
Under review as a conference paper at ICLR 2021

ROGA: RANDOM OVER-SAMPLING BASED ON GE-
NETIC ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

When using machine learning to solve practical tasks, we often face the problem
of class imbalance. Unbalanced classes will cause the model to generate prefer-
ences during the learning process, thereby ignoring classes with fewer samples.
The oversampling algorithm achieves the purpose of balancing the difference in
quantity by generating a minority of samples. The quality of the artificial samples
determines the impact of the oversampling algorithm on model training. There-
fore, a challenge of the oversampling algorithm is how to find a suitable sample
generation space. However, too strong conditional constraints can make the gen-
erated samples as non-noise points as possible, but at the same time they also limit
the search space of the generated samples, which is not conducive to the discov-
ery of better-quality new samples. Therefore, based on this problem, we propose
an oversampling algorithm ROGA based on genetic algorithm. Based on random
sampling, new samples are gradually generated and the samples that may become
noise are filtered out. ROGA can ensure that the sample generation space is as
wide as possible, and it can also reduce the noise samples generated. By verifying
on multiple datasets, ROGA can achieve a good result.

1 INTRODUCTION

When modeling the classification problem, the balance of classes can ensure that the information
is balanced during the learning process of the model, but the classes are often unbalanced in ac-
tual tasks(Kotsiantis et al. (2005); He & Garcia (2009)), which leads to the machine learning model
preferring majority class samples. In order to solve this problem, a commonly used method uses
oversampling algorithm to increase the minority class samples to balance the gap between the mi-
nority class samples and the majority class samples. Therefore, the quality of the generated samples
will determine the training quality of the model after oversampling, but it is difficult to characterize
this effect. In the past studies, oversampling methods only can estimated the noise samples, such as
overlapping samples or outliers, and eliminated it as much as possible. Ensure that the sample does
not make training the model more difficult.

SMOTE(Chawla et al. (2002)) and its derivative algorithms generate new samples by interpolation.
There has been a lot of work in the selection of samples to be interpolated, the number of interpola-
tions, or the method of interpolation, and the final goal is to reduce the generation of noise samples
by restricting the interpolation position. Some researchers pointed out that sampling should not be
performed in the sample space, but should be projected to other spaces(Wang et al. (2007), Zhang
& Yang (2018)). In addition, some researchers have proposed that sampling should be taken from
the minority distribution (Bellinger et al. (2015), Das et al. (2015)) to ensure the consistency of
the distribution. It can be found that in order to reduce the generation of noise samples, the space
for generating samples needs to be restricted, that is, the oversampling algorithm can only sample
within a limited range.

However, just paying attention to noise generation may not achieve better results. Too strong con-
straints will cause the sample generation space to be limited, and the generated samples will fall into
a local optimal solution, so that it is impossible to find samples that are more conducive to model
training. Therefore, in order to reduce the limitation on the sample generation space and reduce
noise as much as possible, this paper proposes oversampling algorithm ROGA based on genetic al-
gorithm. ROGA will randomly sample in the feature space before the first iteration, and generate a
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set of artificial samples as the basic population for the next iteration of the genetic algorithm. Ran-
dom sampling will increase the noise in the samples, but it will also prevent ROGA from falling into
a local optimal solution. In order to judge the noise, ROGA will calculate the fitness of each sample
based on the Gaussian similarity with surrounding neighbors. The fitness represents the possibil-
ity that the sample is a noise sample. In the iterative process, new samples are generated through
crossover and mutation operations, and samples with lower fitness are gradually removed, so as to
reduce noise.

ROGA will generate new samples in the entire feature space, mainly because the initial population
is generated by random sampling in the entire feature space. The crossover and mutation operations
of genetic algorithms will continuously change the samples in the population to find samples with
higher fitness values, and the screening mechanism will help us eliminate noisy samples in the
population. Therefore, ROGA can balance the wide generation space and noise generation. Through
experiments on multiple datasets, we found that ROGA can achieve the best scores on some datasets
on the F1-score.

