling and re-weighting, is the most intuitive (Huang et al., 2016; Zhang et al., 2021b).
Recently, the two-stage methods, which apply re-balancing strategy in tuning classifier (Kang et al.,
2019) or defer re-weighting after initialization (Cao et al., 2019), have been verified effective. Logit
adjustment uses margin-based loss or post-hoc adjustment to rectify the biased prediction caused by
long-tailed distribution (Menon et al., 2020; Ren et al., 2020; Hong et al., 2021). Formally, denoting
an input-label pair as (x, y), classification or recognition models are trained to estimate the posterior
probability P (y|x) ∝ P (y)P (x|y). In long-tailed recognition scenarios, most solutions actually
obey the following assumption: the class distribution P (y) shifts from training to test (usually class-
imbalanced in training but class-balanced in test), while the class-conditional distribution (CCD)
P (x|y) keeps consistent, i.e. Ptrain(y) ̸= Ptest(y) and Ptrain(x|y) = Ptest(x|y) (Menon et al.,
2020; Ren et al., 2020). Under this assumption, a series of methods including direct re-balancing
and logit adjustment have been proved Fisher-consistent (Menon et al., 2020).

We argue that although the consistent CCD assumption(Menon et al., 2020) is reasonable if there is
no sampling bias within each class, estimating P (x|y) by empirical CCD is unreliable, especially
for tail classes where the samples are extremely scarce. Therefore, to obtain a generalizable model,
the shift between empirical CCD and the ideal CCD cannot be ignored. Our focus does not overlap
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Figure 1: Accuracy on CIFAR10-LT with or without removing CCD shift. All methods show sig-
nificant improvement after removing shifts. And the improvement mainly appears in classes with
fewer instances, which verifies the empirical CCD distributions of tail classes are more unreliable.
Shaded regions show 95% CIs over 5 runs.

with existing methods that attend to scarce tail instances or inconsistent P (x|y). Transfer learning
and data augmentation have been proven effective from the motivation of increasing the diversity
of tail classes (Kim et al., 2020; Zhong et al., 2021; Zhou et al., 2022). But they are still possibly
biased due to unreliable empirical distribution and usually lack theoretical guarantee. Some recent
works focus on inconsistent class-conditional distribution caused by domain bias or attribute-wise
imbalance (Gu et al., 2022; Tang et al., 2022), which is under shift from unreliable estimation as
well. Nevertheless, the influence of CCD shift has not been thoroughly investigated and there has
been no effective solution yet.

In this work, we perform an empirical study to quantify the effect that the shift of P (x|y) will have
on long-tailed recognition, by using CCD from balanced datasets as an oracle to alleviate CCD shift.
With this oracle, the performance of existing methods is significantly improved, as shown in Figure
1, which indicates CCD shift is a key factor in limiting the performance of long-tailed learning. From
the CCD shift perspective, we also give new insights to counter-intuitive facts of previous methods
e.g. why decoupling methods (Kang et al., 2019) work and how Fisher-consistent parameter in logit
adjustment (Menon et al., 2020) gets sub-optimal performance.

Motivated by our empirical study, to enhance robustness against CCD shift, we propose Distri-
butionally Robust Augmentation (DRA) which assigns class-aware robustness, generalizing Sinha
et al. (2017) and admits a novel generalization bound. This bound verifies models robust to CCD
shift benefit long-tailed recognition. Our experiments show DRA improves various existing methods
significantly, validating our theoretical insights. Our main contributions are highlighted as follows:

• We identify a rarely noticed but essential issue in long-tailed recognition, class-conditional
distribution (CCD) shift, and provide new insights from the CCD shift view into some
existing methods.

• To train models robust to CCD shift, we propose DRA with theoretically sound modifi-
cations over prior DRO methods(Sinha et al., 2017), which admits a novel generalization
bound verifying that models robust to CCD shift benefit long-tailed recognition.

• Extensive experiments on long-tailed recognition show effectiveness of DRA: it signifi-
cantly improves existing re-balancing methods and achieves comparable performance to
state-of-the-arts. Moreover, DRA outperforms related data augmentation methods without
additional training costs.

2 RELATED WORK

2.1 LONG-TAILED RECOGNITION

Re-balancing methods. In this section, we review a broader scope of re-balancing methods. We
regard methods trying to solve the prior shift of P (y) as re-balancing methods. Long-tailed learning
can be considered as a special label shift problem whose testing label distribution is known while the
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original label shift problem needs to detect and estimate the unknown label distribution (Lipton et al.,
2018; Garg et al., 2020; Storkey, 2009; Latinne et al., 2001). Directly re-sampling or re-weighting
by the inverse of class frequencies is intuitive but causes over-fitting to tail classes or optimization
difficulties (Zhang et al., 2021b; Cui et al., 2019). Deferring use of re-balancing strategies (e.g.
DRS/DRW (Cao et al., 2019; Zhou et al., 2020)) and decoupled methods which only re-balance the
classifier (e.g. CRT, LWS (Kang et al., 2019)) are proved more effective (Zhong et al., 2021; Zhang
et al., 2021a). Beyond class frequencies, more efficient coefficients for re-balance are explored.
Focal (Lin et al., 2017) and CB (Cui et al., 2019) use the predicted logits or the effective numbers
to re-weight classes, while IB (Park et al., 2021) adopts influence function of every instance to
revise weights. Another strand of re-balancing methods proposes margin-based loss to heuristically
assign a larger margin to tail classes, e.g. LDAM (Cao et al., 2019) and RoBal (Wu et al., 2021).
Logit adjustment (Menon et al., 2020) utilizes margin-based loss to adjust logits, and the proposed
logit adjustment loss and post-hoc adjustment are equivalent to PC softmax and Balanced softmax
respectively (Hong et al., 2021; Ren et al., 2020). As for the convergence of re-balancing methods,
it has been theoretically proved with re-balance weight matching the margin, the loss is Fisher-
consistent under consistent class-conditional distribution assumption (Menon et al., 2020). Recent
works find logit adjustment leaves space to be improved by adding an instance-aware confidence
function (Zhong et al., 2021) or regularizer on posterior probability (Hong et al., 2021).

Information transfer and data augmentation. Some methods use transfer learning from head to
tail classes to remedy the lack of data diversity. M2m (Kim et al., 2020) formulates an additional
optimization to translate head instances to tail instances and GIT (Zhou et al., 2022) uses GAN
(Goodfellow et al., 2014) to learn nuisance transformations to transfer invariances for tail classes.
A recent assumption is that features from head classes and tail classes share intra-class variances
while observed variances positively correlate with class frequencies (Yin et al., 2019). Under this
assumption, some methods transfer variances by sharing classifier weights (Liu et al., 2021) or
sampling features from estimated Gaussian distributions (Liu et al., 2020). On the other hand, data
augmentation methods are also proved effective to increase the diversity of instances, e.g. ISDA
(Wang et al., 2019), mixup (Zhang et al., 2017). To adapt to long-tailed settings, some methods
make modifications by adjusting the probability of classes in mixup (Chou et al., 2020; Xu et al.,
2021) or adding label smoothing after mixup training (Zhong et al., 2021), while MetaSAug (Li
et al., 2021) uses meta-learning to estimate covariance in ISDA.

Challenging Ptrain(x|y) = Ptest(x|y). Very recent works challenge the shift of P (x|y) as well
and propose new perspectives for the long-tailed recognition problem. Tang et al. (2022) discover
that real-world data exhibit both class-wise imbalance and attribute-wise imbalance, but the latter
has long been overlooked. So they propose invariant feature learning (IFL) framework using IRM
(Ahuja et al., 2020) to deal with this generalized long-tailed learning problem. Besides, Gu et al.
(2022) considers the situation that the instances of a class are from different domains, and proposes
a united framework based on meta-learning under the multi-domain setting. GIT (Zhou et al., 2022)
implicitly challenges Ptrain(x|y) = Ptest(x|y) with the discovery that the model cannot give in-
variant predictions for class-agnostic transformations on tail classes because of the less diversity of
tail classes.

Other related methods. DRO-LT (Samuel & Chechik, 2021) proposes a margin-based loss for a
better feature extractor which is an upper bound of a Distributionally Robust Optimization problem.
CDT (Ye et al., 2020) finds the feature deviation between the training and test data, especially for
minor classes, and proposes class-aware temperature. MFW (Ye et al., 2021) further explains feature
deviation is from larger gradients on tail classes in the training process and proposes to mix features
within mini-batches to balance the gradients.

2.2 DISTRIBUTONALLY ROBUST OPTIMIZATION

Distributionally Robust Optimization (DRO) (Kuhn et al., 2019; Delage & Ye, 2010) considers the
worst-case risk minimization on a series of potential distributions, called uncertainty sets, which are
usually determined based on various computations, e.g. Wasserstein distance Kuhn et al. (2019),
f-divergence Namkoong & Duchi (2016) and moments constraints (Delage & Ye, 2010). WRM
(Sinha et al., 2017) gives a general solution to the below DRO problem for smooth loss functions:

min
θ

sup
p̂∈P

Ep[lθ(x, y)],P = {p̂|Wc(p̂, pN ) < r},
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where the uncertainty set is a ball under Wasserstein distance Wc. WRM converts the Lagrange
penalty of above problem to a min-max optimization with a constant Lagrange multiplier λ and
solves it by Algorithm 2:

min
λ,θ

sup
(x′,y′)

E(x,y)∼pN
[lθ(x

′, y′)− λc((x′, y′), (x, y))]

Our DRA generalizes WRM by using class-wise uncertainty set and generating a sequence of ex-
amples in the inner-optimization, which shows superiority over WRM theoretically and empirically.
Zhang et al. (2020b) utilizes DRO to train models which are robust to label shift, orthogonal to our
model which is robust to potential CCD shift. Lin et al. (2022) surveys recent studies on DRO.

