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ABSTRACT

We study the problem of out-of-distribution (o.o.d.) generalization where spuri-
ous correlations of attributes vary across training and test domains. This is known
as the problem of correlation shift and has posed concerns on the reliability of
machine learning. In this work, we introduce the concepts of direct and indirect
effects from causal inference to the domain generalization problem. Under mild
conditions, we show that models that learn direct effects provably minimize the
worst-case risk across correlation-shifted domains. To eliminate the indirect ef-
fects, our algorithm consists of two stages: in the first stage, we learn an indirect-
effect representation by minimizing the prediction error of domain labels using
the representation and the class label; in the second stage, we remove the indi-
rect effects learned in the first stage by matching each data with another data of
similar indirect-effect representation but of different class label. Experiments on
5 correlation-shifted datasets and the DomainBed benchmark verify the effective-
ness of our approach.

1 INTRODUCTION

Machine learning has achieved huge success in many fields, yet they mostly rely on the independent
and identically distributed (i.i.d) assumption. When it comes to an out-of-distribution (o.o.d.) test
domains, machine learning models usually suffer from a sharp performance drop (Beery et al., 2018;
Arjovsky et al., 2019; Nagarajan et al., 2020). The o.o.d. data typically come in the form of cor-
relation shift, where spurious correlations of attributes vary between training and test domains, or
diversity shift, where the shifted test distribution keeps the semantic content of the data unchanged
while altering the data style. The focus of this work is on the former setting known as correlation
shift. That is, given stable causality and spurious correlations between attributes, how to disentan-
gle the stable causality and the spurious correlations from the training data. Figure 1 shows the
performance gain of our method on the correlation shift datasets.
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Figure 1: Test accuracy of o.o.d. algorithms
on 5 correlation-shifted datasets and the Do-
mainBed benchmark (avg). The pink region rep-
resents the performance of our method, while the
light blue region represents the previously best-
known results (implemented by DomainBed using
training-domain validation) on each dataset.

Much effort has been devoted to learning rep-
resentations that are invariant across training
environments, where many works have intro-
duced the tools from causality to address the
o.o.d. generalization problems. When the data
are of high dimension and multiple attributes
are entangled, it is challenging to identify in-
variant causality across domains. Many meth-
ods have been designed to resolve the issue.
Representative methods include incorporating
invariance constraints by designing new loss
functions (Arjovsky et al., 2019; Krueger et al.,
2021; Bellot & van der Schaar, 2020), learn-
ing latent semantic features in causal graphs by
VAE (Liu et al., 2021; Lu et al., 2021), and
eliminating selection bias by matching (Maha-
jan et al., 2021; Wang et al., 2022). However,
these methods, despite their theoretical guaran-
tees, fail to show empirical improvement over
Empirical Risk Minimization (ERM) as veri-
fied by the DomainBed benchmark (Gulrajani
& Lopez-Paz, 2020; Vedantam et al., 2021).
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Figure 2: Description of our two-stage approach. In Stage 1, we jointly learn a discriminator and an
(indirect-effect) extractor by predicting the domain labels. In Stage 2, the extractor in Stage 1 is used
to construct a balanced batch of samples with a similar indirect-effect representation but different
class labels, and a predictor is trained on the balanced batch to predict the class labels. The red and
black arrows form the graphical model of the correlation shift problem (data generation process).

This paper is the first attempt to use the tool of direct and indirect effects from causal inference to an-
alyze the correlation shift problem. We show that under certain conditions, models that learn direct
effects minimize the worst-case risk across domain-shifted domains. To learn the direct effects, we
propose a two-stage approach: in the first stage, we use an extractor to infer the indirect-effect rep-
resentation Z from the data X such that Z can predict the domain label E through a discriminator
head (see the blue box in Figure 2). In the second stage, we construct a balanced batch by aug-
menting the original batch with data of the same indirect-effect representation Z but of a different
class label Y . We test our approach on the DomainBed benchmark. On the correlation shift dataset
Colored MNIST, our model obtains an average accuracy of 71.2% over three domain generalization
problems. While the information-theoretic best accuracy on the Colored MNIST dataset is 75%, our
method achieves an accuracy as high as 69.7% on the most difficult “−90%” environment. More-
over, the results of our model on the diversity shift datasets are comparable to the state-of-the-art.
Our main contributions are as follows:

• Theoretically, we present a framework to analyze the correlation shift problem based on
direct/indirect causal effects. We demonstrate that under mild conditions, models learning
direct effects provably minimize the worst-case risk across correlation-shifted domains.

• Algorithmically, inspired by our theoretical analysis, we propose a new two-stage approach
to improve o.o.d. generalization. The algorithm consists of two stages: in the first stage, it
learns an indirect-effect representation by minimizing the prediction error of domain label
using the representation and the class label; in the second stage, the method constructs
a balanced batch by augmenting the original batch with data of the same indirect-effect
representation but of a different class label.

• Experimentally, our method outperforms baselines by a large margin on the correlation-
shifted datasets. For example, on the Colored MNIST dataset, our approach achieves up to
15% absolute improvement over the state-of-the-art in terms of average accuracy over three
domains. On the CelebA datasets, our algorithm achieves up to 11% absolute improvement
over the state-of-the-art in terms of average accuracy over three domains.

2 PRELIMINARIES

Notations. In this paper, we will use capital letters such as X , Y and Z to represent random
variables, lower-case letters such as x and z to represent realization of random variables, and letters
with hat such as Ẑ to represent inferred variables by the model. We use the calligraphic capital letter
E to represent the set of environments, and by lower-case letter e the domain label. X ⊥⊥ Y means
that random variables X and Y are independent. We use Pe to denote the distribution of variables
on environment e, and use Pe

B to denote its corresponding balanced distribution (see Definition 4).
We add the superscript e to a variable such as xe to indicate that the variable is sampled from the
distribution of the environment e, and (xe

i , y
e
i , e) refers to an instance sampled from Pe. We denote

by H the hypothesis class of models, and by h : X → Y the predictor. Re(h) refers to the risk of
predictor h on environment e. Environment and domain are of the same concept, and we use them
interchangeably throughout the paper.

Direct effect and indirect effect. Direct and indirect effects are important concepts in causal infer-
ence. Their formal definitions were given in (Pearl, 2001):
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Definition 1 (Definitions 5 and 7 of Pearl (2001), Average Natural Direct (NDE) and Indirect Effects
(NIE)). The average natural direct effect and indirect effect of event Y = y on a response variable
X w.r.t. the reference point y∗ are defined as

(Direct effect) NDE(y, y∗;X) = E(X|do(Y = y), do(Z = Zy∗))− E(X|do(Y = y∗)),

(Indirect effect) NIE(y, y∗;X) = E(X|do(Y = y∗), do(Z = Zy))− E(X|do(Y = y∗)),

where Z stands for all parents of X except Y , and Zy denotes the value of Z when Y = y. The
do-operation assigns a value to a variable while ensuring that all variables except its descendants
are not changed. The relationship between variables is also not changed by the do-operation.
Definition 1 states that, if Y changes from y∗ to y and Z is fixed, then the change in X is the direct
effect of Y on X . Similarly, fixing Y but changing Z from the value taken at Y = y∗ to the value
taken at Y = y, the change in X is the indirect effect of Y on X . We define the total effect of the
change in Y on X as follows:
Definition 2 (Theorem 3 of Pearl (2001), Total Effect). The total effect of event Y = y on variable
X w.r.t. the reference point y∗ is defined as TE(y, y∗;X) = E(Xy − Xy∗) = NIE(y, y∗;X) +
NDE(y, y∗;X), where the second equality holds when NDE(y, y∗;X) = −NDE(y∗, y;X).
Data generation process. In the correlation shift problem, the process of generating the data X can
be depicted by Figure 2. Consider a binary classification problem of cows and camels. We assume
that the animal category and background are the two attributes that contribute to the generation of an
image. Our goal is to predict the animal category Y from image X , and the background is denoted
by Z. The image X is the result of the total effect of the two attributes. We assume that the value of
Y is changed from “cow” to “camel” during the data generation process. So the animal in the image
X is changed. Meanwhile, the cow is more likely to be on the grass, while the camel is more likely
to be in the desert. Therefore, Z may change from “grass” to “desert” as Y changes, changing the
background in the image X .

