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ABSTRACT

Diffusion models generate data by removing noise gradually, which corresponds
to the time-reversal of a noising process. However, access to only the denoising
kernels is often insufficient. In many applications, we need the knowledge of the
marginal densities along the generation trajectory, which enables tasks such as
inference-time control. To address this gap, in this paper, we introduce the RADON-
NIKODYM ESTIMATOR (RNE). Based on the concept of the density ratio between
path distributions, it reveals a fundamental connection between marginal densities
and transition kernels, providing a flexible plug-and-play framework that unifies
(1) diffusion density estimation, (2) inference-time control, and (3) energy-based
diffusion training under a single perspective. Experiments demonstrated that RNE
delivers strong results in inference-time control applications, such as annealing
and model composition, with promising inference-time scaling performance, and
achieves simple yet efficient regularisation for training energy-based diffusion
models. Additionally, our proposed RNE is modality-agnostic and applicable not
only to continuous diffusion models but also to their discrete diffusion counterparts.

1 INTRODUCTION AND BACKGROUND

Diffusion models (Ho et al., 2020; Song et al., 2021a;b) are a class of flexible generative models that
excel in generating high-quality samples from complex data distributions, and have spread impact
across a wide range of applications from image (Rombach et al., 2022; Karras et al., 2022), video (Ho
et al., 2022) and text (Austin et al., 2021) generation, designing novel proteins (Watson et al., 2023),
materials (Zeni et al., 2025) and capturing transient structures in chemical reactions (Duan et al.,
2023). Diffusion models rely on a pair of forward and backwards stochastic differential equations
(Egs. (1) and (2)) to transport between data distribution and a tractable prior distribution, commonly
selected as Gaussian. They then parametrise the score function V log p, with a time-dependent
network, and when being trained to optimality, Egs. (1) and (2) will be the time-reversal of each other.
This allows us to generate high-quality samples by simulating the backward SDE in Eq. (2) starting
from a Gaussian. Equivalent to diffusion models is the more flexible stochastic interpolants (Albergo
et al., 2023; Ma et al., 2024; Gao et al., 2025) parametrisation of diffusion models (Eqs. (3) and (4)).
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recover the classical DM characterisation from its SI perspective by setting €¢; <— ;. This unifying
parametrisation will allow us to establish theoretical connections to existing work and extend our
methodology to models trained via flow matching (Albergo et al., 2023; Lipman et al., 2022).

Strictly generating samples that resemble the overall data distribution may lack practical applications.
Fortunately, the progressive generation process of diffusion models naturally allows us to apply more
flexible probabilistic inference, unlocking a variety of approaches and applications. For instance, in
diffusion posterior sampling and inference-time steering (Dhariwal & Nichol, 2021; Ho & Salimans,
2022; Song et al., 2023a; Chung et al., 2023; Song et al., 2023b; Trippe et al., 2023; Rozet et al.,
2024; Schneuing et al., 2024; Kong et al., 2025), the goal is to generate samples that satisfy specific
constraints or exhibit desired attributes. In diffusion model composition (Liu et al., 2022; Du et al.,
2023; Ajay et al., 2023; Biggs et al., 2024; Skreta et al., 2024; Thornton et al., 2025), multiple
diffusion models are combined to produce samples with richer attributes. Also, in sampling tasks,
diffusion models can be used to accelerate standard algorithms such as annealed importance sampling
or parallel tempering (Doucet et al., 2022; Chen et al., 2024; Zhang et al., 2025).

While heuristic methods such as guidance can be effective for these tasks, they often introduce bias
due to ad hoc design choices. By contrast, probabilistic inference techniques offer a principled
approach to eliminating such bias and can lead to more reliable performance. A central requirement
for applying these techniques is to evaluate or approximate the sample density under a pretrained
diffusion model along the generation trajectory. One classic approach reformulates the diffusion
process as a probability flow ODE (PF-ODE, Song et al., 2021b) and applies the instantaneous
change-of-variables formula (Chen et al., 2018); however, this is computationally prohibitive, as it
requires calculating the divergence of the score network at every denoising step. To address this
difficulty, some works have developed sequential Monte Carlo (SMC) algorithms based on twisting
functions or Feynman—Kac formulations, which bypass the need for explicit density evaluation (Wu
et al., 2023; Skreta et al., 2025; Singhal et al., 2025). Other approaches introduce diffusion density
estimators leveraging the Feynman—Kac formula or It6’s lemma (Huang et al., 2021; Premkumar,
2024; Karczewski et al., 2024; Skreta et al., 2024). Alternatively, one can directly train energy-
parametrised diffusion models (Du et al., 2023; Phillips et al., 2024; Thornton et al., 2025; Zhang
et al., 2025), which provide explicit access to the unnormalised marginals along the process.

Our contributions. Despite the above advances, these methods remain disparate in their scope.
The connections between these approaches remain unclear, and many depend on specialised designs,
which can limit their applicability. In this paper, we close this gap with RADON-NIKODYM ESTIMA-
TOR (RNE), a unified, flexible, and plug-and-play framework that enables density estimation, SMC
weight computation for inference-time control, and better training of energy-based diffusion.

* For inference-time control, RNE can compute SMC weights for any sampling process without
re-deriving the formula, enabling a wide variety of options, such as Chung et al. (2023), Song
et al. (2023b), and Singhal et al. (2025). This opens up broader design spaces and offers better
inference-time scaling performances. For energy-based training, RNE yields a simple yet effective
regulariser, significantly improving the learned energy with negligible computational overhead.

* RNE generalises and unifies a wide range of established methods—such as the twisted diffusion
sampler (Wu et al., 2023), Feynman—Kac steering (Singhal et al., 2025), Feynman—Kac corrector
(Skreta et al., 2025), guidance corrector (Lee et al., 2025), Itd density estimator (Karczewski et al.,
2024; Skreta et al., 2024), Feynman—Kac density estimator (Huang et al., 2021; Premkumar, 2024),
and Fokker—Planck regulariser (Plainer et al., 2025)—that may appear distinct at first glance.

* RNE is not restricted to Gaussian diffusion. It applies broadly to any generative model that admits a
pair of dynamics that are time-reversal. This includes stochastic interpolants and bridge models (Shi
et al., 2023; Peluchetti, 2023; Albergo et al., 2023), as well as more processes in other modalities
such as continuous-time Markov chains (CTMC, Lou et al., 2023; Shi et al., 2024).

2 METHODS

In many applications of diffusion models, including inference-time steering or model composition,
we need access to the marginal density p; at time step ¢ of the diffusion process. Unfortunately, this
is generally intractable for a score-based diffusion model. Instead, in most cases, it is easy to access
the transition kernels (e.g., denoising or noising kernels) of the diffusion model. Therefore, a natural
question is: can we connect the transition kernels of an SDE with its marginal densities?
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(a) Radon-Nikodym Estimator (RNE). (b) Inference-time control with RNC.

Fig 1: Conceptual illustration of our proposed approach. (a) RNE leverages the fact that RND
between time-reversal processes is 1 to calculate marginal densities. (b) RNC applies RNE to
calculate importance weights for inference time control.

Before considering diffusion models in the form of Egs. (1) and (2), it is helpful to consider their
discrete counterparts. The transition kernels in discrete time are defined by the conditional densities
Pnn+1 and Py 1. Therefore, the question we are seeking to answer is: can we connect conditional
densities with marginal densities? In fact, this is precisely what Bayes’ rule states:

pn\n+1(Xn|Xn+1)p<Xn+l> :pn+1|n(Xn+1‘Xn)p(Xn>v v()(annJrl) €A xX. )

Under a Bayesian interpretation, the forward and backward transition kernels play the roles of the
likelihood and the Bayesian posterior. Ordinarily, one’s goal is to infer the posterior, but here—assume
both kernels are available—we can directly form their ratio to compute the ratio of marginals.

A similar conclusion also exists in continuous time through the concept of time-reversal. Specifically,
considering the SDE evolving from p. to p,:

dXy = p(Xy)dt + dW;, X, ~ps, (6)
given regularity on yi;, one can define its time-reversal (Anderson, 1982; Nelson, 1967):

dXt = I/t(Xt)dt + Gt(d—mg, X,,-/ ~ Dy, (7)

where v; = i — €7V log py, and p; is the law for X;. The forward and backward diffusion processes
in Egs. (1) and (2) (or equivalently Eqs. (3) and (4)) exemplify this time-reversal pairing.

A key observation is that while the processes in Egs. (6) and (7) evolve in opposite directions, they
induce the same probability measure over the path space. Therefore, their Radon-Nikodym derivative
(informally, the “density ratio”) is always 1. Let P# and P be the path measures of Egs. (6) and (7)
respectively. We have 4P~ / dis”(Y[TyT/]) =1, where Y[, . is the solution to any It process within
the time-horizon [r, 7], with diffusion coefficient €;. The expression is merely the definition of
time reversal. However, when discretising the SDEs with, e.g., the Euler-Maruyama integrator, we
can easily see how this definition connects marginals with transition kernels. Concretely, we first
split the time horizon with N time steps T = #; < t3 < --- < ¢ty = 7'. Then at each step, with
At,, = |tn 1 — tn], the forward and backward processes are defined as

pf;+1|n(th+1 |th) = N(th+1 |th + e, (th)Atnv Gtzn Atn[)’ )]
PZ|n+1 (th |th+1) = N (th |th+17 Vbt (th+1 )Atnv €t2n+1 Atn[) . (9)

pr (V) TIN = Pl (Ve g [Yen) 1
P (Yor) ng_ll p";’),l7l+1(yt7l |Ytn+1) N.
This approximation becomes exact as N—o0o. More formally, we define the quantity R:

Definition 2.1. Consider the forward and backward SDEs in Egs. (6) and (7). Let Y be the solution to an
arbitrary process with the same diffusion coefficient. Following Eqs. (8) and (9)’s discretisation, we define '

12 P (Yoo | Yensa)

N-1
R=>ee anl pﬁ+1\n(mn+1 |Y;5n)

After discretising, dB”/ds”(Y[T’T/]) = 1 becomes

. (10)



Published as a conference paper at ICLR 2026

With this definition, we obtain the following identity for the 1 and v processes satisfying time-reversal.
PT<Y7>/])T’(YT’> = RZ(}/[T,T/]) (1D
We note that the limit in Eq. (10) can be formalised (Berner et al,, 2025) thus R}, can be expressed as

1 T 1 1 /1
R =exp ([ Gue@ie [ e @ g [ S0l i), a2)
T t T t T t
For a more detailed discussion on this expression, we defer to Vargas et al. (2023b, eq. 14-15). For
readers not familiar with It6 integrals, we highlight that our approach can be fully understood and
implemented as Eq. (10) with finite NV and simple Gaussian kernels. That said, the connection to its
continuous-time counterpart will enable us to design better estimators.

In summary, as conceptually shown in Fig. 1a, for the denoising process of a pretrained diffusion
model, we can always pair it with its time-reversal, up to training error. By exploiting the fact that the
Radon-Nikodym derivative between any diffusion process and its time-reversal is identically one, we
obtain a simple and intuitive formula that ties together marginal densities and transition kernels. We
call this identity the RADON-NIKODYM ESTIMATOR (RNE).

A direct application of this relation is for density estimation: when 7" = 1, p,- is tractable, typically as
a Gaussian distribution. Interestingly, when writing R in continuous-time as Eq. (12), we will recover
the estimator with density-augmented SDE (Karczewski et al., 2024, Theorem 1), and equivalently,
in their concurrent work, It6 density estimator (Skreta et al., 2024, Theorem 1). We will discuss this
connection and application in more detail in Appendix C.1. In the following sections, we will mainly
focus on demonstrating RNE for inference-time control and energy-based training.

2.1 RNE FOR INFERENCE-TIME CONTROL

RNE provides a flexible and plug-and-play approach for calculating the weight of Sequential Monte
Carlo (SMC) for inference-time control. Given a pretrained diffusion model which samples from
distribution pg (or two pretrained diffusion models for pél) and pgf) ), we may want to generate samples
from a new target gy without retraining the model(s). This includes, but not limited to: (1) annealing:

qo X pg ; (2) reward-tilting/posterior sampling: gy < po exp(r) with a reward/likelihood r; and
(3) classifier-free guidance (o« = 1 — /) or model product (o« = 3): qg (p(()l))a(pég))ﬁ.

One naive approach to generate samples from ¢ is importance sampling (IS). Specifically, we can
estimate the density pg of generated samples from the pretrained diffusion model, and then calculate
the importance weight as ¢o/po. However, when pg and ¢q differ significantly, the importance weight
will have a large variance, rendering this approach infeasible in practice. Therefore, we consider
applying importance resampling along the sampling process, essentially forming the Sequential
Monte Carlo (SMC) algorithm. In the following, we first describe SMC, and then introduce RNE to
calculate the importance weights, which we refer to as the Radon-Nikodym Corrector (RNC).

2.1.1 SEQUENTIAL MONTE CARLO

Conceptually, SMC distributes the burden of importance sampling across the entire path, thereby
reducing variance at each step. To apply SMC in this setting, we first define a sequence of intermediate
target distributions corresponding to each time step. Next, we specify a proposal process from which
samples are drawn. Since particles generated by the proposal may not align perfectly with the
intermediate targets, we apply importance resampling to progressively realign the particles with the
intended sequence of targets. To apply this procedure, we introduce three key components:

1. a backward sampling (“proposal”) process: dX; = a;(X;) dt + ¢, dWy; (13)
2. aforward auxiliary (“target”) process: dY; = b;(Y;)dt + etd—WZ; (14)
3. intermediate target marginal densities: ¢;.

Note that the sampling and target processes are not the same; they are generally not required to be
time-reversals. We hence denote the process in Eq. (13) by X and that in Eq. (14) by Y. In fact, we
have a large flexibility in designing these components. We will discuss the choices of the backward
and forward processes in Section 2.1.3. For the intermediate marginal, we can heuristically choose:

anneal:g; o« p_’; reward-tilting:q;  p; exp(r;); CFG & product:g; oc (p”)*(p?)? (1)

'The limit in Eq. (10) can be understood in an almost sure sense.
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where r; is an intermediate reward which can be heuristically crafted (Wu et al., 2023), or be a reward
model trained on the corresponding noisy data (Kong et al., 2025).

We now consider how to apply these components. Assume we have M particles { X Sn)} ~ ¢, at
time 7/, now we consider how to obtain particles following ¢, at time 7 (7 < 7). We first evolve the
particles along the backward sampling process in Eq. (13) to time step 7, resulting in M trajectories
{X Ir, T,]} However, these trajectories will not follow the marginal density ¢, at time 7. Therefore, we
need to resample to ensure asymptotically unbiased samples from ¢, as explained in the following.

Let 6“ be the path measure of Eq. (13) in ¢ € [r, 7/] with initial density at 7’ as ¢,-, and let ab be
the path measure of Eq. (14) in ¢ € [, 7'] with initial density at 7 as q,. Here we slightly abuse the

notion for simplicity: we should understand 6 as 6 the path measure starting from ¢, at time

T‘r’

7/ and ends at time 7, and also understand 6b similarly. The importance weight of X, ;- is then

@ -1

Wir ) (Xirr) = dQ/AQU(X(r 1) = 4+ (X2) /a7 (Xr) [RE(Xprr)] (16)
where I} are defined in Eq. (10). Note that while Eq. (16) calculates the weight over path space, we
can verify that this yields a correct importance weight for the marginal g, as shown in Appendix H.1.

We then perform self-normalised importance resampling: first, we normalise the importance weights
Wiy, 1) (X (m), )
]

wm) s T(;( ) ) , and sample M indices from the Categorical distribution defined with
=1 Wr,r)
these weights {i,,} ~ Categorlcal( @ . M )). We return the particles corresponding to the

resampled indices. This ensures the samples at time 7 follow the desired target ¢, as M — oco. We
repeat this pipeline until reaching ¢y and this process is conceptually illustrated in Fig. 1b.

2.1.2 CALCULATING IMPORTANCE WEIGHTS WITH RNC

Now, we consider how to calculate the importance weight in Eq. (16). The term R} is simply a ratio
of products of Gaussian densities when discretised, the only unknown term is the ratio between two

marginals ¢, (X\™) /g, (X Sn)). Fortunately, as we define the intermediate target ¢; by modifying
the marginal p; of the pre-trained diffusion model as exemplified in Eq. (15), we can express this
unknown ratio using the pre-trained model’s marginals. Precisely, plugging in the RNE in Eq. (10):
pr(Y:)/pe (Yer) = R} (Y]r,+1), we obtain the following results:
RN Corrector (RNC). Consider a pair of time-reversal forward and backward SDEs in Egs. (6) and (7)
with drifts ; and v; (or two pairs: ,u(l) & v and ,u(g) & ). The SMC weight in Eq. (16) is given by

Anneal: ’LU[TYT/] (0.8 [RZ(X[T,T’])]ﬂ [Rg(X[T’T/])}_l o (17)
exp(r+(X-)) . -1
R d: / _— X7 Xir 7t . 18
L Wirr) X el (X)) e K ) (RS (Xir, )] ()
L L(2) B . _
CFG & Product: Wir 71) X [RW) (X[”/])] [Ru@) (Xir,rr ])} (R (Xre)] (19)

In summary, when performing SMC with RNC, we start from a pair of time-reversal forward and
backward processes, which provides an estimate for the marginal density ratio. We then choose the
sampling process, target process and intermediate marginal defined in Egs. (13) to (15), and calculate
the SMC weight as above. Importantly, all components in the importance weight can be approximated
by Gaussian kernels . Note that, in practice, we only need to calculate Alog w for each denoising
step with negligible computation cost.