3 CLASS-CONDITIONAL DISTRIBUTION SHIFT IN LONG-TAILED
RECOGNITION

In this section, we give empirical studies on unreliable class-conditional distribution (CCD) esti-
mation in long-tailed recognition. We first introduce problem setup. Then we leverage balanced
distribution to manually remove CCD shift in ablation experiments. Finally, we present theoretical
and empirical analysis based on the experimental results.

3.1 PROBLEM SETUP

In classification/recognition setting, a labeled instance is a pair (x, y), where y takes value in [L]
.
=

{1, ..., L} with L the number of classes and x ∈ Rm. We consider a θ-parameterized classifier
f , e.g. a neural network, which outputs fθ(x) ∈ RL to estimate P (y|x). Denote training set as
{(xi, yi)}Ni=1 ∼ Ptrain, with Ptrain =

∑
j∈[L] P (yj)P (x|yj) and Nj the number of instances from

class j. In the long-tail scenario, P (y) is imbalanced, and we assume that P (y1) > ... > P (yL).
In practice, the model is desired to perform well on all classes for the purpose of e.g. detecting rare
species or making fair decisions (Van Horn & Perona, 2017; Hinnefeld et al., 2018). Hence, the
distribution to evaluate is usually class-balanced i.e. Ptest =

1
L

∑
j∈[L] P (x|yj), In other words, the

goal is minimizing the balanced risk (Menon et al., 2020)

Rbal =
1

L

∑
j∈[L]

Px|yj
(yj ̸= argmax

y∈[L]

{fθ(x)}y) (1)

=
1

L

∑
j∈[L]

EP (x|yj){l0/1(yj , arg max
y∈[L]
{fθ(x)}y} (2)

In previous work, to estimate Rbal, P (x|yj) is approximated by a loss function l e.g. cross-
entropy and the empirical distribution (Menon et al., 2020; Vapnik, 1991) PNj

(x|yj) =
1
Nj

∑
i:yi=yj

δ(xi, yi), which is unreliable under long-tailed setting due to scarce instances of tail
classes. It can be explained more formally by the following proposition.

Proposition 1 For a L-Lipschitz loss function l, P (x|y) is a conditional distribution on Rm

and PN (x|y) is the empirical distribution of P (x|y) estimated from N instances. Denote
A

.
= EP (x|y){∥x∥

α} < ∞ for some α > 0, then ∃ c1, c2, depending on A, α, we have∣∣EP (x|y){l(x, y)} − EPN (x|y){l(x, y)}
∣∣ < t with probility at least 1− c1/e

( t
L )min{m,a}c2N .

It says with very few instances e.g. tail classes, training performance does not ensure generalization,
i.e. the shift between empirical distribution and true distribution cannot be ignored. That is the
so-called CCD shift. The proof of this proposition can be found in Appendix A. Unfortunately,
unreliability of CCD cannot be directly estimated from the bound of Proposition 1 due to unavailable
real distribution.

3.2 IDENTIFYING CCD SHIFT BY LEVERAGING BALANCED DISTRIBUTION

Many benchmarks of long-tail recognition, such as CIFAR10/100-LT (Cao et al., 2019) and
ImageNet-LT (Liu et al., 2019), are down-sampled from balanced datasets. Formally, instances
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Table 1: Accuracy of decoupling method CRT on CIFAR10-LT under different settings without or
with removing shift sampling. The underline means accuracy of imbalanced features and small font
denotes difference between re-balanced and imbalanced features. More results are in Table 4.

.

feature re-balance classifier adjust base removing shift

- CRT 77.72 87.07
DRW CRT 75.97-1.75 88.42+1.35

DRW - 78.06 89.01

from balanced datasets and long-tailed dataset are sampled respectively from

PN,bal(x, y) =
∑
j∈[L]

Pbal(yj)PNj ,bal(x|yj), (3)

PN,LT (x, y) =
∑
j∈[L]

PLT (yj)PNj ,LT (x|yj). (4)

Here PNj ,bal(x|yj) = 1
Nbal,j

∑
{i:yi=yj} δ(xi, yi) and PNj ,LT (x|yj) = 1

NLT,j

∑
{i:yi=yj} δ(xi, yi).

Besides, Pbal(y) is uniform and PLT (y) is imbalanced. To conduct an ablation comparison with
respect to CCD, we replace the CCD in (4) with PNj ,bal(x|yj), which is more reliable by Proposi-
tion 1, as an oracle for real CCD. While PNj ,bal(x|yj) may not approximate real CCD well, as long
as the approximation brings significant improvement on performance (as in our experiments and see
more in Appendix B.1), we can identify CCD shift according to Proposition 1. That is, sampling
from the following distribution

Premove shift(x, y) =
∑
j∈[L]

PLT (yj)PNj ,bal(x|yj) (5)

is named as removing shift sampling. In fact, the obtained samples come from a “fake” dataset as
the class distribution is predetermined instead counted from instances. We put the assumption and
implementation details of removing shift sampling in Appendix B.1.

We perform ablation experiments on CIFAR-LT without or with removing shift sampling to inves-
tigate the effect of CCD shift on vanilla ERM (Vapnik, 1991) and some representative re-balancing
methods: DRW Cao et al. (2019), CRT (Kang et al., 2019) and PC softmax (Menon et al., 2020;
Hong et al., 2021). The main results and analysis are provided in the following subsections. We put
experimental details and more results in Appendix B.

3.3 DISCOVERING THE UPPER BOUND OF LONG-TAIL RECOGNITION

Figure 1 and Figure 5 (in Appendix) quantitatively show how much CCD shift affects the perfor-
mance in long-tailed recognition. The accuracy curves of all methods (vanilla ERM and re-balancing
methods) exhibit significant gaps in performance with or without removing CCD shifts. And the
gaps mainly happen for tail classes, indicating that the CCD estimations of tail classes are more un-
reliable. The results quantitatively verify that shift of CCD cannot be ignored and is the key factor
to limit the performance in long-tail recognition.

Note that experiments with removing shift give an upper bound to the performance of these methods,
as the empirical CCD from balanced datasets is not available when training on long-tailed datasets.
The results suggest that it is promising and reasonable to improve generalization under long-tail
distribution from the perspective of enhancing or against the unreliable empirical distribution.

3.4 ANALYZING RE-BALANCING METHODS FROM THE PERSPECTIVE OF CCD SHIFT

Decoupling method avoids more severe CCD shift. An interesting phenomenon in decoupling
methods is imbalanced features are better than re-balanced features (Kang et al., 2019; Zhou et al.,
2020). We explain that re-balancing in feature learning exacerbates unreliable empirical distributions
because it assigns higher weights to unreliable empirical distributions of tail classes on expectations.
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As a result, simply re-balancing harms feature representation since the influence of unreliable em-
pirical distribution is even strengthened.

Table 1 quantifies the effect of CCD shift on re-balancing method CRT (Kang et al., 2019). Here,
“feature re-balance” and “classifier adjust” indicate whether and what re-balancing method is ap-
plied in feature learning and classidier adjustment, respectively. It shows re-balanced1 features are
worse than uniformly learned imbalanced features. But this phenomenon does not appear after re-
moving shift of CCD, as the re-balanced feature leads to better performance than the imbalanced
feature. Hence, we have evidence that two-stage methods succeed partially because they avoid ag-
gravating CCD shifts in feature learning. However, re-balancing in classifier adjustment may still
suffer from CCD shift, leaving space to be improved, as do in (Zhang et al., 2021a; Wang et al.,
2021).

Figure 2: Accury on CIFAR10-LT with
varying τ in post-hoc adjustment. After
removing shift τ = 1 gets optimal per-
formance while it is sub-optimal with
shift of P (x|y).

Sub-optimality of Fisher-consistent parameter in
post-hoc adjustment. Recall that post-hoc logit adjust-
ment method adjusts logits to fθ(x)j +τ log(P (yj)). The
parameter τ = 1 is proved Fisher-consistent, however, it
is sub-optimal in experiments (Menon et al., 2020). We
demystify this contradiction from the empirical study of
CCD shift. Figure 2 shows logit adjustment gets best per-
formance with τ much bigger than 1. We explain that rare
instances from tail classes cannot provide enough infor-
mation so the model regards them as “out of distribution”
examples and gives low logits to their true class (Wang
et al., 2021). Therefore more adjustment to tail classes,
i.e. τ > 1, gets better performance. The contradic-
tion comes from the facts that logit adjustment assumes
Ptrain(x|y) = Ptest(x|y) (Menon et al., 2020; Hong
et al., 2021) but the shift of P (x|y) really happens. As
shown in Figure 2, with removing shift, τ = 1 becomes
optimal. Based on above analysis, after rectifying biased
estimation on P (y|x), further improvement of logit ad-
justment lies in hardly recognizable samples due to CCD shift. Hence, it may be more reasonable to
adjust logits by instance instead of by class to compensate for hard samples.

4 DISTRIBUTIONALLY ROBUST AUGMENTATION AGAINST CCD SHIFT

We have seen that shift of CCDs limits the performance of re-balancing methods. For unknown real
distribution, minimization of the balanced risk is unobtainable even for Fisher-consistent methods
(Gareth et al., 2013). To this end, we propose Distributionally Robust Augmentation (DRA) to learn
a model more robust to the unreliable distribution estimation.