Y
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𝑓1

𝑓3

𝑓2

Figure 3: The causal graph of
label inference process.

Label inference process. Figure 3 shows the label inference pro-
cess, an inverse process of the data generation process. The model
can either infer labels through a direct-effect pathway X → Y
(based on the animal in the image) or through an indirect-effect
pathway X → Z → Y (based on the background in the image).
The latter is not stable because the relationship between Y and Z
may change as the domain changes. Thus cutting off the correlation
between Y and Z during training would force the model to learn the
direct effects and significantly improve domain generalization per-
formance.

Why is our causal graph general? A general causal graph of correlation shift can reduce to our
causal graph. Consider a general Directed Acyclic Graph G = (V, E), where V is the set of vertexs
and E is the set of edges. Vertexs in this graph include input X and label Y . The indirect pathways
between X and Y can be divided into three categories. For pathway category P1 : X → V1 ← Y ,
V1 is unobservable so it does not affect the correlation between X and Y . Thus this kind of pathway
is not in our consideration. The pathway category P2 : X ← V2 → Y and P3 : X → V3 → Y
are unstable because V2 and V3 may be disturbed by different environments. We merge vertexs in
V2 and V3 into the vertex Z in our causal graph and introduce environment vertex E to control this
unstable pathway.

3 DOMAIN GENERALIZATION BENEFITS FROM DIRECT EFFECTS

We consider a standard domain generalization setting, where the data come from different environ-
ments e ∈ Eall. Assume that we have the training data collected from a finite subset of training
environments Etrain, where Etrain ⊂ Eall. For every environment e ∈ Etrain, the training dataset
De = {(xe

i , y
e
i , e)}

Ne

i=1 is sampled from the distribution Pe(Xe, Y e) = P(X,Y | E = e), where X
is the instance (e.g., an image), Y is the class label, E is the domain label, and Ne is the number of
training data in environment e. The goal of domain generalization is to train a model with data from
training environments Etrain that generalizes well to all environments e ∈ Eall. Our goal is to find a
predictor h∗ : X → Y in the hypothesis classH such that the worst-case risk is minimized:

h∗ = argmin
h∈H

max
e∈Eall

Re(h), (1)
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where Re(h) is the risk of predictor h in environment e. In this paper, we consider the following
correlation shift model (see Figure 3):
Definition 3 (Correlation Shift Model). For any environment e, the class label Y e can be inferred

by a model through two pathways, X
f1−→ Y and X

f3−→ Z
f2−→ Y . The correlation shift model is

defined as follows:
Y e = f1(X

e) + f2(Z
e) + ε1, E [ε1] = 0, ε1 ⊥⊥ Xe, ε1 ⊥⊥ Ze, (2)

where ε1 is a random noise. The first pathway f1 is invariant across all environments, while the
second is affected by the environment variable E through Ze = f3(X

e, e). We assume that ∀f :
X → Y, ∃ e ∈ Eall such that f2 (f3(x, e)) = f(x).
The correlation shift model claims that f1 is the reversed mapping of the direct causal effect, while
f2 ◦ f3 is the reversed mapping of the indirect causal effect in Definition 1. Equation 2 then follows
from Definition 2. Definition 3 states that varying e makes the composition f2 ◦ f3 a rich function
class to express arbitrary function. Thus, the indirect-effect pathway X → Z → Y is unstable
w.r.t. the varying e’s. For example, in the classification problem of cows and camels, f3 extracts the
background Z from an image X and f2 predicts the class label Y according to the background Z.
Definition 2 implies that there exists at least a test environment where f2 ◦ f3 differs significantly
from that of the training environment. That is, the correlation between the background and the class
label may be reversed: most backgrounds of cow images are desert while most backgrounds of camel
images are grass. The assumption makes the domain generalization problem non-trivial; otherwise,
ERM is optimal when the test and training environments have the same correlation between the
background and the class label.
Theorem 1. The predictor h∗ = f1 that makes use of direct causal effect achieves the global
minimum of Equation 1.
We defer the proof to the appendix. To enable the model to learn the direct effects in the data, it
is desirable to cut off the pathway between Z and Y so that they are independent. To this end, we
consider a balanced distribution over each domain, defined as follows:
Definition 4 (Balanced Distribution). The balanced distribution of Pe(X,Y, Z) is defined as
Pe
B(X,Y, Z) = Pe(X,Y |do(Z = z))Pe(Z = z) = Pe(X|Y,Z)Pe(Z)Pe(Y ), where Pe(Y ) is

the marginal distribution of Pe(X,Y, Z), Y ⊥⊥ Z. The do-operation is defined in Definition 1.
The balanced distribution shares the same marginal distributions of Z and Y with the original dis-
tribution. But the marginal distribution of X is different. We make the following assumptions about
the change in the marginal distribution of X .
Assumption 1. Consider any training environments eiS ∈ Etrain and the test environment eT

with support X , with distributions PeiS and PeT , respectively. Let PeiT
B be the corresponding

balanced distribution of PeiT . X can be divided into two subsets X1 and X2, where X1 ={
X : PeS (X)>PeiT (X)

}
and X2 =

{
X : PeS (X) ≤ PeiT (X)

}
. We then assume that ∀X ∈ X1,

PeS
B (X) ≤ PeS (X), and ∀X ∈ X2, PeS

B (X) ≤ PeiT (X).
This assumption states that the probability density of X in the balanced distribution will not exceed
the maximum of that of the training and test distributions. For example, on the CMNIST dataset,
we observe that Assumption 1 indeed holds true: if the training domain is the “+90%” domain and
the test domain is the “−90%” domain, the probability of red images with label 1 on the training
distribution is greater than that on the balanced distribution and the probability of green images with
label 1 on the test distribution is greater than that on the balanced distribution. This is consistent
with Assumption 1. With that, we have the following theorem.

Theorem 2. Let H be a hypothesis space of VC-dimension d, and denote by dH(PeiS ,PeT ) :=

2 supη∈H|Prx∼PeT [η(x) = 1] − Pr
x∼Pei

S
[η(x) = 1]| the H-divergence between PeiS and PeT .