2.1.3 DESIGN CHOICES OF THE SAMPLING AND TARGET PROCESS
Notably, the RN Corrector works for any choice of drifts a; and b; in Egs. (13) and (14). We now

examine two specific scenarios for designing the sampling and target processes:

* In the first scenario, suppose we have access to the perfect diffusion model—that is, we know the

exact forms of both p; and v4, and can therefore evaluate the forward and backward kernels pn Hin

2As a concrete example, let’s inspect the anneal IS weights in Eq. (17):
N-1_v B N
w - (Hn 11 pnn+1(thXin+1)> Hn 11 p'I:L+1|7l(Xt7L+1|th)
[r, 7] ~

N-1 N-1
IT.= pn+1|n( i [ X)) IT.= pn\n+1(th|Xt

(20)

n,+1
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and p;m 41 as N —o0. In this setting, we are free to choose any sampling and target processes,
and this formulation supports flexible applications including annealing, reward-tilting or product.

* if the diffusion model is imperfectly trained, we only get access to the denoising drift »; parame-
terised by the imperfect score network’. Hence, we no longer get access to its time-reversal term
with drift z;. In this case, we can set the target process’s drift b; to cancel this unknown term.
However, this formulation is limited to reward-tilting as we will explain later.

¥ Perfect diffusion model: flexible design choices Assume a perfect diffusion model where the
noising and denoising process with forward and backward drift ;; and v, are time-reversals. In this
case, we enjoy great flexibility in choosing the sampling and target process. The only approximation
error then arises from the time discretisation, which disappears as the discretisation steps N — oc.

In Appendix C.3, we list some heuristic choices of the sampling and target processes for anneal,
reward-tilting and produce cases. Note that they are not exhaustive—any suitable heuristics can be
used without altering the core SMC algorithm implementation. We present an example pseudocode
in Appendix A to highlight this Macro-like property of RNC.

Interestingly, the expressions in Egs. (17) to (19) recover FKC (Skreta et al., 2025) as special cases for
certain choices of a and b. We discuss this connection in Appendix C.4. FKC derives its weights via
the Feynman-Kac PDE and then designs the sampling process to cancel the costly divergence term.
Therefore, FKC has restrictive design choices. By contrast, our RNC features higher flexibility in
selecting these processes, yet still incurs no extra computational overhead, allowing us to heuristically
select a process pair that may reduce variance (Jarzynski, 1997; Neal, 2001). Moreover, FKC requires
deriving the weight formula for each task (anneal, product, etc), while RNC provides a macro-style
“plug-and-play” recipe for computing importance weights.

& Imperfect diffusion model: choice for cancellation (reward-tilting) So far, we assumed a
perfect diffusion model, which gives us access to an SDE and its reversal. However, in practice, we
typically encounter model imperfection and time-discretisation errors when calculating the marginal
density ratio Eq. (11). Consequently, the resampled X, will not follow ¢, exactly, even as the number
of samples M — oo. Fortunately, in the reward-tilting case, we can still obtain exact importance
weights, despite the discretisation and score estimation errors:

Proposition 2.2 (Exact SMC weight for reward-tilting with imperfect diffusion model).
N— v
eXp(TT (thz‘r)) Hn:ll pn|n+1 (th |th+1 )
N—
eXP(TTr (XtN:T’)) Hn:ll pgbln-&-l(xt” |th+1)

2n

Bl €

We provide a detailed derivation and explain why it is only applicable to reward-tilting in Ap-
pendix C.5. This formulation recovers the Twisted Diffusion Sampler (TDS, Wu et al., 2023, eq.11),
and follow-up works such as Dou & Song (2024) and Feynman-Kac Steering (Singhal et al., 2025).

In summary, RNC allows us to compute the importance-sampling weights for SMC without requiring
explicit knowledge of the marginal density, thereby providing great flexibility in designing inference-
time control while maintaining a plug-and-play algorithm.

2.2 RNE FOR REGULARISING ENERGY-BASED DIFFUSION MODEL

Another application of RNE is to improve the training of energy-based diffusion models. These
models have a variety of applications in machine-learning force fields (Arts et al., 2023), free-energy
estimation (Maté et al., 2024), neural sampler (Phillips et al., 2024; Zhang et al., 2025) and model
composition (Du et al., 2023), among others. Concretely, we aim to train a diffusion model whose
network outputs a scalar energy. However, the denoising score matching objective (Vincent, 2011)
suffers from a “blindness” issue (Zhang et al., 2022), leading to inaccurate energy estimates.

RNE offers a natural way to enhance the accuracy of the energy-based diffusion model. Specifically,
in addition to the standard DSM, we introduce the following regularisation to enforce Eq. (11).

R = Esg(x[”/]) sg(log R}, (X[r,7)) + log pr (X7r) — log p- (X,)|? (22)

3The normal perspective is that we define the noising process but do not know the perfect reversal process.
However, we can also interpret this case as we know the denoising process defined via the learned network,
while not having access to its exact time-reversal along the noising direction.
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where log p, and log p,/ (X ) are given by the energy-parametrised diffusion model and [7, 7'] is a
randomly selected time horizon. sg represents stop-gradient. In practice, we can select a small time
increment At, and apply this regularisation between randomly selected adjacent time steps ¢ and
t + At. We then calculate 1}; using a single forward and a single backward kernel. As discussed in
Appendix E and proved in Appendix H.5, this regularisation is equivalent to the regularisation derived
from the Fokker—Planck equation in continuous time (Plainer et al., 2025). However, our approach

does not require computing or estimating the divergence, providing a more efficient alternative.

2.3 RNE ForR CTMC

RNE conceptually only requires a pair of dynamics that are time reversals of each other; hence it
can be applied to other modalities, such as continuous-time Markov chains (CTMCs). All the results
discussed above remain valid; the only difference is that R is now defined in terms of the rate matrices.
We provide further details on CTMC-RNE in Appendix D.

3  STABILISING RNE WITH REFERENCE AND CONVERGENCE ANALYSIS

So far, we define R in Eq. (10), and apply this concept for inference time control and energy-based
training. However, in practice, calculating R by directly discretising the forward and backwards SDE
as in Eq. (10) can lead to instability and larger accumulated error. We provide an intuition behind this
instability in Appendix G.1. At a high level, this issue arises because, at each discretisation step, the
variances of the forward and backward kernels are misaligned.

To address this issue, we introduce an analytical reference (Vargas et al., 2023a): consider an SDE
with linear drift ¢ whose initial state 7y is Gaussian, In this case, the marginal density 7, remains

Gaussian at all times, and one can derive the exact time-reversal drift 1; = ¢y — €2V log 7. Let ¢
and ¥ be the path measures of this analytical pair. We can rewrite Eq. (10) as follows:

p-(Y;) dP¥ p-(Y:) dP¥ a¢
RVL YT ) = T~ N YT ) T T N YT )= Y‘rq‘r’ ’ (23)
l( I ]) pT’(YT’)dB”( [ ]) pT/(Y'r’)(l "( [ ])dB”( [ ])
() IS P (Ve Ya) T 00 (Ve Y2 o
~ 4 N— (V] - e N-— .
“T’<}7/) 1—[,}711 [),,‘,,vl(}ﬁ,, D/u | \> Hn:ll plvi+1|n(y;n+1 |Y}n)

By introducing the reference process , we obtain the Radon—-Nikodym derivative path measures
along the same direction, ensuring the variance of transition kernels is aligned after discretisation. In
this work, we choose 7 to be Gaussian for its simplicity. However, it is not the only option—we
can also use a Gaussian mixture adaptive to data. Using a reference similar to the data distribution
may offer more accurate results, as observed by Noble et al. (2024) in the context of neural samplers.
Additionally, we highlight that the reference process only involves calculating Gaussian kernels
without any extra network evaluation, and hence has almost no computational overhead in practice.

We also note that direct Euler-Maruyama discretisation (as described in Eq. (57) in the appendix) of
the continuous RNE in Eq. (12) does not have such instabilities, providing a competitive practical
alternative. We include a detailed discussion in Appendix G.2. However, using our proposed reference
still offers more accurate results, which we empirically verify in Fig. 18 in Appendix G.2.

We now present our reference-based RNE’s convergence rate. Let’s consider the case where we
use the diffusion model defined in Egs. (1) and (2), where p; = f; is a linear function, and v; =
wi—02V log py is the backward drift. We choose a reference process whose forward drift ¢, = j1¢, and
the initial marginal to be Gaussian. Let’s denote the drift of this time-reversal as ¢, = p; — o7V log ;.
In this case, we have the following non-asymptotic guarantee:

Proposition 3.1. Let us consider the case where p; corresponds to a linear forward drift, as is
the case in diffusion models and half-sided interpolants. Then we choose an analytic reference by
setting its drift as |1 and w1 to be Gaussian, and denote its time-reversal drift as ;. Assuming Y
has bounded LP moments, it follows that:

||log Ry, (Vir.r)) — log RN (Vir.1)) |2 < O(VAL) (25)

||.|| 2 denotes the L? norm, Y is the Euler-Maruyama discretisation of Y, and log RN (Y[T’T/]) is our

N N—-1 o S N-1 ¢ o o

. . . o () Il=op Ve 1Yt o) TT0 27 Py g (Ve 1Y2)
discretised RNE estimator RN (Y ;1) = = (¥7) L=t ol tn il s ol ndlln ndl _ns
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Tab 1: Inference-time annealing on ALDP. Energy TVD Distance TVD | Sample w2
. . . . 3x10~
*SMC will reduce sample diversity, which pre- 2x107 "
. . - . -
dominantly influences Ws. Therefore, Wy for " . : . RNC
x 1077 4; 2x1071 ¢

“anneal score” should not be directly compared
against SMC methods. Instead, energy and dis-
tance TVD are less sensitive to sample diversity
and are more comparable.

x1 x5x10¢20 x50

x1

Tt
Xx5x10x20 x50

Tt
x1 x5x10¢20 x50

Fig 3: Inference-time scaling on ALDP.
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Metric Energy TV(]) Distance TV(]) Sample Ws(]) 0001 0003 0001
Anneal score (wo SMC) 0.794 0.023 0.173* 0.001 0.001 0.001
FKC 0.338 0.022 0.289 0,000 0,000 0,000
RNC (ca =1, = 0) 0.386 0.017 0.282
RNC (ca = 0.6, ¢ = 0.4) 0.034 0.011 0.253
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Fig 2: Energy TVD (left), sample W5 (middle),
and accumulated weight variance (right) by dif-
ferent pairs of (c,, ) for annealing on ALDP.
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Fig 4: Learned density on 2D GMM.
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Tab 2: Quality of samples obtained by running Fig 5: Learned energy vs. GT on 100D GMM.
denoising process (denoted as DM) and running 3 - 3 5

MCMC on learned energy at ¢t = 0. 2]

B

Training method Sample Method Sample V2

DM 0.1811 S -
DSM MCMC 0.9472 o

DM 0.1809  (a) Ground truth (b) DSM (c) RNE reg.
RNE Reg MCMC 0.1836

Fig 6: Samples by MCMC on learned energy.

We further derive an error bound on the importance weights, considering both the discretisation error
and the error in the score network:

Proposition 3.2. (Discrete time and approximate score bound) Following (Lee et al., 2023; Chen
et al., 2022), we assume ||V log p,(Yy) — s2(Y:)||22 < €scorer then

|[log w*™** (Y, 1) — log wgN(Vir )| 12 < Eeéscore + P'VAL (26)

where E, P’ are positive constants, wg{NC(Y[T,T/]) is the discrete-time weight estimated by
RN(}A/[TJ/]) with the learned score 8%, wa<t (Y[T)T:]) is the exact SMC weight.

T

We prove these results with a more detailed discussion in Appendix G.3.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate our approach for both inference-
time control and energy-based training. Please refer to Appendix for more details on the experiments.
Inference-time annealing We evaluate our proposed method for inference-time annealing on a
small molecule, alanine dipeptide (ALDP). We train the model on T, = 800K and anneal it to
Tiow = 300K. Since SMC typically suffers from low diversity, we use a batch size of 500 and
collect 50 batches to calculate the metrics. We compare RNC against FKC (Skreta et al., 2025)
and, for reference, a baseline that merely rescales the score without SMC correction. For RNC,
we apply Eq. (17) to calculate the importance weights, and select the sampling and target process
heuristically as Eq. (34), where we control the drift a; and b; via a hyperparameter A% and \?. We

evaluate two different choices of sampling and target processes: (1) A{ = _etz Thigh /Tiow, Ai’ = 0. By
Proposition C.3, this is theoretically identical to FKC. (2) we further introduce free parameters c,
and cp: A = —€2Thigh/Tiow * Ca> A? = €2 Thigh/Tiow * Cb-

We report in Tab. | the Wasserstein-2 (W5) distance between the ground-truth and generated samples,
alongside the total variation distance (TVD) computed on both energy and interatomic-distance
histograms. Figure 2 shows a sweep over the coefficients (c,,cp). When ¢, = 1,¢, = 0, RNC
achieves a similar performance to FKC, which echoes Proposition C.3. More importantly, by selecting
different (c,, ¢p), RNC attains higher flexibility and enhanced performance compared to FKC.
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We also compute the variance of the importance weights accumulated over the entire sampling
trajectory for various (¢4, cp). As shown in Figure 2 (right), choices with ¢, + ¢, within 1 & 0.2
tend to minimise the variance, which also correlates with high sample quality. However, while the
pattern for variance persists across different targets, the optimal balance of ¢, and ¢, for achieving the
highest sample quality can be task-dependent. For example, for unimodal targets with a sharp peak, a
lower ESS reduces diversity but can actually be advantageous in ensuring the sample is closer to the
peak. Conversely, for multimodal targets, maintaining a higher ESS preserves greater diversity and
helps prevent mode collapse. To illustrate this trade-off, we include inference-time annealing results
and additional analysis for the Lennard-Jones (LJ) system and Mixture-of-Gaussian in Appendix F.3.

Inference-time product: multi-target structure-based small-molecule ligand design Following
Skreta et al. (2025), we evaluate RNC for model product with multi-target structure-based small-
molecule ligand design. For a detailed introduction to the background of this task, please refer
to Appendix [.2. In summary, we consider sampling from gy (pél) péQ))ﬁ, where pél) and péQ)
represents the diffusion model’s outcome conditional on two protein targets. In our experiments, we
set 8 = 2 following the optimal hyperparameter used by Skreta et al. (2025). We compare our RNC
method with FKC (Skreta et al., 2025) and baseline, “Sum score”, which samples from the denoising
process by directly summing the scores conditioned on each target without SMC.

For RNC, similar to the annealing case, we can choose any sampling and target processes. Here,

we heuristically select the options in Eq. (36), where we set \{"' = A\»? = —¢23 . ¢, and Af’l =
)\?’2 = €2/ - ¢,. In Tab. 4, we present the result obtained with ¢, = 1, ¢, = 0, which is theoretically

equivalent to FKC in continuous time. We observe that these results achieve similar performance,
up to the inherent stochasticity in the generation process. We also report the performance obtained
with ¢, = 1.0,¢5 = 0.2. As shown in Tab. 4, both FKC and RNC variants are significantly
better than the heuristic score summation, at the price of lower diversity. Furthermore, RNC
offers higher flexibility in choosing the sampling and target process, providing a visible gain over
FKC, particularly with more ligands that have better docking scores than both reference ligands.

Flexible controls: stitching and reward-tilting for maze

navigation One advantage of RNC is that it can be intu- Tab 3: Success rate of trajectory stitch-
itively and seamlessly extended to tasks that require more ing by guidance without SMC and with
flexible controls. Here, we consider a maze-navigation RNC across 5 tasks.

task by stitching together diffusion models trained on task 1 task2 task3 task4 task$
short trajectories. Formally, letting the short trajectories woeSMC 0501 0669 0585 0288 0.714
follow po, we aim to sample [X1), ..., X(B)] ~ gy o RNC 1000 1.000  1.000  1.000 1.000
exp(r([X®, ..., X)) [T, po(X V), where the reward r is defined to impose first trajectory starts
from the initial position and the last trajectory ends at the target, and consecutive trajectories are
connected. Despite the complexity of this task, RNC can still provide SMC weights for it without
changing the general formula. We use the pointmaze-medium-stitch-v0 dataset from Park
et al. (2024), and consider 5 different pair of inital point and targest. We include more experimental
details in Appendix [.3. We visualise the unstitched trajectories and the samples generated by SMC
in Fig. 7, using different colours to represent different short trajectories. We also report the success
rate in Tab. 3. For comparison, we include results without SMC, where we only use guidance from
the gradient of the reward. We observe that RNC increases the success rate to 100%, demonstrating
the flexibility and practical applicability of our method.

Inference-time scaling RNC allows us to increase the number of particles during inference to
obtain better performance. We showcase this property with the annealing experiments on alanine
dipeptide (ALDP). Specifically, we follow the setting we used in Tab. 1, with ¢, = 0.6,¢c, = 0.4,
and evaluate the performance scaling with different batch sizes: 100, 500, 1000, 2000, 5000. For
comparison, we also report the corresponding FKC results. Fig. 3 shows the sample quality scaling
with different numbers of particles. RNC not only features better sample quality but also presents
better scaling properties, especially for sample diversity, as reflected by the sample W5 distance.

Training energy-based models We train energy-based diffusion with RNE regularisation on both
the Gaussian mixture and the alanine dipeptide (ALDP). In Fig. 4, we visualise the learned density for
the standard denoising score matching (DSM) and for DSM with RNE regularisation on 2D GMM.
We obtain the density value by exponentiating and normalising the learned negative energy at ¢t = 0.
The unregularised DSM fails to capture the target accurately, whereas RNE regularisation enables
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(a) Tilting with RNC. Prompt from left to right: (1) A yellow ambu-
. . . lance; (2) An orange balloon with red spots; (3) A blue jeep.

Fig 7: Visualisation of stitched tra- 5
jectory for maze navigation. We also (b) Generation without SMC.

show examples of unstitched short Fig 8: Visualisation of prompt-reward-tilting on masked dis-
trajectories in the upper-left corner.  crete diffusion on ImageNet-256.

