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Abstract

A fundamental challenge in cognitive neuroscience is understanding how cognition
emerges from the interplay between structural connectivity (SC) and functional
connectivity (FC). Current machine learning approaches typically seek to establish
direct mappings from SC to FC associated with specific cognitive states. However,
these methods often treat SC and FC as distinct endpoints, failing to capture the
coupling relationship throughout the progressive transformation between them.
To address this limitation, we propose BrainFlow, a reversible generative model
designed to parametrize flows between the distribution of SC and the mixed distribu-
tion of FCs from different cognitive tasks. Our method explicitly models the SC-FC
coupling by training on interpolated states along the symmetric positive-definite
(SPD) manifold. We further prove the equivalence between flow matching on the
SPD manifold and on the computationally efficient Cholesky manifold, enhancing
numerical stability. To mitigate cumulative errors during reverse-flow simulation,
we introduce a consensus control mechanism that utilizes complementary infor-
mation across multiple FC-to-SC pathways, yielding a biologically meaningful
reconstruction of the underlying structural scaffold. Together, BrainFlow achieves
state-of-the-art performance on both synthetic data and large-scale neuroimaging
datasets from the UK Biobank and Human Connectome Project.

1 Introduction

A central goal in cognitive neuroscience is understanding how cognition arises from the complex in-
terplay between (static) brain structure and (dynamic) functional fluctuations. Structural connectivity
(SC), representing the anatomical pathways that physically connect distinct brain regions, provides
the structural scaffold that supports the spontaneous synchronization of functional fluctuations across
multiple brain regions, shaping the network topology of functional connectivity (FC). This interplay
underpins the brain’s ability to perform complex cognitive, sensory, and motor functions, highlighting
the necessity of understanding how anatomical structure constrains and shapes brain function, and
vice versa [1, 2, 3].

Machine learning techniques have been widely employed to characterize the uni-directional relation-
ship between SC and FC. One streamlined approach is to simply predict one type of connectome
from another in a supervised learning scenario[4, 5, 6].

Despite promising prediction accuracy, these computational approaches have several significant
issues, from problem formulation to model explainability. (1) Over-simplified problem formulation.
Most current methods only focus on the one-way mapping function, i.e., either predicting FC from
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Figure 1: We model the SC-FC relationship in human brain as a flow problem, characterized by a
collection of one-to-many forward flows from single (static) SC to multiple (evolving) FCs, along
with corresponding many-to-one reverse flows from state-dependent FCs back to the underlying SC.
Recognizing the neuroscience insight that a significant portion of neural circuits are shared across
different cognitive tasks, we introduce the concept of consensus control to harmonize the reverse
flows between cognitive states.

SC or vice versa. However, mounting evidence from neuroscience studies underscores the interplay
between SC and FC. In this context, the real biological challenge is establishing a new understanding
of SC-FC coupling mechanism in human brain using data-driven approaches. (2) Overlook the
intrinsic data geometry. It is popular to learn feature representation for SC and FC in a vector
space by flattening the region-to-region connectivity matrix into a vector. Since the matrix form
of connectome data does not live in a Euclidean space [7], manifold-based algebra tailored for the
unique data geometry (such as the symmetric and positive-definite properties) is needed to guarantee
the mathematics and neuroscience insight in operating the connectome data.

To address these limitations, we propose BrainFlow, a reversible generative model designed to
parametrize flows between the distribution of SC and the mixed distribution of FCs on the Riemannian
manifold (Fig. 1). Conceptually, a flow in this context is not a direct physical process but a learned
transformation pathway, akin to a continuous interpolation, that connects the geometric space of
structural connectomes to that of functional connectomes. Specifically, we consider that each SC
or FC is a particle sampled from its respective distribution on the manifold. In this context, the
relationship between SC and FC can be formulated with a flow governed by a time-dependent ODE.

Following the spirit of trajectory inference [8, 9],we parameterize pathways that transport SC distri-
butions to state-specific FC distributions. This enables generating FC in different states for unseen
SC data and, crucially, reconstructing SC from FC without additional training.

We further propose three innovative components to find mapping flows between SC and FCs. (1)
We present a flow model that not only predicts FCs at different states from SC but also reverses
the process to recover SC from FC. This bidirectional capability is essential for understanding the
interplay between the brain’s structural and functional organization, enabling insights into how
anatomical constraints shape functional dynamics and how functional variations reflect structural
substrates. (2) We parametrize the flow on the Cholesky manifold [10], an isometric embedding of
the symmetric positive-definite manifold (Fig. 2). This preserves the geometric and probabilistic
properties of the original SPD space while avoiding the computational overhead of traditional affine-
invariant Riemannian metrics, ensuring efficient and stable operations for high-dimensional matrices.
By employing the log-Cholesky metric, BrainFlow ensures efficient and stable operations while
preserving the intrinsic structure of SC and FC data. (3) We introduce a consensus control mechanism
that leverages the shared structural foundation underlying multiple functional states (demonstrated in
Fig. 1 right). By treating SC as a stable anchor and introducing consensus-driven adjustments into
the dynamics, BrainFlow ensures that predictions across different FC states (e.g., resting-state and
task-specific FCs) are both consistent and biologically reasonable.
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Figure 2: Both SC and FC are regarded as data elements drawn from their respective distribution
on the SPD manifold. Rather than estimating the flow directly on the SPD manifold, we perform
optimization on the Cholesky manifold, which is computationally efficient while being equivalent to
the SPD manifold.

We compare our methods to baselines and large-scale neuroimaging datasets from UK Biobank and
Human Connectome Project. In addition to competitive or state-of-the-art performance on different
metrics, our method shows faster training speed and more stable inference.

2 Preliminaries

2.1 Riemannian, SPD, and Cholesky Manifold

Riemannian manifold. A Riemannian manifold (M, g) is a smooth manifold M equipped with
a Riemannian metric g that defines an inner product on each tangent space T pM. The geodesic
γ(t) between two points on a Riemannian manifold represents the locally length-minimizing curve,
analogous to straight lines in Euclidean space. Two fundamental operations on Riemannian manifolds
are the exponential map exp(·) and its inverse, the logarithmic map log(·). The exponential map
expp(·) : T pM → M maps a tangent vector v to the point reached by following the geodesic
starting at p in direction v for unit time, while logp(·) : M → T pM maps a point q to the tangent
vector v such that expp(v) = q.

SPD manifold. Symmetric positive definite (SPD) matrices form a SPD space that naturally represents
functional brain connectivity [7, 11]. When equipped with a Riemannian metrics like commonly
used Log-Euclidean metric [12] or affine-invariant metric [13, 14], S+

n turns into a Riemannian
manifold. However, these classical metrics involve matrix exponential and logarithm operations that
are computationally expensive and potentially numerically unstable for large-scale or ill-conditioned
matrices due to eigendecomposition.

Cholesky manifold. Recently, Lin ([10]) proposed the Log-Cholesky metric, which mainly relies
on Cholesky decomposition X = LLT , where X ∈ S+

n and L is a lower triangular matrix whose
diagonal elements are positive. Lin ([10]) first introduced the Riemannian manifold of lower triangular
matrices, which are the Cholesky decomposition factors of SPD matrices, and proves there exists an
isometry between the SPD manifold and lower triangular manifold. Here we briefly introduce the
Cholesky space. We firstly denote L+

n as a space whose elements are lower-triangular matrices with
positive diagonal. The notation ⌊A⌋ denotes the strict lower triangular part of matrix A, specifically,
⌊A⌋i,j = Ai,j if i > j and zeros otherwise. D(A) represents a diagonal whose diagonal elements
are those of A. We then introduce some important properties of Cholesky manifold (L+

n , g̃), where
g̃ is a Riemannian metric. First, the tangent space TLL+

n at L+
n is Ln, the space of lower triangular

matrices. Second, the inner product between P,Q ∈ TLL+
n , i.e., the Riemannian metric g̃, is defined

as
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g̃L(P,Q) =
∑
i>j

PijQij +

n∑
j=1

PjjQjjL
−2
jj , (1)

Lin ([10]) further induced the log-Cholesky metric g on S+
n . Specifically, given X ∈ S+

n and
W,V ∈ TXS+

n , the log-Choleksy metric is defined as:
gX(W,V ) = g̃L

(
L(L−1WL−⊤) 1

2
, L(L−1V L−⊤) 1

2

)
, (2)

where L is the Cholesky factor such that X = LL⊤ and (·) 1
2
= ⌊·⌋ + D(·)/2 for an input square

matrix.