4.1 CONVERTING CLASS-AWARE ROBUSTNESS TO MIN-MAX OPTIMIZATION

With empirical distribution and a loss function, the balanced risk is approximated as:

Rbal =
1

L

∑
j∈[L]

EPN,LT (x|yj){lθ(x, y)} (6)

As we have shown, empirical CCDs are unreliable to estimate real CCDs. Instead of minimizing the
risk on empirical distribution, we utilize DRO (Kuhn et al., 2019) to obtain a more robust model
against unknown CCD shift. In particular, we aim at minimizing the distributionally robust risk:

RDRO =
1

L

∑
j∈[L]

sup
P̂j∈Pj

EP̂j
{lθ(x, y)}, (7)

1We choose DRW to get re-balanced features instead of RW (direct re-weighting) for RW gets the same
result whether with removing shift sampling or not: it harms first-stage learning. Related explanation could be
found in Appendix B.1.
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From the M-th loop

From the k-th,...,M-th loops
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Figure 3: An illustration of DRA. Augmentation examples xaug
i generated from original data xi in

M inner loops (with two choices of the last example or a sequence of examples) are used as new
training instances (xaug

i , yi) to train a robust model against potential distribution shift. The order
numbers indicate the process of DRA in an overall iteration.

in which P̂j is a probability measure on X × [L] and Pj = {P̂j : Wc(P̂j , PN,LT (x|yj)) < rj}. Wc

is Wasserstein distance induced by cost function c((x1, y1), (x2, y2)) = ∥x1 − x2∥2+∞· 1{y1 ̸=y2}.
Different from previous methods (Sinha et al., 2017; Shafieezadeh-Abadeh et al., 2019), we set radii
of uncertainty sets Pj dependent on classes to adapt to imbalanced instance numbers, which
implies different reliability by Proposition 1. Specifically, we set the radii decreased with the number
of instances, i.e.r1 < · · · < rL, to make the model robust enough without over-occupation of model
capacity(Frogner et al., 2021; Zhang et al., 2020a).

Since RDRO in (7) defined on sets of distributions is intractable, we convert it to a min-max opti-
mization problem on the training set, as presented in Theorem 4 (in the Appendix).

RDRO = inf
λj≥0,j∈[L]

1

L
{
∑
j∈[L]

λjrj + EPN,LT (x|yj){ sup
z=(xz,yz)∈X×[L]

lθ(xz, yz)− λj · c(z, (x, y))}}.

(8)

Although the gradient of λj can be computed by automatic differentiation, it brings another loop.
Considering the radii of uncertainty sets need tuning as well, we relax λj in (8) to simplify the
optimization procedure without more hyperparameters. Then our objective changes from (8) to:

F (θ) :=
1

L

∑
j∈[L]

sup
P̂j

EP̂j
{l(x, y)} − λj ·Wc(P̂j , PNLT,j

) (9)

=
1

L

∑
j∈[L]

EPN,LT (x|yj){ sup
z=(xz,yz)∈X×[L]

lθ(xz, yz)− λj · c(z, (x, y))}. (10)

The final objective (10) actually equals to the Lagrange penalty (9) for the original problem (7), as
in the above equation. Besides, a generalization bound in Theorem 7 with mild conditions shows the
risk on balanced label distribution with real CCD is partially bounded by the objective (10), meaning
that our method provides a principled solution to the CCD shift.

4.2 LEARNING WITH A SEQUENCE OF AUGMENTED DATA

As illustrated in Figure 3, the learning process of DRA involves inner-optimization and outer-
optimization, where the former generates augmentation examples from the original data, and the
latter uses these augmented examples to train a robust model. In this way we minimize the con-
verted robustness objective F (θ) by DRA.

More specifically, as the orange curve in Figure 3 indicates, we can directly solve the inner opti-
mization supz=(xz,yz)∈X×[L] lθ(xz, yz)− λj · c(z, (x, y)) by gradient descent. Here lθ(xz, yz) can
be seen as mining harder examples for the current model, with c(z, (x, y)) constraining examples not
too far away from the original instance and λj determining the magnitude of the constraint. There
are different ways to augment examples during inner optimization. One can rely on Algorithm 2
by just replacing λ by our λj , which only uses the last point as augmentation example, annotated
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as “the last example” in Figure 3. This strategy causes unstable optimization and bad performance
when λj are relatively small, as shown in Figure 4. To overcome these limitations, we propose
DRA Algorithm 1, which uses a sequence of examples, i.e. the last s := M − k points, from
the loops of inner-optimization, annotated as “a squence of examples” in Figure 3. Empirically,
our method achieves better and stable performance on small multipliers as in Figure 4.

Theoretically, we can prove a sequence of examples can make the optimization more stable as s
decreases the following convergency bound under common conditions of Sinha et al. (2017):

1

T

∑
t∈[t]

E[∥∇θF (θt)∥22] <
1− (C1)

s

sNbatch
C2ϵ+O(

√
1

NbatchT
), (11)

where C1 < 1, C2 are constants and Nbatch is the batch size. The bound is more formally presented
in Theorem 5. More theoretical analysis (generalization and optimality guarantees) and implemen-
tation details of DRA could be seen in Appendix A, C.2.

5 EXPERIMENTS

We conduct experiments using DRA together with re-balancing methods e.g. delayed re-balancing,
decoupling and logit adjustment on various long-tailed datasets. We also analyze the training cost
of DRA and make comparison with other data augmentation methods. More complete experimental
details and results are provided in Appendix C.

5.1 EXPERIMENTAL SETUP

Comparative methods. We compare our methods with (I) re-balancing methods including Decou-
pling (Kang et al., 2019), Logit Adjustment(Menon et al., 2020), PC softmax(Hong et al., 2021),
DRS/DRW(Cao et al., 2019); (II) learned data augmentation including M2m(Kim et al., 2020),
GIT(Zhou et al., 2022); (III) other related methods including LADE(Hong et al., 2021), DRO-
LT(Samuel & Chechik, 2021), IB(Park et al., 2021), MFW(Ye et al., 2021), CDT(Ye et al., 2020).

Datasets. We conduct experiments on four real-world datasets including CIFAR10-LT, CIFAR100-
LT, Tiny-ImageNet-LT Cao et al. (2019) and ImageNet-LT (Liu et al., 2019). We set the imbalance
ratio of CIFAR-LT and Tiny-ImageNet-LT to 100. For all the benchmarks, we evaluate the perfor-
mance by top-1 accuracy on the validation set as previous works (Hong et al., 2021; Cao et al., 2019;
Menon et al., 2020).

5.2 MAIN RESULTS

Table 2 shows DRA improves all baseline re-balancing methods on three benchmarks in long-
tailed recognition, e.g. DRA improves logit adjustment by 0.68% and 0.54% on CIFAR10-LT and
CIFAR100-LT respectively. Note that LADE, also based on logit adjustment, improves by 0.22%
and 0.22% respectively. Our DRA even marginally outperforms GIT and M2m which use learned
augmentation but need additional model (e.g. a GAN (Goodfellow et al., 2014)) and training process
apart from end-to-end training. We conduct a more detailed comparison with these data augmenta-
tion methods in ablation study.

Table 7 (in Appendix) shows that DRA is also effective on the large-scale dataset ImageNet-LT. Sim-
ilarly, DRA shows considerable improvement on re-balancing methods, building stronger baselines
for long-tailed recognition. Moreover, the improvement gained from DRA is not only from few-shot
but also from many-shot and medium-shot, which verifies distributionally robustness could enhance
the generalization of head classes as well.

5.3 ABLATION STUDY

Class-aware uncertainty set. As explained in Appendix C.2, we set class-aware multiplier as λj =

normalize{Nj
β} ∗ S with hyperparameters β and S. Through β we assign different robustness

to classes.β = 0 gives every class the same robustness and DRA reduces to WRM. With different
values of β and S, we can reveal the effects of class-aware radius and validate our hypothesis.

8
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Table 2: Comparison of top-1 accuracy (%) on different benchmarks. - denotes results not reported,
† means results from original papers, ‡ means reproduced results from official codes, * means re-
quiring more training epochs. Best results are in bold and small red font denotes performance gain.

Method CIFAR10-LT CIFAR100-LT Tiny-ImageNet-LT

ERM 73.24 40.28 34.20
CE-DRS 77.21 44.16 36.02
LDAM-DRW 78.67 45.05 37.43
LDAM-DRS 78.71 45.12 37.66
PC softmax 79.58 44.34 -
Logit Adjustment 79.65 45.17 -
LDAM-M2m† 79.1 43.4 -
CE-DRS-GIT 77.35‡ 43.02‡ 17.43†
LDAM-DRS-GIT 79.36‡ 43.65‡ 21.99†
MFW∗† 78.5 44.7 35.4
CDT† 79.4 44.3 37.9
IB‡ 78.86 43.18 40.40
LADE‡ 79.87 45.39 -
DRO-LT∗‡ 79.1 44.2 -
CE-DRA 75.08+1.84 41.37+1.09 35.11+0.91
CE-DRS-DRA 78.89+1.68 44.87+0.71 36.18+0.12
LDAM-DRS-DRA 79.75+1.04 45.54+0.42 39.07+1.41
PC softmax-DRA 80.39+0.81 44.84+0.50 -
Logit Adjustment-DRA 80.33+0.68 45.71+0.54 -

Figure 4: Accuracy on CIFAR10-LT with respect
to different choices of hyperparameters S, β and
k in inner optimization

The number of augmentation examples. We
perform experiments to verify the effect of us-
ing a sequence of points as augmentation exam-
ples in DRA to calculate outer gradient. Specif-
ically, we set k in DRA to M/2 or M − 1 and
obtain comparative results.

Figure 4 shows the effectiveness of DRA in two
innovations of class-aware uncertainty set and
the number of augmentation examples. As the
bound (11) indicates, a sequence of augmenta-
tion examples is more stable than the last point.
Class-aware radius exhibits significant superi-
ority while class-consistent radius (in WRM)
only slightly improves the performance.

More ablation study. We put more ablation study in Appendix C.4, including comparison with
augmentation methods, training cost, confidence calibration, visualization and discussion.

6 CONCLUSION

In this paper, we discover empirical evidence that unreliable distribution estimation in long-tailed
recognition, exhibiting as shift of P (x|y), is a key factor to limit performance even with re-balancing
methods. It suggests that only regarding long-tailed learning as label distribution shift problem is not
reasonable enough. By our proposed DRA, we show training a model robust to potential distribution
shift is effective to improve long-tailed recognition with theoretical and empirical guarantees. Space
to improve e.g. more precise uncertain set for potential shift is considered possible. Overall, to some
degree our work sheds light on the bottleneck of long-tailed recognition and encourages further
solutions under other settings from the perspective of unreliable empirical estimation.