Tab 4: Multi-target SBDD performances. Better than known denotes the percentage of generated
ligands with lower docking scores than both of two ground truth reference ligands. P; and Ps are
docking scores for two pockets. Div. assesses the pairwise difference over molecular fingerprints.
Val. & Uniq. denotes the percentage of ligands that are both valid and unique. Qual. denotes the
percentage of ligands that have good physicochemical properties.

Better than known. (1) (P *Pa) () max(Pq, P2) (J) Py top-1({) Py top-1(J) Div. () Val. & Uniq. (1) Qual. (1)
Sum score 0.345.40.288 65.110.417.802 —7.22241 348 —9.41141 574 —9.769.41.758 0.881.40.010 0.927 40,147 0.13440.087
FKC 0.608+0.390 82.371124928 —8.29611450 —9.43711733 —10.03541 601 0.81410.043 0.92510.113 0.19210.101
RNC (¢, = 1., = 0.0) 0.589.40.413 81.186.426.158 —8.12241 588 —9.6504+1.608 —10.07541 663 0.823.40.027 0.942 40,060 0.22240.173
RNC (¢, = 1,0, = 02) 0.649.0.356 81.771124.673 —8.112+1660 —9.58511885 —10.10241525 0.83610025  0.950:0.066  0.223.0.202

the model to recover the energy at ¢t = 0 relatively exactly. In Fig. 5, we evaluate our approach on a
100D GMM, and also include dual score matching (Guth et al., 2025) as a baseline. We can see both
RNE and dual score matching significantly improve the accuracy of the learned energy.

To assess its potential as a conservative machine-learning force field (MLFF), we train energy-based
diffusion models on ALDP samples at 300K, then run MCMC on the learned energy at t = 0
and visualise the resulting Ramachandran plot in Fig. 6, where the RNE-regularised model closely
reproduces the ground-truth distribution. Importantly, throughout training, we only use samples,
without accessing the energies or scores. From Tab. 2, the RNE regularisation does not noticeably
influence the quality of the diffusion model itself, showcasing our RNE’s flexibility and applicability.

RNE regularisation can also be applied to bridge mod-
els such as stochastic interpolants (Albergo et al., 2023).
Learning an accurate energy path can improve the accuracy

Tab 5: ALDP solvation free energy esti-
mated with thermodynamic integration.

S . - : TI wo RNE TI w. RNE

O;IfrelzTe]?ergydeslt;rjlsatﬁrl’ via thfrr;l(())éisyna\;]nlcdlntegrattlotn Reference Value ;515005 (Ours)
irkwo 35; M al. 5).

(TL, wood, 19557 Mate et al., )- We demonstrate =770 o) 2730 £045 2928+ 0.04

this by estimating the solvation free energy of the alanine
dipeptide, using the dataset and systems described in He et al. (2025a). Further details on the
background and setup are provided in Appendix 1.6. We report the values estimated without and with
RNE in Tab. 5, where RNE regularisation substantially improves the accuracy of the results.

RNE for CTMC We also verify RNE for CTMC. More precisely, we consider tilting the generation
with a reward defined via ImageReward (Xu et al., 2023) with a prompt. We take the MaskGIT
(Chang et al., 2022) pretrained on ImageNet-256 by Besnier et al. (2025). MaskGIT defines a (latent)
mask image model that predicts the conditional distributions of masked positions given a masked
sample. Therefore, similar to Ren et al. (2025), we can turn MaskGIT into a (latent) masked discrete
diffusion model by introducing a stochastic masking schedule following Shi et al. (2024). For more
details, please refer to Appendix [.4. We visualise the results in Fig. 8. As shown, RNE achieves
strong alignment between the generated images and the target prompts, demonstrating both the
effectiveness of RNE on CTMC and its scalability to larger image-generation settings.

5 CONCLUSION

In this paper, we introduce the RADON-NIKODYM ESTIMATOR (RNE). It leverages the fact that
for any diffusion process we consider, we can pair it with its time-reversal, and the Radon—Nikodym
derivative of the forward path measure with respect to the reverse path measure is always equal to
one. This principle lets us decouple marginal densities from transition kernels, yielding a highly
flexible and plug-and-play method for density estimation, inference-time control and energy-based
training, for diffusion models across modalities. We discuss its limitations in Appendix B.
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A IMPLEMENTATION OUTLINES ON INFERENCE-TIME CONTROL

In this section, we illustrate the key methods that need to be implemented when a user wants to
implement different heuristic choices for a; and b; (the different sampling and target process choices).

We provide the RNC anneal weights as an example and illustrate how the R factor computation in
the rne method does not need to be modified as we change from task to task.

class GuidedSDE (self) : def rne(fwd, bwd, t, s, ...):
# Discretise [t, s] with N steps
# Model forward logprob ..
def fwd_mu(self,xt,xtml,t): for n in range (N):

fn = fwd(..., tn)
# Model back logprob bn = bwd(..., tn)
def fwd_nu(self,xt,xtml,t): 1InR += bn - fn

return 1nR

# Implement target logprob def rnc_ann(sde, beta, t, s, ...):
def fwd_Db(self,xt,xtml,t): fmu, bnu = sde.fwd_mu, sde.bwd_n
fb, ba = sde.fwdDb, sde.bwd.a
# Implement sample logprob lanunE - rmelfmu, bnuy T8
, 1lnRab = rne(fb, ba, t, s,...)

def bwd_a(self,xt,xtml, t): lnw = —-1nRab + lnRmunu % beta

return lnw

Fig 9: Psuedocode illustrating development pipeline for RNC (exemplified with annealing). The user
only needs to implement the sampling and target kernels; changing these does not change the rest of
the downstream code nor require re-derivation, unlike FKC (Skreta et al., 2025). In practice, we also
add the analytical reference to the implementation of rne as described in Section 3. To do this, we
simply add/substract the forward/backward kernel and the corresponding Gaussian marginals to 1nR,
which also does not need to be rewritten from task to task.

B LIMITATIONS

Our proposed method still encounters the following limitations: (1) RNC suffers from the common
limitations of SMC, including bias from self-normalised importance weight when the sample size
is small, and low diversity in produced samples. Also, when the target is significantly far from the
pretrained diffusion, SMC will not perform well. (2) One variation of RNC relies on the assumption
that our pretrained diffusion model is perfect. While this is also the assumption for other previous
approaches (Skreta et al., 2025), it will lead to biased annealing/composition results.

C SUPPLEMENTARY METHODS

This section presents supplementary methods and technical details that are not covered in the main
manuscript:

* In Appendix C.1, we describe in detail how to apply RNE for density estimation, and outline
its connection to previous methods.

* In Appendix C.2, we extend the density estimation framework using importance sampling.

‘We then turn to the use of RNE for inference-time control. Recall that in Section 2.1.3, we discussed
two scenarios: one assumes a perfect diffusion model, while the other relaxes this assumption at the
cost of more restricted design choices. We now provide additional details on these cases:

* In Appendix C.3, we assume a perfect model and list several heuristic choices for the
sampling and target processes (i.e., as, b; in Egs. (13) and (14)).
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* In Appendix C.4, under the perfect-model assumption, we show how RNC recovers FKC as
a special case.

* In Appendix C.5, we consider imperfect diffusion models. We explain how the SMC weight
in Proposition 2.2 is derived and why it is only applicable in the reward-tilting setting.

C.1 RNE FOR DIFFUSION DENSITY ESTIMATION

As we discussed in main text, a direct application of Eq. (11) is for density estimation: when 7/ = 1,
p, is tractable, typically as a Gaussian distribution. This leads to the following conclusion:

RN Density Estimator (RNDE). Consider a pair of forward and backward SDEs in Eqs. (6)
and (7) with drift y; and 14 which are time-reversal of each other. Let Y be the solution to an
arbitrary process with the same diffusion coefficient, going either forward or backward. With R
defined in Eq. (10), the SDE’s marginal density p, is given by

(Vi) = pr (Y1) R (Yie,1))- 27

Given a perfect diffusion model, the RHS of the estimator is tractable up to discretisation error: p; is
a Gaussian density, and R}, can be calculated by the noising and denoising kernel with Eq. (10).

Connection to previous works. The relation in Eq. (27) coincides with the density-augmented
SDE (Karczewski et al., 2024, Theorem 1), and equivalently, in their concurrent work, It6 density
estimator (Skreta et al., 2024, Theorem 1). More precisely, their density estimator states that, for
a perfectly pretrained diffusion model defined in Egs. (1) and (2) (e.g., oy = €, ur = fr and
vy = fi — 02V 1og p,), letting Y be the solution to any backward process with the same diffusion
coefficient as the diffusion model, log p;(Y;) follows the following SDE:

2
dlog py(Yy) = —(V+ fi(¥i) + Vlogpu(X0) - (fi(¥i) — -V logpu(X))dt + Viogpi(¥y) - 3. (28)

Despite the theoretical equivalence, Eq. (27) is more flexible and practically applicable. Eq. (28) is
only computationally feasible for diffusion models where f; is linear and its divergence term V - f; is
constant. By contrast, Eq. (27) can be applied efficiently to any bridge model whose marginal on one
side is tractable, including stochastic interpolants (Albergo et al., 2023), bridge-matching models
(Shi et al., 2023; Peluchetti, 2023), and escorted AIS samplers (Vaikuntanathan & Jarzynski, 2008).

Moreover, Eq. (27) provides an alternative—more flexible—perspective on why the Itd density
estimator remains valid even when any backward process generates Y': for a perfect diffusion, the
Radon-Nikodym derivative between the noising forward and the denoising backward process is
always one and Eq. (27) always holds. From this viewpoint, there is even no need for Y to satisfy a
backward SDE—it can follow processes in any direction, and the estimator still applies. Therefore,
this estimator not only can be applied to estimate the density on samples Y; obtained from a backward
SDE trajectory Y[z 1, but it can also estimate the density on arbitrary values Y; = y;, such as samples
on a hold-out test set, like the cases considered by Kingma et al. (2021). To achieve this, we can
simulate an SDE, forward in time, from y;, and apply Eq. (27) on this forward trajectory.

We additionally highlight that Skreta et al. (2024, Appendix D) also wrote down the Gaussian-based
discrete-time estimator to derive Eq. (28). However, differently, we advocate directly using the
form in Eq. (27)—not only because it’s more computationally accessible, but also because the RND
perspective behind Eq. (27) naturally facilitates enhancements via reference processes and importance
sampling, yielding a more stable and accurate estimator, as we will discuss in Section 3.

C.2 RNE FOR DIFFUSION DENSITY ESTIMATION WITH IMPORTANCE SAMPLING

In the above sections, we make use of the fact that the Radon—Nikodym derivative between a process
and its time-reversal is identically one. This provides us with an intuitive algorithm for density
estimation. In this section, we provide an alternative approach for density estimation, without relying
on the concept of time-reversal. Instead, it leverages the importance sampling perspective:

Proposition C.1. let p.(x;) be the marginal density of X; = x; satisfying the backwards SDE:
dXt = Ut(Xt)dt + €t<d_VVt, Xl ~ D1. (29)
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Consider a forward process Y; with drift us, and define RY, as Eq. (10), we have
pe(xt) = E [Pl (Yl)RZ(Y[t:l]HYi = Cﬂt} ) (30)

where the expectation is taken over the forward process within the time horizon [t, 1] conditional on
Y; = x;. When discretised witht =t <ty < --- <ty =1:

N—-1

Hn:l p:L|n+1 ()ftn |Y;fn+1 )
N

anl pz+1‘n(nn+l ‘Y;n)

Pty (‘rtl) ~E Pty (}/tN)

§/t1 :xt1‘| . (31)

A detailed proof can be found in Appendix H.2. However, to provide more intuition, we showcase its
derivation from the standard variational inference perspective (Blei et al., 2017; Kingma et al., 2013):

Variational Inference Macros Pathwise Counterparts
marginalise: p(x) = /p(aaz)dac7 pr, (x) = /p()G1 =,V )dYan,
condition: p(I) = /p(x\z)p(z)dxq bty (z) = /p()/h =, Yt),N|YtN)per<Yer)dY21[Vf
. p(x\z) ) p(Ye, = 2, Ve, |Yin) _
re-weight:  p(2) = Eg(z|) { q(z|z) p(z)]. P (@) = Eqqviy 171y =a) [Py (Vin) —q(lytzwlytl — ) Yy, =z|.

RNE ! RNE !

We also note that Proposition C.1 generalises the RN Density estimator in Appendix C.1. As in the
setting of a perfect time-reversal, a single Monte Carlo sample suffices to recover p;. Hence, Eq. (30)
degrades to Eq. (27). Proposition C.1 also offers an intuitive derivation of the Feynman-Kac density
relation proposed by Huang et al. (2021), as stated in the following Corollary:

Corollary C.2. (Huang et al., 2021) The relation in Eq. (30) can be simplified to

1
pt(xt) = EZ[t 1]~BV |:p1(Zl) exp (/ V . l/t/(Zt/)dt/) Zt = .’Et:| 5 (32)
’ t

where PV represents a forward process with drift v;".

C.3 HEURISTIC CHOICE OF a; AND b; FOR INFERENCE-TIME CONTROL

After discussing RNE for density estimation, we now return to inference-time control. In Section 2.1.3,
we highlighted that we have the freedom to choose any of the sampling and target processes. In this
section, we list some heuristics that can be considered. We note that these are by no means exhaustive:
any suitable heuristics can be used without altering the core SMC algorithm.

Consider the diffusion model defined in Eqs. (1) and (2) or its SI characterisation in Egs. (3) and (4).
To align our notation with the standard diffusion model literature, recall that

Lt = Vi +ef/2V10gpt =fi+ (ef —af)/QVIogpt

2 2, 2 (33)
ve =vi — €, /2V1ogpy = fi — (& +07)/2V log py
Then, we may choose
Anneal: ar = fr + A{Viogpy, b= fi+ /\fVlogpt (34)
Reward: ar = fr + “ — UtQVlogpt + Mg, b= fi— @Vlogpt + g, (35)
CFG & Product: a; = f; + AV logpgl) + A2y logp,EQ),
be = fo + A Viogpl” + AP Viog pf” (36)

where the hyperparameter ) can be heuristically selected or tuned, and g; can be designed/learned to
approximate the h-transform (Uchara et al., 2025; Domingo-Enrich et al., 2024; Denker et al., 2024)
or set heuristically (Chung et al., 2023; Wu et al., 2023; Song et al., 2023b; Singhal et al., 2025).

“We emphasise the different between P and the time reversal of Eq. (29). The former directly runs in
forward with drift v¢, inducing a new path measure, while the latter defines the same path measure as Eq. (29).
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C.4 “FKC CRNC”

We now show the choices which recover FKC (Skreta et al., 2025) as special cases:
Proposition C.3 (“FKC C RNC”). RNC with the following a;, by and €, is equivalent to FKC:

Anneal:  ay = fy —no;Vlogp:, b = fi— (noj — Be;)Vlogps, € = oy,
Product: a; = fy — 770,52 (V logpil) + Vlogp,@) )

by = fi — (77Ut2 - 6? ) (Vlogpgl) + Vlogp,@) , € = (o,

CrG: a; = fy — o} ((1 - 5)V10gpgl) + BV 10gp§2)> , bi=fi, & =o0y,

(37)

wheren = S+ (1 — B)cand { = /1 + (1 — B)2¢/B for c € [0, 1/2], following the definition in
FKC (Skreta et al., 2025, Propositions 3.1, 3.2, 3.3).

FKC derives its weights via the Feynman-Kac PDE and then designs the sampling process to cancel
the costly divergence term. Therefore, FKC has very restrictive design choices. By contrast, our
RNC features higher flexibility in selecting these processes, yet still incurs no extra computational
overhead, allowing us to heuristically select a process pair that may reduce variance (Jarzynski, 1997,
Neal, 2001). Moreover, FKC requires deriving the weight formula for each task (anneal, product,
etc), while RNC provides a macro-style “plug-and-play” recipe for computing importance weights.

C.5 EXACT SMC WEIGHT FOR IMPERFECT DIFFUSION MODEL

We now consider the SMC weight for the imperfect diffusion model we discussed in Proposition 2.2.

Before discussing the results, we distinguish two sources of error: (1) the pretrained diffusion model
will not perfectly reproduce the training data distribution due to imperfect score and discretisation
errors; (2) for RNC, when calculating the SMC weight using the relation in Eq. (11), this equation
does not exactly hold due to imperfect time-reversal and discretisation. The first error is intrinsic to
the diffusion model and beyond our control; we aim to address the latter here. More concretely, we
define p; as the Law of samples under the imperfect diffusion model with discretisation error, and
our aim is to generate samples from ¢; defined in terms of this p,, following Eq. (15).

We still consider the time horizon [r, 7] as an example. To account for the error arising from both
model imperfection and discretisation, we will conduct our discussion in discrete time with /N steps
=t <ty <---<ty =7 Let Prjng1 (Xe, | X, p0) and plhy 4y (Xe, | Xy, ) be the denoising
kernel for the imperfect diffusion model and our chosen sampling kernel, respectively. The SMC
weight in Proposition 2.2 is exact. We repeat the result here for easier reference:

N—-1 .
eXp(TT(Xh:T)) Hn:l pn‘n-‘,—l(th‘th+1)

exp(rs (Xiy=r)) Hﬁ’z—ll Py (Xea | X

(38)

w[7.7,r/] X
ni1)

We now answer the following questions: Why is this SMC weight exact, and why does this only apply
to reward-tilting?