Next, the geodesic between two points K,L ∈ L+
n on the Cholesky manifold is defined as:

γ̃L,K(t) = ⌊L⌋+ t{⌊K⌋ − ⌊L⌋}+ D(L)exp[t{logD(K)− logD(L)}], (3)

where the strict lower triangular part can be regarded as the straight line in Euclidean space and the
diagonal part is designed to meet the constraint of Cholesky space. More basic properties about
Cholesky manifold and SPD manifold can be found in Appendix. A

2.2 Flow Matching on Riemannian Manifold

Riemannian Flow Matching. Given a flow ψt that generates a probability path ρt connecting two
distributions ρ0 and ρ1, we can know the vector field ut by d

dtψt(x) = ut(ψt(x)). Then we can fit a
parametrized vector field vθt to ut by optimizing the loss LRFM = Et,ρt(xt)∥vθt (xt)− ut(xt)∥2g, t ∼
uniform(0, 1). This method is named (Riemannian) Flow Matching (RFM) [15, 16, 17, 8]. However,
ut is intractable in most cases. Conditional flow matching therefore is then proposed to use vθt
to approximate a conditional vector field ut(xt|z) defined on each sample which also generates
a conditional probability path ρt(xt|z). Then we can recover the unconditional vector field and
probability path by ut(xt) =

∫
M ut(xt|z)ρt(xt|z)q(z)

ρt(xt)
dvolz and ρt(xt) =

∫
M ρt(xt|z)q(z)dvolz [8].

The Riemannian flow matching objective then becomes

LRCFM = Et,ρt(xt|z),q(z)∥v
θ
t (xt)− ut(xt|z)∥2g (4)

It has been proved that the loss LRFM and LRCFM have same gradients[8] w.r.t. θ. We can use the
conditional velocity field as target to fit vθt .

2.3 Brain Connectivity

The human brain’s connectivity can be characterized through two distinct mathematical representa-
tions defined on a set of n brain regions V = {v1, ..., vn}.

Structural connectivity (SC) describes the anatomical architecture through matrix As ∈ Rn×n, where
each element As

i,j ≥ 0 represents the connection strength between regions vi and vj . Structural
connectivity is typically modeled as an undirected weighted/binary graph.

In contrast, functional connectivity (FC) is represented by Af ∈ Rn×n quantifying temporal rela-
tionships, where Af

i,j is the correlation between Blood Oxygen Level Dependent (BOLD) signals
of regions vi and vj . SPD matrices naturally arise in the analysis of functional brain connectivity
patterns through its derivation from correlation or covariance measures. Though SC is not guaranteed
to be SPD, it is common to satisfy SPD property by adding a (small) self-loop connection to the
symmetric SC matrix.

3 Related Works

3.1 Prediction between Functional Network and Structural Network

There have been many works aimed at predicting functional connectivities from structural connec-
tivities or vice versa. Traditional methods[2, 18, 19] typically used the statistical properties (e.g.
connection strength, distances, shortest paths, eigenvalues of Laplacian matrices) of one type of
connectivities to predict the other connectivities. However, these methods mainly focused on small-
scale or even single subject, ignoring potential common properties among the population. Some
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machine learning methods are also used for predicting the connectivity. MGCN-GAN[6] uses a
CycleGAN-based network to predict structural connectivities with functional connectivities while
DSBGM[5] proposed a signed graph encoder to map functional connectivities to structural connec-
tivities. These methods considered only the one-way mapping and focused only on resting-state
functional connectivities.

3.2 Transformation between two distributions

Transformation between two distributions is an important problem in natural sciences[20, 21]. Re-
cently, many simulation-free distribution interpolation techniques were proposed[8, 15, 17, 22, 23].
These methods trained a time-dependent ODE to evolve an initial distribution to the target distribution.
Most of them worked with the distributions on Euclidean space. RCFM[8] proposed conditional
flow matching on Riemannian manifold. Based on RCFM, we further explore flow matching among
isometries, which enables applying flow matching on a simpler manifolds and then maps it back to
the complex isometry, making the framework more efficient.

4 Flow Matching for Bridging Structural and Functional Connectivity

4.1 Problem formulation

In this work, we aim to predict resting-state and task-specific functional connectivity (FC) matrices
given structural connectivity (SC) matrices from the same individual. In addition, we also aim to
predict SC matrices based on given FC matrices. Specifically, we denote the distribution of structural
connectivity matrices As as the source distribution ρ0, and the distribution of functional connectivity
matrices Af as the target distribution ρ1. Elements sampled from these distributions are represented
as X0 ∼ ρ0 and X1 ∼ ρ1, where X0 corresponds to an SC matrix As and X1 corresponds to an FC
matrix Af .

Our objective is to train a vector field vθt such that, given an SC matrix Xi
0 for subject i, the

corresponding resting or task-specific FC matrix can be predicted via integration:

Xi
1 = Xi

0 +

∫ 1

0

vθt (X
i
t , y

i) dt, (5)

where yi is the label of the target FC (e.g., resting-state, motor, or working memory). On the other
hand, the method can also predict SC given a labeled FC matrix.

4.2 Flow matching on Cholesky Manifold

Motivation. Our approach aims to construct a conditional vector field ut(Xt|Z) ∈ TXt
S+
n that

transports X0 ∼ ρ0 to X1 ∼ ρ1 and use a neural network vθt to fit ut(Xt|Z).
Subject-specific prior conditioner. Following [17], we define the prior conditioner Z as a
joint distribution of source and target: Z = (X0, X1) ∼ q(Z) = q(X0, X1). Due to the
individual-specific nature of connectivities, however, we do not employ either independent cou-
pling q(X0, X1) := ρ0(X0)ρ1(X1) or optimal transport coupling q(X0, X1) := π(X0, X1). Instead,
we define a specialized joint distribution q(Z) that ensures each sample Z corresponds to an individ-
ual. In this formulation, X0 and X1 represent SC and FC matrices derived from the same subject,
preserving biologically coherent and individualized relationships between structural and functional
domains.

Construct flow with geodesic. we then construct a flow ψt to connect X0 and X1. Analogous to the
straight line in Euclidean, it is natural to use geodesic connecting X0 and

Xt = γX0,X1
(t) = expX0

(tlogX0
(X1)) (6)

where the exponential and logarithmic maps are computed under a Riemannian metric on the
symmetric positive definite (SPD) space S+

n .

Flow matching with log-Cholesky metrics. A natural choice of Riemannian metric on S+
n is

the affine-invariant Riemannian metric (AIRM), as used in [8]. While AIRM is effective in low-
dimensional cases, its computational complexity poses challenges for high-dimensional SPD mani-
folds due to the reliance on matrix eigendecomposition, which becomes numerically unstable when

5



eigenvalues approach zero. Additionally, the computations of fractional matrix powers and matrix
inverses contribute to high computational costs. (See Appendix B.2 for details.) These factors make
AIRM difficult to apply to higher-dimensional SPD manifold. To address these challenges, we adopt
the log-Cholesky metric in eq. 2, whose main overhead of geodesic and inner product computation is
only matrix inverse. Then the objective becomes:

LRCFM(θ) = Et,q(Z),ρt(Xt|Z)||vt(Xt, y)− Ẋt||2gXt
(7)

where Ẋ = d
dtXt = ut(Xt|Z) and ut(Xt|Z) is the velocity at the geodesic.

Flow matching on Cholesky manifold. Recall the definition of log-Cholesky metric (eq. 2), we find
that many operations on (S+

n , g) directly rely on those in (L+
n , g̃). Therefore, we seek to optimize the

flow on Cholesky manifold directly (Fig. 2 ). Before that, we first need to investigate the feasibility
of this approach.

Lemma 4.1 [10] The Cholesky map L : S+
n → L+

n by L (LL⊤) = L and its inverse S are
isometries between (S+

n , g) and (L+
n , g̃).