Assume that we have NS training environments Etrain =
{
eiS | i = 1, 2, . . . , NS

}
. We uniformly

draw i.i.d. samples of size m from the balanced distribution of NS training environments {PeiS
B | i =

1, 2, . . . , NS}. Suppose that infh∈H[ReT (h) + 1
NS

∑NS

i=1 R̂
eiS
B (h)] ≤ λ, maxi dH(PeiS ,PeT ) = ϵ,

and Assumption 1 holds. Then with probability at least 1− δ, for every h ∈ H, we have ReT (h) ≤
1

NS

∑NS

i=1 R̂
eiS
B (h) +

√
4
m (d log 2em

d + log 4
δ ) + ϵ + λ, where R̂

eiS
B (h) is the empirical risk of h on

the balanced distribution of training environment eiS .
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4 ALGORITHMIC DESIGN FOR DOMAIN GENERALIZATION

Inspired by our theoretical analysis, we propose a two-stage approach for domain generalization.
In the first stage, we extract the indirect-effect representation Z by learning a discriminator head to
predict the domain labels. In the second stage, we create a balanced batch to cut off the pathway
between the representation Z and the label Y , on which we train our model. However, implemen-
tation of the procedure is challenging: 1) Z is not observable and needs to be recovered from X ,
Y and E; 2) a perfectly balanced batch may not exist; 3) creating a balanced distribution by the
matching method would naturally change the distribution of Y in the batch and conflict Definition
4. To overcome these challenges, we describe our approach in the following two sections.

4.1 RECOVERING THE INDIRECT EFFECTS

Since the variable Z on the indirect-effect pathway is not observable, we extract a representation
Ẑ of the indirect effect from X by learning a discriminator head in the first stage. From Fig-
ure 2, we observe that given the indirect-effect representation Z and the class label Y , the other
variables are independent of the domain label E. Hence the discriminator head is able to ex-
tract Ẑ from X to predict the domain label E. Specifically, assume that the dataset is sampled
from NS training domains. We set up an extractor G(·; ΘG) : X → Z and a discriminator head
D(·, ·; ΘD) : Z × Y → [0, 1]NS that outputs the probability that a sample belongs to each training
domain, and update the parameters of both models by minimizing the prediction error of domain la-
bel e: Θ∗

G,Θ
∗
D := argminΘG,ΘD

Ex,y,eCrossEntropy(D(G(x; ΘG), y; ΘD), e), where ΘG and ΘD

stand for the parameters of the extractor G and the discriminator head D, respectively, and (x, y, e)
is a training sample. We use the learned extractor to obtain the representation ẑei = G(xe

i ; Θ
∗
G) for

every instance (xe
i , y

e
i , e).

Many methods learned domain discriminators by a minimax problem (Ganin et al., 2016; Li et al.,
2018b; Albuquerque et al., 2019). These methods extracted features that could maximize the domain
discriminator error. In our approach, on the other hand, the representation vector Z is obtained by
minimizing the domain discrimination error. This makes our model easier to optimize and more
stable than a minimax game.

4.2 ELIMINATING THE INDIRECT EFFECTS

In the second stage, we remove the indirect effects from the data based on the representation Ẑ. We
start by defining the balanced batch.
Definition 5 (Balanced Batch). For any sample (xe

i , y
e
i , e, ẑ

e
i ) in a balanced batch, there exists

a corresponding sample (xe
j , y

e
j , e, ẑ

e
j ) with probability P , such that ẑei = ẑej , yei ̸= yej , and

PBatch(Y ) = PD(Y ), where PBatch(Y ) and PD(Y ) are marginal distributions of Y in the batch
and in the training set, respectively.

Ideally, Y follows a uniform distribution in the training set, and for each sample xi, we can find
a corresponding sample xj with the same indirect-effect representation ẑei = ẑej . However, the
above approach does not necessarily create a balanced batch. There are two reasons: 1) we cannot
always find exactly equal ẑ as in the ideal case; 2) if the label Y in the training set is not uniformly
distributed, the procedure mentioned above might change the distribution of Y in the batch. This is
inconsistent with Definition 5.

To resolve the first problem, for each sample (xe
i , y

e
i , e, ẑ

e
i ), we search for another sample

(xe
j , y

e
j , e, ẑ

e
j ) such that ẑej is the nearest neighbor of ẑei . As for the second problem, we include

the matched sample into the batch with a probability that depends on the proportion of each class
of samples in the training set. Qualitatively, we match each sample with a small number of samples
for the majority class and a large number of samples for the minority class. The following theorem
gives exact description of such probabilities.
Theorem 3. Suppose Y has m classes. Let the proportion of each class of sample in the training
set be ω = (ω1, ω2, . . . , ωm). For any sample (xe

i , y
e
i , e, ẑ

e
i ) in a batch, if it belongs to class k and

we include its matched sample (xe
j , y

e
j , e, ẑ

e
j ) into the batch with probability (1−ωk)/ωk

maxi(1−ωi)/ωi
, then

we have ∀k ∈ {1, 2, . . . ,m} ,E(NBatch(Y = k)) ∝ ωk, where NBatch(Y = k) is the number of
samples belonging to class k in the balanced batch.
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Algorithm 1 Direct-Effect Risk Minimization (DRM)
Input: Dataset D; initial predictor fθ0 ; training set class distribution ω = (ω1, ω2, . . . , ωm); training
steps T ; learning rate ϵ;
Output: Predictor fθT ;

1: Θ∗
G,Θ

∗
D ← argminΘG,ΘD

Ex,y,eCrossEntropy(D(G(x; ΘG), y; ΘD), e);
2: t← 0;
3: while t ≤ T do
4: Sample a batch {(xe

i , y
e
i )}

batchsize
i=1 from D; B ← {};

5: for (xe, ye) in batch do
6: ẑe ← G(xe; Θ∗

G);
7: Search for the sample (xe′, ye′) with the closest ẑe′ (Euclidean distance) to ẑe;
8: Add (xe′, ye′) to B with probability (1−ωye )/ωye

maxi(1−ωi)/ωi
;

9: end for
10: Add B to the original batch {(xe

i , y
e
i )}

batchsize
i=1 to form a new batch;

11: Run ERM or other algorithms on the new batch and update fθt ;
12: t← t+ 1;
13: end while

Algorithm 1 describes our algorithm Direct-Effect Risk Minimization (DRM): in a balanced batch,
each sample pair has the same indirect effect Z but different labels Y ’s. So when the balanced batch
is generated, the difference in X all comes from the difference in Y , which is transmitted through
the direct-effect pathway Y → X . Since the indirect effects are eliminated, we force the model to
learn the direct effects between Y and X .

5 EXPERIMENTS

We compare DRM with 14 baseline methods, including: ERM (Vapnik, 1998), IRM (Arjovsky
et al., 2019), GroupDRO (Sagawa et al., 2019), Mixup (Zhang et al., 2018; Xu et al., 2020; Yan
et al., 2020; Wang et al., 2020), MLDG (Li et al., 2018a), CORAL (Sun & Saenko, 2016), MMD (Li
et al., 2018c), DANN (Ganin et al., 2016), CDANN (Li et al., 2018d), MTL (Blanchard et al., 2011),
SagNet (Nam et al., 2019), ARM (Zhang et al., 2020), VREx (Krueger et al., 2021) and RSC (Huang
et al., 2020), which appeared in the DomainBed benchmark (Gulrajani & Lopez-Paz, 2020). We
strictly follow the protocol of DomainBed by conducting random searches for all hyperparameters in
all stages. Following Ye et al. (2022), we divide the datasets into two categories: datasets dominated
by correlation shift and datasets dominated by diversity shift. We evaluate the performance of our
approach on both datasets. We choose the training-domain validation method in DomainBed as our
model selection method. We also balance the validation set using the method in Section 4.2.