First, analogous to the concept of time-reversal, we denote the posterior density for the diffusion
denoising kernel as py. y |1 (Xt,, | X1). According to Bayes’s rule, we have

N—-1
(X pont Ko | Xe)) = 0 (X10) [ P (X,

n=1

X)) (39)

Note that we do not know the tractable form of ps. ;. However, as we will immediately see, we
can cancel this term with our chosen target process and hence eliminate the need to calculate it.
Concretely, similar to the target process in Eq. (14), here we can also choose an arbitrary target
conditional density ¢"¢'( X, . |X¢, ), and the SMC weight is defined as

exp(rT (Xh:T)) Pty (Xfl) qtarget(Xt2:N ‘Xh)
eXP(TT' (XtN=T’)) DPtn (Xf\> Hi:,;ll pg‘n+1(th ‘th+1)

(40)

’w[,,.y.,./} XX
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By Egs. (39) and (40), we have

N-1
exp(rT (Xt1:T)) anl pn\n—&-l(th |Xt"+1) qtarget(XtQZN |Xt1)
exp(rr (Xey=r))  ponp (X[ X)) T2 Py (Xt [ Xt i)

;o (4D

w[T,T/] X

The term py. nj1 (X, |X1) is intractable, and ¢"*" we can freely choose without affecting the

correctness of SMC. Therefore, if we set ¢ ¢! = p,, N|1, these two terms will cancel and all terms
left in the importance weight will be tractable. In continuous time, g€ = p. ~1 Will converge to
the time-reversed denoising SDE of the imperfect diffusion model.

It is important to note that the same cancellation cannot be applied to the annealing or the product
case. In fact, the derivation is correct until the step of Eq. (41). Taking the annealing case as an
example, this step gives us the following SMC weight:

N-1 4 5
(Hn:1 pn|n+1 (th Ith+1 ))B qtdrgel(XtQ:N |Xt1 )

(pQ:N\l(Xt21N|X1))B HnN:_11 pf,ll|n+1(th|th+1)

Wiz, 7] X ; 42)
However, we then cannot set ¢"*¢'( X, | X, ) = pgz ~1 (Xton | Xt ) to cancel the intractable term.
This is because pg:NH is normalised. We may set ¢ (X, | Xt,) = pglel(th:N | X¢,)/Z. But
Z = fpg;Nu(th:N | X, )d X, ., which is NOT a constant but a function of X, .

D RNE FOR DISCRETE DIFFUSION

As we discussed in Section 2.3, RNE can be seamlessly adapted to discrete diffusion with Continuous
Time Markov Chains (CTMC) (Campbell et al., 2022; Lou et al., 2023; Shi et al., 2024). To do so we
first define the IR quantity for CTMC.

Definition D.1. (CTMC R) Given a CTMC Y in the time horizon |7, 7] and rate matrices Q;, Q)
corresponding to CTMC’s evolving in different time directions in the time interval |7, 7], we define

, . QL (YY)
RS ()/[T,T/]) =€exp (/7— Qs (Ysy)/s) - Qs (Yea)/s) ds + Yz?éy 1Og (W) >7 (43)

where - 4y, sums over all points where Y switches (“jumps’”) between states.

It is easy to construct the marginal density estimator:

Proposition D.2. RN Density Estimator (RNDE). Consider a pair of forward and backward
CTMCs which are time-reversal of each other and with rate matrices Qy, Q.

LetY be the solution to an arbitrary CTMC, going either forward or backward. Then the marginal
density p; of the CTMC with rate matrix Q is given by

1 / —
pe(Yy) = p1(Y1) exp (/t Q, (Y., Ys) — Qs (Ya, Yo)ds+ > log ((fm) )
5,Ys #Ys S\Ts s

(44)

Proof. From (Holderrieth et al., 2025, Proposition 5.1.) via reciprocating the RND we have that:

dp* ~ pe(Ya)
ﬁ(yr[t,l]) - pl(Yl)

Then since dP* / dﬁ”(}ﬁt,l}) =1, rearranging gives

RE (Vi)™ (45)

pi(Yy) = p1(Y1)RE (Yie.1)). (46)
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Notice that in discrete diffusion, one can integrate the Kolmogorov forward equation in backward
time numerically

Opr = —Q', e (47)

and then index into the vector p; with Y; to obtain p(Y;), however this has the computational
cost of O(Number of Steps x (Vocabulary Size)?). Instead, our estimator can be run online whilst
generating samples at a cost of O(Number of Steps x Vocabulary Size), making our RNDE likelihood
computation for general CTMCs much more tractable. We highlight that our speed gain holds even in
settings where the concrete score is time-independent, and we are able to obtain a matrix exponential
solution to the Kolmogorov equation (Ou et al., 2024a). This is because the closed-form solution
does not scale for large vocabularies, as it requires diagonalising Q.

Unlike the Kolmogorov equation solvers, our RNDE introduces bias in practice due to the time
reversal being approximate. To mitigate this, we can similarly derive an RNDE-IS-based estimator,
which should coincide with the marginal density relation in (Campbell et al., 2024, Section C.1.1.,
Page 23) used to derive the ELBO objective in discrete diffusions from a continuous time setting.

D.1 RNC FOR DISCRETE DIFFUSION

Now that we have defined R for CTMC, our RN Corrector can be readily applied, yielding similar
estimators to Lee et al. (2025), but generalising to more tasks such as annealing and reward-tilting.

As with RNC for SDEs, we have the same setup,

1. a backward sampling process: 9;p; = — A/ p;
2. aforward target process: 9;h; = BtT hy

3. intermediate target marginal densities: ¢;, which are a function of p; satisfying d;p; = Q' p;.

To give a concrete example let us write the weight for product:

(&N o (2 B _
W[r,r1] X [Rg/(ll)(X[T,T'])} |:Rg/(22)(X[T,T/]):| [Ré(X[T,T']):I ' (50)

Where Q'(Y), Q") are the rate matrices of a CTMC and its reversal and B is the rate matrix corre-
sponding to a target process CTMC moving backwards in time and A is the rate matrix of forward
sampling process/proposal.

D.2 DISCRETISATION OF R FOR CTMC

As in the continuous state case, we can approximate R as a product of discrete-time kernels.

N-1 @
| - pg|n+1(ytn Yy

N-1 :
anl p§+1|n(y;5n+1 |Y;‘/n)

n+1)

Q' ~
RQ (}/[T,T/]) ~

(S

this can be seen formalised in Holderrieth et al. (2025, Appendix A), and the discrete kernels can be
approximated using Eulers method (Campbell et al., 2022)

pgﬂ\n (Yirat | i) = 0vionny: + Q1 (Ye, Yirar) At + o(At) (52)
pg‘anrl (th | Y;H“At) = 5Yt~,Yt+At + Q:H»At (YvH*At? Y—t) At + O(At) (53)
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E CONNECTION BETWEEN RNE AND OTHER APPROACHES

perfect time-reversal

\( 1t6. Density Estimator /
. ’L Density Augmented SDE
f
&

[ RN Density Estimator J
I

Fimportance sampling Feynman-Kac density relation J

special case
I P )L Feynman-Kac Corrector J
Reward Twisted Diffusion Sampler /
[ RN ot i E Feynman-Kac Steering J
| CTMC, special case
“1L Guidance debiasing sampler J

[ RNE Energy Regularisation %{ Fokker-Planck Regularisation J

Fig 10: Connection between RNE and other density estimation & inference-time control & energy
regularisation approaches. Methods with a grey striped background generally require divergence
computation/estimation, and divergence-free options are available only in specific cases.

One of the key contributions of RNE is that it provides a unifying perspective, connecting several
previously proposed approaches within a single framework. While we have highlighted these
connections throughout the method description, in this section, we present a concise summary:

¢ For inference-time control, RNE recovers the Feynman—Kac corrector (Skreta et al., 2025)
as a special case in continuous-time, the Twisted Diffusion Sampler (Wu et al., 2023) and
Feynman—Kac steering (Singhal et al., 2025) for reward tilting, as well as the debiasing
method by Lee et al. (2025) for guidance in CTMC.

* For density estimation, RNE is equivalent to the density-augmented SDE approach (Kar-
czewski et al., 2024) and its concurrent work, It6’s density estimator (Skreta et al., 2024)
in continuous-time. When coupled with importance sampling, RNE further recovers the
Feynman—Kac density relation as well as the diffusion density estimators proposed by Huang
et al. (2021) and Premkumar (2024).

* For energy-based training, RNE recovers the Fokker-Planck regularisation (Plainer et al.,
2025), with a simpler interpretation and cheaper calculation.

We summarise these connections in Fig. 10.

F ADDITIONAL EXPERIMENTS AND ANALYSIS

F.1 RNDE AND ABLATION ON REFERENCE PROCESS

To assess the effectiveness of RN Density Estimator (RNDE) proposed in Appendices C.1 and C.2,
we choose a 10-D Mixture-of-Gaussian target with 40 modes, which was initially used by Midgley
et al. (2022) to evaluate the performance of Boltzmann generators. Since we can access the analytical
marginal density at any diffusion time step ¢, it is ideally suited for comparing different density
estimation methods. In Fig. 11, we compare four estimators: RNDE with reference, RNDE without
reference, importance-sampling-based RNDE, and It6 density estimator (Skreta et al., 2024). We use
the variance-exploding (VE) diffusion with the exact score function, and we follow the discretisation
schedule of Karras et al. (2022). For the reference process, we adopt the same VE process starting
from a standard Gaussian. The vanilla RNDE underperforms the It6 estimator; however, incorporating
the reference process leads to substantially better density estimates. Incorporating IS further improves
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Fig 11: MSE of the log diffusion density log p;, against diffusion time ¢. Different colour represents
different number of discretisation steps. We compare 4 different approaches: RNDE with reference,
RNDE without reference, RNDE-IS with 50 samples, and RNE Itd density estimator (Skreta et al.,
2024). We use a VE process following Karras et al. (2022) where t € [0, 10], p;—10 — N(0,10%1)
and pg = paaa. Hence, the error increases when ¢ gets closer to 0.

performance, albeit at the expense of increased computational cost. A more detailed analysis of
importance sampling is provided in the next section.

F.2 ANALYSIS ON RNDE-IS

RNDE w. Ref RNDE-IS w Ref (N=10) RNDE-IS w Ref (N=50) RNDE-IS w Ref (N=100)
L4 4+ 44 4 — t=100
2
[ —— t=200
o 2 21 21 21 — t=400
0 or v v T T 0 or v i r T 0 v g r T 0 v g r T
107 1072 10! 10° 10! 1073 1072 107! 10° 10! 1073 1072 107! 109 10! 103 1072 107! 109 10!
RNDE wo Ref RNDE-IS wo Ref (N=10) RNDE-IS wo Ref (N=50) RNDE-IS wo Ref (N=100)
L4 4 44 4 — t=100
5
5 —— t=200
N 24 24 \M....,_\\ 2 2 t=400
0 r . v T v 0 or . v : v 0 4r . g v T 0 4t : v v T
1073 1072 10! 10 10! 1073 1072 107! 10° 10! 1073 1072 10! 109 10! 103 1072 107! 109 10!

t t t t

Fig 12: MSE of density estimation by RNDE and RNDE-IS across varying sample sizes, shown with
and without a reference process. Different colour represents different number of discretisation steps.

In this section, we provide a more comprehensive analysis of the performance of RNDE-IS and the
influence of the reference process. In Fig. 12, we show the MSE of density estimation by RNDE and
RNDE-IS across varying sample sizes, both with and without a reference process. As we can see,

* when sample size is small (or without IS), using reference can significantly boost the performance;
» when the sample size is large enough, the reference will negatively influence the performance.

This behaviour is as expected: when the sample size is small, as we motivated in Section 3, the
reference is used to address the instability of RNE. This instability is eliminated when the sample
size is large enough. On the other hand, this reference will bring in its own discretisation error. This
error is negligible compared to its benefits when the sample size is small, while becoming significant
when the sample size is large enough. However, we stress that in the application of RNDE and RNC,
we usually rely on estimation using just one sample, and hence reference is always favourable there.

F.3 INFERENCE-TIME ANNEALING: MORE ANALYSIS

1.000 0.0 0.2500 3.8500

02 0.875 02 0.2225 3.8125

< 0750 & 01950 & 3.7750

0.625 0.1675 3.7375 08 125

1o 0.500 10 0.1400 3.7000

@ 3T 8 9 8 % @

(a) Energy TVD

@ T 8 9 o % @

(b) Distance TVD

Fig 13: Inference-time annealing for LJ-13.
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(a) Energy and samples for ¢, = 1.0, ¢, = —0.6. (b) Energy and samples for ¢, = 0.8, ¢, = 0.2.

Fig 14: Visualisation of inference-time annealing on 10D Mixture of Gaussian target.

In this section, we provide a more comprehensive analysis of RNC with different ¢, and ¢y

We first consider the Lennard-Jones (LJ) system with 13 particles. We first train a diffusion model
for temperature Thjep = 2.0 and anneal it down to Tjoy, = 1.0. Similar to ALDP, we sample using a
batch size of 500, and repeat this 50 times to collect all data. We chose this system as it only has one
peaked mode, showing different properties compared to the ALDP in the main text.

In Fig. 13, we show the TVD between the energy histogram, the interatomic distance histogram, the
W, distance and the variance of accumulated weights. As we can see, the variance of accumulated
weights features the same pattern as ALDP in Fig. 2, showing that ¢, + ¢, within 1 £ 0.2 typically
achieves a better effective sample size (ESS) compared to other choices. However, energy TVD
exhibits the opposite trend: it actually improves in regions where the weight variance is large. This
can be explained by the property of the LJ-potential. As the distribution has a very peaked mode, we
generally do not need high diversity in the samples—even though ESS is so low that all 500 draws in
a batch collapse to the same particle, the SMC weights will still single out the sample that best aligns
with the mode. By contrast, when ESS is high, the algorithm may occasionally select a suboptimal
configuration, potentially due to the intrinsic SMC bias associated with a finite sample size, and can
be amplified by discretisation error and model imperfections.

This can also be observed in a toy Gaussian Mixture target. Specifically, we consider anneal a 10D
GMM target from Thigp = 1t0 Tjow = 1 /3. We run RNC with the analytical score from the GMM
target, using a batch size of 500, and collect 100 batches in total. In Fig. 14, we visualise two settings
(a) ¢, = 1.0,¢p, = —0.6, resulting in a low ESS; and (b) ¢, = 0.8, ¢, = 0.2, resulting in a higher
ESS. In case (a), it exhibits significant mode collapse, with the samples being closer to the centre of
each mode. However, the energy histogram shows a good alignment with the ground truth energy. By
contrast, in case (b) the samples almost cover all the modes, but a few particles diffuse slightly, and
hence the energy histogram deviates more from the ground truth.

In summary, SMC intrinsically struggles with sample diversity. In terms of RNC, different choices
of ¢4, ¢p yield different ESS values. This ESS (weight’s variance) pattern is highly consistent across
different targets. In general, a larger ESS is preferable to ensure greater diversity. However, for certain
targets, a lower ESS can also be advantageous. Although there is no universally optimal choice, we
argue that if preserving the entire distribution is the goal, one should aim for the highest possible
ESS; conversely, if the objective is merely to select the single best sample, it may be beneficial to
pick cg, cp that leads to a slightly smaller ESS.

F.4 EMPIRICAL ANALYSIS ON IMPERFECT SCORE AND DISCRETISATION ERROR

In Proposition 3.2, we discussed the theoretical guarantee of the SMC weight calculated by RNE
when the discretisation error and score network error are present. In this section, we evaluate the
influence of these two errors empirically, taking inference-time annealing on ALDP, for example.
To analyse the influence of discretisation error, we choose to run RNC with 20, 100, 200, 400
discretisation steps in the diffusion generation process; to analyse the influence of imperfect score,
we choose to early stop the diffusion network training stage after different numbers of iterations.
For comparison, we report the heuristic choice by simply annealing the score without SMC. As we
can see from Figs. 15 and 16, the performance of RNC increases w.r.t. the number of steps and the
number of training iterations, as expected from Proposition 3.2. Also, while RNC performs worse
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when using a small number of steps and when the score has a larger error, it still presents empirical
performance gain compared to the heuristic choice.

Energy TVD Distance TVD Energy TVD Distance TVD

PR ) TEETN Weeeeres Xeooo.
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# steps # steps . .\' . x. v . .N . x. v
Training iteration Training iteration
-%- Anneal score (wo SMC) —@— RNC =% Anneal score (wo SMC) —@— RNC
Fig 15: Influence of discretisation error. Fig 16: Influence of score error.

F.5 ABLATION ON REFERENCE PROCESS FOR BETTER DENOISING KERNELS

One line of work (Bao et al., 2022; Ou et al., 2024b) aims to estimate the variance of the denoising
kernel, resulting in a denoising kernel that is more accurate than the one obtained from simple EM
discretisation. A natural question is whether our proposed reference process still provides gains when
used together with such improved denoising kernels. In this section, we investigate this empirically.
Specifically, we evaluate the performance of RNE for density estimation (RNDE) on a 10D GMM
with 40 modes, for which the marginal density is available in closed form, allowing us to directly
assess the accuracy of our RNE estimator.

We visualise the results in Fig. 17. In Fig. 17(a), we show the results obtained using EM discretisation,
while in Fig. 17(b), we estimate the variance Var[x;, , | zy, ] following Ou et al. (2024b, Theorem 1).
We can see that using the estimated variance substantially improves the accuracy of the RNE estimator.
Furthermore, even in this setting, incorporating our reference process still provides an additional
boost, further reducing the error and yielding highly accurate estimates.

RNDE w. Ref RNDE wo Ref RNDE w. Ref RNDE wo Ref
10 10 10 10
5 —— # step =100 5 —— # step =100
I s 54 # step =200 I s 54 # step =200
g —— # step =400 g —— # step =400
0 . - 0 . . 0 - - 0 . -
1072 10° 1072 10° 1072 10° 1072 10°
t t t t
(a) EM discretisation. (b) With estimated variance.

Fig 17: MSE of the RNE-estimated log diffusion density log p;, against diffusion time ¢.