Based on the conservation of probability measure [24] and Lemma 4.1, we have:

Proposition 4.2 Given two manifolds (S+
n , g) and (L+

n , g̃), a probability density ρs defined on
(S+

n , g) together with the isometry L induces another probability ρl on (L+
n , g̃) via the relationship:

ρs(X) = ρl(L),∀X ∈ S+
n , L = L (X) (8)

The proof of this proposition is given in Appendix. E.1

This proposition enables us to transform our optimization problem from the SPD manifold to the
Cholesky manifold while preserving probability measures. Furthermore, we can establish that
q(L0, L1) = q(X0, X1) = q(Z), leading to our modified objective on L+

n :
LRCFM(θ) = Et,q(Z),ρt(Lt|Z)||ṽt(Lt, y)− L̇t||2g̃Lt

(9)

where the velocity L̇t has a close-form solution derived in Appendix. B.

Theorem 4.3 Given two points X0, X1 ∈ S+
n and their corresponding Cholesky decomposition

factors L0, L1 ∈ L+
n where X0 = L0L

T
0 and X1 = L1L

T
1 , let Xt be the geodesic on S+

n connecting
X0 and X1, and Lt be the corresponding geodesic on L+

n connecting L0 and L1. Then at the optimal
solution: ∥∥∥v∗t (Xt, y)− Ẋt

∥∥∥2
gXt

=
∥∥∥ṽ∗t (Lt, y)− L̇t

∥∥∥2
g̃Lt

(10)

where v∗t (Xt) = Ltṽ
∗
t (Lt, y)

⊤ + ṽ∗t (Lt, y)L
⊤
t and ṽ∗t (Lt) is the optimal velocity field on L+

n . These
results demonstrate that minimizing the objective on L+

n is equivalent to minimizing the objective on
S+
n .

The proof of this theorem is given in Appendix. E.2. With these properties, we have the theoretic
guarantee to optimize on L+

n directly.

This formulation offers several benefits. First, direct optimization on the Cholesky manifold eliminates
the need for frequently mapping between (S+

n , g) and (L+
n , g̃). The more important point is that, this

approach avoids the numerical instabilities associated with eigendecomposition in AIRM, particularly
for matrices with near-zero eigenvalues.

Algorithm 10 summarizes the training procedure of BrainFlow.

4.3 Reversing Flows with Consensus Control

Before detailing the mechanism, it is crucial to understand its neuroscientific motivation. The
consensus control module is designed to enforce the fundamental biological principle of a shared
structural scaffold. The brain’s relatively stable anatomical wiring (SC) serves as the foundation for
a multitude of dynamic functional states (FCs). Therefore, when reversing the flow from different
FCs of the same individual, these pathways should converge towards a single, consistent SC. Our
consensus mechanism operationalizes this principle to guide the reverse-flow predictions and ensure
they are biologically plausible.
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The trained velocity field optimized from eq.9 enables predicting the FCs by simulating vθt (·) with a
given SC. On the flip side, given a functional connectivity, we can get a SC by simulating the reversed
vector field −vθ1−t(·).

Proposition 4.4 Given the Cholesky factor of a functional connectivity L1 of class y and a vector
field ṽθt , by simulating the following ODE from 0 to 1.

d

dt
L′
t = −ṽθ1−t(L

′
t, y), L

′
0 = L1, t ∈ [0, 1] (11)

Then we can get a structural connectivity L′
1 corresponding to the FC from same subject if ṽθt (·) =

ut(·|L′
1, L1). Here L1 means the result of forward flow (FC), and L′

1 means the result of reverse flow
(SC).

However, two factors may cause the simulation to diverge. First, the trained ṽθt might not accurately
approximate the velocity along the geodesic path. Second, during integration, cumulative errors can
cause the trajectory to deviate progressively from the ideal path. Our solution to address these issues
is described below.

Enforces consensus by Dirichlet energy. We propose a training-free consensus control module based
on the idea of consensus in the network system[25]. It aims to minimizing of the Dirichlet energy
functional, which enforces consistency among different FC states of the same subject. A fundamental
property of the human brain is that its functional processes are supported by its underlying anatomical
structure. This implies that FCs across different states share common information rooted in SC.
Moreover, SC is relatively stable compared to the varying FCs, making it a shared anchor for all FC
states of a subject.

Under this assumption, we define a functional for consistency, E ({Lyi

1 }mi=1), representing the
Dirichlet energy of the fully connected network formed by m FC states {Xyi

1 }mi=1:

E ({Lyi

1 }mi=1) =
1

4

m∑
i

m∑
j ̸=i

aij∥L
yj

1 − Lyi

1 ∥2 (12)

where each FC factor Lyi

1 is regarded as a node of the network and the edge weight between them is

defined as aij = exp
(
−
∥∥Lyj

1 − Lyi

1

∥∥2), the Gaussian kernel that weights the similarity between
the FC states. The Dirichlet energy measures the smoothness of the connectivity states over the fully
connected network graph defined by {Xyi

1 }. Intuitively, minimizing E ensures that all FC states
become more consistent with each other by reducing their pairwise differences, weighted by their
similarity. The negative gradient of E w.r.t. Xyi

1 gives the consensus velocity:

vicon = −∇L
yi
1
E =

m∑
j ̸=i

aij
(
L
yj

1 − Lyi

1

)
(13)

which constructs another flow that as a force pulling Lyi

1 to toward its neighbours in the network.

To integrate this consensus mechanism with the original dynamics of the trained velocity field ṽθt , we
modify the ODE governing the evolution of Lyi

t as:
d

dt
Lyi

t = −ṽθ1−t(Lt, y
i) + σvicon (14)

where σ controls the balance between the original dynamics and the consensus term.

After that, we can calculate the Fréchet mean of these m final SC, specifically,

L′
1 =

1

m

m∑
i=1

⌊L
′yi

1 ⌋+ exp{m−1
m∑
i=1

logD(L
′yi

1 )} (15)

This formulation ensures that the evolution of the FC states is guided by both their individual
geodesic paths and a global consensus mechanism rooted in the minimization of Dirichlet energy.
We summarize the inference procedure in Algorithm 10.
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5 Experiments

In this section, we conduct extensive experiments on synthetic datasets and real brain structural-
functional network datasets for validating the effectiveness of BrainFlow. The detailed implementa-
tion and experiment settings are shown in Appendix D and the data description of Human Connectome
Project-Aging (HCP-A) [26], HCP-Young Adult (HCP-YA) [27], UK Biobank [28] are listed in
Appendix D.4

Front View Top View Side View Front View Top View Side View

Ground Truth

Generated

Source 
Distribution

Figure-"𝟖" Swissroll
Transforming Transforming

Figure 3: Results of textural distribution by our BrainFlow. The top row is the target distribution
on SPD manifold. The bottom row shows the distribution transformed from the source distribution.
Although the flow operates on the Cholesky manifold, we can accurately recover the results on the
SPD manifold, demonstrating the effectiveness of our model.

5.1 Experiment on Synthetic Dataset

Fig. 3 and Fig. 5 demonstrate the effectiveness of optimization on the Cholesky manifold and
consensus control, respectively, where we demonstrate the promising results of finding a manifold
flow from a pre-defined source distribution to the target distribution. Table 7 illustrates the metrics of
BrainFlow on synthetic dataset. Due to space constraints, further details and analysis are provided in
Appendix C.