9
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7 REPRODUCIBILITY STATEMENT

For our empirical study experiments, Appendix B.1 describes the implementation details such as the
probability setting of removing shift sampler, model architecture, and hyperparameters. In our main
comparative experiments, for methods used jointly with DRA, we implement them based on official
codes and keep default hyperparameters for their modules. For other methods, we use results repro-
duced from publicly available official codes or numbers reported in the original papers. Appendix
C provides detailed experiment settings such as model architecture, optimization hyperparameters,
and the implementation of DRA.The pseudocode of DRA is in Algorithm 1. Besides, we put all
proofs of propositions and theorems presented in this paper in Appendix A.
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A PROOFS AND MORE THEORETICAL ANALYSIS

Lemma 2 (Kantorovich-Rubinstein Theorem) (Villani, 2009, 5.16) For Wassernstein distance
Wc between two distributions Q and Q

′
, Lip(f) = supx1,x2

|f(x1)−f(x2)|
∥x1−x2∥ , it admits

Wc(Q,Q
′
) = sup

Lip(ϕ)<1

∫
Rm

ϕ(ξ)Q(dξ)−
∫
Rm

ϕ(ξ)Q
′
(dξ).

Lemma 3 (Measure concentration) (Fournier & Guillin, 2015, Theorem 2) For a probability dis-
tribution P on Rm and PN is the empirical distribution of N instances i.i.d sampled from P , A =
EP (x|y){∥x∥

α} <∞ for some α > 0, then ∃c1, c2, depending on A, α, P (Wc(P, PN ) < ϵ) > 1−η
holds, for

ϵ(η) =


(
log(c1/η)

c2N
)1/m if N ≥ log(c1/η)

c2

(
log(c1/η)

c2N
)1/α if N <

log(c1/η)

c2

A.1 PROOF OF PROPOSITON 1∣∣EP (x|y){l(x, y)} − EPN (x|y){l(x, y)}
∣∣

=L ·
∣∣EP (x|y){l(x, y)/L} − EPN (x|y){l(x, y)/L}

∣∣
≤L ·Wc(P (x|y), PN (x|y))

The last equality is from Lemma 2. And directly substituting η in Lemma 3 by c1

e(
t
L

)min{m,a}c2N
gets

the result.
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A.2 PROOF OF THEOREM 4

Theorem 4 For a continuous loss l : Θ× (X × [L])→ R, we have

RDRO = inf
λj≥0,j∈[L]

1

L
{λjrj +

∑
j∈[L]

EPN,LT (x|yj){ sup
z=(xz,yz)∈X×[L]

lθ(xz, yz)− λj · c(z, (x, y))}}.

(12)

Considering Lagrange penalty with nonnegative multipliers {λj}j∈[L], we have the reformulation:

F (θ) :=
1

L

∑
j∈[L]

sup
P̂j

EP̂j
{l(x, y)} − λj ·Wc(P̂j , PNLT,j

) (13)

=
1

L

∑
j∈[L]

EPN,LT (x|yj){ sup
z=(xz,yz)∈X×[L]

lθ(xz, yz)− λj · c(z, (x, y))}. (14)

Our proof generalizes the proof in Sinha et al. (2017), which is a special case λj ≡ C of ours.

Using the duality firstly, we have

RDRO =
1

L

∑
j∈[L]

sup
P̂j∈Pj

EP̂j
[lθ(x, y)]

= sup
P̂j∈Pj

inf
λj≥0

1

L

∑
j∈[L]

{EP̂j
[lθ(x, y)]− λjWc(P̂j , PN,LT (x|yj)) + λjrj}

= inf
λj≥0
{λjrj + sup

P̂j∈Pj

1

L

∑
j∈[L]

{EP̂j
[lθ(x, y)]− λjWc(P̂j , PN,LT (x|yj))}}.

The last equality is based on strong duality which will be explained later. All we need to prove now
is

sup
P̂j∈Pj

1

L

∑
j∈[L]

{EP̂j
[lθ(x, y)]− λjWc(P̂j , PN,LT (x|yj))}

=
1

L

∑
j∈[L]

EPN,LT (x|yj)[ sup
z=(xz,yz)∈X×[L]

lθ(xz, yz)− λj · c(z, (x, y))].

Actually, we have

sup
P̂j∈Pj

1

L

∑
j∈[L]

{EP̂j
[lθ(x, y)]− λjWc(P̂j , PN,LT (x|yj))}

= sup
P̂j∈Pj

1

L

∑
j∈[L]

∫
lθ(ξ, y)P̂j(dξ)− λj inf

M∈π(P̂j ,PN,LT (x|yj))

∫
c(ξ1, ξ2)M(dξ1, dξ2)

= sup
P̂j∈Pj ,M∈π(P̂j ,PN,LT (x|yj))

1

L

∑
j∈[L]

∫
lθ(ξ, y)− λjc((ξ, y), ξ2)M((dξ, y), dξ2)

≤ sup
P̂j∈Pj ,M∈π(P̂j ,PN,LT (x|yj))

1

L

∑
j∈[L]

∫
sup

z=(xz,yz)∈X×[L]

lθ(xz, yz)− λjc((xz, yz), ξ2)M(dξ1, dξ2)

=
1

L

∑
j∈[L]

EPN,LT (x|yj)[ sup
z=(xz,yz)∈X×[L]

lθ(xz, yz)− λj · c(z, (x, y))].

The first equality is from the definition of Wasserstein distance and the last equality is from
supz=(xz,yz)∈X×[L] lθ(xz, yz)− λj · c(z, ξ2) is independent of ξ1. We now explain that the in-
equality is actually an equality. For every i, we can find z∗i = (x∗

z, yi) for every ϵ > 0, k ∈ N
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satisfying

lθ(x
∗
z, yi)− λj · c(z∗i , (xi, yi)) ≥ sup

z=(xz,yz)∈X×[L]

lθ(xz, yz)− λj · c(z, (xi, yi))− ϵ

if sup
z=(xz,yz)∈X×[L]

lθ(xz, yz)− λj · c(z, (xi, yi)) <∞

lθ(x
∗
z, yi)− λj · c(z∗i , (xi, yi)) ≥ k

if sup
z=(xz,yz)∈X×[L]

lθ(xz, yz)− λj · c(z, (xi, yi)) =∞

LetM(ξ1, ξ2) =
1
N

∑
i∈[N ] δ(z

∗
i , (xi, yi)), and for arbitrariness of ϵ or k, the equality is established.

Finally, we prove the strong duality. Let P̂j = PNLT,j
(x|y), and Wc(P̂j , PNLT,j

(x|y)) =

0. Therefore, {0 · · · 0} ∈ RL is the inner point of the set {b ∈ RL|bj =
1

Nj

∑
yi=j

∫
∥ξ − xi∥2Q(dξ), Q is a probability measure on X}, satisfying the slater’s condition of

a standard conic programming duality result (Shapiro, 2001, 3.4), thus the strong duality is estab-
lished.

A.3 PROOF OF THEOREM 5

Theorem 5 Under similar conditions to WRM (Assumption 1, 2,3), let T be the number of iterations
in outer optimization, ∆F = F (θ0)− infn∈[T ] F (θn), Nbatch is the batchsize, with stepsize of outer

optimization α = min{ 1
2LΦ

,
√

Nbatch∆F

LΦTσ2 } and inner stepsize αinner = 1
λ−Lzz

, Lϕ = Lθθ +
LzθLθz

λ−Lzz

with Lθz, Lθθ, Lzθ, Lzz, σ depending on l. For Algorithm 1, let s = M − k is the number of exam-
ples, λ = minj∈[L]λj , G = max{Lθz, Lθθ, Lzθ, Lzz}, then for {θj}Tj=0 in the outer optimization,
we have

1

T

∑
t∈[t]

E[∥∇θF (θt)∥22] <
1

sNbatch

1− (1− λ−Lzz

G )s

λ−Lzz

G

6Lθz
2

λ− Lzz
ϵ+ 4σ

√
1

Nbatch

LΦ∆F

T
. (15)

Actually, in the inequality (11), considering that λj is small but concavity is established (λj ≥ Lzz),
we assume λj−Lzz

G < 1, then the first term of the bound reduces with the increase of the number of
examples s thus the overall optimization becomes more stable. DRA provides a principled solution
to CCD shift as long as real CCDs are included by the candidates we consider.

With similar mild assumptions as WRM (Sinha et al., 2017) below, one can prove that our Distribu-
tionally Robust Augmentation Algorithm 1 enjoys a guarantee of convergence. It finds a ϵ-stationary
point of model parameters θ with O(ϵ2) iterations (as fast as SGD (Amari, 1993)).

Assumption 1 The loss l : θ ×Z(≡ X × [L])→ R satisfies the smoothness conditions:∥∥∥∇θl(θ, z)−∇θl(θ
′
, z)

∥∥∥
∗
≤ Lθθ ∥θ − θ∗∥ ,

∥∥∥∇zl(θ, z)−∇zl(θ, z
′
)
∥∥∥
∗
≤ Lzz ∥z − z∗∥ ,∥∥∥∇θl(θ, z)−∇θl(θ, z

′
)
∥∥∥
∗
≤ Lθz ∥z − z∗∥ ,

∥∥∥∇zl(θ, z)−∇zl(θ
′
, z)

∥∥∥
∗
≤ Lzθ ∥θ − θ∗∥ .

∥·∥∗ is the dual norm of the norm ∥·∥ (as our settings, ∥·∥2).