G DISCRETISATION, STABILITY AND CONVERGENCE GUARANTEES

In this section, we provide additional details and discussion on the discretisation error and convergence
guarantees for RNE with reference.

G.1 INTUITION FOR INSTABILITY WITHOUT REFERENCE

To understand the instability without reference process, let’s consider the following example: given
a diffusion model with a forward VE-SDE dX; = etm, and a backward score SDE dX; =
—efst(Xt)dt + eta—VVt, the contribution to R from the final denoising step (from At to 0) is
N(XolXae + AusarX)AL QAL (52 <€2At - 1)) , E~N(0,D). (54)
N(XAt|X0,€0At) 26% 2
If €; decreases quickly as with many noise schedulers (Nichol & Dhariwal, 2021; Karras et al., 2022)
and if ¢ is small, the term €%, /€3 becomes large and unstable. At a high level, this issue arises
because, at each discretisation step, the variances of the forward and backward kernels are misaligned.
In fact, this misalignment also introduces accumulated error, as discussed in Appendix G.2.
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G.2 CONTINUOUS FORMULATION VS DISCRETE GAUSSIAN KERNELS FOR R

In the main text, we introduced RNE in the form of a limiting ratio between sequences of Gaussian
kernels, as described in Eq. (10). Another equivalent formulation, as we discussed in Eq. (12), directly
expresses RNE in continuous time in terms of stochastic integrals.

In practice, for a finite number of steps IV, these two formulations have very different behaviours.
The Gaussian kernel formulation (without reference) typically suffers from higher accumulated error
when the diffusion coefficient €, is not constant; while applying Euler-Maruyama to Eq. (12) will not
have this issue. Specifically, we have the following conclusion:

Denote the result obtained by applying Euler-Maruyama to Eq. (12) with N steps as Ry, and the
result obtained by Gaussian kernel formulation (without reference) as G, then

62 — 62
ANzlogRN—logGNmZd%—dlog%, (55)
n tn

where d is the dimensionality.

RNDE continuous formula 2F(%NDE Gaussian kernels (wo Ref)zg{NDE Gaussian kernels (w Ref)

— t=100
t=200

10 4 10 4 10 =400

L2 error

1072 10° 1072 10° 1072 10°

Fig 18: RN Density estimator calculated by three different ways: Left: Euler-Maruyama to continuous
path integral (i.e., Eq. (12)); Middle: Gaussian kernels (i.e., Eq. (10)); Right: Gaussian kernels with
reference (i.e., Eq. (24)). Different colour represents different number of discretisation steps.

We empirically verify this in Fig. 18. As we can see, directly using Gaussian kernels will result in
a significant error, echoing our earlier discussion. However, fortunately, by adding the reference
process as described in Section 3, we successfully address this issue and achieve the best performance
out of the different estimators and discretisations we consider.

In what follows, we will analyse and discuss this error in more detail:

We first consider Eq. (12):

’
T

1 — [T 1 /71
log Ry, (Yr.r)) = / v - dY; _/ L dv, + 5/ 67(||Hzt||2 vl [*)at, (56)
T t T t

r &
For simplicity, we consider discretising R using an equidistant step size (At is constant). Discretise
using Euler-Maruyama, and denote its discrete version as Ry, we obtain

1 1
log Ry = Zefil}tnﬁ-l ’ (Ytn+1 - Ytn) - Z ?Ntn : (Ytn+1 - Ytn)
n tntl n n
1 1
=25 I PA 4D oo, P At (57)
w Ctnga n 2€;,,

(€]

Note that since (1) is a standard Riemann integral without a stochastic integrator, we can discretise it
by evaluating the integrand anywhere in the intervali.e. Y 55— |[vr2||?Aty, V7i € [t, tny1]. This

can be done since the upper and lower Darboux integrals are equal to each other. Following Vargas

etal. (2023b) we choose ), ﬁ Ve, . ||>At;, to be more consistent with how we discretised the

backwards integral and to better align with the Gaussian density ratio below.
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Now, let’s consider the discrete Gaussian estimator of the RND (which we denote by Gy ):
H’I’L N (Ytn«kl ; Yrtn + /’Ltn (Y;rz )At’ 6%1 AtI)

Hn N (Ytn ; )/tn+1 — Vtoga (iftn+1 )At7 etzn+1 At])

expanding (where d is the dimensionality):

Z ||Yrtn+1 - — Mty (Y;")AtHQ |‘Y;5n+1 - Y;fn + thg»l( n.+1 AtHQ leg Ctni1 7 (59)
2At6tn 2Ate; €ty

log Gy = log (58)

expandlng again:

Z _ ||}/tn+1 B }/thQ (}/tn+1 _ }/tn) Pty o ||/“1/tn||2At (60)
2Ate;, € 2€7

||Y% +1_th H2 (Y; +1_Y;5 )'Vt +1 ||I/t +1||2At €trt1
+ n n _ n n n + n + dlog n+ , (61)

Z 2Ate; . ean 2615271+1 €,

we can then see that:
Yeuis = Yol Yoo — Ve, lI? €
An =logRy —logGpn = ntl L — ntl " _dlog &=+ 62
N =108 Ay —IB LN Z 2Ate? — 2Ate;, 08 €, (62)
n n

(a) (0)

From the convergence rates of the total variation and the Euler-Maruyama discretisation, we know
that (up to an error in v/ At),
2 .2
(Yo — Yini)? m 2 AL, (63)
where ¢ is the i-th dimension index, and the approximation can be understood as a.s. or in Ly and can

be formalised as an upper bound, but for ease of presentation, we chose ~=. Substituting this back
into (a), we see:

n+1,%

Y, —Y de2 At N
Z [1Ye, . _ Al Z b1 77 B0 (64)
~ 2Ate;, 2Ate} nt1 2
and for (b), we have
Y2, — d 5= o
n Yi, ~ 2 Ztnd1 65
Z 2ALEZ 2 zn: e, )
combining the two
A degﬂ - 6752n+1 dl €1 66

Indicating that the deviation between Eq. (12) and Eq. (10) can be large in practice when N is not
large.

In the limit (Berner et al., 2025, Lemma B.7) , we do note that this vanishes as

d 1
Ay ~ ﬂ/ e72de? — dlog L = d(Ine; — Ineg) — dlog £ =0, 67)
2 0 €0 €0

To have more intuition on the magnitude of this error, we consider a VE-SDE with ¢, = al where
a? = varp,y /vary;, into Eq (66).

€ —ef a2(tntAt) g dN [ varma /N
d n n+1 d— — *N 7 68
Z 2¢; Z 2a2tn 2 2\ varmip ’ (68)

and thus
Ay~ -N— — —1
2 2 + 2 o8 varmin

If we choose vary,x = 102, vary;, = 0.0012 and N = 100, then Ay ~ 0.87d leading to large
deviations from log R when in high dimensions.

N max 1/N max
_d d (var ) d var, 7 69)

Varmin
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G.3 RNE WITH REFERENCE - CONVERGENCE RATE
G.3.1 CONVERGENCE RATE FOR RNE

We now show our reference-based RNE’s convergence rate. Furthermore the analytic reference based
estimator we use allows us proof such a rate without needing to bound the error of estimating forward
integrals with backwards samples or vice versa, as the reference cancels the mismatch in integral
directions.

Whilst a proof for the non-asymptotic guarantees of the continuous-time RNE estimator without
reference should be possible, it will require a lot more technical effort, which we will leave for future
discussion.

Let’s consider the case where we use the diffusion model defined in Egs. (1) and (2), where u; = f;
is a linear function, and v; = j; — 02V log p; is the backward drift. We now choose a reference
process whose forward drift ¢, = p;, and the initial marginal to be Gaussian. In this case, we can
analytically solve the marginal 7; at any time step ¢ and hence can access the analytical time-reversal
of the reference process. Let’s denote the drift of this time-reversal as 1, = p; — 02V log ;.

Proposition G.1. Let us consider the case where i, corresponds to a linear forward drift, as is
the case in diffusion models and half-sided interpolants. Then we chose an analytic reference by
setting its drift as |1 and w1 to be Gaussian, and denote its time-reversal drift as ;. Assuming Y
has bounded LP? moments, and calculating R with reference, it follows that:

llog R, (Y}r.-) — log RN (Y -)l[z2 < O(VAL) (70)

Where ||.|| 12 denotes the L* norm, Y is the Euler-Maruyama discretisation of Y, and log R (Y[T’T/])
is our discretised RNE estimator

~ N-1 .
(Y ) Hn 1 pn\nJrl(Y;fn
(Y ) Hn 1 pn‘n-’—l(nn

~ N-1 ~
Y;fn+1) Hn 1 pi+1|n(nn+l|nn)

N
1/’fnﬁ»l) Hn:1 pn{—lln(}/tn#»l |}/tn)

RY (Y ) = (71)

Proof. In this setting, the reference has the same forward drift as our diffusion and hence will be
cancelled, leaving only two backward processes: one for diffusion, one for the reference. Therefore:

7 (Y, ™ — 1 /71
1%mm@ﬂ>1%<§+/ - @i [ Szl = Py, 72

r (YT’ (o 2
T (Y;) 1 / "1 ) /T' 1 -
=log —5 5 [ —sllve vl — (g — ) - AW, 73
0% Vo) +3 j O_tQHVt Pe|[7dt + o (Ve —1by) ” (73)
First, let us consider the EM discretisation of Y%,
Yt" - Y;"“ Vinia (Yt +1)At Otnia (th+1 - th)7 (74)
. N tht1 R tht1 -
Ytn - }/t”Jrl o / Vtnta (}/thrl)dt - / atn+1dwt7 (75)
tr t

. . . . . . . T, N s .
Now we can embed this discretisation into continuous time Y; = > | Licp,, .., Y%, which we
can express in integral form as,

’ ’

Yt:YT—/ ﬂs(ﬁ)ds—/ 5,7, (76)

where 7, (Yy) = 25:1 Locttn tnia]Vtnss (Yin,,) and g = 25:1 Locitn tnir]Otnsr- We also define
1) in the same way, now by Lemma G.2 we have that

T s~ b DTN W, — W)

Tr! (YT’) n Ot

Y Z Hytn - wtn||2(ﬁn+l)At’ (77)

+1

log RN (5}[7',7'/]) = log
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Then, via Remark G.3 we have
[|log Ry, (Yir 7)) —log RN (Vi )l|72 = [|log R}, (Yir ) — log RY (Yir, 7))
where via Jensens inequality (i.e. ||3§“ + %b + %HQ < %(9||a||2 +9]|b||2 + 9]|¢||?)) we have that
llog RY,(Y]r,+) — log RN (Y} )72 < 3(A+ B+ O), (78)

where (for brevity in this step we have assumed a time homogenous o however its easy to see how
this extends to the time dependent setting)

2

A=E ‘ / Ui((ﬂs - 1/7’8)(}75) — (Vs — Tbs)(YS))Ws (79)
T N2/ 2 2
B = KoE [/ Sl = B2 (T) - (s = 0 (D) ds] (50)
C=E [|| log 7, (Y;) — log FT(YT)||2] +E [|| log 7/ (Y;) — log mr (YT/)||2] (81)
now applying Itd’s isometry:
, 2

T 1 _ _ -

A=E | /T @((Ds —Ps)(Ys) — (vs — ¥s)(Y5))dW
—E V o = B)(T) = (v~ wsxmnzds] , 52

then by the Lip property of the SDEs coeficients, the strong convergence of the EM scheme (Kloeden
etal., 1992), and that o > 0 (i.e. we bound [(1/05)hsds < max, - - [ h,ds)

s

tn+1 _ _ 9
A<LY E||Y, — Yi||*ds < LA, (83)
n tn

For B, let’s label f = (vs — 1), f = (U5 — 1s):
1F2 = 2117 = 1(F = N+ DIP (84)

Then we can use Cauchy—Schwarz inequality:

’

. o 1/2 - 1/2
L[ (7= D)+ DIPds) < Ko (/ En|<f—f>||ﬂds> (/ E[Il(f+f)||4]d8> -

(85)
Via the Lipschitz property of f, we have that
[ EG - pilias < K [ e - Vil 0
tni1 ~
< Ky Z/ E[JY: — Y4[|*]ds. (87)
n tn
Remark 1.2 in Gyongy & Rdsonyi (2011) (L? convergence of EM scheme) implies that:
[ B
/ E[[Y; — Ya[[*)ds < K3At%, (88)
tn
and thus
o 1/2
(/ E[lI(f - f>||4]> ds < K4At, (89)
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Also, ([T E[||(f+ f)||*]ds)*/? is bounded from Novikov’s condition (which we assume all through-
(90)

out) + Jensensen’s inequality. Thus
B < K'At.

oD

Given log concavity for 7 (as it is the density of the analytic reference, which is Gaussian), we have

Y ) < VIOgﬂ-T(YT) ' (Y‘r - YT)7

that
—log 7, (Y,

log 7 (Y7)
thus by Cauchy-Schwartz
E[|Vlog mr (Y2)[[*[|Yr — ¥7[[]. (92)

[ log 7, (¥;) — log m, (V,)[?] <

93)

Applying Cauchy-Schwarz inequality, we have
11V log 7 (V2| 2I[Y5 — Y2 |[2] < E[||V log 7 (Y| |41 2E[| Y, — Y| [4]2/2
)||4]*/? is bounded and thus

then since V log 7 is linear, it follows that E[||V log 7 (
C < HAt. (94)
O

Here L, Ky, K1, K, K3, K4, K' and H are constants
Now we introduce a few auxiliary results we needed to derive our convergence rate
Lemma G.2. In this setting, the discrete RNE estimator with reference,
N-1 ¢ Vv o
(Y, Y2,
95)

'T~(§;> Hn 1 pn\n-}—l(y |Y )Hn 1 anrl n
N—-1 > - N-1
()1,, yI,nu) Hn 1 pn+1|n( n+1|‘Y—t )

RN(}A/[T,T/]) = — %
7(.[_/(}/[_,) le 1 I?z\rl+|

Simplifies to
) 1 -
+ Z 2 (th+1 wtn+1)( )(}/tn+1 Ytn)
’) Utn+1
(96)

wt ( trnt+1 ))At,

log RN (f/[‘r,‘r']) = log u
7T'7—/(

1
- 52 0_2 (Vt2n( n+1)
n

tnt1

s
Ju— :<>:<>

Proof. First note that, as the reference has the same forward drift as the diffusion process, we have
- N—-1 3
(V) Tzt P (Ve Ve
(Y7) 1 Pojnt + ©7)

RN(}/}[TJ-/]) = 9 [ — ) o
7 (Vo) T2y PY ey (Ve |V,

1

For brevity, we will use log R, by substituting in the Gaussian kernels we have that
Z H}/tn+1 }A/tn - wtk (Y/tn)AtHz _ ||}A/tn+1 Y;fn + Vtnia (thn+1)At||2
2Ato? 2Ato?
(98)

"<> "<>

log RN = log
Tr

Expanding squares and collecting terms yields
- Yi.)

log RN IOg T + Z n+1 wt,t+1)(Y )(Y;S,Hrl
n+1
1 1 9
- 52027(% ( n+1) % ( n+1))At. (99)
O

n tn41

Remark G.3. By embedding the discretised Y into continuous time Y, we will not change the value

of RN, ie., RN (Y},.) = RN (Yr..)).
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Proof. Let’s consider the continous time embedding formula of the RNDE estimator:

+Z/ L = (7)Y (100)
—Z /m 1 — 2(Yy))ds, (101)

now by construction inside the 1nterval [tn, tnt1] the integrands are constant and thus

] (Y, 1 N
log RY (¥i,.,)) = log i EY )) + 3 Bty — e, (Vo) / vy,  (102)
T \Lr’ n t

log RN (Y/['r,‘r’]) log

tny n
L 2 (g FREPCING B s
- a_T(”tnﬂ (Ys) - wtnﬂ (Ys))§ ds, (103)
n = tnt1 tn
and,
_ (Y, 1 o _
08 RY (¥ ) = log T2k 4 37—yt )T~ ) (108
T n n+1
S R, () 0, (V) A (105)
2 tny1\ 7S tny1\ 7S ’
n Tty
where by construction (Y;,,, — Y;,) = (¥;,, — Y4,) thus we have embedded such that
- B0 e o
IOg RN (Yv['r,'r/]) IOg (Y ) + Z 027( n+1 wt,t+1)(y )(Y;E,LJA - }/tn)
T\ X n tn41
1 1 N
2 Z o? (Vt2 (Y, tnr1) — wt ( ti1)) AL = IOgRN(Y[TvT'])' (106)
n n+1

O

Proposition G.4. (RNC weights non-asymptotic error) We can bound the error between exact
discrete-time SMC weights (using exact likelihoods) and our RNC estimator,

[ log 0 (¥, 1) — log wiNC (Y, )| < O(A2), (107
where
~ N—-1 s >
QT(YT) Hn:1 plr)z+1‘n(}/tn+1‘}/tn>
= ES =
¢ (Yrr) Hn:1 pn\n+1(Ytn

and wRNC(}A’[T,T/]) is the weight estimated by RN()A/[TJ/]) (assuming a perfect score).

exact ( 9

Y[T,T’]) =

w (108)

n+1 )

Proof. Given the Lip assumption on log p, we have:

|| long(yT)/pT'(YT') - 1()g]7‘l'(}/:1')/177"(Y;")‘|L2 S P| |Y‘r’ - YT’ | |L2 (109)
Now combining with Proposition 3.1 via triangle inequality we have that

||log pr (V) /pr (Vo) — log RN (V7 r7) 1| 2
S || 10gp7’<YT)/pT’(YT’) - log RN(}/['F,'r’])_lHL2 + || logp‘r(Y‘r)/pT’(Y‘r’) - long(YT)/pT’(YT')HL2
= |[1og B (Vir 1) —log BY (Vip 1)1 + PV — Yool 12,

< P'VAt (110)
Now moving onto the weights (for simplicity we assume q’,g*/)) =g (pp jE?%) where log g is
Lipchitz o o

1 exact Y —1 RNC Y . < |1 QT(YT) 1 N Y/ -1
|[log w™* (Y7, 7) — logw™ ™ (Yr.71)|[r2 < ||log =— == —log g(R™ (Y[7,-1)) ")

qT/ (YT/) L2
Y,
< L||log prl AT) log RN (Y}, 1) " < P'VAt
P! (YT’ L2
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G.3.2 CONVERGENCE RATE FOR SMC WEIGHTS IN DISCRETE TIME AND APPROXIMATED
SCORE

Proposition G.5. (Discrete time and approximate score bound) Following (Lee et al., 2023; Chen
et al., 2022) we assume:

IV logpr (V7) = s2(Y2)[| L2 < €scores (111)
then
|| log w™*(Viy, 1) = log wi ™ (Vir 7))l 12 < Beseore + P'VAE (112)
where
WKV ) = (3:’) L= pfl+1‘n(Atn+lA‘Ytn) a13)
4r (Vo) TI S 2%y (Ve Vi)

and wiN© (}A/'[T,T/]) is the discrete time weight estimated using R (}A’[T,T/]) with the learned score s?.

