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ABSTRACT

Although Transformer has been generalized to graph data, its advantages are
mostly observed on small graphs, such as molecular graphs. In this paper, we
identify the obstacles of applying Transformer to large graphs: (1) The vast num-
ber of distant nodes distract the necessary attention of each target node from its
local neighborhood; (2) The quadratic computational complexity regarding the
number of nodes makes the learning procedure costly. We get rid of these obsta-
cles by exploiting the complementary natures of GNN and Transformer, and trade
the fine-grained long-range information for the efficiency of Transformer. In par-
ticular, we present Coarformer, a two-view architecture that captures fine-grained
local information using a GNN-based module on the original graph and coarse yet
long-range information using a Transformer-based module on the coarse graph
(with far fewer nodes). Meanwhile, we design a scheme to enable message pass-
ing across these two views to enhance each other. Finally, we conduct extensive
experiments on real-world datasets, where Coarformer outperforms any single-
view method that solely applies a GNN or Transformer. Besides, the coarse global
view and the cross-view propagation scheme enable Coarformer to perform better
than the combinations of different GNN-based and Transformer-based modules
while consuming the least running time and GPU memory.

1 INTRODUCTION

In recent years, the Transformer architecture (Vaswani et al., 2017) has been derived into several
variants, e.g., BERT (Devlin et al., 2019) and ViT (Dosovitskiy et al., 2021), which achieve un-
precedented successes in natural language processing (NLP) and computer vision (CV), respec-
tively. Some recent works (Kreuzer et al., 2021; Ye & Ji, 2021; Ying et al., 2021a) attempt to
generalize Transformer for graph data by treating each node as a token and designing dedicated
positional encoding for the nodes. These works’ performance has surpassed that of graph neural
networks (GNN) on an increasing number of graph-related tasks, particularly molecular property
prediction (Ying et al., 2021b).

These works, however, demonstrate their superiority on small graphs, such as molecules with tens
of atoms (i.e., nodes). When applied to a large graph, these Transformer-based methods (Dwivedi
& Bresson, 2021; Zhang et al., 2020) explicitly or implicitly restrict each node’s receptive field to
its neighbors. Nevertheless, large graphs, such as Arxiv and Products in OGBN (Hu et al., 2020),
also demand the global receptive field and the powerful expressiveness of the Transformer archi-
tecture. These graphs have more than hundreds of thousands of nodes and graph diameters larger
than twenty, where the needed receptive field should be large, and the correlations among the nodes’
features are complex.

So, what limits the applicability of Transformer on large graphs? Here, we identify two main obsta-
cles: (1) Transformer is built on a node-to-node attention mechanism. When applied to a large graph
with numerous nodes, the massive distant nodes can divert a significant portion of the attention no
matter whether they are indeed related. As a result, the target node can neglect its local neighbor-
hood, which is indispensable for learning generalizable node representations. Hence, Transformer
is prone to causing over-fitting on large graphs, which will be exacerbated for the semi-supervised
node-level tasks where the number of labeled nodes is limited. We will provide some empirical evi-
dences for this point in Sec. 5.1.1 and Appendix A.1. (2) The global receptive field of Transformer is
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costly, where the pairwise interactions among tokens lead to quadratic computational complexity re-
garding the number of nodes. Although some Sparse Transformer methods (Roy et al., 2021; Kitaev
et al., 2019; Ren et al., 2021) can improve the efficiency of the original Transformer, they have not
exploited the unique characteristics of graph data and require a quadratic or at least sub-quadratic
space complexity, which is still unaffordable in most practical cases.

We argue that both local and global information is useful for encoding each node in a large graph.
Meanwhile, we notice that GNN and Transformer are proficient at capturing the local and global
information, respectively, but neither of them can easily extract both kinds of information. Thus, a
straightforward strategy is to employ them together to play to their strengths simultaneously. To this
end, we propose to wipe out the discussed obstacles of applying Transformer by letting it work on
a down-sampled graph that preserves both the sketch of global graph structure and the aggregated
node features yet has much fewer nodes. And the similar idea is used in graph pooling (Ying et al.,
2018; Baek et al., 2020) and hierarchical GNN (Fang et al., 2020; Sobolevsky, 2021). In this way,
we essentially trade some fine-grained long-range information for the efficiency of Transformer.

To encode both local and global information for each node, we propose a two-view architecture
Coarformer consisting of a fine-grained local view and a coarse global view. In the local view,
we can apply a GNN-based module to the original input graph to encode each node by its local
topological structures and the node features. In the global view, we apply a Transformer-based
module to a coarse graph produced by an adopted graph coarsening algorithm. Such kinds of algo-
rithms mimic a down-sampling to the original graph via grouping the nodes into a less number of
super-nodes. The Transformer-based module makes pairwise interactions among these super-nodes,
capturing the coarse but long-range dependencies of the original graph. Additionally, we design
a cross-view propagation strategy for these two views in order to facilitate their interaction. As a
result, Coarformer encodes each node by both its local and global information, combining GNN and
Transformer’s merits. It is worth noting that the number of super-nodes balances the efficiency of
the Transformer-based module and how coarse the global view is. In practice, a small number that
reduces the computational complexity from quadratic to linear w.r.t. the number of original nodes
can still provide helpful global information, making Coarformer applicable for large graphs.

We conduct extensive experiments on real-world datasets to study the proposed Coarformer. At first,
the combinations of a GNN model with various Transformer-based methods consistently surpass a
single GNN model, which supports our idea of encoding nodes by local and global information.
More importantly, Coarformer achieves the best performances with the least running time and GPU
memory consumption, compared to the related Sparse Transformer-based methods. Meanwhile, we
empirically show that the local and global information is complementary, and our coarse global view
can boost the performances of various kinds of GNNs.

2 BACKGROUND AND MOTIVATIONS

In this section, we summarize GNN, Transformer for graphs, and graph coarsening, along with a
discussion on their connections to motivate our method. Before that, we firstly present notations for
graph data. Let G = (V, E) be a undirected unweighted graph, where V is the node set, E is the edge
set. We denote the number of nodes (i.e., |V|) by n and use X ∈ Rn×k0 to denote the feature matrix
whose i-th row Xi,: is the feature vector of node vi. We use A ∈ {0, 1}n×n to denote the adjacency
matrix of G, where Aij = 1 if and only if (vi, vj) ∈ E . The degree of a node vi is denoted by
di =

∑n
j=1 Aij , and the degree matrix D is a diagonal matrix with di being its i-th diagonal entry.

