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Abstract

What is the best way to exploit extra data—be it unlabeled data from the same task, or labeled data from
a related task—to learn a given task? This paper formalizes the question using the theory of reference priors.
Reference priors are objective, uninformative Bayesian priors that maximize the mutual information between
the task and the weights of the model. Such priors enable the task to maximally affect the Bayesian posterior,
e.g., reference priors depend upon the number of samples available for learning the task and for very small
sample sizes, the prior puts more probability mass on low-complexity models in the hypothesis space. This
paper presents the first demonstration of reference priors for medium-scale deep networks and image-based
data. We develop generalizations of reference priors and demonstrate applications to two problems. First, by
using unlabeled data to compute the reference prior, we develop new Bayesian semi-supervised learning
methods that remain effective even with very few samples per class. Second, by using labeled data from the
source task to compute the reference prior, we develop a new pretraining method for transfer learning that
allows data from the target task to maximally affect the Bayesian posterior. Empirical validation of these
methods is conducted on image classification datasets.

1 Introduction
Exploiting extra data, e.g., labeled data from a related task, or unlabeled data from the same task, is a powerful
way of reducing the number of training data required to learn a given task. This idea lies at the heart of
burgeoning fields like transfer, meta-, semi- and self-supervised learning, and these fields have developed a
wide variety of methods to incorporate such extra information. To give a few examples, methods for transfer
learning fine-tune a representation that was pretrained on labeled data from another—ideally related—task.
Methods for semi-/self-supervised learning pretrain the representation using unlabeled data, which may come
from the same task or from other related tasks, before using the labeled data. In this paper, we ask the question:
what is the best way to exploit extra data for learning a task? In other words, if we have some pool of data—be
it labeled or unlabeled, from the same task, or from another task—what is the optimal way to pretrain a
representation?
As posed, the answer to the above question depends upon the downstream task that we seek to solve

and therefore it seems difficult to obtain a general solution. We can formulate a more reasonable question
by recognizing that a pretrained representation can be thought of as a Bayesian prior (or a sample from it).
Fundamentally, a prior restricts the set of models that can be fitted upon the task. So we could instead ask: how
to best use the extra data to restrict the set of models that we could fit on the desired task. We formalize this
question in this paper using the theory of reference priors in Bayesian statistics. Our paper has the following
contributions.
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Figure 1: A schematic to understand the concept of a reference prior. The circle denotes the space of probability
distributions pw(z) parameterized by weights w. A reference prior is supported on a set of diverse models that are
spread out in model space. Given n samples zn, this prior is a distribution supported on a discrete set (red) such that
each of its atoms predicts confidently on zn but very differently from other atoms of π∗

n. A reference prior of order n,
denoted by π∗

n(w), maximizes the mutual information I(w; zn) = H(zn)−H(zn |w) where H denotes entropy and
p(zn) = Ew∼π∗

n
[p(zn |w)] is the average prediction of models from the prior. Given more data, say a dataset with one

more sample zn+1, the new reference prior π∗
n+1 consists of more atoms because the models now have more ways of

distinguishing their outputs from those of each other. As n → ∞, the reference prior converges to the Jeffreys prior, modulo
some technical conditions. This paper uses the concept of reference priors to develop theory and methods for Bayesian
semi-supervised, self-supervised and transfer learning that work even when the sample size n is extremely small, e.g., our
implementation of semi-supervised learning obtains an accuracy of 81.08% on CIFAR-10 with 5 labeled samples/class.

(1) We formalize the problem of “how to best pretrain a model” using the theory of reference priors,
which are objective, uninformative Bayesian priors computed by maximizing the mutual information
between the task and the weights. We show how these priors maximize the KL-divergence between
the posterior computed from the task and the prior, on average over the distribution of the unknown
future data. This allows the samples from the task to maximally influence the posterior. We discuss how
reference priors are supported on a discrete set of atoms in the weight space. We develop a scalable,
particle-based algorithm to compute reference priors for deep networks. To our knowledge, this is
the first demonstration of reference priors for deep networks that maintains their characteristic nature,
namely that they are supported in a discrete set of atoms.

(2) We formalize semi-supervised and self-supervised learning as computing a reference prior where the
learner is given access to a pool of unlabeled data and seeks to compute a prior using this data. This
formulation sheds light upon the theoretical underpinnings of existing state of the art methods such
as FixMatch. In particular, we show that techniques such as consistency regularization and entropy
minimization which are commonly used in practice can be directly understood using the reference prior
formulation. This work therefore provides an information-theoretic formulation of semi-supervised and
self-supervised learning.

(3) We develop a novel two-stage reference prior where the learner gets access to data in two stages and
seeks to compute a prior that is optimal for data from the second stage. By solving for the optimal prior
in this case, we show how it has the flavor of ignoring certain parts of the weight space depending upon
whether data from the first stage was similar to that from the second stage, or not. This objective is
closely related to the predictive Information Bottleneck principle.

(4) We formalize transfer learning using the two-stage reference prior where the goal is to build a prior using
data from a source task that maximally leverages data from the target task. This formulation is useful
because it is an information-theoretically optimal way to pretrain using a source task for the goal of
transferring to the target task.

We show an empirical study of our formulations on the CIFAR-10 and CIFAR-100 datasets. We show that
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our methods to compute reference priors are scalable, provide results that are competitive with state of the art
methods for semi-supervised learning, and obtain significantly better accuracy than fine-tuning for transfer
learning, even for very small sample sizes.

2 Background
This section introduces notation, develops the formulation for objective Bayesian priors and gives a few
examples that explain how these priors work.

2.1 Setup

Consider a dataset P̂n = {(xi, yi)}ni=1 with n samples that consists of inputs xi ∈ Rd and labels yi ∈
{1, . . . , C}. Each sample of this dataset is drawn from a joint distribution P (x, y) which we define to be the
“task”. It will be useful to use the shorthand xn = (x1, . . . , xn) and yn = (y1, . . . , yn) to denote all inputs and
labels. Let w ∈ Rp be the weights of a probabilistic model which evaluates pw(y |x). We will use a random
variable z with a probabilistic model denoted by pw(z) when we do not wish to distinguish between inputs and
labels. Given a prior on weights π(w), Bayes law gives the posterior

p(w |xn, yn) ∝ p(yn |xn, w)π(w).

The Fisher Information Matrix (FIM) g ∈ Rp×p has entries,

g(w)kl =
1

n

n∑
i=1

C∑
y=1

pw(y |xi)∂wk
log pw(y |xi)∂wl

log pw(y |xi),

and it can be used to understand the differences between two probabilistic models. For a model with weights w,
the Kullback-Leibler (KL) divergence KL(pw, pw+dw) =

∫
dP (x) dy pw(y |x) log(pw(y |x)/pw+dw(y |x))

can be written as

KL(pw, pw+dw) =
1

2

p∑
k,l=1

g(w)kl dwk dwl .

The FIM is preserved under diffeomorphisms of the weights w (Amari, 2016). In Bayesian statistics, it is often
used to build the Jeffreys prior πJ(w) ∝

√
det g(w). Jeffreys prior is reparameterization invariant, i.e., it

assigns the same probability to a set of models irrespective of our choice of parameterization of those models.
It is an example of an “uninformative prior” which means that it allows us to impose some generic structure
upon the problem, e.g., that the prior be reparameterization invariant. Informative priors are different from
such uninformative priors. For instance, if we were to choose π to be a Gaussian distribution with mean at a
pretrained model then such a prior would express a very definite information and bias the ensuing posterior
towards the pretrained model.