Proof. To prove this conclusion, we separate the error contributed by discretisation and by imperfect
score first, and then bound them separately:

|[log wsNC(Yir1) — log w™ (Y, 11| 2 (114)
:H log RG (Y[T,T’])_l - Ing‘r( Y )/pT’(Y ’)HL2 (115)
<|[log Ry (Yir 7)) —log RN (Yirr1)l| 22 + || log pr (V) /97 (Vrr) = log R (Yir 7)) '] 2

(116)
=||log RY (Y{,..) — log R (Y, .1)| 2 + P'VAt (117)

Where the last line follows from Proposition G.4.

Following the time embedding of Remark G.3 and Lemma G.2 we have

log RN (Viyr) = AV + BY + Ay +CN (118)
| o
B N / 5 s = ) (Vo) dW (119)
T/ 1 B B B ~ . ) - 1 ! 1 ) ] )
T )~ (30) (V) ~m(F))ds — 5 | S5l (Te) — (o) Pds (120)
and
log RY (Vi) = A" + BY + ¢} 120
‘T, 1 B B 1 .7_/ 1 - - -

= +/T ;S(Df — ) (Vo) AW, — 5 /T a—guaﬁ’(m) — P (Y)|Pds (122

Therefore,

110 By (Yirr) = log RY (Vir)llze < 1B — BV |lz2 + 1G5 — M|z + [|1A8 ]2 (123)

Let’s focus on the first term first:

ol 1 N —
HBéV - BNHL2 = ‘ / (Vg - Vé)(Yts)dWs (124)
r Os 2
- 1/2
—E V |7? — Ds||2ds] (125)
S €score (126)
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For the second term, let us use the shorthands f¢ = 7¢ — 4, and f = U, — 1), then

171 _
16 =€l =5 [ SR = 7P 1)
[ R
1 T 1 1/2 1 T’ 1 1/2
< — T fFe_ F 2 1 B =112
<E [Q/T 5§||f5 £l ds} E [2/7 ag”fs + sl ds] (129)
< Fegeore (130)

- _ _ 1/2
Where E [% I =+ 1 \st] < F is bounded from Novikov’s condition (which we assume

all throughout) + Jensen’s inequality.

Finally, use the exact same arguments as Equations 128-130 we can see that ||AY || < D’éscore-
Therefore, in summary, we have || log R} (Y}, 1) — log RY (Y, 1)||12 < Eescore. O

H PROOFS

H.1 CORRECTNESS OF SMC WEIGHTS IN EQ. (16)

Eq. (16) is correct SMC weight for marginal ¢, as for a measurable function ~ on X:

Ex e [0 X DHX)] =By g [W(XD)] = Ex g, [R(X7)] (13D

Running SMC with this weight in Eq. (16) has the following convergence guarantee:

Proposition H.1. Let {Xém), w™) (X(g,71) }M_, be the particles and their (unnormalised) weights
returned at the last iteration (denoise from 19 — 0) of the sequential Monte Carlo algorithm with M
particles described in Section 2.1.1. If the weighting function wyq ) is positive and Ega [w[%m] | X 1]

is bounded, then for a bounded, qy-measurable function h, we have

M (m) 2
w m —_
E /h(Xo)qo(Xo)dXo— Y (XS | < om (132)
=1 Z‘:l w(9)
m J
IfEgq. [wﬁo,m] | X, ] is bounded, we have
I W 0y e [ g0 (Xo)dX 133
Mgnoow(o)—/(o)%( 0)dXo. (133)

Proof. Eq. (132) is a direct Corollary of (Mbalawata & Sirkkd, 2016, Theorem 3.4). To apply
Theorem 3.4 of Mbalawata & Sirkkd (2016), we need to verify Assumption 3.1-3.3. Assumption
3.1 is satisfied as we define the marginal ¢; to have bounded density. Assumption 3.2 is satisfied as
our scheme ensures their Eq. (7) to be 0. Assumption 3.3 is satisfied according to our assumption.
Similarly, Eq. (133) is a direct Corollary of (Mbalawata & Sarkki, 2016, Theorem 4.7). O]

Discussion on Assumptions: For convergence in L? we require the following 2nd Order Novikov
like assumptions to be satisfied

- [ ( A

here u® represents all drift terms we use in our algorithm (ay, by, ¥, ¢, u, v, etc.). For the a.s.
convergence, we additionally require E [exp (2 J7 u* (Xt)||2dt> ’XT/] < C. Note that, for

’

||u*<Xt>|2dt> ]X} <C (134)
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applying Girsanov’s Theorem, we already require the following assumption:

1"
E [exp (2/ Iui(Xt)IIth> ’XT/

We note that assuming E [exp (f:/ ||ui(Xt)||2dt) ‘XT} < C or

<C. (135)

E [eXp ( I 2||ui(Xt)||2dt) ‘XT] < C implies the first-order Novikov condition in Eq. (135),

and hence Proposition H.1 requires a stronger assumption than the standard Novikov required for
Girsanov theorem.

H.2 IS PERSPECTIVES FOR RNE, CONNECTIONS TO HUANG ET AL. (2021)
Proposition C.1. let p;(x;) be the marginal density of X; = x; satisfying the backwards SDE:
dX; = 1 (Xp)dt + edWs, X1 ~ p1. (136)

Consider a forward process Y; with drift u;, and define R}, as Eq. (10), we have
pe(xe) = E [Pl(Yl)RZ(Y[t:l]”Yt = xt} ) (137)

where the expectation is taken over the forward process within the time horizon [t, 1] conditional
on Y; = x;. When discretised witht =t <ty < --- <ty = 1:

N-1

anl pTVL|n+1(Ytn |Y;5n+1)
N ¢

Hn:1 pyul+1\n(yvtn+1 ‘thn)

Pty (‘rtl) ~E Pty (}/tN)

Yy, = xh] . (138)

Proof. Let’s define the path measure of Eq. (136) as P. We also denote the path measure of the

forward process Y; with drift u,, starting from some ¢;, as 6 Recall the definition of R, in Eq. (10),
we can see that

dp 0(Y?)
el “ag! 139)
( [t,l]) da( [t’l])pl(Yl) (
Hence we have
[ aP v
B[O R Ve [Ye = 2] = _pl(Y1>(ﬁ(Y[t,1})§IEYtl)) Y, = xt] (140)
1 aP
_l/qt()/t) da( [t,l]) t t‘|
- pt(Y;) dﬁ(t 1]|t
| 4:(Ye)/q: (Y1) da(t,lnt( 1) |Ye = 2
) / WPy (143)
) (144)
Here we use B(t,l] ¢ to represent the path measure P conditional on values X =z att. O

Corollary C.2. The relation in Eq. (30) can be simplified to

1
pi(ee) =B | B [pl(Zl) exp (/ V- Vt'(Zt')dt/)
’ t

Zy = wt} ; (145)
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Proof. Using the conversion formula (Vargas et al., 2023b, Remark 3) with Eq. (12), we have that

1 1 — 1 1
log B (Vie) = [ o dnw—/ 0+ 5 [ Sl e )ae (146)
t’ t!
:/" A [ T f/‘ (w2 Il |12 + 9 - vyr)de
t/
(147)
which for d_}} ¢ = updt + eth + can be re-expressed as:
1
log R, (Y1) = / — (v —uy) ) dW — / ||ut/ — v+ EV - vp)dt. (148)
t/ t'

Notice that, by Girsanov theorem, we have [ 1(v — u) (W/) [ EGlu—v|[?)dt = log 4 7 thus

1
pt(xt) = EZ[t 1]"’3" |:p1(Zl) exp (/ V- I/t/(Zt/)dt/) ‘Zt = .’L't:| s (149)
’ t

O

Corollary H.2. The RNE-IS relation can also be simplified to

pe(xy) = Ez. [pl(Yl ) exp (ft = (Ve — uy) W ft 2 [lug — vy || + V- I/t/)dt)

Y, = It}
(150)

1
1
> expEg. [logpl(Yl) + (—/ (Pﬂut/ — yt,||2 + V- yt,)dt’> Y, = xt} (151)
t v

which recovers the density estimator of (Premkumar, 2024, Eq. 3.5) and the Variational objective
of (Huang et al., 2021, Eq 16). Additionally, we note

1
E|—3>u |:/ V- Vt/dt/
t

and we will recover the divergence-free density estimator of (Premkumar, 2024, Eq. 3.8).

1
= xt:| - / _Ep?/('\yt:m) [Vlogpg’(lm = xt) ’ Vt'] dt’ (152)
t

Proof. Eq. (152) follows Eq. (148) with Jensen’s inequality. For the divergence-free estimator:

Bu [/ V- vpdt'|Y; } /1 Ep ([Vi=a0) Vv dt (153)
t//mwﬁ—%VVMth (154)
:/—/ﬁwwmzmywww (155)

t
5[—/wwn=mwmwwm=mywwwwa%>
= /tl —Epy (vi=a,) [VIog pii (-[Ye = 24) - /] dt’ (157)
O

Additionally, if we access the unnormalised version of p; and p;, taking the expectation over p;, we
will obtain Jarzynski equality (Jarzynski, 1997) and Escorted Jarzynski equality (Vaikuntanathan &
Jarzynski, 2008), which can be used to estimate the free energy difference between two states with
learned transports (He et al., 20252).
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H.3 EQUIVALENCE TO ITO DENSITY ESTIMATOR

The RNDE in Eq. (27) is equivalent to It6 density estimator in continuous time:

2
dlogps(Y:) = *<V - fi(Ye) + Viog pe(Xi) - (fe(Yz) — %Vlogpt(Xt)Ddt + Vlogp(Y7) - 1%,

(158)
Proof. With expression of I? in Eq. (12) and the conversion rule (Vargas et al., 2023b), we have
log pe(Y;) = log p1 (Y1) + log R (Y}z,17) (159)
1 1 1 1
1 — 1 1 1 e 1 1
—togm (V) ~ [ w8+ g [ lelPar+ [ g @ -5 [ par
t € 2 /iy € t € 2 )y €
(160)
1 — 1 (1 51
=logpi(Y1) — [ —pe-dYy + 5 [ —|lp|"dt
¢ € 2 /i €
1 1 [t !
+ 4%'ﬂ@—*/‘7WN%f+/Y%Mdﬂ (161)
‘ et, 2 )y € +

For a pretrained diffusion model considered in (Karczewski et al., 2024; Skreta et al., 2024), we set
€ = 04, iy = fi,and v, = fy — 02V log p;. Therefore,

1
log p¢(Y;) = log p1(Y1) */ Vlog pe (Yer) - AV
t

1
+/ Vlogpy (V) - (ft'(Yt’) - Vlngt/(Kt’)) dt’ +/ V- fo(Ye)dt” (162)
t

O

H.4 CONNECTIONS TO KEYNMAN-KAC CORRECTOR (SKRETA ET AL., 2025)

As stated in Eq. (37), for some special cases, our proposed RNC is theoretically equivalent to FKC. In
this section, we will prove these connections. The proof directly applies Eq. (12) and the conversion
formula (Vargas et al., 2023b) to the importance weights in Eqgs. (17) to (19).

Before showing the equivalence between FKC and RNC in detail, we need to clarify one
important concept. In our importance weight calculation, as shown in Eq. (16), we have made a
few important details implicit for the sake of brevity. In particular, notice the following more explicit
notation for the RND:

d@" dafﬂ,’?‘;’]

Wz, 7] (X[T T’] d6 [‘r T']) = dbquﬂ] ( [T,‘r’]) (163)

where 6 ) is used to denote that the target process has as its initial distribution ¢, and moves
forward in tlme from 7 to 7/, e.g.

AY; = by (Y,) dt + & dWy, Yy ~ . (eg ¢, =pP), te[r7 (164)

and similarly 6 7, T*, is used to denote that the proposal process has as its initial distribution g,/
and moves backward in time from 7’ to 7. It is important to notice, when simulating the target
process 6 A from 7 to 7/, it will not necessarily result in samples following ¢.. In other word,

assuming two adjacent steps [s, 7] and [7, 7], then 6 q*,] is not the same as continuing 6

[s T]
to 7'. Note this clarification needs highlighting as we abuse dab / d6 (Xt,7) to denote RNDs
at different time intervals without providing a time index on Q (only on X). In fact, we use it to
represent a sequence of path measures indexed by time as opposed to the path measure of the
same SDE simulated within different time horizons.
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In what follows, we will demonstrate which choices of a; and b; recover the FKC weights from the
RNC weights, thus reinterpreting these weights as the RND between two SDEs.

The proof follows the same principle: (1) we first express the importance weight of RNC using a
continuous formulation defined by Eq. (12), and (2) apply the conversion formula (Vargas et al.,
2023b) to convert forward and backward It6’s integrals in the same direction. (3) If there are additional
terms, such as a reward, we will apply Itd’s Lemma to further simplify it.

H.4.1 ANNEAL FKC

Proposition H.3. Anneal-FKC states that, for a perfect diffusion model (as defined in Egs. (1)
and (2) or Egs. (3) and (4)), one can implement the following backward sampling SDE:

—
dX; = (fi(X4) — 0oy Viegpi(Xy)) dt + CordWr, (165)
and the importance weight for Sequential Monte Carlo satisfies the backward ODE:
o2
togur = ~(8— 1) (V- (%) + L1V g (X ) . (166)
where
n=p+1-PFa, ¢(=+14+(1-p8)2a/5, Vaec]0,1/2]. (167)
This is equivalent to our proposed RNC (Eq. (17)), when
ar = fr —no;Vlogps, by = fi — (no; — Be;)Viogp:, e = (o, (168)

Proof. We consider the SI characterisation of the diffusion model, as defined in Egs. (3) and (4).
Therefore, we have

€2 €2 — o?

e =Vt+5V10gpt =fi+ 5 Vlog p; (169)
€2 €2 +02

vi=vi = 5 Vlegp = fy = =—5—Vlogp, (170)

Therefore, with the continuous-time expression of R in Eq. (12) and the conversion formula (Vargas
et al., 2023b):

— 1
legRZ = 7Vt 2Nt . (<tl_Xt -V- /,Ltdt + TGQ(Vt — ‘ut)(l/t + ILLt)dt (171)
i i
— €2 —o? o?
=Vliogp: -dX; — V- | fi + 5 Viogp: | dt — Viogp, - (ft — EVIngt)dt
(172)
Similarly, we have
-b 1
dlog R = -2 - dX; — V- bydt + 5oz (@0 = ) (a + bt (173)
i ¥
= BVlogp; - dX; = V - (fi — (no7 — Be})V log py) dt
2
— BVlogp; - (ft — (nof — %)Vlogpt> dt (174)
Then, according to the RNC weight given by Eq. (17), we have
dlogw; = Bdlog R;, — dlog Ry (175)
2 _ o2
=-V- (ﬂft + B~ Viogp — fi + (o} — ﬁef)Vlogpt) dt

(€0)

o2 2
— BVlogp; - (ft - éVlogpt — fe+ (noi — B;)Vlogpt> dt (176)

(2)
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To compare with FKC, we set:

e =Coy, n=p+(1-PBa, (=+1+(1-p)2a/B Aa77)
We first look at (1):
€ — Ut2 2 2
Bfe+8 Viegp: — fi + (noi — Be;)Vlogpy (178)
2 2
=(B—1)f, — BC o} Vlogp, + (nat — 62> V log py (179)
1+ B8)2a/B)o o?
(5 1)fi - - B g+ (5 (1= Bajet 27 ) V1o 30
=(B-1)ft (181)
We then look at term (2):
o} Bei
fe — 7V10gpt — fe+ (o} — 7)V10gpt (182)
2 2
= — S Vlogp, + (no — BC L)V log (183)
o? + (1 - B)2a)0?
=~ T logp.+ (8 + (1 —@)a)a? SR G sy, s
o2
=(8—=1)% Viogp, (185)
Putting things together, we have
1
dloguwy = —(8 - 1) (2603Vlogptll2+vft> dt (186)
which coincides with the expression by FKC. O

H.4.2 Probpuct FKC

Proposition H.4. Product-FKC states that, for two perfect diffusion models, one can implement
the following backward sampling SDE:

4, = (fu(X0) = no?V1ogp"(X,) — no?V1ogp? (X)) dt + CondWy,  (187)

and the importance weight for Sequential Monte Carlo satisfies the backward ODE:
dw, = — ((2/3 ~ )V - fu(X,) + 078V log pf” (X,) - Vlogp{” (Xy)

2
+%5( — 1)[|[VIogp” (X:) + Vg p{( t)2>dt, (188)

where

n=F+1—-pBa, ¢=+1+1-p)2a/8, Vac]|0,1/2]. (189)