GNN. To represent nodes based on their features (i.e., X) and topological structures (i.e., A), most
GNN models stack the message passing layers to calculate node representations H(l) by recursively
aggregating the representations of its neighbors. Taking GCN (Kipf & Welling, 2017) for example,
it defines this procedure as H(0) = X,H(l) = D̃−

1
2 ÃD̃

1
2H(l−1)W (l), where D̃ = D + In,

Ã = A + In, and W (l) ∈ Rk(l−1)×kl is a learnable parameter. In such a way, an L-layer GNN
model calculates H(L) to represent the nodes, where the receptive field for each node is its L-hop
neighborhood. To capture long-range information, we need to increase L, where a large depth L is
prone to causing over-smoothing (Li et al., 2018) and bottleneck (Alon & Yahav, 2021) issues.

Transformer for graphs. Therefore, some recent works apply the Transformer architecture to cap-
ture useful long-range information in the graph, which relies solely on the attention mechanism,
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Figure 1: Overview of the Coarformer architecture.

dispensing with the message passing used in GNN. Taking the scaled dot-product attention for ex-
ample, the node representations are updated as the weighted sums of themselves:

H(l) = Softmax
(
QKT
√
m

)
V = Softmax

(
(H(l−1)W

(l)
Q )(H(l−1)W

(l)
K )T

√
m

)
H(l−1)W (l), (1)

where WQ, WK ∈ Rk(l−1)×m, and W ∈ Rk(l−1)×kl are learnable parameters. Comparing Eq. 1

with the updating equation used in GCN, Softmax
(

QKT
√
m

)
is usually allowed to be a dense n × n

matrix, while the (i, j)-th entry of D̃−
1
2 ÃD̃

1
2 is non-zero only if Ãij 6= 0. Thus, one attention

layer is sufficient for each h
(l−1)
j to attend to any h

(l)
i , no matter how far away vj is to vi. Although

these pairwise interactions provide the global receptive field for Transformer to capture long-range
information, they often distract the necessary attention of each node from its neighborhood, espe-
cially when n is large. Besides, these pairwise interactions requireO(n2) computational complexity,
which further hinders the application of Transformer to large graphs.

Graph coarsening. To simplify a given graph (mainly reducing the number of nodes) while pre-
serving its global information as much as possible, graph coarsening (Ron et al., 2011; Loukas,
2019) produces a partition P = {C1, . . . , Cn′} of V and regards each cluster Ci as a super-node.
Consequently, we get a coarse graph G′ = (V ′, E ′), where |V ′| = n′ and (Ci, Cj) ∈ E ′ if and only
if ∃vk ∈ Ci, vl ∈ Cj , s.t. (vk, vl) ∈ E . Meanwhile, this partition can be characterized by a matrix
P̂ ∈ {0, 1}n×n′ , with P̂ij = 1 if and only if vi ∈ Cj . Then its normalized version can be defined by
P = P̂C−

1
2 , where C is a n′×n′ diagonal matrix with |Ci| as its i-th diagonal entry. We can define

the feature matrix and weighted adjacency matrix for G′ by X ′ = P TX and A′ = P TAP , which
characterize a coarse global view of the original graph. We define the coarsening rate as c = n′

n .

3 METHODOLOGY

In this section, we introduce a two-view architecture Coarformer composed of a fine-grained local
view and a coarse global view. We present the overview of Coarformer in Figure 1. At first, we
preprocess an input graph G via graph coarsening to generate a coarse graph G′. Then a GNN-based
module and a Transformer-based module work on G and G′, respectively, which can be interpreted
as encoding the nodes from the fine-grained local view and the coarse yet global view. We further
design a scheme for Coarformer to enable neural messages to propagate across these two views, so
the resulting node representations synthesize both the local and the global information.

In the fine-grained local view, any GNN model (e.g., GCN) can be adopted, which recursively
calculates the node representations H(l), l = 1, . . . , L. As for the coarse global view, the details
about the Transformer-based module are presented in Sec. 3.1. Then we elaborate on how to enhance
the communication between these two views in Sec. 3.2. Lastly, we present how Coarformer makes
inference and how to optimize Coarformer in Sec. 3.3.
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3.1 COARSE GLOBAL VIEW

We apply a Transformer-based module to the coarse graph G′, where each super-node is regarded as
a token. Thus, we use X ′ as the initial token representation H

(0)
c , where the subscript “c” stands for

“coarse” to distinguish a matrix from its counterpart in our fine-grained local view. Then H
(0)
c is fed

into the Transformer-based module, which consists ofL′ layers of multi-head attention and produces
H

(l)
c , l = 1, . . . , L′. In each multi-head attention layer, we use h heads, i.e., h scaled dot-product

attention, each of which has its specific parameters and processes its input as Eq. 1: head(l)
i =

Softmax
(

(H(l−1)
c W

(l,i)
Q )(H(l−1)

c W
(l,i)
K )T

√
m

)
H

(l−1)
c W (l,i), i = 1, . . . , h. The outputs of the heads are

concatenated and fed into a fully-connected feed-forward network (FFN) with ReLU activation in
between its linear layers. We set the FFN of each layer to ensure the token representation at each
layer has the same dimension, i.e., k1 = · · · = kL′ , which allows us to consider a residual connection
between each consecutive layer. Finally, a layer normalization (LN) is applied, and then the output
of the l-th multi-head attention layer is: H(l)

c = LN(FFN(Concat(head(l)1 , . . . , head(l)h ))+H
(l−1)
c ).

Up to now, H(l)
c , l = 1, . . . , L′ depend only on the node features X ′. To utilize the topological

structures of G′, we employ personalized page rank (PPR) (Page et al., 1999) as a bias term for
our attention weight matrix. Specifically, we first calculate the PPR matrix R′ ∈ Rn′×n′ based
on the adjacency matrix A′, where R′i,j denotes the probability of starting a random walk with
super-node Ci and stopping at Cj . Then for each head at each layer, we calculate the attention
weight matrix based on not only the inner products between queries and keys but also the PPR

matrix: head(l)i = Softmax
(

(H(l−1)
c W

(l,i)
Q )(H(l−1)

c W
(l,i)
K )T

√
m

+ β
(l)
i R′

)
H

(l−1)
c W (l,i), where β(l)

i is

a learnable parameter for adjusting the contribution of the PPR matrix.