2 RELATED WORK

2.1 CLASS IMBALANCE

Data-based methods are represented by oversampling and undersampling. In order to balance the
gap in the number of samples, oversampling generates new minority class samples, while undersam-
pling(Arefeen et al. (2020); Koziarski (2020)) reduces redundant majority class samples.

The algorithm-based method is to improve the model algorithm to make it more suitable for training
on unbalanced data. The first improvement measure is to balance the loss caused by the major-
ity class and the minority class in the cost-sensitive loss function. Cost-sensitive can be combined
with various machine learning algorithms, such as Adaboost(Wei (1999)), SVM(Lin (2002)), Deci-
sion Tree(Ling et al. (2005)), cross entropy(Li & Zhu (2019)) and so on. The second improvement
measure is integrated learning technology. Liu et.al(Liu et al. (2009)) proposed EasyEnsemble and
BalanceCascade, performed multiple under-sampling and integrated multiple models. Some re-
searchers have added the ideas of Bagging(Wang & Yao (2009)) and Boosting(Chawla et al. (2003))
on SMOTE.

2.2 OVERSAMPLING

The oversampling algorithm is to generate new minority class samples to balance the quantitative
difference between classes. The current oversampling algorithm can be divided into random sam-
pling method, interpolation method, distributed sampling method and copy replacement method.

The random sampling method is to perform random sampling in the feature space, and the generated
samples can easily deviate from the distribution of the original samples and produce noisy data.
The interpolation oversampling algorithm represented by SMOTEChawla et al. (2002) restricts the
generation of samples between two samples, and generates new minority class samples through
linear interpolation. On the basis of the SMOTEChawla et al. (2002) algorithm, a large number of
improved algorithms have appeared.

First, in order to further reduce the generation of noise, improvements can be made in the selec-
tion of the sample to be interpolated, the interpolation weight of the sample, and the position of the
interpolation. SMOTE-Borderline(Nguyen et al. (2011)) believes that the minority class samples
located at the decision boundary should be selected, and some researchers believe that interpo-
lation should be performed within the minority class sample clusters generated by the clustering
algorithm, such as KMeans-SMOTE(Douzas & Bacao (2018)), CURE-SMOTE(Ma & Fan (2017)),
DBSMOTE(Bunkhumpornpat et al. (2012)), SOMO(Douzas & Bacao (2017b)), etc. ADASYN(He
et al. (2008)), SMOTE-D(Torres et al. (2016)) and MSMOTE(Hu et al. (2009)) reduce the num-
ber of interpolations for some samples by setting the weight of the sample. When Safe-level
SMOTE(Bunkhumpornpat et al. (2009)) generates samples, it will be closer to more regions of
similar samples. In addition to controlling the noise generation in the generation stage, you can also
filter the noises in the samples after generating the samples, such as SMOTE-FRST(Verbiest et al.
(2012)), SMOTE-IPF(José et al. (2015)), MDO( Abdi & Hashemi (2015)), etc.
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Second, the above methods all use linear interpolation when generating samples, but linear inter-
polation has limitations. Therefore, an improved algorithm for generating samples by nonlinear
interpolation has appeared. Random-SMOTE(Dong & Wang (2011)) performs interpolation in a tri-
angular area formed by three samples, and Geometric SMOTE(Douzas & Bacao (2017a)) generates
samples in a geometric area instead of a linear area.

Third, choose a more appropriate generation space, such as projecting to low-dimensional
space(Wang et al. (2007)) or high-dimensional space(Zhang & Yang (2018)). Fourth, when selecting
neighbor samples, other indicators can be used to measure the distance between samples, such as
cosine distance(Koto (2014)), propensity score(Rivera et al. (2014)), surrounding-neighbors(Garcia
et al. (2012)) etc.