We also borrow a lemma from WRM as follows:

Lemma 6 (Sinha et al., 2017, Lemma 1) Let f : θ × Z → R be differentiable and η-strongly con-
cave in z, define f(θ) = supz∈Z f(θ, z). Let gθ(θ, z) = ∇θf(θ, z) and gz(θ, z) = ∇zf(θ, z) and f

satisfies Assumption 1 with replacing l with f . Then f is differentiable and ∇θf = ∇θf(θ, z
∗(θ))

where z∗(θ) = supz∈Z f(θ, z). And we have

∥z∗(θ1)− z∗(θ2)∥ ≤
Lzθ

η
∥θ1 − θ2∥ ,
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and ∥∥∇f(θ)−∇f(θ∗)∥∥∗ ≤ (Lθθ +
LzθLθz

η
) ∥θ1 − θ2∥ .

Under Assumption 1, the primal of inner optimization l(θ, z) − λjc(z, z0) is (λj − Lzz)-strongly
concave, so that z∗j,0 = arg supz l(θ, z)− λjc(z, z0) is well-defined and satisfies the condition of
Lemma 6. Thus, we have ∇θ supz∈Z l(θ, z) − λjc(z, z0) = ∇θlθ(z

∗
j,0) and ∇θF (θ) is LzθLθz

λj−Lzz
-

Lipschitz. Then we make an assumption on the variance of the gradient in the outer-optimization,
which is a common condition when analyzing the convergence of SGD.

Assumption 2 For any sampled training set {(xi, yi)}i∈[N ], it holds

E
∥∥∇θlθ(z

∗
yi,i)−∇θF (θ)

∥∥2 ≤ σ2,

where z∗yi,i
= arg supz lθ(z)− λjc(z, (xi, yi)).

With the preparation above, we begin to prove Theorem 5. Let hj(θ, z; (xi, j)) := l(θ, z) −
λjc(z, (xi, j)). In Algorithm 1, the gradient we use to update is actually

gt =
1

Nbatch

∑
i∈[Nbatch]

1

s

∑
r∈[s]

∇θhyi
(θt, (x

r+k
i , yi); (xi, yi)).

Since the gradient of F (θ) is Lϕ-smooth,

F (θt+1) <F (θt) + ⟨∇F (θt), θt+1 − θt⟩+
Lϕ

2
∥θt+1 − θt∥22

=F (θt)− α(1− Lϕα

2
) ∥∇F (θt)∥22 + α(1 +

Lϕα

2
)⟨∇F (θt), F (θt)− gt⟩

+
Lϕα

2

2
∥F (θt)− gt∥22 .

We need to estimate F (θt)− gt in the equation above. Let

g∗t =
1

Nbatch
∇θ

∑
i∈[Nbatch]

l(θt, z
∗
yi,i(θt)).

With the help of g∗t , we can estimate F (θt) − gt more easily. The difference between gt and g∗t
comes from we use a series of points to compute the gradient to θ and the inner optimization cannot
obtain an optimal solution precisely. The difference between ∇F (θt) and g∗t is from just sampling
a batch from all training instances.

We compute the difference between gt and g∗t as δt = gt − g∗t , then we have

∥δt∥22 =

∥∥∥∥∥∥ 1

Nbatch

∑
i∈Nbatch

{1
s

∑
r∈[s]

∇θl(θt, (x
r+k
i , yi))−∇θl(θt, z

∗
yi,i)}

∥∥∥∥∥∥
2

2

≤( 1

Nbatch
)2

∑
i∈Nbatch

(
1

s
)2

∑
r∈[s]

l2θz
∥∥(xr+k

i , yi)− z∗yi,i)
∥∥2
2
.

Assumption 3 The inner-optimization just reaches the linear convergence rate (Nesterov, 1998)
of gradient descent in strongly-convex optimization i.e. ∥(xk+s

i , yi) − z∗yi,i
∥22 ≤ (1 −

λ−Lzz

G )k+s∥(x0
i , yi)− z∗yi,i

∥22 ≤ ϵ.

We make this assumption under the motivation that the last example is enough when the convergence
is much faster than the convergence bound that the strongly-convex condition gives. However when
the convergence of inner-optimization is slow i.e. just reaches the convergence bound, using a
sequence of examples can gain benefits.
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We have
∥∥(xk+s

i , yi)− z∗yi,i
)
∥∥2
2
≤ 1

λyi
−Lzz

ϵ. With another assumption that inner-optimization
reaches the linear convergence rate of gradient descent on strongly concave optimization (Nesterov,
1998), as the inner optimization is at least λ− Lzz-strongly concave, we have∥∥(xk+r

i , yi)− z∗yi,i)
∥∥2
2
≤ (1− λ− Lzz

G
)s−r 1

λyi
− Lzz

ϵ.

As a result, ∥δt∥22 ≤
1

sNbatch

1−(1−λ−Lzz
G )s

λ−Lzz
G

4Lθz
2

λ−Lzz
ϵ.

Substituing gt with δt, we have

F (θt+1) <F (θt)−
α

2
∥∇F (θt)∥22 +

α

2
(1− 1

2
Lϕα) ∥δt∥22

+α(1− Lϕα)⟨∇F (θt),∇F (θt)− g∗t ⟩+ Lϕα
2(∥δt∥22 + ∥∇F (θt)− g∗t ∥

2
2).

For Lemma 6, g∗t is unbiased estimation to ∇F (θt) so E[g∗t −∇F (θt)|θt] = 0. Using Assumption
2 to control the invariance of the estimation and taking expectations of the above formula, we have

E[F (θt+1)− F (θt)] ≥ −
α

2
E[∥∇F (θt)∥22]

+
1

Nbatch
Lϕα

2σ2 +
3

4
α

1

sNbatch

1− (1− λ−Lzz

G )s

λ−Lzz

G

4Lθz
2

λ− Lzz
ϵ,

where we use α < 1
2Lϕ

to get 3
2Lϕα

2 ≤ 3
4α.

Summing by t, we get

1

T

T∑
t=1

E[∥∇F (θt)∥22] ≤ 2
∆F

αT
+

2

Nbatch
Lϕασ

2 +
6

sNbatch

1− (1− λ−Lzz

G )s

λ−Lzz

G

4Lθz
2

λ− Lzz
ϵ.

Substituting with the stepsize α, the conclusion is obtained.

A.4 GENELIZATION BOUND AND OPTIMALITY OF AUGMENTATION EXAMPLES

In addition, we give a bound on the estimated balanced risk on real distribution and the optimality
of examples generated by DRA under mild conditions.

Theorem 7 (Genelization bound) Assuming l : Θ × (X × [L]) → R is continious and for every
class j, let the real class-conditional distribution P (x|yj) satisfies ∃α > 0, A = EP (x|yj){∥ξ∥

α} <
∞, then ∃c1, c2 only depending on A,α, for any multipier {λj}j∈[L], with probability 1− η it holds

Rbal,l ≤
∑
j∈[L]

1

L
{λj max{( log(c1/η)

c2Nj
)1/m, (

log(c1/η)

c2Nj
)1/α}

+ EPN,LT (x|yj)[ sup
z=(xz,yz)∈X×[L]

l(xz, yz)− λj · c(z, (x, y))]},

in which Rbal,l :=
∑

j∈[L]
1
LEP (x|yj){l(x, y)} is the balanced risk on test distribution Ptest =

1
L

∑
j∈[L] P (x|yj) estimated by loss function l(x, y).

Remark 1 The above bound shows a new viewpoint beyond existing theoritical results of long-tailed
recogniton in the community. We make some remarks for the bound as follows:

1. It is more flexible and tight than the results of prior DRO works (Sinha et al., 2017; Kuhn
et al., 2019). It adjusts class-wise robustness by λj for each class j, while prior work only
admits a special case of λj = C, for all j ∈ [L].

2. It is closer to practical training compared to the Fisher-consistency result by logit adjust-
ment (Menon et al., 2020). Fisher-consistency theory from Theorem 1 in Menon et al.
(2020) only states that a Bayes-optimal classifier would be obtained by the minimization of
logit adjustment loss under a balanced label distribution with real CCDs.
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3. It is no longer dependent on the capacity of the hypothesis class, which is extremely large
for modern neural networks, while the bound in Theorem 1 of Cao et al. (2019) is.

This bound shows with a high probability the balanced risk on real distribution could be bounded
by our objective (10) plus a constant depending on the multiplier λj and the number of instances
from each class, which serves as a generalization gap, decreasing with the number of instances
Nj . It indicates λj controls a trade-off between robustness and performance. If we do not enforce
any robustness i.e. the multipiers λj are extremely large, DRA actually equals to ERM. In this
situation, large λj leads to considerable generalization gap, especially for the tail classes. Hence, we
conclude that models robust to CCD shift benefit long-tailed recognition. Conversely, making λj

extremely small near zero, it admits a trivial bound meaning the model refuses to make predictions,
which is well-known as “over-pessimism” in DRO (Frogner et al., 2021).

Proposition 8 (Optimality of augmentation examples) Assuming l : Θ× (X × [L])→ R is con-
tinuous. Tj((x, y)) := argmaxz=(xz,yz)∈X×[L] l(xz, yz)− λj · c(z, (x, y)) is the optimal solu-
tion of inner optimization, M is the set of probability measure on X × [L] and P ∗

N,LT (x|yj) =
1

NLT,j

∑
{i:yi=yj} δ(Tj((xi, yi))) is the empirical distribution consisting of them. Then for any mul-

tipier {λj}j∈[L], we have

P ∗
N,LT (x|yj) = arg max

P̂j∈M
EP̂j

[l(x, y)]− λjWc(P̂j , PN,LT (x|yj)),

which indicates the empirical distribution consisting of ideal optimal solutions of inner optimization
of a class is the optimal perturbed distribution of the Lagrange penalty problem.

A.5 PROOF OF THEOREM 7

Using Theorem 4, for any multiplier {λj}j∈[L], we have

1

L

∑
j∈[L]

sup
P̂j∈Pj

EP̂j
{l(x, y)} < 1

L

∑
j∈[L]

λjrj

+ EPN,LT (x|yj)[ sup
z=(xz,yz)∈X×[L]

l(xz, yz)− λj · c(z, (x, y))],

in which rj is the radius of Pj .