5.2 Functional Connectivity Prediction

Experimental setting. We predict functional connectivity from structural connectivity on all three
datasets (UK Biobank, HCP-A, HCP-YA). Baselines include the one-way connectivity predic-
tion method MGCN-GAN [6] as well as the flow-based method Conditional Flow Matching
(CFM)[15], Riemannian Flow Matching on SPD (RCFM) [8], Variance-Preserve Flow Matching
(VPFM)[29],Action Matching (AM)[22], Schrödinger Bridge model ([SF]2M) and our BrainFlow.
To comprehensively evaluate the prediction performance, we employ multiple complementary met-
rics. The Root-Mean-Square Error (RMSE) quantifies the edge-wise prediction accuracy. To assess
the preservation of network topology, we compute the relative error in local clustering coefficients
(denoted as LCE, calculated by |Cpred−Creal|

Creal
), which reflects the accuracy of predicted local network

organization around individual nodes, and global clustering coefficient error (denoted as GCE, calcu-
lated by

|C′
pred−C′

real|
C′

real
) to evaluate the overall network transitivity prediction. (See Appendix D.2 for

details)

Results. Table 1 and Fig. 6 present the results of FC prediction. While MGCN-GAN consistently
achieves the lowest RMSE across all three datasets, BrainFlow excels in preserving network topo-
logical properties, as indicated by the lowest GCE and LCE values across all datasets. The SPD
variant of RCFM fails to converge across all datasets, as indicated by the divergence notation. This
issue arises because, during inference, the intermediate SPD matrix becomes ill-conditioned, with
some eigenvalues approaching zero. Moreover, the training time per epoch is significantly longer,
taking approximately 100 seconds under the experimental setting described in Appendix D, whereas
BrainFlow requires only 8 seconds per epoch.

Discussion. This performance trade-off between edge-wise accuracy (RMSE) and topological
preservation (GCE, LCE) suggests that different models prioritize distinct aspects of the prediction
task. While MGCN-GAN excels at minimizing direct edge-wise errors, BrainFlow more effectively
preserves the network’s hierarchical organization at both local and global scales. The visualization
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in Fig. 6 highlights that our method better preserves the contrast between different connectivity
strengths, maintaining a clearer separation between strongly connected regions (yellow) and weakly
connected areas (blue)—a crucial factor for accurately representing brain network organization.

Table 1: Performance comparison across different datasets. Bold is the best.

Model UK Biobank HCP-A HCP-YA

RMSE LCE (%) GCE (%) RMSE LCE (%) GCE (%) RMSE LCE (%) GCE (%)

MGCN-GAN 0.219±0.033 19.0±1.4 10.9±2.6 0.217±0.038 15.7±1.4 19.0±3.8 0.243±0.033 14.0±1.4 23.7±2.5
CFM 0.266±0.004 9.5±0.4 6.1±0.6 0.259±0.003 11.4±0.3 8.3±0.5 0.280±0.002 13.3±0.3 9.4±0.8
RCFM (SPD) diverge diverge diverge diverge diverge diverge diverge diverge diverge
AM 0.982±0.001 47.0±0.2 46.6±0.2 0.962±0.001 48.6±0.2 48.2±0.2 0.971±0.002 49.7±0.2 49.1±0.2
VPFM 0.274±0.001 10.4±0.3 9.9±0.7 0.445±0.211 17.2±13.3 19.1±12.2 0.304±0.002 10.4±0.1 8.8±1.8
[SF ]2M 0.293±0.006 10.0±1.6 6.6±1.6 0.267±0.002 9.1±0.3 5.9±0.8 0.355±0.001 9.9±0.4 7.4±1.0
BrainFlow 0.290±0.001 8.9±0.3 5.5±0.3 0.291±0.002 8.1±0.2 4.5±0.2 0.336±0.001 8.7±0.2 5.8±0.5

Table 2: Generated Samples Classification Performance Across Datasets (N/A means the metrics fall
below a meaningful threshold for application).

Model UK Biobank (Binary) HCP-A (4 tasks) HCP-YA (7 tasks)

F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%)

Real 99.12 99.10 95.51 93.48 92.31 92.06
AM N/A N/A N/A N/A N/A N/A
VPFM 98.44±1.04 98.28±1.22 44.60±34.79 42.22±34.48 56.64±1.77 60.16±2.16
[SF ]2M 98.65±0.26 98.67±0.26 77.05±2.07 82.99±1.46 51.36±3.94 53.87±3.80
CFM 98.59±0.30 98.59±0.28 77.03±2.12 85.48±1.85 57.89±3.55 59.87±3.14
BrainFlow 98.85±0.17 98.93±0.19 77.17±2.34 83.40±2.51 61.14±4.67 64.23±4.49

Table 3: Reverse Flow Performance Evaluation Across Different Datasets.
Reverse Flow UK Biobank HCP-A HCP-YA

RMSE LCE (%) GCE (%) RMSE LCE (%) GCE (%) RMSE LCE (%) GCE (%)

AM 1.17±0.00 0.24±0.02 0.21±0.03 1.50±0.00 26.23±1.80 26.70±1.90 1.46±0.00 25.51±1.70 25.54±1.81
VPFM 0.27±0.01 0.18±0.01 0.18±0.01 0.55±0.59 10.71±12.41 11.72±13.65 0.31±0.00 0.55±0.04 0.57±0.04
[SF ]2M 0.23±0.00 0.20±0.01 0.21±0.00

0.25±0.00
0.48±0.06 0.49±0.05 0.30±0.00 0.51±0.02 0.51±0.02

CFM 1.14±0.00 24.63±0.02 26.15±0.02 1.03±0.00 20.23±0.04 21.46±0.04 0.92±0.00 21.28±0.01 23.01±0.01
BrainFlow 0.07±0.00 0.09±0.00 0.08±0.00 0.36±0.00 0.59±0.03 0.59±0.04 0.24±0.00 0.47±0.02 0.46±0.02

Table 4: Ablation study on noise level σ across different datasets. Bold indicates the best performance
for each metric.

Weight Parameter σ HCP-A HCP-YA UK Biobank

MSE LCE (%) GCE (%) MSE LCE (%) GCE (%) MSE LCE (%) GCE (%)

0.0 0.65±0.00 0.74±0.00 0.73±0.00 0.42±0.00 0.62±0.00 0.59±0.00 0.09±0.00 0.52±0.00 0.53±0.00
0.2 0.13±0.00 0.71±0.00 0.69±0.00 0.14±0.00 0.55±0.00 0.59±0.00 0.07±0.00 0.39±0.00 0.39±0.00
0.4 0.44±0.01 0.95±0.00 0.93±0.01 0.52±0.00 0.93±0.00 0.88±0.00 0.69±0.00 1.33±0.01 1.30±0.01
0.6 1.52±0.03 3.17±0.03 3.18±0.02 1.32±0.02 2.92±0.01 3.02±0.02 1.89±0.002 10.93±0.02 11.16±0.01
0.8 2.37±0.01 20.28±0.05 20.50±0.03 2.12±0.01 15.74±0.03 16.40±0.02 2.52±0.01 27.88±0.02 28.16±0.02

5.3 Brain Task Recognition Using The Predicted FC

Experimental description. In this experiment, we evaluate the conditional prediction ability of
BrainFlow. However, the differences in connectivity patterns across cognitive tasks are often highly
variable across subjects, making it challenging to establish consistent signatures for specific task
states. Additionally, no standardized metric exists to evaluate the quality of task-specific connectivity
predictions. In this context, we employ proxy evaluation metrics such as accuracy and F1-score within
a downstream task-classification framework. Specifically, we first train a classifier on the real FC data.
We then apply this pre-trained classifier to the generated FC to assess whether they retain sufficient
task-specific information for accurate task discrimination. Additionally, we generate samples for
each task in the HCP-YA dataset and then average them within each task to obtain a representative
sample each task. We then compare them with the real average representation. Appendix D.5 shows
related result.

Results. Table 2 illustrates the effectiveness of BrainFlow in preserving task-specific information
across datasets with varying task complexity. For the UK Biobank dataset, which involves binary
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task classification, the model achieves an impressive 98.93% accuracy with the generated functional
connectivity, closely matching the real data performance of 99.12%. This result demonstrates that
BrainFlow effectively captures the critical connectivity patterns necessary for distinguishing between
the two cognitive states in binary task discrimination. As task complexity increases, prediction
performance declines but remains superior to the other methods in most scenarios.

5.4 Reverse Structural Connectivity Prediction

Experimental description. In this experiment, we evaluate the performance of consensus control by
reversing the trained BrainFlow, using different FC inputs (We have multiple fMRI scans for each
subject) from the same subject. We employ the same evaluation metrics as in Sec. 5.2, including
RMSE, LCE, and GCE.