2.2 Reference Priors
The choice of a prior is typically subjective and left to the user. In order to make this choice more objective,
Bernardo (1979) suggested that uninformative priors should maximize some divergence, say the Kullback-
Leibler (KL) divergence KL(p(w | z), π(w)) =

∫
dw p(w | z) log (p(w | z)/π(w)), between the prior and the

posterior for data z. The rationale for doing so is to allow the data to dominate the posterior rather than our
choice of the prior. Since we do not know the data a priori while picking the prior, we should maximize the
average KL-divergence over the data distribution p(z). This amounts to maximizing the mutual information

π∗ = argmax
π

Iπ(w; z) :=

∫
dz dw p(z)p(w | z) log p(w | z)

π(w)
= H(w)−H(w | z)

=

∫
dz dw p(z)p(w | z) log p(z |w)

p(z)
= H(z)−H(z |w),

(1)
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where p(z) =
∫
dw π(w)p(z |w) and H(w) =

∫
dw π(w) log π(w) is the Shannon entropy; the conditional

entropy H(w | z) is defined analogously. Mutual information is a natural quantity for measuring the amount
missing information about w provided by data z when the initial belief was π. The prior π∗(w) is known as
a reference prior. It is invariant to a reparameterization of the weight space because mutual information is
invariant to reparameterization. The reference prior does not depend upon the samples P̂n but only depends on
their distribution P .
The objective to calculate reference prior π∗ above may not be analytically tractable. Bernardo therefore

also suggested that we compute n-reference priors. In this paper, we call n the “order” and have deliberately
overloaded the notation for the number of samples n; the reason for doing so will be clear soon.

π∗
n = argmax

π
Iπ(w; z

n) = H(w)−H(w | zn), (2)

using n samples and then setting π∗ := limn→∞ π∗
n under appropriate technical conditions (Berger et al.,

1988). Reference priors are asymptotically equivalent to Jeffreys prior for one-dimensional problems. They
differ in general for multi-dimensional problems but it can be shown that Jeffreys prior is the continuous prior
that maximizes the mutual information (Clarke and Barron, 1994).

2.3 Blahut-Arimoto algorithm
The Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972) is a general method for maximizng functionals
like (1) and leads to iterations of the form πt+1(w) ∝ exp (KL(p(z |w), p(z)))πt(w). It exploits the identity

max
π

Iπ(w; z) = max
q

max
π

E
w∼π

[
p(z |w) log q(w | z)

π(w)

]
where the optimum on the right-hand-side is achieved when q(w | z) ≡ p(w | z). The BA algorithm alternates
the maximization over π and q in this identity to result in Maximizing mutual information is a convex problem
and therefore the BA algorithm is guaranteed to converge. It is typically implemented for discrete variables,
e.g., Information Bottleneck (Tishby et al., 1999). Such a discretization of the weight space is prohibitive for
high-dimensional models, we therefore implement this algorithm using particles in Remark 4.

Example 1 (Estimating the bias of a coin). Consider the estimation of the bias of a coinw ∈ [0, 1] usingn trials.
If z denotes the number of heads (which is a sufficient statistic), we have p(z |w) = wz(1−w)n−zn!/(z!(n−z)!).
For n = 1, since we know that I(w; z1) ≤ log 2 with this one bit of information, we can see that
π∗
1(z) = (δ(w) + δ(1− w))/2 is the reference prior that achieves the upper bound (Berger et al., 1988). This
result is intuitive: if we know that we have only one observation and the outcome is either a heads or a tails, the
optimal uninformative prior puts equal probability mass on w = 0 and w = 1. We can numerically find π∗

n for
different values of n using the BA algorithm (Fig. 2).

Example 2 (Visualizing the reference priors in data space).We next construct a way to visualize the
reference prior for deep learning classification problem. To compute the reference prior, we implement the
algorithm in Remark 4 using particles(atoms). Note that w are weights of a deep network, it is not reasonable
to visualize π∗

n(w) in such a high dimension weight space. We use the following strategy to visualize the prior.
Given a classification problem with C classes and n samples in the training set, we think of the predictions

of the network as a vector in n× C dimensions given by

RnC ∋ f(w) =
1√
2n

(√
pw(y = 1 |x1),

√
pw(y = 2 |x1), . . . ,

√
pw(y = C − 1 |xn),

√
pw(y = C |xn)

)
.

This vector f(w) is parameterized by the weights w of the network. The rationale behind this choice is
to observe that for two weights w,w′, the Euclidean distance between the prediction vectors is the Hellinger
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Figure 2: Reference prior for the coin-tossing model for n = 1, 10, 50 (from left to right) computed using the Blahut-
Arimoto algorithm. Atoms are critical points of the gray line which is KL(p(zn), p(zn |w)). The prior is discrete for finite
order n < ∞, also see Mattingly et al. (2018). Atoms of the prior are maximally different from each other, e.g., for n = 1,
they are on opposite corners of the parameter space. As the number of data increases, the separation between atoms of the
prior reduces. The prior converges to Jeffreys prior πJ(w) ∝ (w(1− w))−1 as n → ∞ for this one-dimensional setting.

divergence between the prediction probability distributions,

∥f(w)− f(w′)∥2 =
1

2n

n∑
i=1

C∑
k=1

(√
pw(y = k |xi)−

√
pw′(y = k |xi)

)2

=
1

n

n∑
i=1

d2H (pw(· |xi), pw′(· |xi)) .

where
d2H(P,Q) =

1

2

∫ (√
dP −

√
dQ

)2

is the Hellinger distance. In other words, the prediction vector f(w) maps the weights w into a (n ×
C)−dimensional Euclidean space, which makes it possible to visualize the reference prior, as shown in Fig. 3.
At the beginning stage of the optimization, all atoms wk make similar predictions (blue points in Fig. 3

concentrate near each other). This is not surprising because the atoms are initialized randomly and wk has a
uniform distribution at its output. As the prior is optimized to maximize the mutual information, its atoms
increasingly make more diverse predictions (orange) and towards the end stage (green), the prediction of the
atoms forms a low-dimension manifold. We hypothesize that these green particles form a “boundary” of the
possible prediction vectors made by the model and consist of simple, low-dimensional models (Mattingly et al.,
2018).

3 Methods
This section first discusses a key property of these priors that enables us to calculate them numerically, namely
the fact that they are supported on a discrete set in the weight space for finite order (§3.1). It then constructs
priors that are designed to make maximal use of pre-training data for semi-supervised (§3.2) and transfer
learning (§3.4).