This is equivalent to our proposed RNC (Eq. (19)), when
a; = f; — no; (Vlogp —|—Vlogp ))

by = fi — (no} — €B) (VIngt + Vlog p! )) : (190)
= CO’t.
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Proof. Similar to the anneal case, for i € {1, 2}, we have

(@) Vi - 7 1 i i
dlog By = == X, = V- pudt + o % s — M + e a9
t
= Viogp{" - dX, - (ft 49 G log ’) dt
2 .
~Viogpt” - (fi — tVlogpi”)dt (192)
and

—b 1
d]ogR?:_at t d<._X5_Vbtdt+ Qj(at—bﬂ(at—‘rbt)dt (193)

t €t
= B(Viogp) + Viogp!?) - dX, (194)

-V (ft - (nat - ﬂet)(VIng(l) + Vlogp@))) dt

— B(VlogpiM + Viogp}® >-(ft—(n 2 thw gpt>+v10gp<2>)) dt

(195)
Then, according to the RNC weight given by Eq. (19), we have
dlogw, = Y dlog R\, —dlog R} (196)
i={1,2}
(m + B (Vlog ) + Viogp?) — fi + (1o — B)(VIogsl") + VIng“))) dt

(€]

A% logp§1)~ <f - of Vlogp(l) fi + (nof — B ‘i

)(Vlogp + Vlogp§2))> dt

2)
— BV logp? - <f ot VIngt — fi+ (o} — %)(Vlogpt +V1ngt2))> dt

(3)
(197)

First, let’s look at term (1), same as Eq. (178), we obtain (1) = (25 — 1) f;. We now turn to term (2):

i~ 2V 10gp!) = i + (02 — ) log " + V1ogpl?) (198)
== gwogpf bt = 2 S5H)(Viogp;! + Vlogp*) (199)
_ o} (1), 401 @)
=(8—1)% Viegp, " +5--Vlogp; (200)

Similarly, for term (3), we have
2

fe = &Vlogp@) —fi+ (Wt2 ﬁ ZE)(Viogp(! + Viogpf?) (201)

=(8-1)7% ' V1ogp® + B2L Vlogpt Y (202)
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Therefore, putting them together, we have

dlogw; =8 Y dlogRY) —dlogR{
i={1,2}
==V -(28-1)fdt

2
—ﬁwogpﬁ”-((ﬁ RS v10gp“’+/3“;v10gp§2)>dt

2
A% logth) ( Vlogp(2) + 52V1ogp£1)> dt
2
- BV 1ogp(1) ( Vlogp(l) + (8- 1)02tV10gp§2)) dt
2
— BV logp{? ( v1ogp + (8- 1)0;V10gp§”> dt

— Bog Vlogpg Vlogp
2
g
= V- (28— Dfudt = B8~ 1) % [ VIogp" + Vlog i *dt

— Boiv logpt -V logp(Q)dt

H.4.3 CFGFKC

(203)

(204)

(205)
(206)

(207)

(208)

Proposition H.5. CFG-FKC states that, for two perfect diffusion models, one can implement the

following backward sampling SDE:
aX; = (fu(X0) = (1 = B)o?V logp(? (X1) — Bo?V10gp(? (X,)) dt + WV,
and the importance weight for Sequential Monte Carlo satisfies the backward ODE:
ot W x
dwy = —=-B(8 ~1)[|Vlogp, " (X:) =V log p{? (X1) |2t
This is equivalent to our proposed RNC (Egq. (19)), when

a=fi— o (1= A Vlogpl" + 8VIogp), bi=fi, a=a

Proof. We directly consider ¢; = oy.

Similar to the anneal and product case, for i € {1, 2}, we have

L@ (#)
v H i i i
dlog R = -1 X, - VPt b S 08— )04 4 )
Oi

. 2 .
= Viogp(” - dX; = V- fudt — Viogp” - (f; = -V logp(”)at

and

—b 1
dlog R = — 22 X, — V- bydt + 557 (ar = bi)(ar + bi)dt

t t
= ((1- B)Viogpl" + BV logpl?) - X, — V- fidt

0.2
~((1 - B)Viogp” + AV Iogp”) - (fz -5 ((1 — B)Viogp + BVlogp§2>>) at
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Then, according to the RNC weight given by Eq. (19), we have
dlogw; = (1 — B)dlog R") + fdlog RYs, — dlog Ry (216)

0'2 0'2
—(1—-B)Viogpi" - (ft - éVlogpﬁl) —fi+ é((1 — B)Viogpl" + v 1ogp§2))>dt

0'2 0'2
~ BV logp;” - (ft =5 Viogp” — fit+ < ((1 - B)Viogp;” + BV 1ogp§2)>)dt
(217)

2
(1- B)ﬁ% (v log p» — v1ogp<2>) : (v log p1) — v1ogp<2>) at (218)
0

H.4.4 REWARD-TILTING FKC

FKC also derive the reward-tilting formulas. Due to the update of their arXiv, they have two versions.
In this section, we discuss that both are special cases of RNC.

Version 1 In the appendix of FKC (V1°, Skreta et al., 2025, Proposition D.5), the authors derived
FKC for reward-tilting. However, their conclusion requires the reward model to be twice differentiable,
and it necessitates computing the Laplacian of the reward model in order to form the importance
weight. We note that this reward-tilting formulation can be derived as a special case of our RNC
framework which in contrast is Laplacian free.

Proposition H.6. Reward-FKC states that, for the following backward SDE
AX; = ue(Xp)dt + o, dW, (219)
and the importance weight for Sequential Monte Carlo satisfies the backward ODE:
dw = [BVr(X) - (w(X0) + 07V log pu(Xe) + FAVr(X0)) + B Ar(X) — er(Xy)] at
(220)
This is equivalent to our proposed RNC (Egq. (18)), when
ar =u, b =u(Xy) + 07 Viogpe(Xy) + BioiVr(Xy), & = oy (221)

with the intermediate reward ry = [yr.

Proof. For the processes considered in Eq. (219), vy = us and py = uy + 0,52 V log p¢. Similar to the
anneal, product and CFG cases:
Ht

v — 1
leg RZ = — t02 . c<1—Xt -V Mtdt + @(Vt — /,Lt)(Vt + /J/t)dt (222)
t t

2
= Vlog p; (T)C — V- (ug + 02V log py)dt — Vlogp; - (us + %Vlogpt)dt (223)

and

b

by 1
dlog R = —% (X, = V- budt o+ g (ar = bi) (@ + )t (224)
t t

= (Vilogp; + B Vr) - X, — V- (uy + 02V log py + B,02Vr)dt

2 2
—(V Ingt + b’tVr) . (Ut + %V lngt + ﬁtO;V’I"> dt (225)
Additionally, applying Itd’s Lemma to r; = (§;r, we have
Ut2 S
d’l"t(Xt) = — 8tBtT(Xt) + Bt?AT(Xt) dt + ﬁtVT(Xt) . dXt (226)
Shttps ://arxiv.org/abs/2503.02819v1
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Therefore:

dlogw; = d(r¢(X¢)) + dlog R}, — dlog Ry (227)

2
= (@) + B ARCX) ) i+ BTG @28)

2
+M— V - (ug + 02V log p;)dt — Vlog py - (us + %Vlogpt)dt (229)

—(Vlo V) - dX + V- (ug + 02V log py + Bt Vr)dt (230)

2 2
+ (Vlogps + B Vr) - <Ut + %Vlogpt + 5t02tvr) dt (231)
- (232)
o
— Viogp; - (ug + 7V log py)dt (233)
(234)
of o}
+ (Vlogp: + B:Vr) - <ut + ?Vlogpt + By QVr) dt (235)
- (236)
0'2 0'2 0'2
+ Vlogp; - ﬁt?tVr + BV - (ut + ?tVIngt + BtQtVr) dt (237)
o2

= + B Vr - (ut + 02V logp; + BtQtVr) dt
(238)
[

Version 2 In a recent work, Chen et al. (2025) proposed and empirically explored a formula for
solving inverse problems without the need for the Laplacian. Shortly after, in the updated version of
FKC (V2°, Skreta et al., 2025, Proposition D.6), the authors included a similar result for reward-
tilting. By carefully designing the sampling process, they can cancel the Laplacian of the reward
model. As with Version 1 we now show how this reward-tilting formulation can be derived as a
special case of RNC.

Notably, comparing the two FKC variants highlights RNC’s greater design flexibility: FKC
requires a special design to eliminate the Laplacian term, while RNC relies on a single, unified
formula that does not require the Laplacian, and hence supports a wider range of sampling processes,
including the heuristic choices proposed by Chung et al. (2023); Song et al. (2023b).

Proposition H.7. for a perfect diffusion model (as defined in Egs. (1) and (2)), one can implement
the following backward sampling SDE:

2

o —
dX; = (f(X¢) — 02V log ps(X;) — ﬁt7Vr(Xt))dt + 0 dW; (239)

and the importance weight for Sequential Monte Carlo satisfies the backward ODE:
dw, = [B,9r(X,) - (fi(Xe) = §Vlogpi(X)) - Zr(X,)] at (240)

This is equivalent to our proposed RNC (Eq. (18)), when
2 a; o}
ar = fr — oy Viogp, — 5t?V7”7 by = fi + 51&7VT, €t = O¢ (241)
Ghttps ://arxiv.org/abs/2503.02819v2
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with the intermediate reward ry = [;r.

Proof. Similar to the anneal, product and CFG case, for the diffusion model, we have
2
dlog R;, = Vlogp; - dX, — V- fidt — Vlegp; - (fi - %twogpt)dt
and for the sampling & target processes:

dlog Ry = —

a; —b 1
¢ 2 ‘ . C(i_)(t -V btdt + —Q(at - bt)(at + bt)dt
o 20}
2
= (Vlogp, + BVr) - dX; = V- (fi + B - Vr)ae
o2
—(Vlogp; + B Vr) - (ft — 2tV10gpt> dt
Again, applying [td’s Lemma to 7, = [3;r, we have

2 [
dry(X;) = — (@ﬁtT(Xt) + Bt(;tAr(Xt)) dt + B Vr(Xy) - dX;

Therefore:

dlogw; = d(r¢(X;)) + dlog R}, — dlog Ry

0.2
= - <at6tr(Xt) + Bt;AT(Xt)> dt + B, VX aX,
2
+ Vlogpr=dX; — V- fudt = Vlogp; - (f — °-Vlogpy)dt

2
— (Vlog petBV7] - 0K, + V- (fy + 5 L Tr)at

2
+ (V logpt + 5tV7“) . (ft — ?Vlogpt) dt
op
— Vlogp: - (ft — 7V10gpt)dt

2
+ (Vlogp: + B:Vr) - (ft — J;Vlogpt) dt

2
= + B Vr - (ft - J;Vlogpt> dt

H.5 CONNECTING RNE ENERGY REGULARISATION WITH FPE REGULARISATION

(242)

(243)

(244)

(245)

(246)

(247)

(248)

(249)

(250)

(251)

(252)

(253)

(254)

(255)

Our proposed RNE regularisation is connected to the Fokker-Planck Equation (FPE) regularisation
(Plainer et al., 2025) in the limit. We assume the diffusion model’s noising drift is f; and the denoising
driftis f; — 02V log p;. To make the discussion easier, we now swap the diffusion direction, so that
po corresponds to the Gaussian side, and p; corresponds to the data side. Therefore, the diffusion’s

noising and denoising processes are given by

dXt = —ft(Xt)dt‘FO'tWa X1 ~ P1
AX, = — fi(X0)dt + oF logpi (X))t + oW, Xo ~ po
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We first recall the FPE in log-space:

o2 o2
Ologp(Xy) =V - fr — Vogp(Xy) - fr + éHVIOgPtHZ + ?tAIngt =0 (258)

‘We then look at RNE:

AL N t4+At .
log peyat(Xeyar) —logpy(Xy) = / ;%Vlogps -d X — / fs(Xs) - d X
t t

s
t+At

t+At - AL , , 1 ,
+ fe(Xs) dXs - 27||05V10gps 7fs|| d5+ 7”][‘?” dS (259)
‘ ¢ O p 20,
Using the conversion rule (Vargas et al., 2023b), we have:

t+At 1 t+At
logpisar(Xeear) ~logp (X) = [ —o?Vlogp, T+ [ V- L(X)ds Q60
t

s t

t+At 1 t+At 1
- / L 02V logp, — fiPds + /
+ 20, +

5o |IfslPds 261
Os
When At — 0, we have
1 2 1 2 2
dlogpi(Xi) = —0iViogp, - dXy + V- fo(Xs)dt — 5—|lo V log p[|°dt + Vog py- fdi
t t

(262)

Due to Itd6’s Lemma, we have

2
dlogp;(Xt) = 0O log ps(X¢)dt + %Alogptdt + Vg pi(Xy) - dX; (263)

We can hence write the RNE relation as
2
8y log ps(X;)dt + %Alogptdt—i—Vl T dX,

1 1
_W— V- fo(X)dt + o lofViog pi|*dt — Viogpi- fdt =0 (264)
t

which gives us the same expression as the FPE relation.

I ADDITIONAL EXPERIMENTAL DETAILS

I.1 ADDITIONAL DETAILS FOR INFERENCE-TIME ANNEALING

Network and Diffusion Hyperparameters. For ALDP and LJ-13, we use the EGNN (Hoogeboom
et al., 2022) with 4 layers and 64 hidden units. Following Karras et al. (2022), we parametrise the
network as “denoiser” to output the mean value given noisy samples. We also rescale the input by ¢;,,
and add skip connections following Karras et al. (2022). For GMM, we calculate the analytical score
instead of training diffusion models.

We choose a VE-SDE: dX; = \/E(W , where ¢ € [0.001,10]. We discretise the time horizon
according to Karras et al. (2022) with N = 200 steps, i.e.,

- (tl/P i E(tl/p _tl/p>)p7 n=1,---,N (265)

min N max min

Dataset. Alanine Dipeptide (ALDP) is a target with 22 atoms, each of which has 3 dimensions.
The target is defined in implicit solvent, with the AMBER {f96 classical force field. Following He
et al. (2025a), we gather samples from a 5-microsecond simulation under 300K with Generalised
Born implicit solvent implemented in openmmtools Chodera et al. (2025). The Langevin middle
integrator implemented by Eastman et al. (2023) with a friction of 1/picosecond and a step size of 2
femtoseconds was used to harvest a total of 250,000 samples.
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Lennard-Jones (LJ)-13 is a system with 13 particles, with Lennard-Jones potential between all pairs
of particles 7 and j. Concretely, the entire potential of the system is defined as:
2

1 & 1 &
U=> UullXi = Xl) +5 D || Xn— 5 D X, (266)
i#£] n=1 n'=1
where
o\ 12 o\ 6
Uwi(r) = 4e [(T) - (;) } (267)

2
is a harmonic oscillator.

Here S0, [ — & X0, X2
FKC Details. Skreta et al. (2025) discussed two choices for annealing: target score simulation,
where one rescales the score by the temperature, and tempered noise, where one rescales the diffusion
coefficient. In our experiment for ALDP, we report the former, as we found the latter achieves a
significantly worse performance with severe mode collapsing. This is in line with their observation
for GMM (see Figure 2 in Skreta et al. (2025)).

RNE Details. For all experiments, we use an analytical reference with the VE process where 7 is a
standard Gaussian.

Resample Details. For ALDP and LJ-13, we run SMC with a batch size of 500, and collect samples
by repeating 50 batches. For GMM, to have a clearer visualisation, we collect 100 batches. We
accumulate the weight along the generation process, and calculate Effective sample size (ESS). If
ESS is smaller than 75%, we will perform resampling and reset the weight of all particles to 0.

Computational Resources. All experiments are run on a single NVIDIA H100 GPU.

1.2  ADDITIONAL DETAILS FOR MULTI-TARGET SBDD

Introduction. Structure-based drug design (SBDD) (Blundell, 1996) is a main paradigm in drug
discovery—given a protein target (i.e. pocket), we aim to design (small-molecule) ligands that bind
to it. Recently, multi-target SBDD has attracted increasing attention to design ligands that bind to
more than one target (Bolognesi & Cavalli, 2016). This problem can be formulated as sampling
from the product of multiple diffusion models because of the inaccessibility to ligands that bind to
multiple targets (Skreta et al., 2025). We take the pre-trained diffusion model from Guan et al. (2023),
which is trained conditioning on each different protein pocket and generates ligands conditioned
on a single target. We consider the dual target scenario with 20 pairs of protein targets, randomly
sampled from the setting by Zhou et al. (2024). We validate the performance mainly based on the
docking score calculated by Autodock Vina, with additional basic statistics and physicochemical
properties (Eberhardt et al., 2021).

Dataset. We randomly sampled 20 pairs of protein targets from the dataset provided in (Zhou et al.,
2024) with indices: (356, 233), (186, 341), (36, 333), (84, 41), (406, 169), (255, 39), (423, 45), (277,
262), (21, 334), (36, 121), (378, 143), (274, 307), (16, 143), (36, 345), (421, 420), (264, 26), (230,
70), (350, 137), (324, 423), (110, 39).

Statistics. The diversity is calculated as the pairwise distance between any two generated ligands
(1 - Tanimoto similarity of their Morgan fingerprints). The quality is evaluated by the percentage of
ligands that have QED > 0.6 and normalized SA score > 0.67.

Experiment Details. For each target, we sample 32 ligands with size 23 following (Skreta et al.,
2025). We take pre-trained diffusion models conditioned on each protein target in (Guan et al., 2023).

RNE Details. For all experiments, we use an analytical reference with VP process at stationarity,
following Vargas et al. (2023a).

B
é”pé”) . In our

Product Details. We consider the product of two diffusion models, i.e., gy (p
experiments, we select 5 = 2 as it shows the best performance according to Skreta et al. (2025).