Results. Table 3 highlights the effectiveness of our proposed consensus control mechanism across
three datasets. Notably, most approaches achieve consistently low error rates, largely due to the
inherent stability of SC patterns across subjects, in contrast to the more dynamic nature of FC.
This fundamental characteristic of brain architecture ensures that the core graph topology remains
well-preserved during reconstruction, as reflected by the consistently low clustering coefficient errors
observed across all datasets. For a visual comparison, please refer to Fig. 7 in Appendix D.5.

Discussion. The most notable improvements are observed in the UK Biobank dataset, where the
consensus control mechanism significantly reduces both global and local clustering coefficient errors
while maintaining a low RMSE. This indicates that the consensus approach effectively integrates
shared information across multiple FC states to reconstruct more accurate structural patterns.

5.5 Parameter Sensitivity Analysis

Experimental description. We conduct an experiment to test the sensitivity of the consensus control
parameter σ. We evaluate BrainFlow’s reverse flow performance across five different σ values: 0.0,
0.2, 0.4, 0.6, 0.8 on all three datasets (UK Biobank, HCP-A, HCP-YA). For each configuration, we
use the same evaluation metrics as in Sec. 5.2, including MSE, LCE, and GCE. The σ = 0.0 setting
represents vanilla reverse flow without consensus control, serving as our baseline for comparison.

Results. Table 4 presents the results across different σ values. The optimal performance is consistently
achieved at σ = 0.2 across all three datasets, with substantially lower error metrics compared to
σ = 0.0 (vanilla reverse flow).

Discussion. We can see that when σ is small (∼ 0.2), the model has significant performance gain
compared to vanilla reverse flow. However, as σ increases, the consensus control comes to dominate
the reverse flow, causing the trajectories to become biased. This degradation occurs because excessive
consensus control overly constrains the reverse trajectories, causing them to converge prematurely
and lose fidelity to individual structural patterns. We then argue that σ may not be suitable to optimize
during training. First, the reversible nature of our flow means that Dirichlet energy regularization
applied to the reverse flow also constrains the forward flow, thereby reducing the diversity of predicted
task FCs. Second, there is a mismatch between training and inference objectives. While consensus
control leverages complementary information across different task FCs to reduce simulation error
during inference, BrainFlow training is simulation-free and does not account for this simulation error.
Therefore, optimizing σ during training is unsuitable for the intended inference procedure.

6 Conclusion

In this work, we propose a flow matching approach on the Cholesky manifold to bridge SC and FC,
improving numerical stability and efficiency. A consensus control mechanism enforces consistency
across functional states, mitigating errors from vector field approximations and numerical integration.
Our results demonstrate effective structural connectivity inference, with applications in neuroscience,
brain disorder diagnosis, and connectivity-based interventions. Future work includes extending to
dynamic functional connectivity modeling and integrating domain-specific constraints. It could be
extended to model both macro-scale lifespan connectivity changes and micro-scale, within-scan
fluctuations by learning flows between consecutive time windows.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Section 1 and Abstract.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Appendix E
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See Section 5.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 5 and Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Section 5. The experiments include statistical information.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix D

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix G

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix D

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification:The research involves the use of de-identified human subject data from publicly
available neuroimaging repositories. All authors have completed the necessary HIPPA and
CITI training and are qualified to process this data.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Basic of Log-Cholesky Metric

We follow the notations on [10]. Denote the Cholesky decomposition of P ∈ S+
n as P = LL⊤, the

Cholesky map is defined as L (P ) = L and its inverse map is S (L) = P . Table. 5 shows properties
of Riemannian manifolds (L+

n , g̃) and (S+
n , g).

Table 5: Basic properties of Riemannian manifolds.

Basic properties of Riemannian manifolds (L+
n , g̃) and (S+

n , g)

(L+
n , g̃) (S+

n , g)

tangent space at L tangent space at P

Ln Sn

Riemannian metric Riemannian metric

g̃L(X, Y ) =
∑

i>j XijYij +
∑n

j=1 XjjYjjL
−2
jj gP (W,V ) = g̃L (P )((DP L )(W ), (DP L )(W ))

geodesic emanating from L with direction X geodesic emanating from P with direction W

γ̃L,X (t) = ⌊L⌋ + t⌊X⌋ + D(L) exp{tD(X)D(L)−1} γP,W (t) = γ̃L (P ),(DP L )(W )(t)γ̃L (P ),(DP L )(W )(t)
⊤

Riemannian exponential map at L Riemannian exponential map at P

ẼxpLX = ⌊L⌋ + ⌊X⌋ + D(L) exp{D(X)D(L)−1} ExpPW = ẼxpL (P )(DP L )(W ){ẼxpL (P )(DP L )(W )}⊤

Riemannian logarithmic map at L Riemannian logarithmic map at P

L̃ogLK = ⌊K⌋ − ⌊L⌋ + D(L) log{D(L)−1D(K)} LogPQ = (DL (P )L )(L̃ogL (P )L (Q))

geodesic distance between L and K geodesic distance between P and Q

d
L+
n

(L,K) = {∥⌊L⌋ − ⌊K⌋∥2F + ∥ log D(L) − log D(K)∥2F }
1/2 d

S
+
n

(P,Q) = dL+
(L (P ), L (Q))

B Extensions of methods

B.1 Solution for closed-form velocity.

Given the flow/geodesic Lt, the constant velocity L̇t in eq.9 is calculated by d
dtLt = L̇t [8], meaning

that the conditional velocity field ut(Lt|Z) can be obtained by calculating the geodesic and its
derivative w.r.t. time. While this could be calculated using autograd during the forward pass, we
derive a more efficient closed-form expression based on the geodesic definition (eq. 3) on (L+

n , g̃):

L̇t = ˙̃γL0,L1(t) = ⌊L0⌋ − ⌊L1⌋+ D(L)exp(tM)M

M = logD(L0)− logD(L1)
(16)

B.2 Computation Cost Analysis

We provide a theoretical analysis comparing the computational complexity of BrainFlow against
RCFM-SPD and vanilla Flow Matching. Flow-based methods can be summarized with the following
pipeline steps:

• Sampling from the source and target distributions
• Calculate the interpolated position and velocity
• Regress the predicted velocity to ground truth velocity
• During inference, integrate the time-dependent velocity

We analyze the additional computation of Riemannian conditional flow matching on SPD manifold
(RCFM-SPD) and BrainFlow on these steps compared to baseline vanilla Flow Matching.

Sampling Stage. Before sampling stage, additional preprocessing (Cholesky decomposition) is
required for BrainFlow, whose time complexity is O(Nd3), where N is the size of training set and d
is the matrix dimension. Importantly, the computational cost of Cholesky preprocessing is incurred
only once, whereas the costs associated with interpolation, loss calculation, and inference need to
be repeated at each step.

Interpolation Stage. During interpolation stage, the exp(·), log(·) operations of RCFM-SPD both
require O(Bd3), where B is the batch size, while these operations on Cholesky manifold only
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requires O(Bd), as the strict lower triangular part follows element-wise addition/subtraction and the
diagonal part uses diagonal matrix exponential and logarithm.

Loss Calculation Stage. During loss calculation, the inner product ⟨·, ·⟩ on SPD manifold requires
O(Bd3) while Cholesky manifold has the same complexity as vanilla Flow Matching (L2 norms).

Inference Stage. During inference, RCFM-SPD requires eigenvalue clipping to keep the element
SPD, requiring O(Bd3) each integration step. Hence, it requires additional O(LBd3) where L is
total step, while BrainFlow naturally maintains the Cholesky structure without additional operations.

Table 6 summarizes the computational complexity across different stages. The key insight is that
while BrainFlow incurs a one-time preprocessing cost, RCFM-SPD repeatedly pays O(Bd3) at every
iteration and O(LBd3) during inference, making BrainFlow substantially more efficient in practice.

Table 6: Computational complexity comparison. N: training set size, B: batch size, d: matrix
dimension, L: integration steps. “+” denotes additional computational cost compared to baseline.