3.1 Existence and discreteness of reference priors
Existence and boundedness. As (Berger et al., 1988) say, reference prior does not exist if Iπ(w; zn) is infinite.
To address the existence of the reference prior, we need to assume that (i) π is supported on a compact set
Ω ⊂ Rp, and (ii) if pπ(zn) =

∫
Ω
dw π(w)p(zn |w) is the marginal, KL(pw, pπ) is a continuous function of w

for any π. Then the n-reference prior π∗
n exists and Iπn(w; z

n) is finite; see Lemma 2.14 in (Zhang, 1994).
Discreteness. Suppose that zn is a discrete random variable with number of atoms denoted by C. Suppose
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Figure 3: We compute and visualize the reference prior for a binary classification problem on MNIST (digits 3 vs. 5). We
randomly initializeK = 3000 particles (blue) and then maximize the mutual information in (3). For each atom wk of our
prior, k = 1, 2, . . . , 3000, we evaluate its prediction vector f(wk). By using PCA, we embed all K prediction vectors
into a 3-dimensional Euclidean space spanned by the top three principle components p⃗1, p⃗2 and p⃗3. The different colors
show the prior at initialization (blue), after 5,000 iterations (orange) and towards the end of the computation after 50,000
iterations (green).
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that the n−reference prior π∗
n exists and is unique(up to measure zero), Let Ωn = {w ∈ Ω : π∗

n(w) > 0} be
the support of π∗

n. Suppose {p(zn |w) : w ∈ Ωn} is compact. Then π∗
n is discrete with number of atoms no

greater than C (see Lemma 2.18 in (Zhang, 1994)). Rigorous development of reference priors has been done
by these earlier works. Our paper focuses on some innovative applications to problems in machine learning.

Remark 3 (The reference prior depends upon the number of samples in the task and finds a small set
of diverse models). The likelihood of each atom in the optimal prior p(zn |w) is maximally different from
that of other atoms, and thereby the marginal likelihood p(zn). It is intuitive why the prior should have finite
atoms, this is because it is not possible to distinguish between a large set of models using few samples n. For
models like deep networks, this is extremely promising in the low-sample regime because it automatically
selects a small set of models from a large model space to fit to the few data. This is analogous to covering
numbers in learning theory (Bousquet et al., 2003) where we endow the hypothesis space with a metric that
measures disagreement between two hypotheses over n samples. Smaller the n, smaller the covering number,
and smaller the set of models considered by the learner.

Remark 4 (Using multiple particles in place of the Blahut-Arimoto algorithm). Since the optimal prior is
discrete under certain assumptions, we can maximize the mutual information directly by identifying the best
set of atoms. We set π∗

n =
∑K

i=1 λiδ(w − wi) where {w1, . . . , wK} are theK atoms of our prior π∗
n and λi

are coefficients with
∑

i λi = 1. We call these atoms “particles”. Abbott and Machta (2019) also suggest a
scaling law forK in terms of n. For example, they suggest thatK ∼ n4/3 for a problem with two biased coins.
Each particle for us will be a deep network, so we will instead treatK as a hyper-parameter.

Remark 5 (Variational approximation of reference priors). Nalisnick and Smyth (2017) maximize a lower
bound on Iπ(w; z) and replace the term p(z) =

∫
dw π(w)p(z |w) in (1) by the so-called VR-max estimator

maxw log p(z |w) where the maximum is evaluated across a set of samples from π(w) (Li and Turner, 2016).
They use a continuous variational family parameterized by neural networks. Our arguments show that the prior
is supported on a discrete set and we need not use a continuous-valued distribution to model it. We therefore
maintain π(w) as a set of particles.

3.2 Reference priors for semi-supervised learning
Consider the situation where we are given inputs xn and labels yn, and an additional pool of

unlabeled inputs xu

from the same task which we can use to compute π∗(w). The key idea behind using reference priors for
semi-supervised learning is that since the KL-divergence between the posterior on (xn, yn) and the prior π(w)
is maximized on average over the inputs, we can use the unlabeled inputs xu to perform this averaging. More
precisely, we set

π∗
n = argmax

π
Iπ(y

n, xn;w) := E
xn,(yn | xn,w),w∼π

[
log

p(yn |xn, w)

pπ(yn |xn)

]
= E

xu
[H(yu |xu)]− E

xu,w∼π
[H(yu |xu, w)] .

(3)

where pπ(yn |xn) =
∫
dw π(w)

∏n
i=1 p(yi |xi, w) and likewise for pπ(yu |xu). We have switched the

expectation in the final step to over xu instead of labeled inputs xn because they have the same distribution.
For the same reason, we also switched the expectation on all possible labels yn of the labeled data, to yu, the
unknown labels of unlabeled data.
Assume for now that we know the number of classes C and can compute expectations over p(yn |xn, w).

If our prior hasK particles, then the second term is the average of the per-particle entropy of the predictions.
The objective encourages each particle wi to predict confidently, i.e., to have a small entropy in its output
distribution pwi

(y |x). The first term is the entropy of the average predictions: pπ(yn |xn), and it is large if
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particles predict different outputs yn for the same inputs xn, i.e., they disagree with each other. Effectively, the
objective encourages particles to be very dissimilar but confident (not necessarily correct) models.
We use the empirical average over unlabeled inputs to maximize (3). Predictions on new samples x are

made using the Bayesian posterior predictive distribution

p(y |x, xn, yn) ∝
∫

dw π∗
n(w)p(y |x,w)p(yn |xn, w). (4)

Remark 6 (The number of classes need not be known a priori). Consider a model that has a feature generator
with weights w in conjunction with a fixed (or a non-parametric) classifier that makes predictions over C ′

classes. Since (3) involves an expectation over the predictions p(yu |xu, w), C ′ need not be the same as the
number of classes C for the task. We can compute the prior over weights w of the feature generator and use it
to learn a model for labeled data. This property mirrors the prevalent practice in self-supervised learning,
e.g., (Chen et al., 2020b), where the feature generator is trained on pretext tasks that are different from the
eventual goal of classification.

Remark 7 (Reference prior spreads out on the statistical manifold). Given the weight space, the prior
spreads its probability mass such that while each particle that is likely under the prior can confidently (not
necessarily correctly) make predictions on inputs (first term in (3)), predictions of these particles are maximally
entropic when combined together (second term). If we consider the statistical manifold from information
geometry (Amari, 2016) which consists of all models pw(y |x), then the reference prior has a finite number of
atoms and is maximally spread out on this manifold to ensure that the particles are distinct. Asymptotically,
as the number of atoms grows to infinity, it approaches the flat prior on the manifold, which corresponds to
Jeffreys prior on the weight space (Clarke and Barron, 1994).

3.3 Reference priors for a two-stage experiment
In this section, we do not distinguish between inputs and labels and first develop the idea in terms of a generic
random variable zn. Consider a situation when we obtain data in two stages, first zm, and then zn. How should
we select a prior, and thereby the posterior of the first stage, such that the posterior of the second stage makes
maximal use of the new n samples? We can extend the idea in §2.2 in a natural way to address this question.
We can maximize the divergence between the posterior of the second stage and the posterior after the first
stage, on average, over the new samples zn.
Since we have access to samples zm, we need not average over them, we can compute the posterior

p(w | zm) from these samples given the prior π(w). First, notice that by chain rule p(w, zn | zm) =
p(w | zm+n)p(zn | zm) = p(zn |w)p(w | zm). We can now write

π∗
n |m = argmax

π
Ip(w | zm)(w; z

n) :=

∫
dzn p(zn | zm) KL(p(w | zm+n), p(w | zm))

=

∫
dw p(w | zm)

∫
dzn p(zn |w) log p(zn |w)

p(zn | zm)
,

(5)

where p(w | zm) ∝ p(zm |w)π(w) and p(zn | zm) =
∫
dw p(zn |w)p(w | zm). If (2) has a unique solution,

we should have the optimal p(w | zm) ≡ π∗
n(w). This leads to

π∗
n |m(w) ∝ π∗

n(w) p(z
m |w)−1. (6)

Notice that the reference prior puts less probability mass on regions which have high likelihood on old data
zm. This is consistent with intuition because the prior is designed to be such that the posterior is maximally
informed by the new samples zn. Given knowledge of old data, the prior downweighs regions in the weight
space that could bias the posterior of the new data. We will exploit this peculiar property of reference priors in
this section. We also have π∗

n |m = π∗
n form = 0 which is consistent with (2). Asm → ∞, this prior ignores

the part of the weight space that was ideal for zm. Appendix C shows this two-stage prior for the biased coin
experiment.
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Remark 8 (Averaging over zm in the two-stage experiment). If we do not know the outcomes zm yet, the
prior should be calculated by averaging over both zm, zn

π∗ = argmax
π

∫
dzm p(zm)Ip(w | zm)(w; z

n) := Iπ(w; z
m+n)− Iπ(w; z

m)

= H(w | zm)−H(w | zm+n).