And with our assumption, P (x|yj) satisfies conditions of Lemma 3. So let rj =

max{( log(c1/η)c2Nj
)1/m, ( log(c1/η)c2Nj

)1/α}, we have P (x|yj) ∈ Pj with the probability of 1− η. Thus, it
establishes ∑

j∈[L]

1

L
EP (x|y){l(x, y)} <

1

L

∑
j∈[L]

sup
P̂j∈Pj

EP̂j
{l(x, y)}

and we get the conclusion.

A.6 PROOF OF PROPOSITION 8

sup
P̂j∈M

EP̂j
[l(x, y)]− λjWc(P̂j , PN,LT (x|yj))

= EPNLT,j
(x|y)[ sup

z=(xz,yz)∈X×[L]

l(xz, yz)− λj · c(z, (x, y))]

= EP∗
N,LT (x|yj)[l(x, y)]− λj

∑
{i:yi=yj}

c(Tj((xi, yi)), (xi, yi))

≤ EP∗
N,LT (x|yj)[l(x, y)]− λjWc(P

∗
N,LT (x|yj), PN,LT (x|yj))

The first equality is from Theorem 4 and the second is from the definition of P ∗
N,LT (x|yj). The

inequality is from the definition of Wasserstein distance. For the inequality in the opposite direction
is trivial, we establish the conclusion.
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B DETAILED EMPIRICAL STUDY ON CCD SHIFT

B.1 EXPERIMENTS SETTING

Assumption of removing shift. To conduct experimental comparisons on CCD, we propose remov-
ing shift sampling in Section 3.2. An ideal situation for comparision on CCD is to obtain real CCD
P (x|y) and keep imbalanced label distribution P (y). In fact, due to no access to the real P (x|y), we
make the empirical CCD PN,bal(x|y) serve as an oracle to substitute real CCD P(x|y). At the
same time, we keep imbalance by using the same label distribution PLT (y) as long-tailed datasets so
that the label distribution is imbalanced in every batch and so it is in the whole training. In this way,
more unique instances are seen by the model but the number of samples from each class, i.e. label
distribution, keeps unchanged in all batches during training. So under our assumption, we make a
fair ablation study on CCD with proper control of other factors. It is possible that PN,bal(x|y) can-
not estimate real CCD well, but as long as the oracle brings improvement in performance, we can
blame CCD shift correctly. The counterexample appears in extreme cases when the oracle does not
make improvement. In that case, we cannot tell whether the CCD shift does not appear thus should
not be blamed or our oracle is too weak to identify the CCD shift.

Implementation of removing shift sampling. We do removing shift sampling on original balanced
dataset CIFAR10/100 (Krizhevsky, 2009). We use a dataloader with a class-imbalanced sampler
which samples with the same class probability PLT (y) as the long-tailed dataset and samples uni-
formly within each class. The accumulated probabilities of instances from each class equals the
predetermined class frequency and every instance within a class has the same sampling probability.
To this end, we implement the sampler as a multinomial distribution sampler in the same way as
that used to generate CIFAR-LT in Cao et al. (2019). Different from the generation of long-tailed
dataset, we sample from the whole balanced dataset and get class-imbalanced instances in every
batch. In addition, We keep the same amount of data as the long-tailed dataset while only change
the class-conditional distribution via removing shift in the ablation experiment.

More implementation details. We train ResNet (He et al., 2016) with batch size 256, optimized
by SGD with momentum 0.9 and weight decay 2 × 10−4 with warm-up scheduler. The learning
rate decays by a factor of 0.01 at epochs 160 and 180 with an initial rate 0.2. We evaluate Top-1
accuracy on the original validation set of the datasets, following the common protocol in long-tailed
recognition (Cao et al., 2019).

Methods in ablation study. We select ERM as baseline and DRW, PC softmax (equals to post-hoc
logit adjustment) and CRT as representative re-balancing methods.

1. ERM. ERM means empirical risk minimization (Vapnik, 1991). We train a model on long-
tailed datasets with cross-entropy loss without any strategy.

2. Balance. For easy reference, we also train a model under our setting on the original CI-
FAR10/100.

3. DRW. We implement DRW (Cao et al., 2019) following the original paper. We train in a
regular way in the early phase and re-weight the loss by the inverse of the predetermined
class frequencies only in the last phase during training. We typically re-weight the loss
function starting at 160 epochs.

4. RW. RW means directly re-weighting the loss by the inverse of the predetermined class
frequencies. We re-weight the loss in the whole training phase. In ablation experiments on
decoupling methods, we utilize DRW and RW to obtain re-balanced features and ERM to
obtain imbalanced features in the first stage of training.

5. PC softmax. We implement PC softmax following Hong et al. (2021) by training the model
by ERM for 200 epochs and applying adjustment at testing.

6. CRT. We implement CRT following Kang et al. (2019). We train the whole model for
200 epochs and re-train the classifier for 10 epochs with re-weighting loss. We restart the
learning rate when re-training the classifier.

7. LWS. We implement LWS following Kang et al. (2019). We assign weights to classifiers
with learnable scale factors i.e. Ŵi = fi · Wi, i ∈ [L]. We train the whole model for
200 epochs and then train factors fi for 10 epochs by re-weighting the loss. We tune the
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Figure 5: Accuracy on CIFAR100-LT without or with removing CCD shift. It shows similar results
that models trained with removing shift sampling get significant performance improvement.

Table 3: Accuracy of different methods on CIFAR-LT without or with removing CCD shift

CIFAR100-LT CIFAR10-LT
removing shift base removing shift base

ERM 50.7 40.28 80.37 73.24
DRW 63.97 44.41 89.01 78.04
PC softmax 58.61 44.34 87.90 79.58
CRT 52.82 43.48 87.07 77.72
Balance 66.73 91.53

learning rate on different datasets when learning scale factors as we found it is somewhat
sensitive.

B.2 MORE RESULTS AND ANALYSIS ON CIFAR100-LT

On a whole, results on CIFAR100 agree with those on CIFAR10-LT. In Figure 5 and Table 3, remov-
ing shift sampling improves the performance of re-balancing methods and ERM on CIFAR100-LT,
which indicates again that shift of CCDs is the key to limit long-tailed recognition.

As for decoupling methods, Table 4 shows re-balanced features outperforms those uniformly trained
significantly on two decoupling methods CRT and LWS. It agrees with our explanation of why
decoupling methods work: first-stage learning without re-balancing avoids more severe CCD shift
while re-balancing with removing shift could benefit feature learning.

Results of logit adjustment on CIFAR100-LT in shown Figure 6. With removing shift sampling
τ = 1 is optimal, while without it the best τ is much bigger than 1. This result again agrees with our
supposition that logit adjustment gets sub-optimal in experiments and leaves space to be improved
due to CCD shift.

B.3 CONFIDENCE CALIBRATION AND FEATURE DEVIATION UNDER SHIFT OF CCDS

As two recently studied issues in long-tailed recognition, confidence calibration (Guo et al., 2017)
and feature deviation (Ye et al., 2020) have drawn an amount of attention. We conduct experiments
to investigate how the shift of CCDs affects these two issues.
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Table 4: Accuracy of decoupling methods, CRT and LWS, on CIFAR-LT with different features,
without or with removing shift. LWS shows similar results to CRT: re-balance harms feature learning
while benefits feature learning with removing shift.

CIFAR100-LT CIFAR10-LT
feature re-balance classifier adjust removing shift base removing shift base

- CRT 52.82 43.48 87.07 77.72
DRW CRT 58.39+5.57 42.36-1.12 88.42+1.35 75.97-1.75

- LWS 57.67 44.05 87.55 76.21
DRW LWS 61.95+4.28 43.63-0.42 88.95+1.40 75.36-0.84

DRW 63.97 44.41 89.01 78.04

RW CRT 48.11-4.71 28.48-15.0 79.51-7.56 71.43-6.29

RW LWS 49.03-8.64 29.76-14.29 78.75-8.80 71.78-4.43

RW - 49.92 30.48 80.34 72.78
Balance - 66.73 91.53

Figure 6: Accury on CIFAR100-LT with varying τ in post-hoc adjustment. After removing shift
τ = 1 gets optimal performance similar to that on CIFAR10-LT.

Table 5: ECE on CIFAR-LT of different methods without or with removing shift sampling.

CIFAR10-LT CIFAR100-LT
removing shift base removing shift base

ERM 6.4 15.5 15.91 29.75
DRW 2.00 10.77 2.19 22.16
PC softmax 2.55 9.25 2.73 19.43
CRT 4.40 14.54 19.5 26.63
Balance 1.77 3.89
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Figure 7: Reliability diagrams of different models trained on CIFAR10-LT. “(remove)” means using
removing shift sampling and PCE means PC softmax. The gap between model confidence and error
probability is reduced by removing shift sampling significantly.

Confidence calibration. Confidence calibration is to make model prediction estimate true correct-
ness likelihood well, which is important in many applications. It has been proved that the calibration
of neural networks is generally bad and long-tailed distributions make neural networks even more
miscalibrated and over-confident (Guo et al., 2017; Zhong et al., 2021). Expected Calibration Error
(ECE) is widely used to measure the calibration of a model. With all N instances devided into B
interval bins of equal size by their predictions, ECE is calculated as:

ECE =

B∑
i=1

|Si|
N
|acc(Si)− conf(Si)|,

in which Si is the set of instances whose predictions fall into the i-th bin. acc(·) and conf(·)
compute the the accuracy and estimated confidence on Si respectively. As shown in Table 5, re-
balancing methods improve ECEs except CRT on CIFAR-100 and removing shift sampling improves
the calibration of different models significantly. However, using both re-balancing methods and
removing shift sampling is still worse (in ECE) than that on balanced dataset. We suppose the
reason lies in that we still cannot perfectly model a real P (x|y) even with our sampling method.
Figure 7 shows the reliability diagrams of different models trained on CIFAR10-LT. With removing
shift sampling, the reliability of models is significantly improved.