Stage RCFM-SPD BrainFlow Flow Matching

Sampling Standard +O(Nd3) Cholesky preprocessing Baseline

Interpolation +O(Bd3) exp(·), log(·) (SPD) +O(Bd) exp(·), log(·) (Cholesky) Baseline

Loss +O(Bd3) (SPD inner product) Standard (Cholesky inner product) Baseline

Inference +O(LBd3) eigenvalue clipping Standard Baseline

For typical brain connectivity matrices with d = 116 regions and L = 100 integration steps, the
repeated eigendecompositions in RCFM-SPD accumulate to significantly higher computational costs
than BrainFlow’s one-time preprocessing. Empirically, as reported in Sec. 5.2, BrainFlow achieves
a 12.5× speedup (8 seconds vs. 100 seconds per epoch) while maintaining numerical stability
throughout training and inference.

B.3 Algorithm

Here we briefly introduce the algorithm pipeline in Alg. 10

Algorithm 1 Training of BrainFlow
Require: Joint distribution q(X0, X1)

Initialize parameters θ of ṽθt
while not converged do

sample time t ∼ uniform(0, 1)
sample training pair (X0, X1) ∼ q with
task label y
L0, L1 = L (X0),L (X1)
Lt = expL0

(t logL0
(L1))

calculate L̇t from eq. 16
L(θ) = ∥ṽθt (Lt, y)− L̇t∥2g̃Lt

θ = optimizer_step(L(θ))
end while

Algorithm 2 Predict FC/SC
Require: a SC X0 with desired task state y or
m FCs from same subject {Xyi

1 }mi=1, trained
vθ

if SC (forward flow) then
L0 = L (X0)
L1 = ode_solve(L0, v

θ
t (·, y), t = (0, 1))

X1 = L1L
⊤
1

else if FC (reverse flow) then
Lyi

1 = L (Xyi

1 ), i = 1, ..,m

L
′yi

1 = ode_solve(Lyi

1 , −vθ1−t(·, yi) +

σvicon, t = (0, 1))

calculate L1′ using eq.15 with {L
′yi

1 }mi=1

X ′
1 = L′

1L
′⊤
1

end if
return Predicted FC X1 or SC X ′

1
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C Experiment on Synthetic Dataset

C.1 Generation of Artificial Textures on SPD Manifold

We trained a simple MLP-based Flow Matching (FM) model on Cholesky manifold. Two synthetic
datasets whose elements are SPD matrices on S+

2 are used to visualize the trained dynamics. They are
the siwssroll and figure-eight. We can represent the space of 2× 2 SPD matrices S+

2 as points above
a circular cone in 3D space by mapping each SPD matrix to a point in R3. The cone itself represents
singular matrices with zero determinant. Every point above this cone corresponds to exactly one SPD
matrix for visualization.

Result. We apply Cholesky decomposition to both the prior and target dataset and transformed them
back to SPD manifold. The results of data generation are shown in Fig. 3. Fig. 3 presents three
orthogonal views (Front, Top, and Side) of both a Figure-“8“ pattern and a Swissroll configuration.
For each pattern, we compare the original data distribution (shown in green) with the samples
generated by the FM on Cholesky manifold (shown in purple). All generated points strictly remain
within the SPD manifold, as evidenced by their positioning above the determinant-zero cone in all
views. The visual consistency between the generated and original samples across both patterns,
coupled with the strict adherence to the SPD manifold constraints, demonstrates that learning flow on
the Cholesky manifold is practical.

C.2 Quantity Performance on Synthetic Datasets

Dataset Besides the low-dimensional artificial textures data on SPD manifold, we also generate two
100× 100 SPD matrix distributions for further analysis. Specifically, we first generate two groups of
random matrices with different mean values and standard variance. Then we can get SPD matrices
by X = LL⊤ + ϵI where L is the random matrix and I is the identity matrix. We evaluate the
Wasserstein distance between the generated and true distributions. The ratio of generated samples
that lie on SPD manifold is also considered.

Result Table 7 shows that our method can keep the SPD property well and get lower Wasserstein
distance.

Table 7: Model Performance across Synthetic Datasets. (W2) means the quadratic Wasserstein
distance

Model
Swiss-roll Fig-8 High-dim SPD

SPD ratio (%) W2(×10−4) SPD ratio (%) W2(×10−3) SPD ratio (%) W2(×10−2)

AM 100.00 9.03 100.00 1.42 0.00 9.13

VPFM 99.96 6.28 99.99 1.93 0.00 7.98

[SF]2M 99.98 6.05 99.69 1.81 71.98 7.98

CFM 98.84 5.98 99.95 1.83 23.78 7.98

RCFM 100.00 4.02 100.00 1.43 100.00 8.00

BrainFlow 100.00 4.07 100.00 1.43 100.00 7.97

C.3 Controlled Reverse Flow on Synthetic Datasets

In this experiment we validate the reverse ODE flow with the proposed consensus control. For
simplicity, we use synthetic datasets and FM model on Euclidean space to illustrate the effect of
consensus control.

Dataset. The synthetic dataset consists of points in 2D Euclidean space constructed as follows.
The source distribution contains points uniformly distributed on a circle with radius 0.5, with small
random perturbations (σ = 0.05) added to create a natural distribution (Green Circle in Fig. 5). Each
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Average Predicted FC

Average True FC

Emotion Gambling Language MOTOR Relational Social WM

Figure 4: The results of average predicted task FC and average true task FC in HCP-YA dataset

point in the source distribution is assigned a unique identifier (ID). These points are then transformed
into the target distribution through two distinct mappings corresponding to different classes. Points
mapped to first class are expanded to a circle with radius 1.0 and rotated clockwise by π

6 (Orange
circle in Fig. 5), while points mapped to the second class are contracted to another larger circle with
radius 1.5 and rotated counter-clockwise by π

6 (Blue circle in 5). Both transformations include small
Gaussian noise (σ = 0.05) to simulate real-world variations. Finally, points in target distribution
inherit their IDs from their source points, meaning that points from different classes can share the
same ID if they originated from the same source point. This design allows us to clearly demonstrate
how consensus control can help points with the same ID converge to their true source, even when the
conditional optimal transport coupling suggests different correspondences.

Start point
End point

Ground truth
Trajectory

Trajectory without Control Trajectory with Control
Figure 5: Examples of consensus control. The left panel illustrates reverse flow without control,
deviating significantly from the ground truth. The right panel demonstrates reverse flow with control,
effectively steering it closer to the desired outcome.

Result. The FM model is trained with conditional OT path and we sample points independently from
source distribution and target distributions. Fig. 5 (left) shows the reversed trained flow from the
target distribution to the source distribution and the right one shows the reversed flow with consensus
control. Two groups of sample points and their trajectories are shown in the Fig. 5 with different
colours (purple and orange).

In the case without control (left), the trajectories of points sharing the same ID (highlighted by blue
dashed circles) fail to converge to their true source positions. The flow merely follows the learned
conditional optimal transport paths, leading to divergent endpoints even for points that originated
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Table 8: Task-specific functional connectivity prediction performance on HCP-YA dataset. Best
results in bold.