5.1 CORRELATION SHIFT

In the correlation-shifted datasets, there is spurious correlation between the class label and the fea-
tures such as the color or the background of the images. Definition 3 indicates that learning the test
environment is difficult since there might be correlation flip between the training and test environ-
ments. We show that the performance of i.i.d algorithms such as ERM will significantly drop in
this case, while our approach achieves improved performance in these difficult environments. We
evaluate our approach on the correlation-shifted dataset CMNIST from DomainBed. Moreover, in
order to perform a comprehensive evaluation, we also conduct experiments on the 3DShapes dataset,
DSprites dataset, and the CelebA dataset, which are common correlation shift datasets used to eval-
uate domain generalization methods (Wiles et al., 2021; Ye et al., 2022). We use the DomainBed
benchmark to evaluate algorithms on these datasets. For comparison, we run the above mentioned
14 methods on these datasets using the codes provided by DomainBed.

Colored MNIST (Arjovsky et al., 2019). Colored MNIST is a handwritten digit classification
dataset (LeCun, 1998). It creates spurious correlation between colors and digits by artificially color-
ing the digits by red or green. The correlations between the color and the label in three environments
are +90%, +80% and −90%, respectively. For example, in the “+90%” environment, 90% images
with label 1 are dyed red, while 90% images with label 0 are dyed green. In addition, the dataset
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Table 1: Experimental results on the correlation-shifted datasets, where the experiments are run by
following the DomainBed setting.

Algorithm
CMNIST 3DShapes DSprites CelebA-HB CelebA-NS

Min Avg Min Avg Min Avg Min Avg Min Avg

ERM 10.0 ± 0.1 51.5 ± 0.1 10.1 ± 0.1 53.3 ± 0.1 13.8 ± 0.5 54.0 ± 0.1 16.8 ± 1.2 52.0 ± 0.5 21.1 ± 0.4 52.7 ± 0.5
IRM 10.2 ± 0.3 52.0 ± 0.1 10.0 ± 0.0 53.2 ± 0.1 14.5 ± 0.3 54.0 ± 0.1 20.4 ± 2.1 52.1 ± 0.7 21.5 ± 0.9 53.2 ± 0.4
GroupDRO 10.0 ± 0.2 52.1 ± 0.0 10.5 ± 0.4 53.4 ± 0.1 15.0 ± 0.4 54.4 ± 0.2 18.3 ± 1.5 52.8 ± 0.9 21.2 ± 0.2 53.3 ± 0.2
Mixup 10.1 ± 0.1 52.1 ± 0.2 10.2 ± 0.1 53.4 ± 0.2 14.0 ± 0.3 53.9 ± 0.0 17.9 ± 3.4 52.4 ± 1.1 22.2 ± 1.5 53.7 ± 0.7
MLDG 9.8 ± 0.1 51.5 ± 0.1 10.1 ± 0.1 53.5 ± 0.1 14.3 ± 0.3 54.2 ± 0.1 20.0 ± 2.1 53.0 ± 0.7 22.7 ± 1.7 53.7 ± 0.6
CORAL 9.9 ± 0.1 51.5 ± 0.1 10.0 ± 0.0 53.3 ± 0.1 13.8 ± 0.2 53.9 ± 0.2 17.7 ± 1.6 52.4 ± 0.6 22.1 ± 1.1 53.4 ± 0.4
MMD 9.9 ± 0.3 51.5 ± 0.2 10.0 ± 0.1 53.2 ± 0.1 14.4 ± 0.0 51.4 ± 2.1 17.4 ± 1.8 50.7 ± 0.5 22.5 ± 0.6 53.3 ± 0.1
DANN 10.0 ± 0.0 51.5 ± 0.3 10.0 ± 0.0 53.3 ± 0.0 14.7 ± 0.3 54.1 ± 0.3 16.9 ± 1.7 51.7 ± 0.3 21.8 ± 1.5 53.7 ± 0.8
CDANN 10.2 ± 0.1 51.7 ± 0.1 10.0 ± 0.0 53.3 ± 0.1 14.4 ± 0.2 54.0 ± 0.1 18.6 ± 2.6 52.5 ± 0.6 22.5 ± 1.2 53.9 ± 0.4
MTL 10.5 ± 0.1 51.4 ± 0.1 10.1 ± 0.0 53.4 ± 0.1 14.8 ± 0.5 54.3 ± 0.1 23.5 ± 1.4 53.7 ± 0.6 27.6 ± 1.2 54.9 ± 0.3
SagNet 10.3 ± 0.1 51.7 ± 0.0 10.1 ± 0.1 53.4 ± 0.1 13.6 ± 0.1 54.0 ± 0.0 14.9 ± 0.9 50.4 ± 0.3 22.0 ± 0.6 53.1 ± 0.2
ARM 10.2 ± 0.0 56.2 ± 0.2 10.0 ± 0.0 55.2 ± 0.3 14.5 ± 0.6 59.7 ± 0.4 22.8 ± 2.3 54.1 ± 0.6 21.1 ± 1.4 53.0 ± 0.5
VREx 10.2 ± 0.0 51.8 ± 0.1 10.8 ± 0.3 53.5 ± 0.1 13.8 ± 0.3 53.9 ± 0.1 19.2 ± 1.9 52.5 ± 0.7 20.3 ± 0.4 53.2 ± 0.3
RSC 10.0 ± 0.2 51.7 ± 0.2 10.1 ± 0.1 53.2 ± 0.1 13.3 ± 0.2 53.8 ± 0.1 18.9 ± 1.1 52.5 ± 0.5 23.7 ± 0.8 54.3 ± 0.5

DRM(ours) 69.7 ± 1.5 71.2 ± 0.6 74.5 ± 0.2 74.8 ± 0.1 73.3 ± 0.5 73.8 ± 0.2 61.0 ± 4.9 66.1 ± 0.6 59.9 ± 2.6 65.4 ± 1.2

randomly flips 25% of the class labels, which results in 75% correlation between shape and digital
labels, lower than that between color and labels. Thus, an i.i.d. learning approach like ERM prefers
to learn correlations between colors and labels.

3DShapes (Burgess & Kim, 2018). To demonstrate that our approach can eliminate spurious corre-
lations between attributes, we run our algorithm on the 3DShapes dataset. The 3DShapes is a dataset
with six attributes, among which we choose the “floor hue” and “orientation” to form the spurious
correlation. Specifically, we divide the orientation of the graph into two categories. Our goal is to
predict which category the orientation belongs to. We use the same construction as Colored MNIST
to build three environments and add label noise.

DSprites (Matthey et al., 2017). We also evaluate our DRM algorithm on the DSprites dataset,
which has six attributes. In this paper, “Position X” and “Position Y” are chosen to form spurious
correlations in the DSprites. We argue that these two attributes are similar, and thus it is challenging
to identify the invariant features across all environments.

CelebA-HB and CelebA-NS (Liu et al., 2015). We introduce the CelebA dataset to test the perfor-
mance of our approach. CelebA is a large-scale face attribute dataset with 40 attribute annotations,
e.g., eyeglasses, wearing hat and bangs. Any two attributes can form a correlation shift dataset, one
of which acts as the label to be predicted and the other is used to create spurious correlations. In
this paper, for CelebA-HB, “No Beard” is the label and there exists spurious correlation between
the attribute “No Beard” and the attribute “Wearing Hat”. For CelebA-NS, “Smiling” is the label
and the correlation between “Wearing Necktie” and “Smiling” is unstable. Unlike above mentioned
datasets, correlation shift on CelebA comes from non-random sampling, which is called selection
bias in causal inference.