(7)

The reference prior encourages multiple explanations of initial data zm, i.e., high H(w | zm), so as to let the
future samples xn select the best one among these explanations, i.e., reduce the entropy H(w | zm+n). It is
interesting to note that neither is this two-stage prior equivalent to maximizing Iπ(w; zm+n), nor is it simply
the optimal prior corresponding to objectives Iπ(w; zm) or Iπ(w; zn). Both (6) and (7) suggest that such
priors may be useful when we have some data a priori, e.g., either unlabeled samples from the same task, or
labeled samples from some other task.

Remark 9 (Connection to the Predictive Information Bottleneck). The objective in (7) resembles that
of Bialek et al. (2001), or its variational version in Alemi (2020), which seek to learn a representation, say w,
which maximally forgets past data while remaining predictive of future data

max
p(w | zm)

I(w; zn)− βI(w; zm). (8)

The parameter β in (8) gives this objective control over how much information from the past is retained in the
representation w. This objective is therefore called the predictive information bottleneck (IB).

A softer version of reference prior for the two-stage experiment.We take inspiration from the predictive IB
and construct a variant of the prior in (6)

πβ
n |m(w) ∝ π∗

n(w)p(z
m |w)−β for β ∈ (0, 1).

⇒ p(w | zm+n) ∝ p(zn |w)p(zm |w)1−βπ∗
n(w).

(9)

In this prior, we should use a value of β = 0 when we expect that data from the first stage zm is very similar to
data zn from the second stage; this allows the posterior to benefit from the past samples. If we expect that the
data are different, then we should set β = 1 which ignores regions in the weight space that predict well for zm
while selecting the prior for zn. This is similar to the predictive IB where a small β encourages remembering
the past data and β = 1 encourages forgetting. The difference between our reference prior approach and the
predictive IB is that the prior in the latter need not be a reference prior.

3.4 Reference priors for transfer learning
Now consider the two-stage experiment where at each stage we obtain data from a different task. The first stage
consists ofm samples from a “source” task P s and the second stage consists of n samples from the “target” task
P t. Our goal is to calculate a prior π(w) that best utilizes the target task data. Bayesian inference for this problem
involves first computing the posterior p(w |xm

s , yms ) ∝ p(yms |w, xm
s )π(w) from the source task and then using

it as a prior to compute the posterior for the target task p(w |xn
t , y

n
t , x

m
s , yms ). Just like §2.2, we would like to

maximize the average KL-divergence between the two posteriors KL [p(w |xn
t , y

n
t , x

m
s , yms ), p(w |xm

s , yms )]
which measures the amount of the information learnt from samples from the target task. However, note that
this KL-divergence is a random variable: its randomness comes from samples xm

s and xn
t . Therefore, instead

of maximizing the divergence given a specific xm
s and xn

t , we maximize the average divergence. We consider
the following cases.

Case 1: Access to a pool of unlabeled data from the source xm
s and the target task xn

t . In this situation,
we should average the KL-divergence over the predictions of the model yms on the source data xm

s ; this is in
addition to the unknown labels ynt of the target task. This involves maximizing

E
xm
s ,xn

t ,y
m
s | xm

s ,yn
t | xn

t

KL [p(w |xn
t , y

n
t , x

m
s , yms ), p(w |xm

s , yms )] (10)

9



over the prior π. Here pπ(yms |xm
s ) = Ew∼π p(y

m
s |xm

s , w) and pπ(ynt |xn
t ) = Ew∼π p(y

n
t |xn

t , w), respec-
tively.

Case 2: xm
s , yms are fixed and known, and we have a pool of unlabeled data for xn

t . Since we already know
the data and labels for the source task, we will only average over xn

t and ynt and maximize the objective

E
xn
t ,y

n
t | xn

t

KL [p(w |xn
t , y

n
t , x

m
s , yms ), p(w |xm

s , yms )] , (11)

over π; here pπ(ynt |xn
t ) =

∫
dw π(w)p(ynt |xn

t , w). Note that we need not have a separate pool of unlabeled
data from the target, we can simply use the samples xn

t and average over the labels; this also applies to (3).

Remark 10 (Connecting (10) and (11) to practice). Both objectives can be written down as

π∗ = argmax
π

Iπ(w; y
n
t , x

n
t |xm

s , yms )− Iπ(w;x
m
s , yms ) (12)

with the distinction that while in Case 1, we average over all quantities, namely p(xm
s ), p(yms ), p(xn

t ), p(y
n
t )

while in Case 2, we fix the distributions of p(xm
s ) and p(yms ) to the empirical distribution of the source task

data. Case 2 is commonly considered transfer learning. Case 1, where one has access to only unlabeled data
from a source task that is different from the target task is not typically studied in practice. If the source and
target tasks are the same, then the objective in (12) is the same as that of (3). If they are not, our theory
indicates that the prior in (12) should minimize the mutual information with respect to the source task; this is
similar to the argument in §3.3. Like (9), we can again introduce a coefficient β on the second term in (12) to
control handle the relatedness between source and target tasks.

Remark 11 (Reference priors for semi-supervised and transfer learning are discrete). ?? extends directly
to the semi-supervised learning case in (3) and the two-stage experiment in (6) and (9). Therefore we can show
that the prior should be discrete if there are a finite amount of labeled samples in semi-supervised learning, or
if the target task in transfer learning provides finitely many samples.

3.5 Reference priors for self-supervised learning
Reference priors shed light on understanding self-supervised learning techniques. Contrastive approaches of
self-supervised learning (SelfSL) learn representations by minimizing the distance between two augmented
views of the same data point (positive pairs) and maximizing views from different data points (negative pairs).
In this section, w are weights of a stochastic feature extractor. Once an input data x was feed into the model, a
stochastic representation h ∈ Γ ⊂ Rl is generated, where Γ is a compact subset in l−dimension real space.
Let G be a set of data augmentations, we write the joint distribution, for g ∈ G

p(x, h, g |w) = 1

|G|
p(x)p(h | g(x), w). (13)

then h |x,w distributes as the ensemble averaging law

p(h |x,w) = 1

|G|
∑
g∈G

p(h | g(x), w) (14)

where G is a set of data augmentations. We extend the spirit of reference prior in a natural way and write down
the mutual information bwtween hn and xn given w.