Task Metric AM VPFM [SF]2M CFM BrainFlow

Emotion

RMSE 0.980±0.002 0.339±0.003 0.367±0.002 0.314±0.001 0.329±0.002

LCE (%) 0.503±0.002 0.089±0.005 0.093±0.005 0.138±0.002 0.085±0.001

GCE (%) 0.499±0.003 0.080±0.009 0.064±0.010 0.095±0.004 0.059±0.003

Gambling

RMSE 0.974±0.002 0.313±0.002 0.343±0.003 0.288±0.002 0.303±0.002

LCE (%) 0.481±0.003 0.100±0.010 0.104±0.008 0.125±0.001 0.097±0.002

GCE (%) 0.473±0.003 0.060±0.022 0.076±0.017 0.072±0.002 0.071±0.003

Language

RMSE 0.965±0.001 0.287±0.002 0.313±0.003 0.268±0.001 0.282±0.002

LCE (%) 0.526±0.002 0.090±0.006 0.097±0.007 0.119±0.002 0.084±0.001

GCE (%) 0.521±0.002 0.057±0.013 0.077±0.016 0.083±0.002 0.059±0.001

Motor

RMSE 0.969±0.003 0.302±0.003 0.325±0.002 0.280±0.002 0.295±0.002

LCE (%) 0.526±0.005 0.089±0.008 0.085±0.004 0.117±0.001 0.081±0.001

GCE (%) 0.524±0.005 0.083±0.016 0.053±0.011 0.083±0.001 0.057±0.002

Relational

RMSE 0.976±0.002 0.317±0.003 0.352±0.003 0.293±0.001 0.307±0.003

LCE (%) 0.453±0.005 0.106±0.010 0.112±0.011 0.128±0.002 0.101±0.002

GCE (%) 0.442±0.005 0.071±0.022 0.084±0.026 0.096±0.002 0.070±0.003

Social

RMSE 0.971±0.002 0.303±0.003 0.330±0.003 0.281±0.002 0.295±0.002

LCE (%) 0.491±0.003 0.095±0.009 0.102±0.006 0.133±0.001 0.090±0.001

GCE (%) 0.482±0.003 0.063±0.021 0.084±0.013 0.064±0.002 0.066±0.003

WM

RMSE 0.961±0.001 0.269±0.003 0.298±0.003 0.249±0.002 0.262±0.002

LCE (%) 0.502±0.006 0.095±0.007 0.101±0.012 0.125±0.002 0.090±0.003

GCE (%) 0.493±0.007 0.089±0.012 0.076±0.018 0.075±0.002 0.059±0.003

from the same source. In contrast, when consensus control is applied (right), the trajectories of
points with shared IDs successfully converge to their corresponding ground truth source positions,
as indicated by their alignment with the square markers representing ground truth locations. This
convergence is achieved despite the points starting from different target distributions (orange and
blue circles) and having different initial flow directions. The controlled trajectories exhibit smooth
adaptation from their initial paths toward consensus points, demonstrating the effectiveness of the
control mechanism in enforcing consistent reverse mapping.

D Experiment Settings

D.1 Model Implementation

We base our implementation on [30]. The flow-based approach uses an 8-layer Transformer [31]
without positional encoding to maintain permutation equivariance of connectivity matrices. We use
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a label embedding to handle conditional predictions, while time information follows the encoding
scheme from [30]. For inference, we employ an Euler solver with a 0.01 step size.

D.2 Clustering Coefficient Calculation

We provide detailed explanations for the clustering coefficient metrics used throughout this paper.

Graph Notation. An undirected graph G = (V,E) formally consists of a set of vertices V and a set
of edges E between them. An edge eij connects vertex vi with vertex vj . For functional connectivity
matrices, we only consider positive edge weights.

Local Clustering Coefficient (LCC). The local clustering coefficient for undirected graphs quantifies
the degree to which neighbors of a given node are connected to each other, defined as:

Ci =
2|ejk : vj , vk ∈ Ni, ejk ∈ E|

ki(ki − 1)
(17)

where Ni denotes the neighborhood of node i, and ki =
∑

j Aij is the degree of node i.

Expressed in terms of the adjacency matrix A, this becomes:

Ci =
1

ki(ki − 1)

∑
j,k

AijAjkAki (18)

which counts the number of closed triangles (triplets) involving node i.

Global Clustering Coefficient (GCC). The global clustering coefficient measures the overall ten-
dency of nodes to form clusters across the entire network:

C =
number of closed triplets

number of all triplets (open and closed)
(19)

In matrix form:

C =

∑
i,j,k AijAjkAki

1
2

∑
i ki(ki − 1)

(20)

where C = 0 when the denominator is zero (i.e., no connected triplets exist).

Error Metrics. We compute the relative error for both local and global clustering coefficients as:

LCE =
|Cpred − Creal|

Creal
(21)

GCE =
|C ′

pred − C ′
real|

C ′
real

(22)

where C denotes local clustering coefficient and C ′ denotes global clustering coefficient. For
isolated nodes where Creal,i = 0, we exclude these nodes from the LCE calculation as they represent
degenerate cases and occur very rarely in brain connectivity networks.

D.3 Training Details

The datasets are split into train, validation, test set with ratio 7:1:2. All the models are trained with
1000 epoch using AdamW [32] with Cosine Annealing learning rate schedule [33]. We do grid search
on the following hyperparameters: (1) learning rate: {0.001, 0.0005, 0.0001} (2) Layer of Model:
{4, 6, 8, 12} and (3) Batch size: {256, 512, 1024}. We do model evaluation every 50 epochs. All the
experiments are repeated 5 times with different random seed for data split and model initialization.
The structural connectivity data is preprocessed by first As = log(As + 1), where the log(·) is
element-wise logarithm. This step can constraint the scale of SC to a reasonable range. Then we add
a large enough ϵI to the SC, transforming it to SPD matrix. We run all the experiments using a single
NVIDIA A6000 GPU.
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D.4 Data Description

Data Processing For functional connectivity preprocessing and construction, we use xcp-d [34],
a post-processing pipeline for fMRI data. As for the structural connectivity, we utilize QSIPrep
[35] for processing and reconstruction. XCP-D computes functional connectivity matrices using
Pearson correlation coefficients between parcellated time series. The pipeline employs the 36P
nuisance regression strategy, which includes six motion parameters along with their derivatives
and quadratic terms, plus white matter, cerebrospinal fluid, and global signal regressors. The
correlation calculations themselves do not include any explicit regularization beyond the standard
nuisance regression approach. QSIPrep’s default reconstruction workflows use iFOD2 (2nd-order
Integration over Fiber Orientation Distributions) as the tractography algorithm, and SIFT2 (Spherical-
deconvolution Informed Filtering of Tractograms 2) is enabled to provide biologically meaningful
connection weights.

HCP-A Human Connectome Project-Aging (HCP-A) dataset includes data from 717 subjects,
encompassing both fMRI (4,846 time series) and Diffusion Weighted Imaging (DWI) (717) scans
[26]. This rich collection facilitates in-depth analyses of both functional and structural connectivity.
The HCP-A dataset includes data from four brain tasks associated with memory: VISMOTOR,
CARIT, FACENAME, and resting state. In the following experiments, these tasks are treated as
distinct categories. In the following experiments, we treat the data as a four-class classification
problem.

HCP-YA Human Connectome Project - Young Adults (HCP-YA) database [27] involves 11,608 fMRI
and 328 DWI. Each fMRI scan includes seven cognitive tasks associated with memory, including
Motor, Relational, Social, Working memory, Language, Emotion, and Gambling. In the following
experiments, we treat the data as a seven-class classification problem.

UK Biobank is a large-scale neuroimaging dataset that includes MRI data [28]. Specifically, it
contains preprocessed fMRI (n=14,619) and DWI (n=5,731 data, following the pipeline described
in [36]. The dataset includes recordings from a brain task designed to engage both cognitive
and sensorimotor functions [37]. In the following experiments, we treat the data as a two-class
classification problem.

For all these three datasets, we partition each SC and FC into 116 regions using AAL atlas [38]. Thus,
SC is a 116× 116 matrix where each element is quantified by the number of nerve fibers linking two
brain regions.

D.5 Further Results

SC-to-FC. The visualization at Fig. 6 reveals that our method better preserves the contrast between
different connectivity strengths, maintaining a more distinct separation between strongly connected
regions (yellow) and weakly connected areas (blue), which is crucial for accurate representation of
brain network organization. This qualitative observation reinforces our quantitative findings that
BrainFlow excels in preserving the hierarchical organization of brain networks, even though it may
not minimize edge-wise errors to the same degree as MGCN-GAN.

FC-to-SC. In Fig. 7, we first calculate the absolute value of the difference between the prediction
and ground truth. Then we binarize them with a defined threshold. The large difference (>threshold)
is set to dark and small difference is set to light. We can see that the controlled reverse flow (bottom
row) shows better prediction result with significantly less difference.