Computational complexity. It is worth noting that the graph coarsening algorithms allow to control
the size of coarse graph (i.e., n′). In essence, n′ balances the efficiency of the Transformer-based
module and how coarse the global view is. We will empirically show in Sec. 5 that the useful global
information can still be extracted from the coarse global view, even though n′ is as small as

√
n.

Accordingly, the time complexity of our Transformer-based module is quadratic w.r.t. the number
of super-nodes and thus linear w.r.t. the original number of nodes, i.e., O(n′2) = O(

√
n
2
) = O(n).

Meanwhile, the space complexity of our Transformer-based module is also O(n), as the dominant
attention weight matrix has size n′ × n′, which can fit into the GPU for most practical large graphs.

3.2 CROSS-VIEW PROPAGATION

As a two-view architecture, the node representations H(l), l = 1, . . . , L, calculated by the GNN-
based module, encode the fine-grained local information of the nodes, while the representations of
the super-nodes H

(l)
c , l = 1, . . . , L′ capture long-range dependencies among the nodes but with a

coarse granularity. We argue that, to predict for the nodes, both their local and global information
are helpful, and thus we should synthesize these representations encoded from the two views.

To this end, we design a scheme of cross-view propagation for Coarformer, where the encoded rep-
resentations are allowed to propagate across these two views. At first, due to its pairwise interaction
nature, the Transformer-based module does not need to be deep, thus it is safe to assume L′ ≤ L.
Then we denote the outputs of each layer in these two modules by Z(l) and Z

(l′)
c , respectively, and

define their forward propagation as follow:

Z(l) =
{

H(l) + P̂C−1H
(l/b L

L′ c)
c if l mod b L

L′ c = 0,
H(l) elsewise;

Z(l′)
c = H(l′)

c + (P̂C−1)TH(l′b L
L′ c).

(2)

For simplicity, we do not explicitly re-define H(l+1) and H
(l′+1)
c based on Z(l) and Z

(l′)
c , respec-

tively, but please keep in mind that Z(l) and Z
(l′)
c do serve as the inputs to their corresponding next

layers. With this cross-view propagation, the outputs of our two modules depend on each other.
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Thus, once we have properly optimized them, their outputs would properly synthesize both local
and global information from the two views, leading to more discriminative node representations.

Sampling-based cross-view propagation on large graphs. Generally, full-batch training is infea-
sible on large graphs. With mini-batch training, only the rows of H(l′b L

L′ c) that correspond to the
target nodes sampled at that layer are available, and thus we cannot calculate Z(l′)

c exactly. Luckily,
a more careful look at Eq. 2 shows that, ∀i = 1, . . . , n′, the i-th row of Z(l′)

c can be written as:

(Z(l′)
c )i,: = (H(l′)

c )i,: +
1

|Ci|
∑
vj∈Ci

H
(l′b L

L′ c)
j,: = (H(l′)

c )i,: + Evj∼Uniform(Ci)[H
(l′b L

L′ c)
j,: ]. (3)

Suppose the nodes in each mini-batch are sampled by a widely adopted GraphSAINT sampler (Zeng
et al., 2020) that is random walk-based with a “teleporting” probability α. Let’s denote the nodes
sampled at l-th layer by B(l). We can pre-compute the probability distributions for vi ∈ V:
P (l)(vi) = 1

n (αIn + (1− α)D−1A)L−l1n)i, l = 1, . . . , L, and approximate Z
(l′)
c as follow:

Proposition 1 Denoting B(l)i = {v|v ∈ Ci ∩B(l)}, ∀i ∈ {1, . . . , n′}, l′ = {1, . . . , L′}, (H
(l′)
c )i,: +

∑
vj∈B

(l′b L
L′ c)

i

1
|Ci|

∑
vk∈B

(l′b L
L′ c)

i

P
(l′b L

L′ c)(vk)

P
(l′b L

L′ c)(vj)
H

(l′b L
L′ c)

j,: is an unbiased estimator for (Z
(l′)
c )i,:.

The proof is simple: P (l)(vi) is the sampling probability of vi at the l-th layer, and

1
|Ci|

∑
vk∈B

(l′b L
L′ c)

i

P
(l′b L

L′ c)(vk)

P
(l′b L

L′ c)(vj)
serves as the likelihood ratio used in importance sampling. Thus,

Coarformer can cooperate with mini-batch training and thus is viable on large graphs.

3.3 INFERENCE AND OPTIMIZATION

Without loss of generality, we consider using Coarformer for node classification task. We denote
node labels by Y ∈ {0, 1}n×|Y| where Y is the label set, Yi,: is a one-hot row vector, and Yi,j = 1
indicates vi belongs to the j-th class. We can naturally deduce the labels of the super-nodes by
Y ′ = P TY for our coarse graph G′. To predict Y and Y ′, we can simply stack a linear output
layer upon the final node representations. Specifically, the predictions made from our two views
are Ŷ = Softmax(Z(L)W + 1nb

T) and Ŷ ′ = Softmax(Z
(L′)
c W ′ + 1n′b

′T), respectively, where
W ∈ RkL×|Y|, W ′ ∈ RkL′×|Y|, b ∈ R|Y|, and b′ ∈ R|Y| are learnable parameters.

Denoting the loss function, e.g., Cross-Entropy loss, by L(·, ·), we can learn the parameters of
Coarformer by minimizing γL(Ŷ ,Y ) + (1− γ)L(Ŷ ′,Y ′) with γ ∈ [0, 1] as a hyper-parameter for
balancing the impacts of our two views. As our cross-view propagation scheme has enabled Z(L) to
contain both the local and the global information, we adopt γ = 1 in our experiment for simplicity,
where the Transformer-based module is still optimized to cooperate with the GNN-based module.