Iw(h
n : xn) = E

xn

∫
dhn pavew (hn |xn) log

pavew (hn |xn)

pavew (hn)

= H(hn |w)− E
xn

H(hn |xn, w),

where pavew (hn |xn) =
∏n

i=1 p
ave
w (hi |xi) and pavew (hn) = Exn pavew (hn |xn).
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Remark 12. The first term in (15) matches with the negative pair penalty in contrastive learning, while the
second tern in (15) coincides with the positive pairs. Therefore contrastive learning is equivalent to maximizing
mutual information between representations and data. That explains why contrastive approaches works since
they are selecting models that do their best to learn information from data:

w∗ = argmax
w

Iw(h
n : xn) = argmax

w
H(hn |w)− E

xn
H(hn |xn, w). (15)

Remark 13 (connecting with free energy principle for representation learning). (Gao and Chaudhari,
2020b) pick reconstruction of the original data—as a way to measure the discarded information in the
representation when it is fitted on a specific task, this idea leads to the study of the following Lagrangian which
is similar to the Information Bottlenck of (Tishby et al., 2000)

min
w

R+ λD + γC, (16)

where the rate R is an variational upper bound on the mutual information Iw(x |h), distortion D measures the
quality of reconstruction of the decoder, and C measures the classification loss. The canonical reconstruction
task forces the representation learning redundant information about the data, (Gao and Chaudhari, 2020b)
empirically show that these extra information are potentially helpful for transfer learning. Instead of attaching
a canonical task, we directly setting the constrains

min
w

C

such that Iw(xn |hn) ≥ MI,

which forces the representation learning redundant information.

3.6 Practical tricks for implementing reference priors
The reference prior objective is conceptually simple but it is difficult to implement it directly using deep
networks and modern datasets. We next discuss some practical tricks to compute reference priors.

Order of the prior n versus the number of samples. Theory sets the order of the prior n to be the same as the
number of samples (Bernardo, 1979). We make a distinction between the two and restrict our experiments to
order n = 2, 3. Mathematically, this amounts to computing averages in (2) or (3) over only sets of n samples
at a time rather than all of them. This significantly reduces the class of models considered in the reference
prior by pretending that there is an extremely small number of samples available for training the task; this is
useful for large models like deep networks. Note that we are not restricting to small order n for computational
reasons, i.e., computing the expectation over all classes yn in (3) can be done in a single forward pass.

Using cross-entropy loss to bias particles towards good parts of the weight space. Consider Case 2 in §3.4.
The posterior (4) suggests that we should first compute the prior, and then weight each sample by the likelihood
of the labeled data. In practice, we combine these two steps into a single objective

max
π

γIπ(w; y
u, xu) + E

w∼π
[log p(yn |xn, w)] , (17)

where γ is a hyper parameter, xn, yn are labeled samples. (17) makes sense since it allows us to directly obtain
particles that both have high probability under the prior and that have a high likelihood. Using such particles
for inference is different from using the correct Bayesian posterior, in particular due to the coefficient γ, which
we set to be γ = 1/2. We initialize the prior π(w) =

∑K
i=1 λiδ(w − wi) at randomly chosen weights {wi}

and perform gradient ascent steps on the above objective to directly compute the likelihood weighted particles.
This strategy further restricts the search space for the particles in π(w). A warm posterior, i.e., γ < 1, as
opposed to cold posteriors (Wenzel et al., 2020) used in supervised learning, is a reasonable thing to do here
because our prior π(w) is highly entropic.
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Data augmentations.Data augmentation is a key component of state-of-the-art approaches for semi-supervised
learning. Methods like Fix-match employ heavy data augmentations. We also use data augmentations for
experiments on CIFAR-10 and CIFAR-100. For implementing (17), we define the averaging prediction

pavew (y |x) = 1

2
p(y |Gweak(x), w) +

1

2
pw(y |Gstrong(x), w)

as a linear combination of the predictions on the same input augmented by different augmentations Gweak and
Gstrong, where weak augmentations are flips/shifts, and strong ones are from AutoAugment (Sohn et al., 2020).
Notice that by Jensen’s inequality,

− log pavew (y |x) ≤ −1

2
log p(y |Gweak(x), w)−

1

2
log p(y |Gstrong(x), w).

The reference prior for semi-supervised learning with weak and strong data augmentations is computed using

maxπ γ Ew∼π,xu
∫
dyupavew (yu | xu)

log p(yu |Gweak(x
u),w)+log p(yu |Gstrong(xu),w)

2 +γ Exu [H(yu | xu)]+Ew∼π [log p(yn | xn,w)],

(18)
where xu is sampled from unlabelled data, (xn, yn) are labeled samples. If Gweak and Gstrong are identical
augmentations, then pavew (y |x) = p(y |x,w) and the first term converges to −γH(yu |xu, w). We can
therefore recover (17) from (18).

3.7 Relationship of the reference prior objective to existing methods for semi-
supervised learning

The reference prior objective in (3) is closely connected to existing methods in semi-supervised learning. It
is a difference of two entropries: Iπ(w; yn, xn) = Exn [S(yn |xn)] − Exn,w∼π [S(y

n |xn, w)]. A number
of methods, e.g., FixMatch (Sohn et al., 2020) or MixMatch (Berthelot et al., 2019), force the model to
identify whether the underlying input image is the same across strong augmentations. Let G be a set of
such augmentations. These methods use a quadratic penalty for p(yn |xn) with respect to deviations from
pG(y

n |xn, w) = |G|−1 ∑
g∈G p(yn | g(xn), w) where g(xn) denotes the result of applying the augmentation

g to inputs xn. For our objective, minimizing the second term,Exn,w∼π [H(yn |xn, w)]with this augmentation-
averaged distribution pG(yn |xn, w) achieves the same purpose.
Disagreement-based methods (Zhou and Li, 2010) employ multiple models and use the confident models

to soft-annotate unlabeled samples for others. Our reference prior is discrete and therefore also consists of
multiple models. Disagreements among them are measured byH(yn |xn). If p(yn |xn) is uniform, which is
encouraged by the reference prior objective, we obtain strong disagreements.
Thefirst termEw∼π,xu

∫
dyu pavew (yu |xu)

[
1
2 log p(y

u |Gweak(xu), w) + 1
2 log p(y

u |Gstrong(xu), w)
]
in (18)

closely relates to FixMatch which uses a cross-entropy loss that encourages consistent predictions across weak
and strong augmentations. As we saw in (18), the key difference between FixMatch and our objective is the
second term Exu [H(yn |xn)] that encourages disagreements between particles.

4 Empirical Study

4.1 Setup
We evaluate on the CIFAR-10 and CIFAR-100 (Krizhevsky, 2009) datasets. For semi-supervised learning, we
show results using 50–1000 labeled samples, i.e., 5–100 samples/class and use the rest of the samples in the
training set as unlabeled samples. For transfer learning, we construct 20 5-way classification tasks using the
super classes of the CIFAR-100 dataset. For all experiments on CIFAR-10/CIFAR-100, we use the WRN 28-2
architecture (Zagoruyko and Komodakis, 2016) which is identical to that used in Berthelot et al. (2019). We
use the Adam (Kingma and Ba, 2015) to train with a constant learning rate of 0.002. For all our experiments,
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the reference prior is of order n = 2 and has K = 4 particles. We run our methods for 512 epochs, with
the coefficient γ scaled linearly from 0 to 0.25 over the entire training period and α fixed at 0.1. During
evaluation, we use the Exponential moving average (EMA) of the model parameters which is commonly used
in semi-supervised learning (Tarvainen and Valpola, 2017). Appendix A provides more details.