The distribution sampling method is to learn the distribution function or density function of minority
class samples, and then sample from the distribution function to obtain a new artificial sample.
DEAGO(Bellinger et al. (2015)) generates samples by denoising autoencoder, while RACOG and
WRACOG(Das et al. (2015)) used the dependency tree algorithm to estimate the discrete probability
distribution, and then generated artificial samples from the probability distribution through Gibbs
sampling. The copy replacement method is to copy safe minority class samples and eliminate unsafe
majority class samples(Stefanowski & Wilk (2008), Napierala et al. (2010)).

2.3 GENTIC ALGORITHM

Genetic algorithm (GA) is a bionic algorithm proposed by Holland(Holland (1975)) in 1975. Its
main idea is to simulate the inheritance and mutation of genes during human evolution, and to control
the evolution direction of samples through the fitness function. As a heuristic algorithm, it is often
used in optimization problems(Rahmatsamii & Michielssen (1999), Fonseca & Fleming (1993),
Wright (1990), Homaifar et al. (1994)), using the entire problem space as the search space, and
searching for the best value in the search space. Genetic algorithms are also often used to optimize
machine learning algorithms, such as SVM(Kim et al. (2005)), K-means(Krishna & Narasimha
Murty (1999)), Decision Tree(Bala et al. (1995)), neural network(Montana (1989)), etc.

Genetic algorithm relies on randomness in the optimization process, which means that the speed
of finding the optimal solution is unstable, but the genetic algorithm will not get stuck in a local
solution when the fitness function is appropriate. In the process of solving, because it does not rely
on the additional knowledge, its search range is wide. It is for this reason that we believe that genetic
algorithms can find great patterns that have not yet been discovered.

3 ROGA

3.1 GA

3.1.1 BASIC POPULATION

In the first iteration, this paper randomly generated N artificial samples as the basic population. In
each subsequent iteration, the artificial samples generated in the previous iteration will be used as
the basic population for this iteration.

3.1.2 FITNESS

The consideration of the degree of adaptation of the sample is mainly based on its attribution as a
minority class sample. The fitness value of this sample is calculated by the Gaussian similarity with
the surrounding samples, which is computed as:

fitness (xi) =

K∑
j

yj ∗ sim (xi, xj) (1)

sim (xi, xj) = e−
(

√∑n
k(xik−xjk)

2
)2

2σ2 (2)
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xi is the sample that currently needs to calculate fitness. K is the number of neighbors to choose
and set to 5 in this paper. yj ∈ {−1, 1}. If xi and xj belong to the same sample, then yj = 1. If they
belong to the heterogeneous sample, then yj = −1. σ is the standard deviation of Gaussian kernel
and set to 1 in this paper.

3.1.3 SELECTION

Before each crossover and mutation operation,M candidates need to be selected from the population
based on fitness. The candidates for crossover operation and mutation operation are M samples
with the lowest fitness in the population, and M must be an even number. In the traditional genetic
algorithm, the crossover operation should select the sample with the highest fitness in the population,
hoping that the excellent genes can be inherited to the offspring. However, in the generation of
minority samples, each feature value of the sample cannot establish a mapping relationship with the
quality of the sample. Therefore, it is impossible to achieve the purpose of inheriting excellent genes
when performing crossover operations. On the contrary, it will degrade the samples with high fitness
in the population. Therefore, this paper only selects samples with low fitness to perform crossover
and mutation operations and retains samples with high fitness in the current population.

3.1.4 CROSSOVER

Each crossover operation will generate two new samples from two candidate samples. For each pair
of candidate samples(xi, xj), each sample contains m feature values xi = {fi1, fi2, . . . , fim}, and
p feature values are randomly selected. For any pair of features fik and fjk, new sample is generated
for linear interpolation, as shown in Eq. 3 and Eq. 4.

f ′ik = α ∗ fik + (1− α) ∗ fjk (3)
f ′jk = α ∗ fjk + (1− α) ∗ fik (4)

α ∈ [0, 1] is randomly generated.