Results. Table 1 shows the performance of our approach under correlation shift. Under the Do-
mainBed protocol, both ERM and the domain generalization algorithms officially reported by Do-
mainBed do not perform well for correlation shift because they all suffer from a sharp performance
drop when the test environment has reversed correlation with the training environment. For Col-
ored MNIST, on which the information-theoretic best accuracy is 75% due to the 25% noise, the
accuracy of ERM and other domain generalization algorithms are no more than 10.5% on the most
difficult “−90%” environment, which is far lower than random guess. In contrast, our DRM ap-
proach achieves 69.7% accuracy, almost 60% higher than the other algorithms. At the same time,
our approach does not hurt performance on the “+90%” and “+80%” domains. On average, our
approach outperforms ERM by 20% and outperforms the best previous approach by 15%. For the
other datasets, the results show the same pattern. Our approach is substantially ahead of the other
methods by about 50% on the most difficult domain and bring significant performance improvement
of more than 15% for the correlation shift problems.

5.2 DIVERSITY SHIFT

For the diversity shift datasets, the support sets of data on different environments have no overlap,
and the test distribution keeps the semantic content of the data unchanged while altering the data
style. For instance, in the PACS dataset, the training environment and the test environment can be
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Table 2: Experimental results on the DomainBed benchmark.
DomainBed Algorithm CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Avg

Official report

ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6
IRM 52.0 ± 0.1 97.7 ± 0.1 78.5 ± 0.5 83.5 ± 0.8 64.3 ± 2.2 47.6 ± 0.8 33.9 ± 2.8 65.4

GroupDRO 52.1 ± 0.0 98.0 ± 0.0 76.7 ± 0.6 84.4 ± 0.8 66.0 ± 0.7 43.2 ± 1.1 33.3 ± 0.2 64.8
Mixup 52.1 ± 0.2 98.0 ± 0.1 77.4 ± 0.6 84.6 ± 0.6 68.1 ± 0.3 47.9 ± 0.8 39.2 ± 0.1 66.7
MLDG 51.5 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.9 ± 1.0 66.8 ± 0.6 47.7 ± 0.9 41.2 ± 0.1 66.7
CORAL 51.5 ± 0.1 98.0 ± 0.1 78.8 ± 0.6 86.2 ± 0.3 68.7 ± 0.3 47.6 ± 1.0 41.5 ± 0.1 67.5
MMD 51.5 ± 0.2 97.9 ± 0.0 77.5 ± 0.9 84.6 ± 0.5 66.3 ± 0.1 42.2 ± 1.6 23.4 ± 9.5 63.3
DANN 51.5 ± 0.3 97.8 ± 0.1 78.6 ± 0.4 83.6 ± 0.4 65.9 ± 0.6 46.7 ± 0.5 38.3 ± 0.1 66.1

CDANN 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.1 82.6 ± 0.9 65.8 ± 1.3 45.8 ± 1.6 38.3 ± 0.3 65.6
MTL 51.4 ± 0.1 97.9 ± 0.0 77.2 ± 0.4 84.6 ± 0.5 66.4 ± 0.5 45.6 ± 1.2 40.6 ± 0.1 66.2

SagNet 51.7 ± 0.0 98.0 ± 0.0 77.8 ± 0.5 86.3 ± 0.2 68.1 ± 0.1 48.6 ± 1.0 40.3 ± 0.1 67.2
ARM 56.2 ± 0.2 98.2 ± 0.1 77.6 ± 0.3 85.1 ± 0.4 64.8 ± 0.3 45.5 ± 0.3 35.5 ± 0.2 66.1
VREx 51.8 ± 0.1 97.9 ± 0.1 78.3 ± 0.2 84.9 ± 0.6 66.4 ± 0.6 46.4 ± 0.6 33.6 ± 2.9 65.6
RSC 51.7 ± 0.2 97.6 ± 0.1 77.1 ± 0.5 85.2 ± 0.9 65.5 ± 0.9 46.6 ± 1.0 38.9 ± 0.5 66.1

Codes by authors

Fish 51.6 ± 0.1 98.0 ± 0.0 77.8 ± 0.3 85.5 ± 0.3 68.6 ± 0.4 45.1 ± 1.3 42.7 ± 0.2 67.1
Fishr 52.0 ± 0.2 97.8 ± 0.0 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 67.1

ANDmask 51.3 ± 0.2 97.6 ± 0.1 78.1 ± 0.9 84.4 ± 0.9 65.6 ± 0.4 44.6 ± 0.3 37.2 ± 0.6 65.5
SANDmask 51.8 ± 0.2 97.4 ± 0.1 77.4 ± 0.2 84.6 ± 0.9 65.8 ± 0.4 42.9 ± 1.7 32.1 ± 0.6 64.6

SelfReg 52.1 ± 0.2 98.0 ± 0.1 77.8 ± 0.9 85.6 ± 0.4 67.9 ± 0.7 47.0 ± 0.3 42.8 ± 0.0 67.3
CausIRLC 51.7 ± 0.1 97.9 ± 0.1 77.5 ± 0.6 85.8 ± 0.1 68.6 ± 0.3 47.3 ± 0.8 41.9 ± 0.1 67.3
CausIRLM 51.6 ± 0.1 97.9 ± 0.0 77.6 ± 0.4 84.0 ± 0.8 65.7 ± 0.6 46.3 ± 0.9 40.3 ± 0.2 66.2

Reported by authors
mDSDI 52.2 ± 0.2 98.0 ± 0.1 79.0 ± 0.3 86.2 ± 0.2 69.2 ± 0.4 48.1 ± 1.4 42.8 ± 0.1 67.9
SWAD - - 79.1 ± 0.1 88.1 ± 0.1 70.6 ± 0.2 50.0 ± 0.3 46.5 ± 0.1 -
T3A - - 80.0 ± 0.2 85.3 ± 0.6 68.3 ± 0.1 47.0 ± 0.6 - -

DRM (ours) 71.2 ± 0.6 97.6 ± 0.1 77.9 ± 0.5 84.8 ± 0.5 65.7 ± 0.6 48.2 ± 0.2 41.0 ± 0.2 69.5

photos and cartoons, respectively. We test our approach on the diversity shift datasets. Following
DomainBed, we present results on RotatedMNIST (Ghifary et al., 2015), VLCS (Fang et al., 2013),
PACS (Li et al., 2017), Office-Home (Venkateswara et al., 2017), Terra Incognita (Beery et al.,
2018) and DomainNet (Peng et al., 2019). In addition to the 14 methods we mentioned above, we
also reports the results of other recent methods, including: Fish (Shi et al., 2021), Fishr (Rame et al.,
2022), AND-mask (Parascandolo et al., 2020), SAND-mask (Shahtalebi et al., 2021), SelfReg (Kim
et al., 2021), CausIRL (Chevalley et al., 2022), mDSDI (Bui et al., 2021), SWAD (Cha et al., 2021),
and T3A (Iwasawa & Matsuo, 2021).