4 RELATED WORK

Transformer for graphs. Recently, models based on the Transformer architecture have shown their
superiority in more and more domains, e.g., BERT (Devlin et al., 2019) in NLP and ViT (Dosovit-
skiy et al., 2021) in CV. Existing works that attempt to generalize the Transformer architecture for
graph data mainly focus on two problems: (1) How to design the positional encoding for nodes? (2)
How to make the pairwise interactions computationally tractable on large graphs? For the positional
encoding, Laplacian eigenvectors (Dwivedi & Bresson, 2021; Kreuzer et al., 2021), hop-based rel-
ative distance (Zhang et al., 2020; Ying et al., 2021a), and Weisfeiler-Lehman code (Zhang et al.,
2020) have been studied from both theoretical and empirical aspects. For the scalability issue, an
immediate workaround is to restrict the receptive field of each node, e.g., GAT (Veličković et al.,
2018) and GT-sparse (Dwivedi & Bresson, 2021) consider just the 1-hop neighbors, which yet sac-
rifices one of the main advantages of Transformer. To make a better trade-off, ADSF (Zhang et al.,
2019) relaxes this restriction to include high-order neighbors based on random walks. SGAT (Ye &
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Ji, 2021) and SAC (Li et al., 2020) learn to select a subset of each node’s high-order neighborhood.
Graph-Bert (Zhang et al., 2020) restricts the receptive field of each node to the nodes with top-k
intimacy scores (e.g., Katz and PPR). However, all these restrictions possess a strong bias towards
a node’s local neighbors. Instead, Coarformer conducts the regular pairwise interactions for super-
nodes, where long-range information can be easily captured and lifted back to the original nodes via
our designed cross-view propagation.

Sparse Transformer for NLP. In parallel, many sparse Transformer methods have been proposed
to reduce the computational complexity of the Transformer in the field of NLP. Longformer (Beltagy
et al., 2020) applies block-wise or strode patterns, just like the GAT only focuses on specific neigh-
bors. Reformer (Kitaev et al., 2019) introduces a hash-based similarity measure to cluster tokens into
chunks efficiently. Routing Transformer (Roy et al., 2021) employs online k-means clustering on
the tokens. Combiner (Ren et al., 2021) introduces a bi-level factorization of the attention weights,
unifying the expression of most of the existing sparse transformers. However, these factorization-
based methods often require a quadratic or sub-quadratic space complexity regarding the number of
nodes, still making them infeasible on large graphs. By running a Transformer-based module on a
coarse graph with n′ ≈

√
n nodes, Coarformer decreases this space complexity and thus saves a lot

of GPU memory, as Figure 2 demonstrates.

5 EXPERIMENTS

In this section, we conduct extensive experiments on real-world datasets to evaluate the performance
of Coarformer. All the experiments are conducted on a machine with an NVIDIA RTX 2080ti GPU
(11GB), Intel Xeon Platinum 8163 CPU (2.50GHz), and 400GB of RAM.

5.1 PERFORMANCE COMPARISON

Datasets. Following GPR-GNN (Chien et al., 2020), we conduct our experiments on ten real-world
datasets, including five homophilic graphs Cora, CiteSeer, PubMed (Sen et al., 2008; Yang et al.,
2016), Computers, Photo (McAuley et al., 2015; Shchur et al., 2018), and five heterophilic graphs,
Chameleon, Squirrel, Actor, Texas, Cornell (Rozemberczki et al., 2021; Tang et al., 2009; Pei et al.,
2019). A detailed description of these datasets is provided in Appendix A.2.

Protocol. To conduct the experiments uniformly and fairly, we split the nodes into train/valid/test
sets, where the ratio is 60%:20%:20%, and we randomly generate ten such splits for each dataset.
Each method is evaluated with these ten splits for each dataset, and we report the averaged metric.
To compare the performances and resource requirements of the considered methods, we choose
accuracy, training time, and consumed GPU memory as the metrics. We perform hyperparameter
optimization (HPO) for all methods, where the details can be found in Appendix A.3.1.

5.1.1 OVERALL RESULTS

First, we aim to verify the benefits of combining a Transformer-based module working in the global
view and a GNN-based module working in the local view. Second, we compare Coarformer with
several related Transformer-based methods working in the global view without coarsening under our
two-view architecture.

Baselines. For simplicity and generality, we consider GraphSAGE (Hamilton et al., 2017) work-
ing in the local view to accommodate full batch training and mini-batch training with which
Transformer-based modules cooperate in the global view. Meanwhile, we use Graph Transformer
(GT) as local model, which attends only to its neighbors, as an alternative model in the fine-
grained local view for comparison. And for global model, we adapt the Transformer-based module
Graphormer, which achieves excellent results in OGB-LSC (Hu et al., 2021), with different posi-
tional encoding and attentional bias: None, PPR, distance of the shortest path (SPD), PPR+SPD.
Besides, under our two-view architecture, we select several related Transformer-based modules in
the global view without coarsening combined with GraphSAGE in the local view as baselines to
compare their performance with Coarformer and Coarformer without cross-view propagation called
Coarformer (-CP): Graphormer with quadratic complexity; Graph-Bert, which uses top-k PPR of
each node as candidate set; Reformer, which uses locality sensitive hash (LSH) to reduce compu-
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tational complexity; and Routing Transformer, which uses online k-means clustering to reduce the
candidate set.

Results and analysis. We present the results about performance comparisons on Cora, CiteSeer,
Pubmed, Chameleon, Actor, and Squirrel in Table 1. Results on the other datasets are presented
in Appendix A.5.1. (1) Overall, the methods with two views (i.e., “Local+Global”) outperform
both the local view alone and the global view alone methods on almost all the datasets. This
phenomenon suggests that the Transformer-based modules are skilled in capturing long-range in-
formation, which complements what the local view focuses on. (2) Among these “Local+Global”
methods, Coarformer achieves the best performance on most of the datasets, demonstrating its ef-
fectiveness. Interestingly, although its Transformer-based module works on the original graph that
provides more fine-grained global information than a coarse graph, +Graphormer (all) leads only
on one dataset, less than Coarformer. Taking this comparison and the relatively poor performances
of global view alone methods into consideration, we attribute the advantage of Coarformer to the
coarse graph, which might implicitly regularize the Transformer-based module. Meanwhile, Coar-
former outperforms the +Sparse Transformer methods. On the one hand, +Graph-Bert determines
the candidate set for each target node by Top-k PPR in the global view, which restricts the receptive
field of Transformer-based module. On the other hand, +Reformer and +Routing do not incor-
porate the graph structure, making their captured information overly dependent on node features.
Consequently, their extracted information might be less complementary to the local view. (3) The
performance of Coarformer (-CP) is slightly weaker than that of Coarformer since the lack of infor-
mation exchange between the local view and the global view, which confirms the necessity of our
proposed cross-view propagation scheme.