Task Functional Connectivity Generation We explain our findings on HCP-YA datasets here.
We first record all the predicted functional connectivities from test sets. Then, we also record the
ground-truth functional connectivities of the whole dataset. Next, we group them by different tasks
and averages within the groups on the predicted (at the top of the Fig. 4) and ground-truth FC (at the
bottom of the Fig. 4). Fig. 4 reveals several biologically meaningful patterns that go beyond mere
prediction accuracy: (1) Network Organization Preservation. We observe block-like structures and
prominent diagonal elements that reflect strong intra-hemispheric and inter-regional interactions. (2)
Task-Specific Network Re-organization. The difference across tasks in the predicted FC matrices
reveals that the model is sensitive to the task-induced reconfiguration of functional connectivity,
consistent with the literature on dynamic functional networks. For example, in the MOTOR task, we
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Figure 6: Then predicted results of different methods. Two randomly drawn samples are displayed
on two rows.
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Figure 7: The results of reverse prediction. The large difference (>threshold) is set to dark and small
difference is set to light. Each column represents a result predicted from one specific state FC from
same subject. The top column is the result without control and the bottom row is the result using
consensus control.
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can see the strong activation in the top-left part of the matrix (The motor networks are indexed with
about 1-20), which aligns with the findings in work by Tzourio-Mazoyer N et.al.[38].

Evaluation on each Task of HCP-YA.

Experimental description. We conduct task-specific functional connectivity prediction for each of the
seven cognitive tasks in the HCP-YA dataset. Using the same experimental setup as described in Sec.
5.2, we train all baseline methods (AM, VPFM, [SF]2M, CFM) and BrainFlow to predict task-specific
FCs from the same structural connectivity. For each task, we evaluate the prediction quality using
three metrics: RMSE for edge-wise accuracy, LCE for local network topology preservation, and GCE
for global network structure preservation. All experiments are repeated 5 times with different random
seeds, and we report mean ± standard deviation for each metric-task combination.

Results. Table 8 presents the comprehensive task-specific prediction performance across all seven
cognitive tasks. BrainFlow consistently achieves the best or near-best performance on topological
metrics (LCE and GCE) across all seven tasks. Specifically, BrainFlow obtains the lowest LCE
in all seven tasks, with values ranging from 8.1% (Motor) to 10.1% (Relational), demonstrating
superior local network topology preservation. The standard deviations across all metrics remain
small (typically <0.3%), indicating stable and reproducible performance across different random
initializations. Among the remaining baselines, CFM demonstrates competitive RMSE performance
but falls short in preserving network topology compared to BrainFlow.

Discussion. The task-specific analysis reveals three key insights. First, each method maintains stable
performance across all seven cognitive tasks, with small standard deviations indicating consistent
behavior regardless of the functional state. Second, the relative ranking of methods remains consistent
across tasks: BrainFlow consistently achieves the best topological preservation (LCE/GCE), while
CFM obtains the lowest RMSE. This stability suggests that model performance is primarily driven by
architecture and training objectives rather than task-specific properties. Third, the narrow performance
range across tasks (e.g., BrainFlow’s LCE varies only from 8.1% to 10.1%) demonstrates that our
method has learned a unified SC-FC relationship that generalizes robustly across diverse cognitive
states, supporting the hypothesis that a shared structural scaffold underlies multiple functional
configurations.

E Proof

E.1 Proof of Proposition 4.2

Proof. We first introduce conservation of probability measure on the Riemannian manifold. Assume
a probability density ρ0 : M0 → R+ defined on a Riemannian manifold M0 and a transformation
T : M0 → M1 that maps the Riemannian manifold M0 to M1. Then the density ρ0 together with
transformation T induce a probability density ρ1 : M1 → R+ via the relation:∫

M0

ρ0(x0)dvolx0
=

∫
M1

ρ1(x1)dvolx1

According to [24], one can derive:
ρ1(x1) = ρ0

(
T −1(x1)

)
|det JT −1(x1)| (23)

where |det JT −1(x1)| means the determinant of the Jacobian of T −1. Here we apply this theorem to
Riemannian manifold (S+

n , g) and (L+
n , g̃) with Cholesky decomposition L , an isometry between

them. We can directly induce that:∫
(S+

n ,g)
ρs(X)dvolX =

∫
(L+

n ,g̃)

ρl(L)dvolL (24)

Because L is an isometry between (S+
n , g) and (L+

n , g̃), then L preserves the metric and, conse-
quently, the volume measure. This directly implies:

dvolX = dvolL (under the isometryL )

Thus, the Jacobian determinant adjustment |detJL −1(L)| is 1 everywhere (notice that the inverse of
an isometry is also an isometry). Therefore,

ρs(X) = ρl(L),∀L (X) = L,X ∈ S+
n
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E.2 Proof of Theorem 4.3

To enhance the readability of the proof, we omit the input of Vt(·) and Ṽt(·). According to Section
3.2 of [10], the inverse map of the Cholesky decomposition S : L+ → S+

n by S (L) = LL⊤ is an
isometry between (L+, g̃) and (S+

n , g). Specifically,

g̃L(P,Q) = gS (L) ((DLS )(P ), (DLS )(Q))

for all L ∈ L+ and P,Q ∈ TLL+. Here the differential DLS : TLL+ → TLL⊤S+
n is given by

DLS (P ) = LP⊤ + PL⊤

Next, again because S is an isometry and X0 = S (L0), X1 = L (L1), according to Proposition
5.6. of [39], the map to the geodesic S (Lt) between L0 and L1 is the geodesic between X0 and X1,
i.e., S (Lt) = Xt.

Now we have
g̃Lt(P,Q) = gXt ((DLtS )(P ), (DLtS )(Q))

According to the definition of a norm, we have
∥∥∥Ṽt − L̇t

∥∥∥2
g̃Lt

= g̃Lt(Ṽt − L̇t, Ṽt − L̇t). Since S is

an isometry between (L+, g̃) and (S+
n , g), the metrics satisfy:

g̃Lt
(Ṽt − L̇t, Ṽt − L̇t) = gXt

(
(DLt

S )(Ṽt − L̇t), (DLt
S )(Ṽt − L̇t)

)
It can be verified that DLt

S is a linear map. Then the optimal Ṽ ∗
t implies that

(DLtS )(Ṽ ∗
t − L̇t) = (DLt

S )Ṽ ∗
t − (DLt

S )L̇t

= V ∗
t − Ẋt

Hence, when we find an optimal Ṽ ∗
t , we can get V ∗

t by V ∗
t = LtṼ

∗⊤
t + Ṽ ∗

t L
T
t and

g̃Lt(Ṽt − L̇t, Ṽt − L̇t) = gXt

(
V ∗
t − Ẋt, V

∗
t − Ẋt

)
Therefore, by the isometry property of S and Proposition 4.2, the optimization problems in (L+

n , g̃)
and (S+

n , g) are equivalent.

F Limitations

Here we discuss the potential limitations of BrainFlow. The first point is that though we prove the
equivalence of the optimal solution between SPD manifold and Cholesky manifold, the convergence
speed is not rigorously discussed. We only evaluate them empirically.

Second, the model shows better performance on larger dataset like UK Biobank compared with the
other two datasets, revealing that the method requires large number of data for good performance,
which is not easy for neuroimaging data.

Third, we acknowledge the well-known challenge that the relationship between structural and
functional connectivity is not a simple one-to-one mapping at the edge level. Complex biological
mechanisms, such as polysynaptic pathways and neuromodulatory effects, mean that strong functional
links can exist between regions with no direct anatomical connection. Furthermore, the inherent
limitations of diffusion MRI and tractography algorithms can lead to both false positives and false
negatives in SC estimation. Our model does not explicitly simulate these underlying biological
mechanisms. Instead, BrainFlow addresses this challenge by learning a mapping between the entire
distribution of structural connectomes and the distribution of functional connectomes. By leveraging
paired SC-FC data from the same individuals to construct a joint distribution, the model captures the
high-level statistical regularities that emerge from these complex, indirect interactions. Therefore,
BrainFlow’s strength lies in its ability to learn and represent the statistical SC-FC coupling within the
available imaging data, thereby contributing to our understanding of this well-known mismatch.
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G Impact Statement

This paper advances the field of Machine Learning by introducing BrainFlow, a generative model that
captures the coupling between structural and functional brain connectivity. By leveraging flow-based
optimization on the SPD manifold, our approach enhances the interpretability and robustness of
learning structured and dynamic data. While our work has potential implications for neuroscience
and AI, there are no specific societal consequences that must be highlighted here.
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