Results. We report the experimental results in Table 2. It shows that DRM does not hurt model per-
formance for diversity shift. We observe that performance of ERM and other domain generalization
algorithms are similar. The performance of our DRM approach is comparable with others on the
diversity shift datasets, and improves by ∼2% on average concerning the DomainBed benchmark.

5.3 VISUAL EXPLANATION

In this section, we choose the CelebA-HB dataset and the CelebA-NS dataset to visualize the results.
For CelebA-HB, the indirect effect is the pathway between the spurious feature and label, which
is “Wearing Hat” and “No Beard”, respectively. For CelebA-NS, the indirect effect is the pathway
between “Wearing Necktie” and “Smiling”.

Analysis of indirect effect representation. Our DRM approach recovers the indirect effect in the
first stage. Thus the quality of indirect effect representation Z is important. We use t-SNE (Van der
Maaten & Hinton, 2008) to reduce the dimension of Z extracted in the first stage to 2 and show the
result in Figure 4. We can observe that data points with the same spurious feature show a clustering
effect, which means that Z is an appropriate representation of the spurious feature.

Attention map. In Figure 5, we present the attention maps of the last convolution layer for ERM
(the second row) and DRM (the third row). The model trained by ERM focuses on the spurious
feature “Wearing Hat” and “Wearing Necktie”, while the model trained by DRM focuses on the
stable feature “No Beard” and “Smiling”.

6 RELATED WORKS

Domain generalization with causality. A large body of works has introduced tools from causality
inference to the domain generalization problem. Causality has been shown to be robust across
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Figure 4: Visualization of 2-D t-SNE result of Z. Different colors represent different spurious
features, “Wearing Hat” vs. “No Hat”, or “Wearing Neckline” vs. “No Neckline”. (a)(b)(c) are for
the CelebA-HB dataset and (d)(e)(f) are for the CelebA-NS dataset.

Figure 5: Attention map. The first row is the original images, the second row and the third row are
attention maps of ERM and our method, respectively. The left half is on the CelebA-HB dataset,
where the stable causality is “No Beard” and the spurious correlation is “Wearing Hat”. The right
half is on the CelebA-NS dataset, where the stable casualty is “Smiling” and the spurious correlation
is “Wearing Necktie”.

domains (Peters et al., 2016), and some works discussed which causal factors can be extracted
(Schölkopf et al., 2012; 2021) and the connection between causality and generalization (Christiansen
et al., 2020). Pearl (2001) gave a definition of natural direct effects. Although the concept has been
introduced in early works (Zhang & Bareinboim, 2018; Qi et al., 2020; Heskes et al., 2020), no work
analyzed domain generalization using this framework.

Matching based methods. Matching is a common approach that aims to eliminate selection bias
in causal inference by matching comparable instances (Rosenbaum & Rubin, 1983). Mahajan et al.
(2021) proposed an unsupervised matching algorithm and Wang et al. (2022) introduced the propen-
sity score matching method to balance the mini-batch. Our method also uses a mini-batch balancing
approach in the second stage. However, we propose a new definition of balanced distribution, which
makes the marginal distribution of Y unchanged. Moreover, we extract the indirect-effect represen-
tation in the first stage by learning a domain discriminator, which is different from above approaches
and helps our approach to achieve better performance.

7 CONCLUSION

In this paper, we introduce the concept of direct and indirect effects from causal inference to the do-
main generalization problems. We prove that a model learns direct effects is optimal for correlation
shift. We propose a domain generalization method to extract the indirect-effect representation and
remove the indirect effects during training. Experimental results show that our approach achieves
the state-of-the-art performance.
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ETHICS STATEMENT

We trained our model on a publicly available face dataset CelebA (Liu et al., 2015) to evaluate
the domain generalization performance of our method. The dataset contains many attributes of
faces and the model may reflect the biases carried in the dataset. Our method aims to improve the
generalization ability of machine learning models. Models with good generalization performance
can operate robustly in many senarios in reality and benefit the society.

REPRODUCIBILITY

Our architectures and hyperparameters follow DomainBed benchmark and more implementation
details are given in Appendix C. All datasets in this paper are public and available. We plan to
release our code as open source.
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Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant pre-
diction: identification and confidence intervals. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 78(5):947–1012, 2016.

Vihari Piratla, Praneeth Netrapalli, and Sunita Sarawagi. Efficient domain generalization via
common-specific low-rank decomposition. In International Conference on Machine Learning,
pp. 7728–7738. PMLR, 2020.

Jiaxin Qi, Yulei Niu, Jianqiang Huang, and Hanwang Zhang. Two causal principles for improv-
ing visual dialog. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 10860–10869, 2020.

Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12556–
12565, 2020.

Alexandre Rame, Corentin Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for
out-of-distribution generalization. In International Conference on Machine Learning, pp. 18347–
18377. PMLR, 2022.

Alexander Robey, George J Pappas, and Hamed Hassani. Model-based domain generalization. Ad-
vances in Neural Information Processing Systems, 34:20210–20229, 2021.

Paul R Rosenbaum and Donald B Rubin. The central role of the propensity score in observational
studies for causal effects. Biometrika, 70(1):41–55, 1983.

Elan Rosenfeld, Pradeep Kumar Ravikumar, and Andrej Risteski. The risks of invariant risk mini-
mization. In International Conference on Learning Representations, 2020.

Jongbin Ryu, Gitaek Kwon, Ming-Hsuan Yang, and Jongwoo Lim. Generalized convolutional for-
est networks for domain generalization and visual recognition. In International conference on
learning representations, 2019.

Shiori Sagawa, Pang Wei Koh, Tatsunori B Hashimoto, and Percy Liang. Distributionally robust
neural networks for group shifts: On the importance of regularization for worst-case generaliza-
tion. arXiv preprint arXiv:1911.08731, 2019.

Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij.
On causal and anticausal learning. arXiv preprint arXiv:1206.6471, 2012.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
Anirudh Goyal, and Yoshua Bengio. Toward causal representation learning. Proceedings of
the IEEE, 109(5):612–634, 2021.

Soroosh Shahtalebi, Jean-Christophe Gagnon-Audet, Touraj Laleh, Mojtaba Faramarzi, Kartik
Ahuja, and Irina Rish. Sand-mask: An enhanced gradient masking strategy for the discovery of in-
variances in domain generalization, 2021. URL https://arxiv.org/abs/2106.02266.

Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi Jyothi, and Sunita
Sarawagi. Generalizing across domains via cross-gradient training. In International Conference
on Learning Representations, 2018.

Yuge Shi, Jeffrey Seely, Philip HS Torr, N Siddharth, Awni Hannun, Nicolas Usunier, and Gabriel
Synnaeve. Gradient matching for domain generalization. arXiv preprint arXiv:2104.09937, 2021.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
European conference on computer vision, pp. 443–450. Springer, 2016.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In
2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30.
IEEE, 2017.

13

https://arxiv.org/abs/2106.02266


Under review as a conference paper at ICLR 2023

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Vladimir Vapnik. Statistical learning theory wiley. New York, 1(624):2, 1998.

Ramakrishna Vedantam, David Lopez-Paz, and David J Schwab. An empirical investigation of do-
main generalization with empirical risk minimizers. Advances in Neural Information Processing
Systems, 34:28131–28143, 2021.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5018–5027, 2017.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. Advances in neural
information processing systems, 31, 2018.

Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit. On calibration and out-of-domain gener-
alization. Advances in neural information processing systems, 34:2215–2227, 2021.