We present the results concerning efficiency in Table 2, where the total training time excludes the
time for data pre-processing (e.g., on Cora 4s, on Chameleon 5s) and inference. Time consumed by
mini-batch training is significantly increased by more than 100 times, which is often intolerable in
practice. As a result, when Transformer adapts to large graphs, it either exceeds the memory limit
with full batch training or consumes too much time with mini-batch training. It is worth emphasiz-
ing that Coarformer significantly reduces the training time concerning the quadratic Transformer,
such as Graphormer. In contrast to +Graphormer, the time consumption increases linearly with the
number of nodes (given a coarsening rate of

√
n), which does not change the time complexity of the

GNN-based module by order of magnitude, as shown in Figure 2.
Table 1: Performance comparisons between different Transformer-based modules: Mean accuracy
(%) ± 95% confidence interval. Boldface letters are used to mark the best results. Results on more
datasets are summarized at Table 12 in Appendix A.5.1.

Cora CiteSeer PubMed Chameleon Actor Squirrel

Local GraphSAGE 87.42±0.78 78.47±1.08 88.88±0.30 64.40±1.39 38.79±0.67 43.94±1.30
GT 86.42±0.82 78.80±0.5 88.75±0.16 57.86±1.20 40.23±0.69 52.89±0.51

Global

Graphormer (w/o) 65.29±2.33 77.54±0.27 85.35±0.44 37.68±1.09 37.88±0.83 25.82±0.44
Graphormer (PPR) 66.70±1.12 76.59±0.48 85.95±0.31 37.29±2.19 40.20±1.38 25.61±0.46
Graphormer (SPD) 71.76±5.26 76.62±0.54 88.01±1.29 36.98±2.34 38.71±1.36 25.57±0.61
Graphormer (All) 77.41±4.30 76.18±1.16 88.24±1.50 36.81±1.96 38.21±0.52 25.13±0.33

Local
(GraphSAGE)

+
Global

(Xformer)

+Graphormer (All) 88.03±0.98 81.23±0.55 89.65±0.37 64.20±0.57 40.05±0.62 42.10±0.73
+Graph-Bert 88.10±0.29 80.46±0.51 88.70±0.12 66.54±1.09 39.66±0.52 48.38±0.90
+Reformer 87.21±0.63 78.57±0.90 88.73±0.33 64.16±1.89 39.39±1.01 43.36±1.04

+RT 80.31±0.34 70.63±0.38 76.57±0.26 63.83±0.60 40.13±0.39 42.44±0.64
Coarformer (-CP) 87.00±0.75 77.52±0.44 88.91±0.21 60.63±1.46 38.95±0.87 40.34±0.83

Coarformer 88.69±0.82 79.20±0.89 89.75±0.31 66.48±1.46 40.70±1.12 54.27±1.15

Table 2: Efficiency comparisons between different Transformer-based modules: average training
time per epoch (ms)/total training time (s). Underlined letters imply results with mini-batch training.

Cora CiteSeer PubMed Chameleon Actor Squirrel
GraphSAGE 3.01/0.94 4.09/1.09 4.88/2.97 7.19/1.67 4.45/0.90 32.85/6.64

+Graphormer(All) 10.09/2.11 15.22/3.17 23319.70/6995.91 14.34/2.91 37.27/7.54 48.41/9.81
+Reformer 13.71/3.84 15.57/4.05 37.05/18.46 21.53/4.85 23.72/4.79 46.82/9.51

+RT 572.48/226.31 449.96/186.34 2964.85/950.29 349.41/121.71 860.45/301.07 720.47/256.76
Coarformer 7.61/2.28 9.14/2.13 8.81/5.21 10.95/2.52 8.14/1.64 34.00/6.88

5.1.2 EFFECTIVENESS AND ROBUSTNESS OF COARFORMER’S GLOBAL VIEW

In the previous section, we have shown the superiority of Coarformer, where GraphSAGE is adopted
as the module working in Coarformer’s local view. To verify the generality of the benefits brought
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(a) on Cora (b) on Chameleon
Figure 2: Comparisons about GPU memory usage.

in by the global view of Coarformer, we employ different GNNs and compare them to Coarformer
with each of them as the module working in the local view of Coarformer. For this purpose, GCN,
GIN (Xu et al., 2018), GAT, Graph Transformer (GT), APPNP (Klicpera et al., 2018), and GPR-
GNN are considered.

Results and Analysis. We present the results about effectiveness in Table 3 on Cora, CiteSeer,
PubMed, Chameleon, Actor, and Squirrel, where all the instances of Coarformer outperform their
corresponding GNN models on most datasets. Results on other datasets are presented in Ap-
pendix A.5.2. Particularly, GIN performs much worse than other GNN models on several datasets,
but with the global view of Coarformer, the gap is significantly reduced. Furthermore, Coarformer
achieves the best performance on Cora, PubMed, Computers, Photo, Chameleon, Actor, and Squir-
rel. All these results confirm that the global view of Coarformer can boost the performance of
an arbitrary GNN model, which further justifies the complementary natures of Coarformer’s two
views. Similarly, we conduct experiments on efficiency, where the detailed experimental results can
be found in Appendix A.4. Whatever GNN-based module is in the local view, the time consumed
by Coarformer remains in the same order of magnitude, where the increase is negligible.

Table 3: Performance comparisons on different GNN-based module: Mean accuracy (%) ± 95%
confidence interval. Boldface letters are used to mark the improvements. Results on more datasets
are summarized at Table 13 in Appendix A.5.2.