Table 6: Average feature deviation distance on CIFAR-LT of different methods without or with
removing shift sample

CIFAR10-LT CIFAR100-LT
removing shift base removing shift base

ERM 0.70 1.19 1.96 2.90
DRW 0.693 1.23 2.11 3.18
Balance 0.829 2.10

Feature deviation. Feature deviation is a phenomenon found in long-tailed recognition by recent
works (Ye et al., 2020; 2021). That is the average distance of features learned from long-tailed
training dataset usually exhibits imbalance between training and test and the distances of tail classes
are larger than those of head classes evidently. Ye et al. (2020) proposes a feature deviation distance
dis(j) to measure the deviation for class j:

dis(j; gθ) =
1

R

R∑
i=1

∥∥∥mean(SK({gθ(x(j)
train)}))−mean({gθ(x(j)

test)})
∥∥∥
2
,
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in which ∥·∥2 is L2-norm, SK means sub-sampling K instances from class j, R is the number of
sampling rounds, and gθ is the feature extractor. And for convenient comparison, we also use a
class-wise mean of feature deviation distance, called average feature deviation distance:

dis =
1

L

∑
j∈[L]

dis(j; gθ). (16)

Table 6 shows feature deviation is affected by shift of CCDs as removing shift sampling improves
this metric on the whole. Surprisingly, the re-balancing method (i.e. DRW) generally intensifies
the feature deviation no matter with removing shift or not. Besides, training without re-balancing
(i.e. ERM) but with removing shift seemingly even outperforms the balanced result, e.g. 0.70 vs
0.829 on CIFAR10-LT and 1.96 vs 2.10 on CIFAR100-LT. One may conclude that imbalance does
not make an obvious difference on feature deviation. In fact, this is because features of head classes
benefit from imbalance and removing shift makes up deviated features of tail classes to some extent.
As a result, using average feature deviation distance as the measure, imbalance seems not critical
for feature deviation.

(a) CIFAR10-LT (b) CIFAR100-LT

Figure 8: Class-wise feature deviation on CIFAR10-LT/CIFAR100-LT with removing shift sam-
pling. Even with removing shift sampling and re-balancing it still exhibits imbalanced feature devi-
ation on both CIFAR10-LT and CIFAR100-LT.

Figure 8 shows class-wise feature deviation is affected by imbalance as well. The feature deviation
distances of different classes still exhibit imbalance with removing shift. A significant gap of feature
deviation distance of tail classes appears between balanced training and re-balanced training with
removing shift. We suppose that is because re-balancing methods still leave space to improve feature
deviation, e.g. it has been discovered that the imbalanced logit distribution harms feature learning
in the beginning stage of training (Ye et al., 2021).

C FULL EXPERIMENT DETAILS AND RESULTS

C.1 EXPERIMENTAL DETAILS

CIFAR100-LT and CIFAR10-LT. We apply SGD with batch size 256 and the base learning rate
0.2 to train a ResNet-32 (He et al., 2016) model for 200 epochs, following Hong et al. (2021). We
employ the linear warm-up learning rate schedule for the first five epochs and reduce it at epochs
160 and 180 by a factor of 0.01 and use the same weight decay 0.0002 as previous works (Cao et al.,
2019; Zhou et al., 2022).

Tiny-ImageNet-LT. Following Park et al. (2021), we apply SGD with batch size 128 and weight
decay 0.0002 to train a ResNet-18 model for 100 epochs. We set the base learning rate to 0.1 and
reduce it at epochs 50 and 90 by a factor of 0.1.

ImageNet-LT. Following Hong et al. (2021), we apply SGD with batch size 128 and weight decay
0.0005 to train a ResNet-50 model for 90/180 epochs. We perform a cosine learning rate scheme
with an initial learning rate of 0.05.

Reproducing baseline results. We combine our DRA with various existing methods and compare
their results with these baselines methods in long-tailed recognization. For the baselines combined
with DRA, we implement them based on their official codes with default parameters in their modules
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under our training setting for fair comparison, such as model architecture and optimization hyperpa-
rameters. There are a few results disagreeing with original numbers reported in their papers, caused
by their different training settings from ours, e.g. we get 44.34 top-1 accuracy of PC softmax on
CIFAR100-LT while the reported number is 45.3 in Hong et al. (2021), which is because they use
bigger weight decay parameters and only perform experiments under one random seed. For other
baselines, we reproduce the results using publicly available official codes or direct use numbers re-
ported in the original papers. For all results we implement or reproduce based on official code, we
run five times with different seeds and report the average.

C.2 IMPLEMENTION OF DRA

Algorithm 1 DRA: augmenting with a sequence of examples

Input: {(xi, yi)
Nbatch
i=1 }, a batch of instances

Input: {λj}j∈[L], the class-aware multipliers
Output: Augbatch = {(xaug

i , yi)}Nbatch·(M−k)
i=1

1: Augbatch← {}
2: for i = 1, . . . , Nbatch do
3: x0

i ← xi, j ← 0, g∗i ← (2ϵ, 0, · · · , 0)
4: while j < M and ∥g∗i ∥ > ϵ do
5: g∗i = ▽xλyi

c((xj
i , yi), (xi, yi))− lθ(x

j
i , yi); ▷ Compute gradient of inner-optimization

6: xj+1
i ← xj

i − αinner · g∗i ▷ Update augmentation examples by gradient
7: if j ≥ k then
8: Augbatch = concate((Augbatch; (xj

i , yi))) ▷ Save a sequence of exampls
9: j = j + 1

10: return Augbatch ▷ Return augmented instances for outer-optimization

Algorithm 2 WRM (Sinha et al., 2017): augmenting with the last example

Input: {(xi, yi)
Nbatch
i=1 }, a batch of instances

Input: {λ}, the multiplier
Output: Augbatch = {(xaug

i , yi)}Nbatch·(M−k)
i=1

1: Augbatch← {}
2: for i = 1, . . . , Nbatch do
3: x0

i ← xi, j ← 0, g∗i ← (2ϵ, 0, · · · , 0)
4: while j < M and ∥g∗i ∥ > ϵ do
5: g∗i = ▽xλc((x

j
i , yi), (xi, yi))− lθ(x

j
i , yi); ▷ Compute gradient of inner-optimization

6: xj+1
i ← xj

i − αinner · g∗i ▷ Update augmentation examples by gradient
7: j = j + 1

8: Augbatch = concate((Augbatch; (xj
i , yi))) ▷ Save the last exampl

9: return Augbatch ▷ Return augmented instances for outer-optimization

The data augmentation process of DRA is summarized in Algorithm 1. Noting that the class-ware
multiplier λj has a negative correlation with the radius of uncertainty set so a positive correlation
with the number of instances of class j, thus we set λj = normalize{Nj

β} ∗ S with β, S ≥ 0 and
normalize meaning scale the vector to unit vector. β determines robustness difference over classes
and S determines overall robustness level. In this way, we could reduce the multipliers of DRA to
only two hyperparameters. We set M = 10 and αinner = 0.1 in DRA. As for the hyperparameter
k, the number of iterations starting to be used to augment examples, we set it as half of the whole
number of iterations M heuristically or M − 1, which is equivalent to directly utilizing WRM as
the solution of our primal problem. We do not fine-tune k to get an optimal number but only select
from the above two choices, which, however, gets pretty good result.

Inspired by (Kim et al., 2020; Samuel & Chechik, 2021), we apply DRA in the later stage of train-
ing since we need an initial model for DRA to generate augmentation examples. Specifically, for
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CIFAR10-LT and CIFAR100-LT we start to use DRA on 160 epochs, for Tiny-ImageNet-LT we
start to use DRA on 90 epochs. For ImageNet-LT we start to use DRA on 80 epochs when training
for 90 epochs while we start to use DRA on 150 epochs when training for 180 epochs. And for CRT,
we only use DRA in the training of the second stage.

Following Hong et al. (2021); Kim et al. (2020), we tune the hyperparameters of DRA by grid search
on the validation set. WRM uses the following strategy to determine the hyperparameter multiplier:
λ = C · EPN (x)[∥x∥2] while C = 0.04 is a constant and EPN (x)[∥x∥2] is the average norm of all
instances in training set. However, this strategy is not helpful in determining the hyperparameters
S. For example, EPN (x)[∥x∥2] = 248.39 on CIFAR10-LT while it is 222.42 on CIFAR100-LT.
The two numbers are similar but the optimal S found by our grid search on the two sets disagrees a
lot. Moreover, scaling the optimal S on CIFAR10-LT by the proportion of EPN (x)[∥x∥2] does not
work well either. How to determine the hyperparameters for DRA more elegantly could be a future
research point to further improve our method.

C.3 RESULTS ON IMAGENET-LT

Table 7: The performances on ImageNet-LT. We report accuracy on three splits of classes: Many-
shot (more than 100), Medium-shot (20-100) and Few-shot (less than 20), following Hong et al.
(2021); Zhong et al. (2021). The small red font denotes performance gain. ‡ means results from the
original paper.