4.2 Baseline methods for semi-supervised and transfer learning
We compare Deep reference priors to existing methods in semi-supervised learning such as FixMatch (Sohn
et al., 2020), MixMatch (Berthelot et al., 2019), Mean Teacher (Tarvainen and Valpola, 2017), Π-Model
(Sajjadi et al., 2016b), Pseudo-Label (Lee et al., 2013), Virtual Adversarial Training (Miyato et al., 2018), and
Mixup between labeled and unlabeled data (Berthelot et al., 2019). For transfer learning, we use fine-tuning to
adapt a model trained on source to the target data. We additionally compare to using just the labeled target data
(standard supervised learning), using labeled and unlabeled target data (self-supervised learning). We consider
5 different tasks from CIFAR-100, with 1000 labeled source samples and 100 labeled target samples for all
experiments.

4.3 Semi-supervised learning
We evaluate Deep reference priors in the semi-supervised learning setting using the formulation described
in §3.6. Table 1 compares Deep reference priors with competing semi-supervised learning methods on the
CIFAR-10 dataset. Our methods outperform 5 other baseline methods (by 5-10%), except MixMatch and
FixMatch. This indicates that reference priors can effectively leverage unlabeled data to pretrain representations
and are competitive, if not better, than the state of the art. Deep reference priors are applicable to semi-
supervised learning without being explicitly formulated to enforce properties like confident predictions on
unlabeled samples or label consistency with respect to augmentations.
Fig. 4 compares Deep reference priors to MixMatch in settings where the learner is given access to different

number of labeled data. Both methods have similar trends as the number of labeled samples is changed. The
implementation of MixMatch by the original authors implements a number of techniques such as a moving
averaging of the weights, an “interleaved” version of Mixup across labeled and unlabeled data, intricate
schedules for various coefficients in their method. Our theoretical argument in §3.7 shows that the objective
used in reference prior is very close to that of MixMatch, so we expect to match their accuracy on this problem.
We have investigated the gap in accuracy at depth and we currently believe that the gap could be mitigated by
using a larger number of particles in the reference prior. The utility of Deep reference priors is further validated
in Table 2 (left) which evaluates on 5 semi-supervised learning tasks from CIFAR-100. Deep reference priors
make use of unlabeled samples in addition to the 100 labeled samples for each task using, which results in
accuracy gains as large as 18.6% when compared to using just labeled samples (vanilla supervised learning).

Method Samples
50 100 250 500 1000

PiModel - - 46.58 58.18 68.47
PseudoLab - - 50.02 59.45 69.09
Mixup - - 52.57 63.86 74.28
VAT - - 63.97 73.89 81.32
Mean Teacher - - 52.68 57.99 82.68
MixMatch 64.21 80.29 88.91 90.35 92.25
FixMatch 86.19 - 94.53 - -
Flex-UDA 94.67 (40) - 94.95 -
FlexMatch 95.01 (40) - 95.2 -

Deep Reference Prior 81.08 85.93 90.13 91.23 92.15

Table 1: Comparison to existing work in semi-supervised learning.
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Figure 4: We compare Deep reference prior to a variant with no EMA during evaluation, and to MixMatch, over a varying
range of the number of labeled samples. EMA gives a marginal yet consistent improvement in accuracy; this has also been
observed in other work in semi-supervised learning. Trends in the accuracy are broadly similar for Deep reference priors
and MixMatch and the gap between them reduces as the number of labeled samples increases. See §4.3 for more details.

4.4 Transfer learning
We next evaluate Deep reference priors in the transfer learning setting. The posterior (9) looks to find a model
that is influenced by the target data by varying degrees controlled by β, with β = 1 corresponding to the
scenario where the posterior is maxmimally influenced by target data after being pre-trained on the source data.
We instantiate (9), by combining prior selection, pre-training on the source task and likelihood on the target
task, into one objective,

maxπ γIπ(w; y
u, xu) + E

w∼π
log p(w; yn |xn) + (1− β) E

w∼π
log p(w; ys |xs), (19)

where γ and β are hyper-parameters.
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Figure 5: Each cell shows the accuracy of using Deep reference priors (left) and Fine-tuning (right). Cells are colored
red/green relative to the median accuracy of each row, with darker shades of green indicating that the source task is
more suitable for transfer. For example, Vehicles-1 is particularly well suited source task for Deep Reference priors. The
accuracy of most cells in Fig. 5a is better than the corresponding cells in Fig. 5b indicating that reference priors are capable
of leveraging the labeled source data and unlabeled target data. The difference in accuracy between using Deep reference
priors for transfer and fine-tuning is quite large in some cases, the gap is 34.8% for Vehicles2-Vehicles1.
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Method Task
Vehicles-1 Vehicles-2 Fish People Aq. Mammals

Supervised Learning 42.2 63.2 56.8 31.0 42.6
Deep Reference Prior (SSL) 63.6 75.2 54.6 34.0 47.4

Table 2: Accuracy (%) of 5 tasks from the CIFAR-100 dataset. Additional unlabeled data from the same task is useful in
building a prior across all tasks except one task (Fish); improvement in accuracy is as large as 18.6%. This table should be
read in conjunction to Fig. 5. We can see that transfer using source and target data using Deep reference prior results in an
even larger improvement in performance, indicating that our method is effectively making use of both the labeled source
data and unlabeled target data.

4.5 Semi-Supervised Learning Ablation Experiments
The following ablation experiments are conducted for semi-supervised learning on CIFAR-10 with 1000
labeled samples.

Order of prior. The order of the prior is an independent hyper-parameter as discussed in §3.6. Changing the
order leads to a marginal (about 1%) improvement in accuracy. This justifies our choice of using n = 2 as the
order in all experiments.

Method Order
2 3 4 5

Deep Reference Prior (K = 2) 84.49 86.5 86.05 86.44

Table 3: The order of the reference prior has a minimal impact on accuracy.

Number of particles in the prior.We vary the number of particles in the prior and observe an improvement
in accuracy as we increase the number of particles. The downside of this is however that a large number of
particles implies increasing training time for the prior, which grows linearly with the number of particles.

Method Particles
2 4 8 16

Deep Reference Prior (n = 2) 84.49 86.77 87.98 87.35

Table 4: Increased number of particles has a minimal impact on accuracy, the accuracy improves by 2.84% with 16
particles compared to 2.

Particles Weights in the Prior. As discussed in Remark 4, the prior is represented by

π∗
n =

K∑
i=1

λiδ(w − wi)

where {w1, . . . , wK} are theK atoms of the prior andλi are coefficientswith
∑

i λi = 1. In our implementation,
we set λi to be trainable parameters. We observe that λi assumes a uniform distribution over the particles in
our experiments (Fig. 6). We expect this observation to change for a very large number of particles. For a
small number of particles, the individual particles are extremely confident in their predictions. Hence, the term
H(yu |xu) is maximized when the predictions averaged across all particles is close to uniform distribution
which is achieved when λi is uniform over all particles.
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Figure 7: The evolution of the accuracies of individual particles in the reference prior when trained on 250 labeled samples.
While the individual particles become diverse due to the termH(yn |xn), the accuracy of the ensemble on the other hand
consistently increases.
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Figure 6: Entropy of the weights of the particles (λi) in the prior. The plot corresponds to the entropy of 4 particles which
is essentially constant throughout training. In fact, the value is close the theoretical maximum of the entropy which is
ln 4 ∼ 1.38 indicating that the weights λi are all equal.