GCN GIN GAT GT APPNP GPR-GNN

Cora
w/o 87.06±0.63 84.11±0.82 87.18±0.66 86.42±0.82 88.10±0.73 88.48±0.51
w/ 87.64±0.65 85.63±0.83 87.83±0.76 86.91±0.62 88.78±0.62 88.93±0.31
∆ 0.58 1.52 0.65 0.49 0.68 0.45

CiteSeer
w/o 79.28±0.61 74.92±1.34 79.60±0.80 78.80±0.50 79.58±0.70 78.49±1.15
w/ 78.91±1.02 78.96±0.74 78.34±0.59 78.72±0.94 79.44±0.80 78.24±1.00
∆ -0.27 4.04 -1.26 -0.08 -0.14 -0.25

PubMed
w/o 86.86±0.28 88.57±0.44 86.12±0.29 88.75±0.16 88.35±0.23 90.90±0.65
w/ 89.76±0.41 88.57±0.40 87.96±0.52 90.08±0.21 88.72±0.46 91.26±0.48
∆ 2.90 0.00 1.84 1.33 0.37 0.36

Chameleon
w/o 58.80±0.90 38.84±2.55 59.41±1.55 57.86±1.2 53.76±1.44 66.63±1.41
w/ 67.64±1.29 63.85±2.36 67.59±1.88 66.59±0.86 59.85±0.99 67.09±1.53
∆ 8.84 25.01 8.18 8.73 6.09 0.46

Actor
w/o 33.61±0.54 34.07±0.46 35.79±0.64 40.23±0.69 39.55±1.01 40.74±0.53
w/ 37.18±0.74 34.12±0.42 35.85±0.67 41.37±0.60 40.21±0.73 41.67±0.70
∆ 3.57 0.05 0.06 1.14 0.66 0.93

Squirrel
w/o 46.46±0.92 19.32±0.56 48.2±1.85 52.89±0.51 36.4±1.50 52.31±1.09
w/ 54.75±1.12 43.13±0.69 56.23±1.22 53.18±0.40 46.80±0.91 51.85±1.18
∆ 8.29 23.81 8.03 0.29 10.40 -0.46

5.2 COMPARISONS ON OGB

This experiment aims to verify the effectiveness of Coarformer on extremely large graphs.

Datasets. We adopt ogbn-arxiv and ogbn-products, wherein there are 169,343 and 2,449,029 nodes,
respectively. We use the official train/valid/test splits for each dataset. Conventionally, we convert
the directed graph ogbn-arxiv into an undirected graph. Details can be found in Hu et al. (2020).

Protocol. We largely follow the experimental setup in Sec. 5.1.1, yet all models are learned with
mini-batch training due to the scale of the adopted datasets. Specifically, we employ GCN to cap-
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ture the local information in the fine-grained local view, where random walk-based GraphSAINT is
used to sample subgraphs for training the GCN. Then, we regard GCN as our testbed for compar-
ing Coarformer with several Transformer-based methods under our two-view architecture, including
Reformer and Routing Transformer (RT). Graphormer is excluded because calculating the PPR ma-
trix and the SPD matrix for such huge graphs is intolerable. In addition, we perform HPO for all
these methods. Please see Appendix A.3.2 for details.

Results and Analysis We present the results about effectiveness in Table 4, where Coarformer
surpasses all the methods significantly (p-values = 0.02). The experimental results show that Coar-
former can also improve performance of capturing long-range information significantly compared
to GCN on extremely large graphs, wherein long-range information in the global view contributes.
Moreover, we have to make the candidate set smaller because of the GPU memory limitation so that
+Reformer and +RT even underperform GCN. These results remain consistent with the section 5.1.1.

Table 4: Performance comparison on OGB: Mean accuracy (%) ± 95% confidence interval. Boldface
letters are used to mark the best results.

GCN +Reformer +RT Coarformer
ogbn-arxiv 71.32±0.25 69.62±0.24 67.07±0.12 71.66±0.24

ogbn-products 78.70±0.34 74.09±0.23 OOM 79.18±0.20

5.3 SENSITIVITY ANALYSIS

Since Coarformer applies the Transformer-based module on a coarse graph, a question naturally
comes up—Are the performances of Coarformer sensitive to the choice of coarsening algorithm as
well as the adopted coarsening rate? Therefore, we evaluate Coarformer with different coarsen-
ing algorithms and different coarsening rates. Considered coarsening algorithms include Variation
Neighborhoods (VN) (Loukas, 2019), Variation Edges (VE) (Loukas, 2019), and Algebraic JC (Alg
JC) (Ron et al., 2011). Experimental settings are deferred to Appendix A.3.3.

Results and Analysis. We present the results in Table 5, where there is no apparent difference be-
tween different coarsening algorithms, indicating the robustness of Coarformer w.r.t. them. Overall,
VN usually leads to higher accuracy on the test set compared to other coarsening algorithms, but
other coarsening algorithms are also acceptable. Interestingly, the best performance on Cora is ob-
tained when the coarsening rate is 1.00, with which Coarformer becomes equivalent to +Graphormer
and still performs well. Meanwhile, the performance drops slightly as the coarsening rate decreases.
However, even when the coarsening rate decreases to that corresponding to a coarse graph with size
n′ ≈

√
n, the performance of Coarformer still surpasses that of GCN/GAT. As for Chameleon, VN

performs best when the corresponding n′ is close to
√
n. As for VE and Alg JC, they also show com-

petitive results. Based on these results, we recommend attempting the coarsening rate corresponding
to a n′ around

√
n when applying Coarformer for large graphs.

Table 5: Sensitivity analysis: Mean accuracy (%) ± 95% confidence interval. Boldface letters are
used to mark the best results.

Datasets Algorithm c = 0.01 c = 0.10 c = 0.50 c = 1.00
GCN GAT GCN GAT GCN GAT GCN GAT

Cora
VN 88.14±0.65 87.44±0.62 87.77±0.87 87.64±0.57 87.82±0.70 87.87±0.50 89.26±0.75 88.46±0.62
VE 87.59±0.63 87.80±0.73 87.44±0.57 87.72±0.40 87.59±1.33 88.08±0.59 88.93±0.74 88.49±0.59

Alg JC 87.93±0.55 87.88±0.53 88.08±0.75 87.88±0.64 87.32±0.70 88.01±0.62 88.64±0.64 89.26±0.34

Chameleon
VN 66.96±1.05 65.95±1.74 68.18±1.44 67.35±1.24 65.80±1.04 65.78±1.64 65.80±1.23 65.80±1.27
VE 64.11±1.33 65.27±1.61 64.51±1.65 64.97±1.42 65.32±1.29 65.82±1.83 66.08±1.32 66.50±1.59

Alg JC 66.32±1.37 65.56±0.52 65.93±1.40 65.80±0.75 65.86±1.20 65.91±1.48 66.19±1.22 66.15±1.62