Method Many Medium Few All
90epochs
ERM 65.1 35.7 6.6 43.1
Decouple-CRT 61.22 47.52 26.41 49.52
Decouple-τ -norm‡ 59.1 46.9 30.7 49.4
Decouple-LWS‡ 60.2 47.2 30.3 49.9
PC softmax 60.4 46.7 23.8 48.9
Logits Adjustment 60.62 47.33 27.53 49.25
LADE 60.34 47.37 27.82 49.20

Decouple-CRT-DRA 61.63 47.53 30.61 50.25+0.72

PC softmax-DRA 60.38 46.81 24.23 49.11+0.21

Logits Adjustment-DRA 60.63 47.84 27.60 49.49+0.24

180epochs
ERM 66.84 40.89 11.54 46.05
Decouple-CRT 61.59 47.70 30.32 50.3
PC softmax 62.13 49.25 30.51 51.18
Logits Adjustment 62.67 49.96 31.67 51.90
LADE 62.80 49.76 33.4 52.14

Decouple-CRT-DRA 61.81 49.43 31.57 51.37+1.07

PC softmax-DRA 62.41 49.72 31.89 51.64+0.46

Logits Adjustment-DRA 63.29 48.88 32.00 52.32+0.42

C.4 MORE ABLATION STUDY

C.4.1 COMPARISON WITH DATA AUGMENTATION METHODS

We can regard our DRA as generating examples for data augmentation during model training and
so does WRM. Hence, it is natural to ask what is the relationship between DRA and other data
augmentation methods in long-tailed recognition. In our view, DRA focuses on assigning robustness
over classes against unreliable CCD estimated from scare instances, while other data augmentation
methods aim to improve the diversity of instances heuristically, e.g. through head-to-tail transfer
or instance generation. Moreover, those data augmentation methods neither attend to the key issue
of CCD shift nor provide theoretical guarantee. In our experiments, we conduct a comparison with
two recent works GIT and M2m (Zhou et al., 2022; Kim et al., 2020) with respect to performance
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and training cost. Besides, for augmentation methods that are adopted in balanced learning, we
suppose they are complementary to DRA. So we also conduct an experiment of combining DRA
with a representative augmentation method Mixup (Zhang et al., 2017).

Performance comparison with learned augmentation methods. To make a fair comparison with
GIT and M2m, we conduct experiments under the same settings of GIT and M2m. As the official
code of GIT and M2m cannot work well with our larger batchsize setting, we keep all settings except
changing the batchsize to 128 and initial learning rate to 0.1.As shown in Table 8, generally, DRA
gets comparable performance to M2m and GIT with a small gap (less than 0.2%) with CE-DRS
on CIFAR10-LT and outperforms them on all other settings. It is surprising WRM does not get any
significant improvement on all baselines, which shows assigning the same robustness to all classes is
not appropriate as much robustness is unnecessary for head classes and may cause over-pessimism
while little robustness cannot improve generalization for tail classes evidently. In contrast, DRA
is more theoretically sound and more stable than these heuristic augmentation strategies. We hope
this could encourage future methods to solve the shift of P (x|y) in long-tailed recognition more
effectively.

Table 8: Comparision of other augmentation methods with DRA. ‡ means reproduced result from
official code. Best results are marked in bold.

Method Aug. strategy CIFAR10-LT CIFAR100-LT

CE-DRS - 75.87 41.21
GIT‡ 77.06 41.86
M2m‡ 77.5 42.2
WRM 75.92 41.31
DRA 77.38 42.61

LDAM-DRS - 77.47 42.78
GIT‡ 78.49 43.49
M2m‡ 78.68 43.12
WRM 77.34 43.11
DRA 78.76 43.53

Training cost of DRA compared with learned augmentation methods. We compare DRA with
learned data augmentations e.g. GIT and M2m with respect to the training cost in Table 9. All the
methods are measured on an NVidia card (GTX 2080Ti). The inner optimization of DRA increases
the training cost exactly as it needs to make the model forward and backward to compute gradients
on the input to generate examples. Considering all these methods are only used in the later phase of
training e.g. the last 40 epochs of all 200 epochs on CIFAR-LT, they are not quite time-consuming in
the end-to-end training part. However, GIT and M2m need much additional time to train a model as
preparation e.g. a GAN for GIT and a network classifier trained by ERM for M2m. DRA avoids the
additional time and just slightly increases the training time per epoch, where the gap between DRA
and GIT or M2m could be ignored considering their additional time cost for preparation. Besides, it
seems using a sequence of examples i.e. k = M/2 does not cost more training time than using the
last example.

Combination with Mixup. We also explore whether DRA is compatible with existing general data
augmentation methods or not. We use the simple, efficient and widely-used Mixup(Zhang et al.,
2017) as an example. Specifically, we only use Mixup to pre-train the model before using DRA.
Specifically, on CIFAR-LT, we use Mixup in the early 160 epochs and DRA in the later 40 epochs of
200 epochs in training. We also compare ours with state-of-the-art Mislas(Zhong et al., 2021) based
on Mixup. Table 10 shows DRA is suitable to train with Mixup as DRA even further improves
the performance which has already been enhanced by Mixup and outperforms Mislas, showing
compatibility between the two methods. It implies that even if data augmentation methods would
improve the diversity of data, they are still possibly biased due to unreliable empirical distribution
and thus could enjoy a “correction” from DRA.
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Table 9: Comparison of training cost of CE-DRS with different augmentations on CIFAR100. The
training time is counted in seconds. GIT and M2m need additional time to train another model, e.g.
a GAN and a model trained by ERM respectively. Whereas, DRA just slightly increases training
time.

Aug. strategy Time per epoch(s) Additional time(s)

CE-DRS - 3.72 -
GIT 25.84 33710.41
M2m 29.25 669.2
DRA(k = M − 1) 27.60 -
DRA(k = M/2) 32.26 -

Table 10: Ablation results on combining Mixup and DRA, ‡ means reproduced result from official
code. Best results are marked in bold. The small red font denotes performance gain from our DRA.

Method Aug. strategy CIFAR10-LT CIFAR100-LT

CE-DRS Mixup 79.70 47.08
Mixup+DRA 80.59+0.89 47.39+0.31

PC softmax Mixup 81.29 46.12
Mixup+DRA 82.41+1.12 46.35+0.23

Mislas‡ - 82.10 47.19

C.4.2 DRA ON CONFIDENCE CALIBRATION

Inspired by the discovery in our empirical study that confidence calibration is effected by both
imbalance and shift of CCDs, we expect DRA would relieve over-confidence of models. From our
experiments, it is kind of surprising that DRA not only improves calibration but also improves the
well-calibrated models by Mixup most of the time. We use ECE (Guo et al., 2017) as the measure.

In Figure 9, it seems just with re-balancing methods model cannot be calibrated well and DRA
actually gets smaller ECE on these methods, which validates again that confidence calibration is
affected by shift of CCDs and DRA improves it by making the model more robust to the shift.

Besides, considering the discovery in recent works (Zhong et al., 2021; Xu et al., 2021) that Mixup
has a significant positive effect on calibration, we conduct experiments to measure ECE with both
Mixup and DRA. Figure 10 shows DRA further improves calibration on the basis of Mixup most
of time. The only exception is CE-DRS on CIFAR10-LT, in which DRA weakens calibration but
boosts its accuracy as shown in Table 10. It seems with both Mixup and DRA the regularization
on logits is too strong to obtain good calibration as the model gives confidence even lower than the
accuracy instead of usual over-confidence on neural network (Guo et al., 2017). These results also
raise an interesting question: Do calibration and accuracy agree in long-tailed recognition? Or more
specifically, does good calibration mean a good model in long-tailed recognition (Xu et al., 2021)?
Actually, our experiment shows that it is possible to boost performance while weakening calibration.
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(a) CIFAR10-LT (b) CIFAR100-LT

Figure 9: ECE (%) and reliability diagram on CIFAR10-LT/CIFAR100-LT. DRA gets better cali-
bration performance marginally. PCE means PC softmax.

(a) CIFAR10-LT (b) CIFAR100-LT

Figure 10: ECE (%) and reliability diagram on CIFAR10-LT/CIFAR100-LT with Mixup. DRA even
improves the calibration of models with Mixup, which have obtained small ECE and been calibrated
well. PCE means PC softmax.
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C.4.3 VISUALIZATION OF AND DISCUSSION ON EXAMPLES GENERATED BY DRA

Figure 11: Examples generated by DRA on CIFAR-LT. Left most column are original examples
and j is the number of iterations. DRA tends to add pixel-level transformations to obtain harder
examples while some of these transformations agree with semantic information.
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To get more precise understanding, we visualize the examples generated by DRA, as in Figure
11. It exhibits that DRA adds pixel-wise transformation to instances in order to generate harder
examples as data augmentation. Some of these transformations tend to erase conspicuous features
in an instance by adding “noise”. In this way, model is encouraged to extract broader features instead
of overfitting features it has learned. For example, DRA seems to add “noise” to erase the ladder
from “fire engine” in the first row. As ladder is a salient feature for fire engine, and this augmentation
makes model attend to more recognizable features e.g. water tank and red color. Similarly, in the
second row, DRA adds “noise” on the beaks and claws of the bird and encourages the model to take
in more features to help recognition instead of over-depending on the two features.

In addition, more surprisingly, DRA can catch semantic information while discard nuisance infor-
mation by itself. As in the fourth row, the yellow sweet peppers happen to be transformed to green
while pixels out of the peppers almost kept unchanged. In other words, DRA makes a transforma-
tion of color, and the transformed instance still belongs to “sweet pepper” class. In this way, DRA
performs transformations that keep the semantics unchanged. As shown in the bottom two rows,
DRA could give transformations on the background (nuisance information) and keep semantic in-
formation: almost all of the pixel-wise transformations in the last but one row lie in the sky, and the
semantic object “road” isn’t changed. In the last row, the pixels of sofa are not transformed while
the background is changed.

From these results, we infer that seeking harder examples for a robust model sometimes agrees with
transformations that keep the semantics of instances. For example, background intensity could serve
as examples to obtain distributional robustness under a few situations, and this can be an explana-
tion of why GIT improves performance by adding transformations keeping semantics of instances.
However, when transformations that keep semantics are not that effective to gain distributionally
robustness, DRA tends to seek other examples with obvious features are erased.

From the observation that examples from DRA do not have to keep semantics and seem like in-
stances with “noise”, we hope DRA could suggest a new motivation for data augmentation: making
a more robust model for unknown distribution shift instead of utilizing information to reduce the
shift, e.g. GIT, ISDA (Zhou et al., 2022; Wang et al., 2019; Li et al., 2021). This motivation, making
a model robust to shift, could give hints to explain the rationality of existing data augmentations that
don’t have to keep semantics, e.g. adding pure noise to instances as data augmentation (Zada et al.,
2022) and those based on Mixup (Zhang et al., 2017; Chou et al., 2020; Zhong et al., 2021; Xu et al.,
2021).
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