Xinyi Wang, Michael Saxon, Jiachen Li, Hongyang Zhang, Kun Zhang, and William Yang Wang.
Causal balancing for domain generalization. arXiv preprint arXiv:2206.05263, 2022.

Yufei Wang, Haoliang Li, and Alex C Kot. Heterogeneous domain generalization via domain mixup.
In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pp. 3622–3626. IEEE, 2020.

Olivia Wiles, Sven Gowal, Florian Stimberg, Sylvestre Alvise-Rebuffi, Ira Ktena, Taylan Cemgil,
et al. A fine-grained analysis on distribution shift. arXiv preprint arXiv:2110.11328, 2021.

Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang.
Adversarial domain adaptation with domain mixup. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 6502–6509, 2020.

Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
adaptation with mixup training. arXiv preprint arXiv:2001.00677, 2020.

Fu-En Yang, Yuan-Chia Cheng, Zu-Yun Shiau, and Yu-Chiang Frank Wang. Adversarial teacher-
student representation learning for domain generalization. Advances in Neural Information Pro-
cessing Systems, 34:19448–19460, 2021.

Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a
theoretical framework of out-of-distribution generalization. Advances in Neural Information Pro-
cessing Systems, 34:23519–23531, 2021.

Nanyang Ye, Kaican Li, Haoyue Bai, Runpeng Yu, Lanqing Hong, Fengwei Zhou, Zhenguo Li,
and Jun Zhu. Ood-bench: Quantifying and understanding two dimensions of out-of-distribution
generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7947–7958, 2022.

Xiangyu Yue, Yang Zhang, Sicheng Zhao, Alberto Sangiovanni-Vincentelli, Kurt Keutzer, and Bo-
qing Gong. Domain randomization and pyramid consistency: Simulation-to-real generalization
without accessing target domain data. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 2100–2110, 2019.

Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, and Aaron Courville. Can subnetwork
structure be the key to out-of-distribution generalization? In International Conference on Machine
Learning, pp. 12356–12367. PMLR, 2021a.

Guojun Zhang, Han Zhao, Yaoliang Yu, and Pascal Poupart. Quantifying and improving trans-
ferability in domain generalization. Advances in Neural Information Processing Systems, 34:
10957–10970, 2021b.

14



Under review as a conference paper at ICLR 2023

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond empirical
risk minimization. In International Conference on Learning Representations, 2018.

Junzhe Zhang and Elias Bareinboim. Fairness in decision-making—the causal explanation formula.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Marvin Zhang, Henrik Marklund, Abhishek Gupta, Sergey Levine, and Chelsea Finn. Adap-
tive risk minimization: A meta-learning approach for tackling group shift. arXiv preprint
arXiv:2007.02931, 8:9, 2020.

Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain gener-
alization via entropy regularization. Advances in Neural Information Processing Systems, 33:
16096–16107, 2020.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Deep domain-adversarial im-
age generation for domain generalisation. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 13025–13032, 2020.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle. arXiv
preprint arXiv:2104.02008, 2021.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

15



Under review as a conference paper at ICLR 2023

A OTHER RELATED WORKS

Learning invariant features. To enable classifiers to generalize across domains, a very intuitive
idea is to force the model to learn a representation with cross-domain invariance (Motiian et al.,
2017; Wald et al., 2021), which is usually implemented by adding a regularization term to the
loss (Li et al., 2020; Zhao et al., 2020; Robey et al., 2021). Representative methods include us-
ing maximum mean discrepancy as a divergence measure (Muandet et al., 2013), seeking a data
representation such that the predictors using the representation are invariant (IRM) (Arjovsky et al.,
2019), encouraging the training risks in different domains to be similar (Krueger et al., 2021), or
using a correlation matrix to construct a new loss function (Lv et al., 2022). Some works studied the
conditions under which invariance can guarantee domain generalization from a theoretical point of
view (Ye et al., 2021), while other works quantified transferability of feature embeddings learned by
domain generalization models (Zhang et al., 2021b). Ahuja et al. (2020b) analyzed different finite
sample and asymptotic behavior of ERM and IRM, and Ahuja et al. (2020a) expanded IRM from a
game theory perspective. However, existing works have demonstrated that it is difficult to achieve
good generalization performance by relying only on the constraint of cross-domain invariance (Ma-
hajan et al., 2021; Ahuja et al., 2021), and some other works claimed that many of these approaches
still fail to capture the invariance (Kamath et al., 2021; Rosenfeld et al., 2020). Empirical work
has also questioned the effectiveness of these methods (Gulrajani & Lopez-Paz, 2020). On average,
ERM outperforms the other methods (Vedantam et al., 2021).

Data augmentation. Data augmentation is a kind of valid methods to impove the generalization
ability of models. Domain Randomization bridge the simulated environment and the real world by
generating rich enough data, which can benefit the o.o.d. generalization (Tobin et al., 2017). Some
works performed domain adversarial training to generate data across environments (Shankar et al.,
2018; Volpi et al., 2018). Generative models and transformation models such as CycleGAN (Zhu
et al., 2017) are also used to perform data augmentation (Zhou et al., 2020; Qiao et al., 2020; Yue
et al., 2019).

Other approaches. In addition to the above approaches, many works have been done to enhance
the performance of o.o.d. generalization in a variety of different ways. A great deal of work has
been done to improve generalization performance by analyzing and designing new neural network
structures (Li et al., 2017; Zhang et al., 2021a; Ryu et al., 2019). Meta-learning is another helpful
direction, and many approaches based on it have emerged (Li et al., 2018a; Balaji et al., 2018; Dou
et al., 2019; Li et al., 2019). In addition, Yang et al. (2021) proposed an approach of Adversarial
Teacher-Student Representation Learning to derive generalizable representations; Zhou et al. (2021)
proposed an approach based on feature statistics mixing across source domains; Piratla et al. (2020)
joint learned common components and domain-specific components by modifying the last classifi-
cation layer; Carlucci et al. (2019) combined supervised with self-supervised learning to improve
the generalization performance of the model by solving the Jigsaw puzzles.

B PROOFS

In this section, we give full proofs of the main theorems in the paper.

B.1 PROOF OF THEOREM 1

Proof. For ∀h ∈ H, we have

Re(h) =Ee
[
(Y e − h (Xe))

2
]

=Ee
[
(Y e − f1 (X

e) + f1 (X
e)− h (Xe))

2
]

=Ee
[
(f2 (Z

e)+ε1)
2
]
+Ee

[
(f1 (X

e)−h (Xe))
2
]
+2Ee [(Y e−f1 (Xe)) (f1 (X

e)−h (Xe))] .

Let V ar [ε1] = σ2
1 , V arX [f2(Z

e)] == σ2
2 , then we have

Re(h) =σ2
1 + σ2

2 + Ee
[
(f1 (X

e)− h (Xe))
2
]
+ 2Ee [f2 (f3 (X

e, e)) (f1 (X
e)− h (Xe))] .
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According to Definition 3, there must exist an environment e∗ that satisfies

f2 (f3(x, e)) = f1 (x)− h (x) ,

which means that

Ee∗
[
f2

(
f3

(
Xe∗ , e∗

))(
f1

(
Xe∗

)
− h

(
Xe∗

))]
≥ 0.

Hence,
max
e∈Eall

Re(h) ≥ σ2
1 + σ2

2 .

The equivalence holds if and only if
h∗ = f1.