6 CONCLUSION
In this paper, we propose a novel two-view architecture Coarformer, which employs a GNN-based
module and a Transformer-based module to encode nodes from the local and global view, respec-
tively. The global view is constructed by graph coarsening, which implicitly regularizes the applied
Transformer-based module and improves its efficiency. To enable the mutual enhancement between
these two views, we further develop a cross-view propagation scheme that is consistent with mini-
batch training. Extensive experiments conducted on large real-world graphs verify the advantages of
Coarformer against existing Transformer-based methods in terms of both performance and resources
(i.e., running time and GPU memory consumption). In summary, Coarformer extends the scope of
usage of Transformer, paving the road towards a fully Transformer-based model for graph data.
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A APPENDIX

A.1 STUDY ABOUT SAMPLE COMPLEXITY

In Sec. 5.1.1, we compare different methods with a so-called dense split of the node set (i.e.,
60%:20%:20%). To assess the sample complexity of considered methods, we further compare sev-
eral of them on Cora with a sparse split, i.e., 2.5%:2.5%:95%. Except for these ratios, other settings
are kept the same as Sec. 5.1.1. The results are shown in Table 6. As expected, the performances
of all the methods decrease when the size of the training set is reduced. With the sparse split,
GraphSAGE and Coarformer exhibit a decrease of less than 20%, while the performance of the pure
Transformer-based method Graphormer almost drops to only a half of that with the dense split. This
phenomenon suggests a higher sample complexity of Transformer compared with GNN. We also
present the performances of Graphormer with different hyper-parameter configurations in Table 7.
Unlike the conventional cases where there are four or five heads and a hidden dimension of 128/256,
a relatively small capacity is suitable for Graphormer on Cora.

Table 6: Performance comparisons on Cora with different splits: Mean accuracy (%) ± 95% confi-
dence interval. Boldface letters are used to mark the best results.

Split GraphSAGE Coarformer Graphormer
Sparse 73.72±0.89 72.47±1.40 39.67±5.66
Dense 87.42±0.78 88.69±0.82 77.41±4.30

Table 7: Details about HPO for Graphormer on Cora.

(a) With sparse split (2.5%:2.5%:95%)

#head\hidden 32 64
1 39.67±5.66 37.40±5.25
2 36.37±5.67 37.43±6.13

(b) With dense split (60%:20%:20%)

#head\hidden 32 64
1 77.14±4.80 74.75±4.30
2 77.41±4.30 71.53±5.89

A.2 DATASETS DESCRIPTION

See Table 8 for a detailed description of the medium-sized dataset and Table 9 for the OGB extremely
large dataset. These datasets come from different domains, and the nodes and edges from different
datasets represent different meanings, including citation graph (Cora, CiteSeer, and PubMed), co-
purchase graph (Computers and Photo), Wikipedia graph (Chameleon and Squirrel), actors collab-
orating graph (Actor), Website graph (Texas and Cornell), and extremely large datasets (ogbn-arxiv
and ogbn-products) provided by OGB team.

Table 8: Dataset statistics

Cora CiteSeer PubMed Computers Photo Chameleon Actor Squirrel Texas Cornell
#Nodes 2,708 3,327 19,717 13,752 7,650 2,277 7,600 5,201 183 183
#Edges 5,278 4,522 44,324 245,861 119,081 31,371 26,659 198,353 279 277

#Features 1,433 3,703 500 767 767 2,325 932 2,089 1,703 1,703
#Classes 7 6 5 10 8 5 5 5 5 5

A.3 EXPERIMENTAL DETAILS

A.3.1 DETAILS ABOUT PERFORMANCE COMPARISONS

In this section, we describe the details of the experiment with parameter settings. It is worth noting
that, unlike the GPR-GNN setup, we report the accuracy of the test set when the model achieves
the highest accuracy in the validation set. In contrast, GPR-GNN reports the accuracy of the test
set when the loss function is lowest in the validation set. We use accuracy with a 95% confidence
interval, equal to the micro-f1 score when it is a single-label classification, as an evaluation metric
of effectiveness and the average training time as an evaluation metric of efficiency. In addition, we
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Table 9: OGB dataset statistics.

#Nodes #Train #Validation #Test #Edges #Features #Classes
ogbn-arxiv 169,343 90,941 29,799 48,603 1,166,243 128 40

ogbn-products 2,449,029 196,615 39,323 2,213,091 123,718,280 100 47

perform HPO for all models with weight decay in {0.0, 0.0005}, coarsening rate in {0.1, 0.01},
dropout rate in {0.0, 0.5}, and learning rate in {0.002, 0.01, 0.05}. The number of head is all set
to 4. The sizes of the hidden layers are all set to 64. Also, we set the depth of the GNN model
to be two so that it is encouraged to focus on the local information of each node and avoid over-
smoothing.In particular, for APPNP and GPR-GNN, we use their optimal hyper-parameters as given
in the paper(Chien et al., 2020). In addition, each model is trained 1,000 epochs with early stops if
the accuracy on the validation set does not decrease within 200 epochs.

A.3.2 DETAILS ABOUT COMPARISONS ON OGB

We perform HPO for all models with weight decay in {0.0, 0.0005}, dropout rate in {0.0, 0.5},
batch size in {256, 512}, and learning rate in {0.002, 0.003, 0.01}. And hidden dim is set to 256,
the depth of GNN-based module are all set to 3, the coarsening rate is 0.01 on ogbn-arxiv and 0.001
on ogbn-products.

A.3.3 DETAILS ABOUT SENSITIVITY ANALYSIS

We conduct experiments on a typical homophilic graph, Cora, and a typical heterophilic graph,
Chameleon. For each coarsening algorithm, we specify different coarsening rates, where the coars-
ening rate, noted as c, takes value from {0.01, 0.1, 0.5, 1}. Meanwhile, to ensure the generality of
our analysis, we consider both GCN and GAT as the GNN-based module in the fine-grained local
view of Coarformer.

A.4 EFFICIENCY COMPARISONS

These are the results of the efficiency of different local views of GNN-based module, the average
training time per epoch (ms) and average total training time (s) are reported on Table 10 and Table 11.

Table 10: Efficiency comparisons on homophilic graphs: Average training time per epoch (ms)/total
training time (s). Underlined letters indicate results under mini-batch training.