3.1.5 MUTATION

Each mutation operation will get a new sample. For each candidate sample xi = {fi1, fi2, . . . , fim},
randomly select p feature values in the candidate sample, and multiply the selected feature value with
randomly generated β ∈ [0, 2] as the feature value of the new sample at that position, as shown in
Eq. 5. The unselected feature value directly inherits the feature value of the original sample at that
position.

f ′ik = β ∗ fik (5)

3.1.6 UPDATE

After the crossover and mutation operations, 3M new samples will be obtained. After calculating
the fitness of all samples, the N highest-fitting samples are selected as the basic population for the
next iteration.

3.2 ROGA

The ROGA algorithm is divided into two stages, a random sampling stage and a genetic algorithm
stage. The pseudo code is shown in Algorithm 1. In the random sampling stage, random sampling
is performed in the feature space to obtain the required initial population P . At this stage, the
number of samples in the population needs to be calculated first. In this paper, the number of basic
populations Nsyn is set to the difference in quantity between majority class samples and minority
class samples. The method of random sampling is that randomly samples a value within its range
of values for each feature f ∈ {f1, f2, f3, . . . , fn}. In the genetic algorithm stage, new artificial
samples are generated in each iteration based on the obtained basic population and the artificial
samples with low fitness values are eliminated. First, you need to determine the candidate samples
for crossover and mutation operations. Calculate the fitness of each sample in the current population
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Table 1: Dataset Description

Name Ratio Number Feature Number

Ecoil 8.6:1 336 7
optical digits 9.1:1 5620 64
Satimage 9.3:1 6435 36
pen digits 9.4:1 10992 16
sick euthyroid 9.8:1 3163 42
spectrometer 11:1 531 93
car eval 34 12:1 1728 21
isolet 12:1 7797 617
us crime 12:1 1994 100
thyroid sick 15:1 3772 52
solar flare m0 19:1 1389 32
oil 22:1 937 49
car eval 4 26:1 1728 21
wine quality 26:1 4898 11
letter img 26:1 20000 16
yeast me2 28:1 1484 8
mammography 42:1 11183 6

in the sample space through Eq. 1 and Eq. 2, and then select the M samples with the lowest fitness.
M is set to Nsyn/2 in this article. After performing crossover and mutation operations on candidate
samples, 3M new samples P ′ will be obtained, and Nsyn samples with the highest fitness will be
selected from P

⋃
P ′ as the basic population for the next iteration.

Algorithm 1 ROGA
Require: X:all of original samples; Y :all of labels; K:number of neighbors; α: Gaussian kernel

variance; T :iteration number;
Ensure: P : synthetic samples

1: Nsyn =Number of synthetic samples
2: P = RandomSampling(Nsyn)
3: for i ∈ [1, T ] do
4: for x ∈ P do
5: Find K nearest neighbors, and compute fitness by Eq. 1 and Eq. 2
6: end for
7: Candidates=select M samples with the lowest fitness from P
8: SynSamplescross = CrossoverOperation(Candidates)
9: SynSamplesmutation =Mutation(Candidates)

10: P ′ = SynSamplescross
⋃
SynSamplesmutation

11: P = Update(P, P ′)
12: end for

4 EXPERIMENT

4.1 DATASET

The datasets come from UCI database(Dua & Graff (2017)), and the detailed informations of the
datasets are shown in Table 1. The classification goals of all datasets are binary classification prob-
lems. If the goal of the dataset is a multi-classification problem, a certain class will be set as the
target class, and the remaining categories will be divided into non-target classes and converted into
a binary classification problem. Each dataset will be divided into 80% training set and 20% test set.
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4.2 EVOLUTION

For the binary classification problem, a confusion matrix can be obtained on the results, as shown in
Table 2. TP represents the number of positive classes predicted in the positive class, FP represents
the number of predicted positive classes in the negative class, FN represents the number of negative
classes predicted in the positive class, and TN represents the number of negative class predicted to
be negative class. The confusion matrix can be used to calculate the accuracy, precision, recall and
F1-score.