4.6 Analysis and additional ablation studies
Diversity of the models in the prior. Fig. 7 shows how the entropy H(yu |xu) enforces diversity between
the different particles. We see that the accuracy of particles diverge during training. While one particle
clearly dominates the posterior in terms of predicting correctly on most of the samples, the Bayesian posterior
predictive distribution has a slightly higher accuracy than the best particle.

Design Choices. We next seek to dissect different components in our model, like EMA, Mixup, and the
inclusion of the cross-entropy term (17) (referred to as cross-entropy warmup). We evaluate on a 2-way
classification problem from CIFAR-10 (Cat vs. Dog) on 200 labeled samples run for 70 epochs. This is a
challenging binary classification problem (relatively speaking, it is the hardest pair of classes in CIFAR-10).
Fig. 9a indicates the benefit of including Mixup and the cross-entropy term. This benefit is more pronounced
in the 10-way classification problem. Fig. 4 shows why using EMA in the evaluation step in beneficial.

Choice of α.We again evaluate on the Cats vs. Dogs 2-way classification task to understand the impact of the
hyper-parameter choice for α. Fig. 9a indicates that using α = 1.0 in (18) has lower accuracy compared to
using α = 0.1 or 0.5. The freedom to control this hyper-parameter is hence beneficial.
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Figure 8: The evolution of the entropy termsH(yn |xn, w) andH(yn |xn), when trained on 500 and 50 samples. Note
that whileH(yn |xn) is expected to be larger thanH(yn |xn, w) (since the KL-divergence is always positive), this is not
the case since we approximate the termH(yn |xn, w) by an upper-bound obtained from Jensen’s inequality. Note that
when there are only 50 labeled samples, the training dynamics become unstable, which is indicated by the oscillations in
the entropy terms indicated in the plot

α Accuracy (%)

0.1 75.35
0.5 74.45
1.0 71.4

(a)

Methods Accuracy (%)

Ref Prior 75.35
No Mixup 73.4
No CE Warmup 69.4
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Figure 9: Fig. 9a: This table computes the accuracies of 2-class classification (Cat vs Dog.) on 200 labeled samples run
for 70 epochs. Using α = 1.0 is clearly deterimental to performance and it is hence it is beneficial to introduce this tunable
hyper-parameter. Fig. 9b: We ablate over some additional components in our model which are cross-entropy warmup, and
mixup. We consider a simple 2-class classification problem (Cat vs Dog on CIFAR10) with 200 labeled samples and run
our model for 70 epochs as opposed to the 1000 epochs. While this results, in less pronounced differences in accuracies,
the trends are stil indicative of the importance of using cross-entropy warmup and mixup to train the model.
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5 Related Work and Discussion
Reference priors in Bayesian statistics.We build upon the theory of reference priors which was developed in
the objective Bayesian statistics literature Bernardo (1979); Berger et al. (1988, 2009). The main idea used
in our work is that non-asymptotic reference priors allow us to exploit the finite samples from the task in a
fundamentally different way than classical Bayesian inference. If the number of samples from the task available
to the learner is finite, then the prior should also select only a finite number of models. Reference priors are not
common in the machine learning literature. A notable exception is Nalisnick and Smyth (2017) who optimize
a variational lower bound and demonstrate results on small-scale problems. The main technical distinction of
our work is that we explicitly use the discrete prior instead of a variational approximation. To our knowledge,
our work is the first instantiation of reference priors for medium-scale deep networks and image-based tasks.

Information theory. Discreteness is seen in many problems with an information-theoretic formulation, e.g.,
capacity of a Gaussian channel under an amplitude constraint (Smith, 1971), representations of neurons in the
brain Laughlin (1981); Tkačik et al. (2008), and biological systems (Mayer et al., 2015). (Mattingly et al.,
2018; Abbott and Machta, 2019) have developed a rich theory of scaling laws that give the number of atoms in
the prior as a function of the number of data. They use examples to study how reference priors with finite
data select “simple models” which lie on the edges of the parameter space (see Fig. 2). Although we cannot
yet characterize a similar simplicity bias of reference priors for deep networks, we believe that the methods
developed in our paper are effective because of this phenomenon; our choice of using a small order n for the
prior is directly motivated by their examples. On the other hand, information based methods are widely applied
in miscellaneous aspects of deep learning. One of the common motivation behind unsupervised contrastive
representation learning ??Oord et al. (2018); Henaff (2020); Tian et al. (2020); Bachman et al. (2019); Hjelm
et al. (2018); He et al. (2020); Chen et al. (2020a); Wang and Isola (2020) is the InfoMax principle (Linsker,
1988), which instantiated by maximizing the mutual information (MI) between multi-views of the data. While
in regularized information maximization for clustering, (Gomes et al., 2010; Bridle et al., 1992; Hu et al., 2017)
directly maximize the mutual information between inputs and their representations. Beyond all these works on
various information criterion, our work heavily explores the statistical dependency between the model weights
and the data, which shed lights on understanding what the optimal way to pre-train a representation is.

Semi-Supervised Learning. Semi-supervised learning is a mature field with a wide diversity of ap-
proaches (Chapelle et al., 2009; Xiaojin, 2008; Zhu and Goldberg, 2009; Ouali et al., 2020). Ideas such as
consistency regularization, which enforce consistent predictions across different augmentations of the inputs,
form an important component of state of the art methods. Prior work (Bachman et al., 2014; Laine and Aila,
2016; Sajjadi et al., 2016b; Tarvainen and Valpola, 2017; Berthelot et al., 2019) explicitly enforces such
losses while we show in §3.7 how the reference prior can automatically enforce consistency regularization.
Minimizing the entropy of predictions on unlabeled data, either explicitly (Grandvalet et al., 2005; Miyato et al.,
2018) or using pseudo-labeling methods (Lee et al., 2013; Sajjadi et al., 2016a), is another popular technique.
We show in §3.7 how entropy minimization is automatically achieved by the reference prior objective.

Transfer learning. is a key component of a large number of applications today, e.g, (Devlin et al., 2019;
Kolesnikov et al., 2020; Dhillon et al., 2020). A central question that remains unanswered today is how one
should pretrain a model on the source task given that the eventual purpose is to transfer to a target task, although
there have been some partial attempts at addressing it via the Information Bottleneck, e.g.,Gao and Chaudhari
(2020a). This question becomes particularly challenging when transferring across domains, or for small sample
sizes (Davatzikos, 2019). Reference priors are uniquely suited to tackle this question: the two-stage experiment
that we have defined is the “optimal” way to leverage data from the source task for the target task, and learning
such a prior is particularly useful in low-sample regimes (see §4.4).
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A Details of the experimental setup
Architecture. For experiments on CIFAR-10 and CIFAR-100 (§4), we consider a modified version of the
Wide-Resnet 28-2 architecture (Zagoruyko and Komodakis, 2016), which is identical to the one used in
Berthelot et al. (2019). This architecture differs from the standard Wide-Resnet architecture in a few important
aspects. Themodified architecture has Leaky-ReLUwith slope 0.1 (as opposed to ReLU), no activations or batch
normalization before any layer with a residual connection, and a momentum of 0.001 for batch-normalization
running mean and standard-deviation (as opposed to 0.1, in other words these statistics are made to change
very slowly). We observed that the change to batch-normalization momentum has a very large effect on the
accuracy of semi-supervised learning.
For experiments on MNIST (Appendix B.1), we use a fully-connected network with 1 hidden layer of

size 32. We use the hardtanh activation in place of ReLU for this experiment; this is because maximizing
the mutual information has the effect of increasing the magnitude of the activations for ReLU networks. One
may use weight decay to control the scale of the weights and thereby that of the activations but in an effort to
implement the reference prior exactly, we did not use weight decay in this model. Note that the nonlinearities
for the CIFAR models are ReLUs.