Cora CiteSeer PubMed Computers Photo
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

GCN 3.81/0.83 10.26/2.28 4.32/0.95 7.28/1.54 4.46/0.94 10.87/2.33 5.3/1.25 8.62/2.06 4.44/1.14 7.64/1.87
GIN 3.43/0.7 6.68/1.35 4.72/0.95 8.25/1.67 5.47/1.15 10.41/2.21 17.63/5.16 22.45/5.04 9.61/3.42 12.36/2.99
GAT 6.36/1.36 9.92/2.04 6.2/1.31 10.29/2.11 6.8/1.41 18.88/4.06 7.08/1.81 10.2/2.3 6.39/1.56 10.33/2.4
GT 9.05/1.87 14.23/2.96 12/2.51 18.93/4.09 16.75/3.51 21.46/4.61 2512.29/520.78 2639.13/537.56 43.13/10.01 49.27/12.42

APPNP 5.69/1.22 8.81/2.06 5.81/1.27 8.71/2.32 5.88/1.26 9.34/2.17 6.18/1.8 9.38/3.2 6.06/1.7 8.93/3.03
GPR-GNN 6.4/1.31 9.34/1.94 6.54/1.34 9.72/2.05 6.87/1.47 9.42/2.18 7.56/1.88 10.44/2.48 6.56/1.45 9.61/2.28

Table 11: Efficiency comparisons on heterophilic graphs: Average training time per epoch
(ms)/average total training time (s). Underlined letters indicate results under mini-batch training.

Chameleon Actor Squirrel Texas Cornell
w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

GCN 4.26/1.01 7.15/1.45 4.28/0.87 11.34/2.39 4.81/1.14 7.7/1.56 4.35/0.88 10.38/2.26 4.41/0.9 10.25/2.17
GIN 7.57/1.79 10.2/2.19 4.92/1.1 11.32/3.09 30.17/11.59 32.79/7.98 3.28/0.67 6.96/1.41 3.3/0.68 10.57/2.33
GAT 6.41/1.51 10.29/2.08 6.28/1.27 13.07/2.65 6.38/1.29 13.71/2.77 6.56/1.35 12.5/2.76 6.33/1.3 12.11/2.45
GT 31.46/6.36 35.64/7.2 16.29/3.3 22.08/4.59 669.13/159.40 689.16/164.63 8.86/1.82 10.53/2.17 8.54/1.76 10.46/2.27

APPNP 5.65/1.16 9.58/2.1 6.18/1.25 9.05/1.99 5.89/1.2 8.72/1.95 5.76/1.18 8.94/1.89 5.77/1.18 8.69/2.33
GPR-GNN 6.72/1.54 10.15/2.05 7.19/1.59 10.3/2.5 6.35/3.81 9.07/3 6.69/1.46 9.72/2.13 6.74/1.39 9.84/2.12

A.5 SUPPLEMENTARY DATASETS EXPERIMENTAL RESULTS

In this section, we provide experimental results on the Computers, Photo, Texas and Cornell. All
experimental settings are consistent with section 5.1.
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A.5.1 PERFORMANCE COMPARISONS BETWEEN DIFFERENT TRANSFORMER-BASED
METHODS ON SUPPLEMENTARY DATASETS

Due to space limitations, we summarize the experimental results about performance comparisons
between different Transformer-based methods for more datasets at Table 12.

Table 12: Performance comparisons between different Transformer-based methods: Mean accuracy
(%) ± 95% confidence interval. Boldface letters are used to mark the best results.

Computers Photo Texas Cornell

Local GraphSAGE 89.65±0.26 93.84±0.40 89.18±2.58 85.08±4.64
GT 85.28±0.22 93.77±0.46 93.77±1.63 88.03±4.04

Global

Graphormer (w/o) 80.95±2.29 82.26±1.08 37.70±29.85 54.75±31.03
Graphormer (PPR) 81.98±2.07 78.05±7.51 37.70±29.85 53.77±33.21
Graphormer (SPD) 80.36±1.05 80.61±4.17 38.36±29.26 55.08±31.27
Graphormer (All) 80.92±1.58 83.38±2.12 37.70±29.85 55.08±31.27

Local
(GraphSAGE)

+
Global

(Xformer)

+Graphormer (All) 89.18±0.20 94.89±0.12 88.03±1.02 85.57±1.18
+Graph-Bert 89.43±0.24 95.18±0.15 88.36±0.84 83.11±2.80
+Reformer 88.59±0.52 94.59±0.48 86.56±2.64 83.11±4.29

+RT 88.53±0.43 94.44±0.26 85.57±0.76 85.90±2.62
Coarformer (-CP) 88.63±0.20 93.85±0.35 86.56±3.01 84.59±3.28

Coarformer 89.78±0.26 94.69±0.39 89.18±2.04 88.52±2.23

A.5.2 PERFORMANCE COMPARISONS ON DIFFERENT GNN-BASED MODULE ON
SUPPLEMENTARY DATASETS

Due to space limitations, we summarize the experimental results about performance comparisons on
different GNN-based module for more datasets at Table 13.

Table 13: Performance comparisons on different GNN-based module: Mean accuracy (%) ± 95%
confidence interval. Boldface letters are used to mark the improvements.

GCN GIN GAT GT APPNP GPR-GNN

Computers
w/o 83.75±0.47 58.16±1.00 87.21±0.17 85.28±0.22 86.38±0.39 88.70±0.45
w/ 90.04±0.30 77.56±0.65 89.94±0.26 90.05±0.33 86.80±0.42 89.24±0.36
∆ 6.29 19.40 2.73 4.77 0.42 0.54

Photo
w/o 90.52±0.42 39.76±1.17 91.9±0.73 93.77±0.46 93.38±0.40 93.90±0.43
w/ 93.68±0.38 90.77±0.49 93.67±0.37 94.59±0.34 93.73±0.49 94.24±0.35
∆ 3.16 51.01 1.77 0.73 0.35 0.34

Texas
w/o 73.28±2.45 80.00±1.56 79.18±2.49 93.77±1.63 88.36±2.59 91.48±2.02
w/ 89.02±1.58 87.54±1.71 88.69±1.79 91.80±2.03 89.67±4.26 93.11±1.75
∆ 15.74 7.54 9.51 -1.97 1.31 1.63

Cornell
w/o 68.03±6.33 78.69±2.36 75.90±4.48 88.03±4.04 90.00±2.71 89.67±2.65
w/ 87.38±3.43 88.20±2.07 87.54±2.73 90.49±2.02 89.69±2.42 90.00±2.93
∆ 19.35 9.51 11.64 2.46 -0.31 1.63
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