Table 2: Confusion Matrix
Predicted Positive Predicted Negative

Positive TP FN
Negative FP TN

Accuracy can be defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Precision can be defined as:

Precision =
TP

TP + FP
(7)

Recall can be defined as:

Recall =
TP

TP + FN
(8)

F1-score can be defined as:

F1 = 2 · Recall · Precision
Recall + Precision

(9)

4.3 PERFORMANCE

This paper uses six oversampling algorithms to compare with ROGA, including Baseline,
SMOTE(Chawla et al. (2002)), SMOTE-Borderline1(Nguyen et al. (2011)), ADASYM(He et al.
(2008)), KMeans-SMOTE(Douzas & Bacao (2018)), and SMOTENC(Chawla et al. (2002)). Base-
line represents the unused oversampling algorithm. The experimental results are shown in Table 3.
Due to the large fluctuations in the experimental results of ROGA, the experimental results of ROGA
are the best results among the 20 experiments. The evaluation method used in the table is F1-score,
and the classification algorithm uses XGBoost(Chen & Guestrin (2016)). For each experiment, the
hyperparameters of classification algorithm are fixed. The remaining metrics will be presented in
the appendix. † represents the best score in this dataset.

From Table 3, it can be found that ROGA has achieved the best results on most datasets, and even
the improvement effect is more obvious, such as ecoil. ROGA and other oversampling algorithms
both measure noise on the distribution to remove noise, and ROGA with a wider range generates
samples that are more conducive to model training.

At the same time, it is also found that artificial samples generated by the oversampling algorithm on
some datasets lead to lower scores on the test set. This shows that the generation space constrained
by the oversampling algorithm is not suitable for the distribution of all datasets, which can only
balance the number of categories and cannot provide benefits to the training of the model. The
limited generation range also causes the oversampling algorithm to be unable to deviate from the
current local optimal solution. In order to avoid this kind of solidification, ROGA will perform
random sampling in the entire sample space before first iteration. This random sampling can make
ROGA deviate from the current local optimum and achieve better results. From the results on the
isolet dataset, it can be seen that the oversampling algorithms as a comparison are lower than the
baseline in the test set score, while ROGA improves the effect of the model.
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Table 3: Performace

Name Base SMOTE Borderline1 Adasyn Kmeans NC ROGA

Ecoil 0.7873 0.8541 0.8205 0.7662 0.7873 0.7873 0.9413†

optical digits 0.9688 0.9628 0.9633 0.9718 0.9641 0.9669 0.9737†

Satimage 0.8542† 0.8311 0.8379 0.8352 0.8503 0.8405 0.8455
pen digits 0.9855 0.9886 0.9897 0.9876 0.9887 0.9855 0.9897†

sick euthyroid 0.9462 0.9413 0.9493 0.9539† 0.9462 0.9377 0.9493
spectrometer 0.8626 0.8969 0.8334 0.8969 0.8626 0.8721 0.9382†

car eval 34 0.9616† 0.9057 0.8922 0.9000 0.9279 0.9057 0.9423
isolet 0.9158 0.9069 0.8952 0.9089 0.9158 0.9069 0.9266†

us crime 0.7017 0.7035 0.6848 0.7028 0.6909 0.6880 0.7448†

thyroid sick 0.9502 0.9332 0.9435 0.9300 0.9354 0.9300 0.9627†

solar flare m0 0.4867 0.5184 0.5184 0.5123 0.4844 0.5206 0.5728†

oil 0.7254 0.7258 0.7112 0.7616 0.7112 0.6867 0.7864†

car eval 4 0.9616 0.9249 0.9329 0.9499 0.9576 0.9616† 0.9576
wine quality 0.5731 0.6856 0.6655 0.6918 0.6768 0.7001† 0.6275
letter img 0.9815† 0.9746 0.9792 0.9747 0.9814 0.9746 0.9771
yeast me2 0.7291 0.6895 0.7431 0.7416 0.6806 0.7416 0.7445†

mammography 0.8759 0.8175 0.8334 0.8095 0.8871 0.8643 0.9015†

4.4 LIMITATION

ROGA generates the basic population through random sampling, which expands the sample genera-
tion space on the one hand, but also increases uncertainty. Therefore, each artificial sample generated
by ROGA is not fixed, and compared with other oversampling algorithms, this uncertainty is more
serious.