Resampling Details. For each protein target, we run SMC with a batch size of 32. Following Skreta
et al. (2025), the resampling is performed when ¢ € [0.4T, T.
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Computational Resources. All experiments are run on a single NVIDIA H100 GPU.

1.3 ADDITIONAL DETAILS FOR TRAJECTORY STITCHING EXPERIMENTS

Network and Diffusion Hyperparameters. We use an MLP of 5 layers and 512 hidden units. We
use the VE (EDM) schedule with preconditioning (¢;y, Couts Cskip) following Karras et al. (2022).
Following LLuo et al. (2025), when training the network, we normalise the data to [-1, 1].

Dataset. We use the dataset pointmaze-medium-stitch-v0 (Park et al., 2024) This is a
dataset of short trajectories of length 64.

Choice of Reward Function Our reward function need to impose (1) first trajectory starts from
the initial position and (2) the last trajectory ends at the target, and (3) consecutive trajectories are
connected. Here, we follow He et al. (2025¢) to define our reward function. For easy reference,
we describe the design choice below. We will first define the reward r for the clean space (t = 0),
followed by the reward r, when ¢ > 0. For each of the 3 constraints, we impose a combination of L?
distance and L' distance. For now, we use X7 to represent the i-th point in the j-th short trajectory.
We use —1 to represent the last element, following the index convention of Python. We use O and P
to represent the initial and target points.

Reward for initial point: 7€ = —\o(A2[|X%% — O[3 + A\p1|| X0 — O]} (268)
Reward for target point: 7 = —X\p(Ap2 || X271 = Pl|2 + A || X071 = P (269)
Reward for neighboring trajectories: (270)

Y = = DTNl XIT = XY A | XIT - X @7
J
where we set A\o = Ap = 100 x J, Ay = 100, Az2 = 1 and A2 = 10. and the final reward is:
r =10 4P gy 72)

For the intermediate reward r;, we define it following:

ro(XP, X{ - X{) = Be - r(ELXo| XP]E[Xo| X[, -+ E[Xo| X)) (273)
We use X f to represent the sample at diffusion time step ¢ in the j-th short trajectory. E[Xo|X tJ ]
is calculated by Tweedie’s formula. 3; is a smooth function between 5; = 0 and 5y = 1. We set

Bt, =1 i/p + %(5(1)/[) — ﬁi/p)]p and p = 10. When sampling, we discrete the diffusion process
into NV = 600 steps and apply resample at every step.

RNE Details. We choose b, to the standard noising process, and a; to be reward-guided process.
More precisely, we add an extra term V7 to the original score. We apply SMC with a batch size of
10,000. The SMC weight is calculated easily by RNC:

(1) (L)
Wir,r] X eXp(rT([XT s " aX 3 ]])))) (H RV(Z) (X(l) )) [Rg([X(l)
l

exp(ro (X0, X R R [’

,X(L) ])}_1.

[r7]
(274)

Computational Resources. All experiments are run on a single NVIDIA RTX 4090 GPU.

1.4 ADDITIONAL DETAILS FOR CTMC-RNE

Network and Diffusion Setups. We use the MaskGIT model (Chang et al., 2022) as our network.
This model is reproduced in PyTorch by Besnier et al. (2025) and we use their pretrained model
weight. This is a model with two components, a VQ-GAN and a latent model to predict masked token
value conditional on the unmasked region. This model on its own is not a diffusion model. However,
similar to Ren et al. (2025), we can turn MaskGIT into a masked discrete diffusion by introducing a
stochastic masking schedule. More precisely, following Shi et al. (2024), we introduce a stochastic
masking schedule ;. Following the notation of Shi et al. (2024) where we use e,,, to represent a
one-hot vector where element at the mask index is 1, the forward (masking) process is defined by

,
(zt] (1 O‘t)1ell> x) (275)

Qs

p(x¢|zs) = Cat (mt
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and the backward (unmasking) process is defined as

pla,Jae) = Cat ( —

.
(1 b AT (MaskGIT (2) — em)T) xt> (276)

where MaskGIT (z;) predicts the probability of tokens given input z:;.

Choice of Reward Function. We define the reward function r by ImageReward (Xu et al., 2023). It
takes a text prompt and an image, outputting a score reflecting the alignment between the image and
the prompt. We amplify the IR value by 10 to amplify the reward strength. Note that IR is defined
over images, while our masked diffusion is in the latent discrete space. Therefore, every time we
evaluate the reward, we need to first reconstruct the image by the decoder of the VQ-GAN. We define
the intermediate reward r;(z;) = r (&), where & is obtained by directly input z; into MaskGIT, and
taking the token with the largest probability.

RNE Details. When generation, we use a CFG strength of 2. We choose b, to be standard unmasking
process (with CFG), and a; to be the standard masking process. We discretisation the unmasking
process with 128 steps. We apply a batch size of 32, and resample at every time step except the first
and the last one to aviod numerical issue.

1.5 ADDITIONAL DETAILS FOR TRAINING ENERGY-BASED DIFFUSION MODELS

To obtain X; and X4 A+ for the objective Eq. (22), we simply add noise to the training data. Plugging
in the definition of R, we obtain the regularisation term:

Ri = Eupynraeo.tllsa(log p” (we|zey ae) — log p" (w1 atl2t))

+1og peiat(erar) — logpi(a)||> (277)
We can also use the reference process as introduced in Section 3, leading to the following objective:

Ra = Euyyarsznsmontl| 59| log p” (z4]zi1as) — log p¥ (ze|esar)

— log p" (zi4-acl2e) + 10gp¢($t+At|xt) +log my () — log Ty At (Ti4-Ar)

+logperar(Tirar) —logpi(z)|*  (278)
The entire training loss is

L= EtExo Ezt|xo E$t+At\zt [EDSM + ARRl or 2] ) (279)

where we choose the strength Az = 103 and At = 10~* and found these hyperparameters generalise
well across difference targets.

For both GMM and ALDP, we use a VE process following Karras et al. (2022) (dX; = \/EW R
where ¢ € [0.001, 10]), and take the inner product between the input and network output to obtain a
scalar value as the (negative) energy, i.e., log p:(x+) =~ gg(z+,t) = NN (cinZt,t) - ¢, Wwhere NN is
the neural network, ¢;, is the rescaling factor used by Karras et al. (2022). For GMM in 100D, we
found it is beneficial to add another scalar network: log pi(z;) =~ go(x¢,t) = NN(cinxe,t) -z +
N N5 (cinxe, t) where N Ny outputs a scalar. We use a standard MLP for GMM and an EGNN for
ALDP. We scale up the RNE regularisation by A as it is generally close to 0, which results in the
following loss function:

L= EtEonwt\IoEthrAtla:t [t2€DSM + /\RRQ] y gDSM = |\Vlog/\/(xt|a:0,t2) — Vgg(l‘t, t)||2
(280)

where we choose Az = 10 and At = 10~*, and we sample ¢ by logt ~ N (—1.2,1.2) following
Karras et al. (2022). We found this set of hyperparameters works well for both 2D GMM and ALDP.

Details on Dual SM Baseline. Dual SM (Guth et al., 2025) proposed a Time Score Matching
regularisation term, adding to the DSM objective, to learn a better energy-based diffusion model:

Crimesm = [|0rgo (¢, t) — Oy log p(z¢| 7o, t)||? (281)
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We use the same VE process following Karras et al. (2022), and hence log p(w¢|xo,t) = N (x¢|z0, t2).
We also reweight the Time SM and DSM term following (Guth et al., 2025), leading to the following
loss:
2 2
L =EE:Eq, 2 EéDSM + ﬁfTimeSM (282)

where d is the dimensionality. Note that the exact form of the objective is different from that used by
Guth et al. (2025) because they assumed log p(z¢|xg, t) = N (z¢]xo, t). However, we follow their
principle to ensure unitless of both Time SM and DSM terms.

1.6  BACKGROUND AND DETAILS FOR FREE ENERGY ESTIMATION WITH THERMODYNAMIC
INTEGRATION

1.6.1 BACKGROUND ON FREE ENERGY

We first provide a brief introduction to the background on free energy, following the discussion of
He et al. (20252a). For a more comprehensive treatment, we refer the reader to He et al. (2025a).
Precisely, the free energy is expressed as:

F=—-logZ, Z = / exp(—U(z))dz (283)
Q

where Q C RY, U :  — R is the energy function, assumed to be such that Z < co. In many
cases, rather than calculating F' directly, one may be interested in the free energy difference between
systems (or states) S, and Sy, with energies U, and U. This is important for biological conformational
changes, ligand-macromolecule binding, or chemical reaction mechanisms (Wang et al., 2015):

AF = F, — F, = —log(Zy/ Z4) (284)

Zwanzig (1954) reformulated the problem as importance sampling, where one system serves as the
proposal and the free energy difference is estimated via Monte Carlo sampling. This is known as the
free energy perturbation (FEP) method:

AF = —log(Zy/Za) = —logEa [ exp(Ua — Up)], (285)

where we use E, to denote the expectation with respect to the equilibrium distribution p, (dz) =
Z7 e Va@)dy of system S,.

On the other hand, the Thermodynamic Integration (TI) approach introduces a sequence of distribu-
tions that connects the two marginal distributions and estimates free energy difference as follows:

1
AF = @dt (286)
0 Ot
192,
=— [ 2gt 287
/O Z (287)

7 1 feXp(—Ut>(—a§t)d$
) [ exp(—Uy)dz di (288)

! oU,
_ /O E,, [at] i (289)

In our experiment, we will aim to estimate the free-energy difference using the TI formula with a
learned energy path Uy, similar to neural TI (Maté et al., 2025).

1.6.2 EXPERIMENTAL DETAILS

System Details. We estimate the solvation free energy for alanine dipeptide following He et al.
(2025a). Concretely, we consider the free energy difference between ALDP in the vacuum en-
vironment and with implicit solvent, defined with AMBER f{f96 classical force field. We train
our model with samples used by He et al. (2025a). The author gathered the training set from
a 5 microsecond simulation under 300K with Generalized Born implicit solvent implemented in
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openmmtools (Chodera et al., 2025). The Langevin middle integrator implemented in Eastman
et al. (2023) with a friction of 1/picosecond and a step size of 2 femtoseconds was used to harvest a
total of 250,000 samples.

Below are settings for S, and Sj:

e S,: ALDP in the vacuum environment;
* Sp: ALDP in implicit solvent.
Similar to He et al. (2025a), when training the network, we rescale each target scale by 20, i.e., we

define the energy as U (%) Note that this will only change the scale of input and the score, with no
influence on the free energy difference as long as we apply the same scaling to both targets.

Stochastic Interpolant Training Details. We train a stochastic interpolant model bridging between
S, and Sp. The model has two networks, a vector field and an energy network:

Given pairs of samples (z,, x}) from systems S, and S, we first define an interpolant:
I = ayzg + Bywy + e, € ~ N(0,14d) (290)

where ag = 1,7 = 0; By = 0,81 = 1; and 79 = 1 = 0 ensure proper boundary conditions:
Ii—g = x4, and I;—1 = zp. ByAlbergo et al. (2023), the vector field and energy path is defined as

v(z) = E[L|I; =z],  VUi(z) =1, "Ele|l; = 7] (291)

where the dot denotes the time derivative and E[-|I; = x] denotes expectation over the law of
I, conditional on I; = z. Using the L? formulation of the conditional expectation, we can write
objective functions for the function v, and VU, defined in Eq. (291); if we parametrize these functions

as neural networks v}’ () and U? (), depending on both ¢ and , this leads to the losses:

ﬁv(w) = EtNU(O,l)Eza,zb,e P\th);p(jt) - I.tm (292)
Lu(0) = Etrs(0,1) B an,e [ VUL (1) — 77 Vel (293)

where \; and 7, are weighting functions to balance optimisation across different times. In practice,
we follow He et al. (20252a) to set Ay = 1 and 1y = .

Additionally, we also use target score matching (TSM, De Bortoli et al., 2024) to enhance the energy
learning following (Maté et al., 2025; He et al., 2025a):

LEM(0) = Bt (0,0.5)Ea,an.e [| VUL (It) — o ' VU, (24) ] (294)
LM N(0) = Etntt(0.5.1)Enone [[VUE (1) — By VU (2) 7] (295)
At optimality, the following two SDEs become time reversals of each other (Vo; > 0):
1
dX, = — 50 VU/ (X,)dt + W (X))t + 0, dB;,  Xo ~ fa, (296)
1
X, = SofVU/(Xo)di + v/ (X,)dt + 0y ABy, X1 ~ iy, (297)

where (1, and p;, are the distribution defined via energy U, and Uy,.

We train the model with a batch size of 20. Also, to improve results and to accelerate convergence,
we apply mini-batch Optimal Transport Tong et al. (2024) when sampling the pair (z,, xp). We also
follow He et al. (2025a) to use a different batch size for OT (500) and for training the network (20).
‘We train both methods for 40,000 iterations.

We parametrise the energy network with inner product in the same way as Appendix .5, i.e.,
U%(z4,t) = NN(cinzs,t) - ;. Note that in Mité et al. (2025), the author add preconditioning to
ensure U?(-,0) = U,(-) and U?(-,1) = Uy(-). However, this will require calling the target energy
during training and will be less efficient (He et al., 2025b). Also, this requires designing a smoother
parameter for ¢t € (0, 1), which is easier for the LJ system considered by Mité et al. (2025) but
non-trivial for ALDP. Therefore, we drop this preconditioning and fully parametrise the energy with
a neural network.

53



Published as a conference paper at ICLR 2026

For the baseline without RNE regularisation, we only train the energy network using Ly + LﬁTUSM’ 04
L’TUSM’ ! For the results with RNE regularisation, we train both the vector field and the energy network,
with an additional RNE regularisation: Ly + ETUSM’ 04 E{,SM’ '+ Ax R, where

R = E$t+Atvxt7$U7t||sg(logpu($t|zt+At) - Ing#(xt-i-AtLTt))
— Ul ar(@eran) + UL (@)]* (298)

where 1 = 207VU? (X,) + vl (Xy), and v = —102VUI (Xy) + v? (X;). We found the hyperpa-
rameters used in the diffusion setting generalise well here: At = 10~* and Az = 103. Different
from the diffusion setting, we have the freedom to choose any o; > 0 for the forward and backwards
pair of SDE. We hence choose o; = 1/0.2,Vt. We did not find that this choice had a significant
influence on the results. Also, as o, is a constant for any time step ¢, the instability issue discussed in
Section 3 does not happen in this setting, and hence we do not use the analytical reference here.

Estimation Details. After training the network, we estimate the free-energy difference using the TI
formula. This estimation is identical for both the baseline and the RNE regularisation. One caveat,
however, is that when training without preconditioning, the boundary conditions are not satisfied. This
not only makes the TI estimation inaccurate but also can introduce a constant shift at the boundaries.
In other words, the free energies of U, and Ug differ, and the same holds for U, and U- f .

To account for this mismatch, we estimate the free energy difference between U, and U using FEP
formulation as described in Eq. (285) with samples from p, x exp(—U,,). Similarly, we estimate
the free energy difference between Uy, and UY using FEP with samples from 1, oc exp(—Up).

We then estimate the free energy difference between U¢ and U{ using the TI formulation in Eq. (289).
The final free energy difference between U, and U, will be the summation of these three estimates:

AFUQ,Ub = AFUQ,US + AFU@,U{) + AFU197Ub (299)

Note that Eq. (289) requires the sample from p; oc exp(—U?). However, we only have samples
from p, and up. Therefore, we take the assumption that I; ~ p,, where I, is defined as Eq. (290),
similar to Maté et al. (2025). When the energy path is learned poorly, this assumption breaks down
severely, resulting in inaccurate free-energy estimates. Conversely, a well-learned energy network
improves the accuracy of the estimation. Hence, this serves as a good metric for assessing whether
our proposed RNE regularisation provides improvements in learning a more accurate energy network.

We estimate AFy;, 7o and AFye 17, using 5,000 samples each. For AFye 70, we use 5,000 samples
with 1,000 steps, uniformly discretising the interval (0, 1). We repeat baseline and RNE regularisation
3 times, and report the mean and standard deviation in Tab. 5. The reference value is taken from He
et al. (2025a), which was obtained with MBAR (Shirts & Chodera, 2008).

We also provide a visualisation comparing U, with the learned Ug , and U,, with the learned U? in
Fig. 19. In summary, the TI estimates reported in Tab. 5 show that RNE improves the energy along
the path, while Fig. 19 shows RNE improves the energy at two ends.

State S,: State S;: State S,: State Sp:
R2:0.61 R2:0.63 R2:0.86 R?:0.87
—20 -20
& o0 & 5 0- 3 i
5 5 g , ] .
S g g 4 S _0 "
= L 40 = =
C] —20 C] © _5o .. C] 4
—7'20 —7'00 —6'80 —7'20 —7'00 —2'80 —2'60 —3'00 —2'80
Learned Energy Learned Energy Learned Energy Learned Energy
(a) Without RNE. (b) With RNE.

Fig 19: Comparing U, and U;, with the learned U and U{ without / with RNE regularisation.
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J RELATED WORKS IN SAMPLING FROM UNNORMALISED DENSITIES

It is important to highlight that in the task of sampling from unnormalised densities, we have seen
a recent uptake in methods that exploit the RND between SDEs for Sequential Monte Carlo (Chen
et al., 2024; Albergo & Vanden-Eijnden, 2024; Tan et al., 2025). Among these, Chen et al. (2024) is
most closely aligned with our methodology, as it also uses the RND between forward and backward
SDEs. However, their approach is not directly applicable to generative models, as it relies on access
to the intermediate densities, which was manually designed in their case as a geometric interpolation
between the prior and the target. In our case, these intermediate densities are not tractable, and this is
precisely where our RNE framework comes in and provides a principled solution.
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