Datasets. For semi-supervised learning, we consider the CIFAR-10 dataset with the number of labeled samples
varying from 50–1000 (i.e., 5–100 labeled samples per class). We also consider a 2-class classification problem
in some ablation experiments (§4.6) with the two classes being Cat/Dog, which is among the harder 2-class
classification problems in CIFAR-10. Semi-supervised learning experiments use all samples that are not a part
in the labeled set, as unlabeled samples.
For transfer learning, we construct two tasks from MNIST (task one is a 5-way classification task for digits

0–4, and task two is another 5-way classification task for digits 5–9). For this experiment, we use labeled
source data but do not use any labeled target data. This makes our approach using a reference prior similar to a
purely unsupervised method.
The CIFAR-100 dataset is also utilized in the transfer learning setup (§4.4). We consider five 5-way

classification tasks from CIFAR-100 constructed using the super-classes. The five tasks considered are
Vehicles-1, Vehicles-2, Fish, People and Aquatic Mammals. The selection of these tasks were motivated from
the fact that some pairs of tasks are known to positively impact each other (Vehicles-1, Vehicles-2), while
other pairs are known to be detrimental to each other (Vehicles-2, People); see the experiments in Ramesh and
Chaudhari (2021).

Optimization. Adam with a constant learning rate of 0.002 was used in our experiments on CIFAR-10 and
CIFAR-100. Mixed-precision (32-bit weights, 16-bit gradients) was used to expedite training. Training was
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performed for 512 epochs unless specified otherwise. As is common practice in semi-supervised learning
literature Berthelot et al. (2019), the coefficient of the objective of the unsupervised data (mutual information
term in our case) was increased linearly during the course of training. Doing so uses the cross-entropy loss on
the labeled data to effectively reduce the space of weight configurations that could be the atoms of the reference
prior; this is beneficial while implementing the reference prior over a high-dimensional weight space.
We also conducted experiments with SGD for computing the reference prior on MNIST. SGD was used

with a constant learning rate of 0.001 with Nesterov’s acceleration, momentum coefficient of 0.9 and weight
decay of 10−5.

Definition of a single Epoch. Note that since we iterate over the unlabeled and labeled data (each with different
number of samples), the notion of what is an epoch needs to be defined differently. In our work, one epoch
refers to 1024 weight updates, where each weight update is calculated using a batch-size of 64 for the labeled
data of batch size 64, and a batch-size of 60 for the unlabeled data.

Exponential Moving Average (EMA). In all CIFAR-10 and CIFAR-100 experiments, we also implement the
Exponential Moving Average (EMA) (Tarvainen and Valpola, 2017). In each step, the EMA model is updated
such that the new weights are the weighted average of the old EMA model weights, and the latest trained
model weights. The weights for averaging used in our work (and most other methods) are 0.999 and 0.001
respectively. Note that EMA only affects the model that used for testing, it does not affect how weight updates
are calculated during training.

Data Augmentations.We use random-horizontal flips and random-pad-crop (padding of 4 pixels on each side)
as augmentations for the CIFAR-10 and CIFAR-100 datasets. Additionally, Mixup (Zhang et al., 2018) across
both labeled and unlabeled samples was used. Pseudo-labels of the unlabeled samples where computed using
the the average softmax predictions across multiple augmentations of the same image, as explained in §3.6.
Note that this step is necessary in order to apply Mixup between labeled and unlabeled samples.
No data augmentations were used for MNIST.

B Additional Experiments

B.1 Unsupervised transfer learning on MNIST
For all our MNIST experiments, the reference prior is of order n = 2 and hasK = 50 particles. We run our
methods for 1024 epochs.
We first compare Deep reference priors with fine-tuning for transfer learning. The posterior (9) seeks to

find a model that is influenced by the target data to varying degrees controlled by β, with β = 1 corresponding
to the scenario where the posterior is maximally influenced by target data after being pre-trained on the source
data. We instantiate (9), by combining prior selection, pre-training on the source task into one objective,

maxπ γIπ(w; y
u, xu) + (1− β)Ew∼π log p(w; y

s |xs), (S-20)

where γ and β are hyper-parameters. Solving (S-20) requires no knowledge from target data labels, therefore the
setting here is pure unsupervised clustering for target task dataset. We compare the deep reference unsupervised
transfer to fine-tuning method which adapts a model trained on labelled source to the labelled target data. All
samples from the source task (about 30,000 images across 5 classes) were used for both the reference prior and
fine-tuning.

C Two-stage experiment for coin tossing
In §3.3, we consider a situation when we obtain data in two stages, first zm, and then zn. We propose a prior
π∗ ( (7)) such that the posterior of the second stage makes maximal use of the new n samples. In this section,
we visualize π∗ in the parameter space using a two-stage coin tossing experiment.
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Method Number of labeled target task data
0 50 100 250 500

Fine-Tuning - 71.1 78.8 86.6 93.0
Deep Reference Prior Unsupervised Transfer 87.4 - - - -

Table S-5: Accuracy (%) of transfer from source task (digits 0–4) to the target task (digits 5–9). We see that transfer using
source and unlabelled target data using Deep reference prior performs as well as fine tuning with labelled source data
and 250 labelled target data. This indicates that our method is making effective use of both the labeled source data and
unlabeled target data.

Method Number of labeled target task data
0 50 100 250 500

Fine-Tuning - 90.2 92.4 94.7 96.2
Deep Reference Prior Unsupervised Transfer 95.2 - - - -

Table S-6: Accuracy (%) of transfer from source task (digits 5–9) to the target task (digits 0–4). We see that transfer using
source and unlabelled target data using Deep reference prior performs better than fine tuning with labelled source data
and 250 labelled target data. This indicates that our method is making effective use of both the labeled source data and
unlabeled target data.

Consider the estimation of the bias of a coin w ∈ [0, 1] using two-stage m + n trials. If z denotes the
number of heads in total, we have p(z |w) = wz(1 − w)m+n−z(m + n)!/(z!(m + n − z)!). There are m
trials in first stage and n trails in second stage. We numerically find π∗ for different values ofm and n using
the BA algorithm (Fig. S-10 and Fig. S-11).
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Figure S-10: Reference prior for the two stage coin-tossing model( see (7) ), for m = 1 and n = 1, 10, 40 (from
left to right) computed using the Blahut-Arimoto algorithm. Atoms are critical points of the gray line which is
KL(p(zm+n), p(zm+n |w))− KL(p(zm), p(zm |w)). The prior is discrete for finite order n < ∞, also see Mattingly
et al. (2018). We now see how this reference prior behaves for different values of α = m/n, e.g., for α → 0 this prior π∗

is closer with π∗
n in (2), but still remains differences with π∗

n.
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Figure S-11: Reference prior for the two stage coin-tossing model( see (7) ), for n = 1 and m = 10, 30 (from
left to right) computed using the Blahut-Arimoto algorithm. Atoms are critical points of the gray line which is
KL(p(zm+n), p(zm+n |w))− KL(p(zm), p(zm |w)). The prior is discrete for finite order n < ∞, also see Mattingly
et al. (2018).
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