Figure 1 shows that the ROGA model test results are unstable. The uncertainty contained in the
initial population generation will make the model after training better, or it may not improve the
model effect significantly. Therefore, when using ROGA to solve class imbalance, it is necessary to
conduct as many experiments as possible to find the artificial samples that perform best on a specific
metric. However, under the premise that the influence of artificial samples cannot be well described,
the traditional oversampling paradigm that try to compensate for the impact of class imbalance
through an experiment is unrealistic. Multiple sampling and evaluation are more conducive to taking
advantage of oversampling.

5 CONCLUSION

In order to avoid the generation of noise, the current oversampling algorithm performs sampling
in a limited generation space. However, the limited generation space will cause the oversampling
algorithm to fall into a local optimal solution, so that it cannot effectively generate artificial samples
that are beneficial to model learning. In order to balance the extensive generation space and noise
generation, this paper proposes the ROGA algorithm. Use random sampling to generate the initial
sample population to ensure sample generation space. Then, new artificial samples are continuously
generated through genetic algorithm, and noise points in the population are eliminated according to
fitness. Experiments have proved that ROGA has achieved the best F1-score on multiple datasets.
Therefore, the wide generation space is conducive to the oversampling algorithm to collect more
high-quality samples, which can not only balance the difference in quantity but also benefit the
model learning.
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(a) ecoli (b) optical digits

(c) satimage (d) sick euthyroid

Figure 1: F1-score in 20 experiments. This paper chooses four datasets to preform the uncertainty
of ROGA. test id represents the experiment index and vertical axis represents the F1-score. The
value range of the vertical axis of each graph is not the same. Although the amplitude is similar, it
does not mean that the range of change is the same.
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A APPENDIX

Table 4: Precision

Name Base SMOTE Borderline1 Adasyn Kmeans NC ROGA

ecoil 0.7873 0.8269 0.7792 0.7156 0.7873 0.7873 0.9938†

optical digits 0.9869† 0.9713 0.9650 0.9769 0.9859 0.9792 0.9842
Satimage 0.8866† 0.8086 0.8226 0.8112 0.8824 0.8207 0.8802
pen digits 0.9955 0.9961† 0.9963 0.9942 0.9944 0.9955 0.9946
sick euthyroid 0.9717 0.9506 0.9779 0.9686 0.9717 0.9494 0.9779†

spectrometer 0.9758 0.9418 0.9720 0.9418 0.9758 0.9341 0.9876†

car eval 34 0.8812 0.8604 0.8485 0.8529 0.8999 0.8604 0.9134†

Isolet 0.9608 0.9043 0.9018 0.9142 0.9608† 0.9043 0.9532
us crime 0.8256 0.6898 0.6819 0.6996 0.7793 0.6679 0.8743†

thyroid sick 0.9739† 0.9217 0.9317 0.9085 0.9440 0.9085 0.9672
solar flare m0 0.4755 0.5263 0.5263 0.5146 0.4753 0.5320 0.6447†

oil 0.7390 0.6994 0.7112 0.7240 0.7112 0.6707 0.8037†

car eval 4 0.9512 0.9067 0.9337 0.9306 0.9964 0.9512 0.9964†

wine quality 0.6856 0.6581 0.6471 0.6613 0.6471 0.6778 0.7785†

letter img 0.9958 0.9733 0.9765 0.9709 0.9988† 0.9733 0.9868
yeast me2 0.7431 0.6506 0.7217 0.6958 0.7060 0.6958 0.7788†

mammography 0.9337 0.7693 0.7917 0.7529 0.9365 0.8400 0.9479†

Table 5: Recall

Name Base SMOTE Borderline1 Adasyn Kmeans NC ROGA

Ecoil 0.7873 0.8873 0.8810 0.8684 0.7873 0.7873 0.9000†

optical digits 0.9523 0.9546 0.9617 0.9668 0.9445 0.9555 0.9637†

Satimage 0.8279 0.8587 0.8554 0.8651† 0.8244 0.8640 0.818
pen digits 0.9760 0.9815 0.9833 0.9813 0.9831 0.9760 0.9849†

sick euthyroid 0.9240 0.9325 0.9247 0.9403† 0.9240 0.9268 0.9247
spectrometer 0.8000 0.8624 0.7667 0.8624 0.8000 0.8291 0.9000†

car eval 34 0.9588 0.9693 0.9538 0.9681 0.9614 0.9693 0.9769†

isolet 0.8800 0.9095 0.8889 0.9036 0.8800 0.9095† 0.9035
us crime 0.6509 0.7201† 0.6877 0.7061 0.6488 0.7158 0.6865
thyroid sick 0.9289 0.9455 0.9561 0.9544 0.9272 0.9544 0.9583†

solar flare m0 0.4985 0.5158 0.5158 0.5113 0.4940 0.5173 0.5528†

oil 0.7134 0.7623 0.7112 0.8178 0.7112 0.7067 0.7711†

car eval 4 0.9725 0.9451 0.9226 0.9714 0.9250 0.9726† 0.9250
wine quality 0.5488 0.7276 0.6904 0.7399† 0.7259 0.7301 0.5876
letter img 0.9681 0.9759 0.9818† 0.9787 0.9653 0.9759 0.9678
yeast me2 0.7167 0.7626 0.7695 0.8209 0.6611 0.8209† 0.7181
mammography 0.8322 0.8891 0.8904 0.9036† 0.8481 0.8926 0.8642
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Table 6: Accuracy

Name Base SMOTE Borderline1 Adasyn Kmeans NC ROGA

Ecoil 0.9524 0.9643 0.9524 0.9286 0.9524 0.9524 0.9881†

optical digits 0.9900 0.9879 0.9879 0.9907 0.9886 0.9893 0.9915†

Satimage 0.9528 0.9360 0.9403 0.9372 0.9512† 0.9403 0.9503
pen digits 0.9949 0.9960 0.9964 0.9956 0.9960 0.9949 0.9964†

sick euthyroid 0.9798 0.9772 0.9810 0.9823† 0.9798 0.9760 0.9810
spectrometer 0.9549 0.9624 0.9474 0.9624 0.9549 0.9549 0.9774†

car eval 34 0.9154 0.9676 0.9630 0.9653 0.9769 0.9676 0.9815†

isolet 0.9790 0.9744 0.9718 0.9754 0.9790 0.9744 0.9810†

us crime 0.9519 0.9299 0.9299 0.9339 0.9479 0.9218 0.9579†

thyroid sick 0.9905 0.9862 0.9883 0.9852 0.9873 0.9852 0.9926†

solar flare m0 0.9482† 0.9282 0.9282 0.9195 0.9396 0.9310 0.9454
oil 0.7617 0.9532 0.9574 0.9574 0.9574 0.9489 0.9702†

car eval 4 0.9931 0.9861 0.9884 0.9907 0.9931 0.9931 0.9931†

wine quality 0.9665 0.9527 0.9527 0.9527 0.9494 0.9576 0.9698†

letter img 0.9976 0.9966 0.9972 0.9966 0.9976† 0.9966 0.9970
yeast me2 0.9757 0.9596 0.9730 0.9677 0.9730 0.9677 0.9784†

mammography 0.9903 0.9803 0.9828 0.9782 0.9911 0.9871 0.9921†
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