B.2 PROOF OF LEMMA 1

Lemma 1. If Assumption 1 holds between eT and eS , then we have dH[PeT ,PeS
B ] ≤ dH[PeT ,PeS ],

where dH[PeT ,Pe
B ] = 2 supη∈H|Prx∼PeT [η(x) = 1]− Prx∼Pe

B
[η(x) = 1]|.

Proof. Suppose that Pr(E = eT ) = Pr(E = eS) =
1
2 . Then we have

dH[PeT ,PeS ] = 2 sup
η∈H
|Prx∼PeT [η(x) = 1]− Prx∼PeS [η(x) = 1]|

= 4 sup
η∈H
|1
2
Prx∼PeT [η(x) = 1]− 1

2
Prx∼PeS [η(x) = 1]|

= 4 sup
η∈H
|1
2
Prx∼PeT [η(x) = 1] +

1

2
Prx∼PeS [η(x) = 0]− 1

2
|

Consider a binary classification problem using η : X → {0, 1} to classify the domains eS and eT .
We assume that f(x) = 1 if x is from domain eT and f(x) = 0 if x is from domain eS , where
f : X → {0, 1} is the labeling function. Then we have

dH[PeT ,PeS ] = 4 sup
η∈H
|
∫
X
Pr[η(x) = f(x) | X = x]Pr(X = x)− 1

2
|

= 4 sup
η∈H
|
∫
X
((1− η(x))Pr(E = eS | X = x)

+ η(x)Pr(E = eT | X = x))Pr(X = x)− 1

2
|.

Since

Pr(X = x) =
1

2
(PeS (x) + PeT (x)),

Pr(E = eS | X = x) =
Pr(X = x | E = eS)Pr(E = eS)

Pr(X = x)
=

PeS (x)

PeS (x) + PeT (x)
,

Pr(E = eT | X = x) =
Pr(X = x | E = eT )Pr(E = eT )
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PeT (x)

PeS (x) + PeT (x)
,

then
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((1− η(x))PeS (x) + η(x)PeT (x))− 1

2
|

= 4 sup
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∫
X
((1− η(x))PeS (x) + η(x)PeT (x))− 1

2
)
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∫
X
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Similarly, we have

dH[PeT ,PeS
B ] = 2(

∫
X
max {PeS

B (x),PeT (x)} − 1).
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Since Assumption 1 holds,

∀x ∈ X ,max {PeS
B (x),PeT (x)} ≤ max {PeS (x),PeT (x)}

Hence we have
dH[PeT ,PeS

B ] ≤ dH[PeT ,PeS ].

B.3 PROOF OF THEOREM 2

Proof. For a case with single training environment eS and a single test environment eT , it has been
shown by Ben-David et al. (2006) that with probability at least 1− δ, for every h ∈ H, we have

ReT (h) ≤ R̂eS (h) +

√
4

m
(d log

2em

d
+ log

4

δ
) + dH(PeS ,PeT ) + λ

We consider an unseen environment eT ∈ Etest and all training environments Etrain ={
eiS | i = 1, 2, . . . , NS

}
. We can define an environment ēS whose distribution is

P̄eS
B =

1

NS

NS∑
i=1

PeiS
B .

Thus ReT (h) can be bounded as
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B (h) +

√
4

m
(d log

2em
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√
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m
(d log

2em

d
+ log

4

δ
) +

1

NS
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i=1

dH(PeiS
B ,PeT ) + λ.

Since Assumption 1 holds between all eiS and eT , according to Lemma 1, ∀eiS ∈ Etrain,

dH[PeT ,PeiS
B ] ≤ dH[PeT ,PeiS ]. Then we have

ReT (h) ≤ 1

NS

NS∑
i=1

R̂
eiS
B (h) +

√
4

m
(d log

2em

d
+ log

4

δ
) +
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B (h) +

√
4

m
(d log

2em

d
+ log

4

δ
) + ϵ+ λ.

B.4 PROOF FOR THEOREM 3

Proof. We assume that for any sample in a batch, if it belongs to class k, we include its matched
sample into the batch with the probability Pk.

Let Bs be the size of batch before balancing. Without loss of generality, we assume that we will
match n samples with probability Pk for each sample in the original batch. Since original batch are
sampled i.i.d. from the training set distribution, in the original samples, we have

E(N1(Y = j)) = ωj ×Bs,

where N1(Y = j) is the number of samples who belong to class j in the original batch.

In the balancing process, each sample searches for a matching sample who has a different label from
the training set. Assume that i ̸= j, the probability of Y = j among the matched samples of the
sample with label Y = i is ωjωi

1−ωi
Pi. Then the expected number of samples whose Y = j in the set

of matched samples is

E(N2(Y = j)) =
∑

i∈{1,2,...,j−1,j+1,...,m}

ωjωi

1− ωi
Pi × n×Bs.
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Then we have

E(N(Y = j)) = ωj ×Bs× (1 +
∑

i∈{1,2,...,j−1,j+1,...,m}

ωi

1− ωi
Pi × n),

where N(Y = j) = N1(Y = j) + N2(Y = j).

If Pi =
(1−ωi)/ωi

maxk(1−ωk)/ωk
, then

E(N(Y = j)) = ωj ×Bs× (1 +
n(m− 1)

maxk(1− ωk)/ωk
) = c× ωj ,

where c = (1 + n(m−1)
maxk(1−ωk)/ωk

)×Bs is a constant.

C EXTRA EXPERIMENTAL RESULTS

C.1 HYPERPARAMETER SEARCH

We search hyperparameters with the same distribution as DomainBed. On DomainBed benchmark,
some distribution of hyperparameters are related to image size. To avoid human intervention, we
resize images of CelebA-HB and CelebA-NS to 224×224, which is the standard size on DomainBed
benchmark. To save computing resource and time, we reduce the number of search to eight for all
diversity shift datasets and small-image (smaller than 224 × 224) correlation shift datasets. DRM
will augment the batch, so we reduce the batchsize for big-image datasets to avoid GPU memory
overflow. The two stages of DRM use the same model: Resnet-50 (He et al., 2016) for big-image
datasets and MNIST-CNN for small-image datasets, which is consistent with DomainBed. And
hyperparameters distribution of two stages are the same, which is also consistent with DomainBed.
In stage 1, we divide the data from train environments into the training set and the validation set in
a ratio of 8:2. We choose the model which perform best on the validation set.

C.2 FULL RESULTS

Table 3: The result for CMNIST

Algorithm +90% +80% -90% Avg
ERM 71.7 ± 0.1 72.9 ± 0.2 10.0 ± 0.1 51.5
IRM 72.5 ± 0.1 73.3 ± 0.5 10.2 ± 0.3 52.0
GroupDRO 73.1 ± 0.3 73.2 ± 0.2 10.0 ± 0.2 52.1
Mixup 72.7 ± 0.4 73.4 ± 0.1 10.1 ± 0.1 52.1
MLDG 71.5 ± 0.2 73.1 ± 0.2 9.8 ± 0.1 51.5
CORAL 71.6 ± 0.3 73.1 ± 0.1 9.9 ± 0.1 51.5
MMD 71.4 ± 0.2 73.1 ± 0.2 9.9 ± 0.3 51.5
DANN 71.4 ± 0.9 73.1 ± 0.1 10.0 ± 0.0 51.5
CDANN 72.0 ± 0.2 73.0 ± 0.2 10.2 ± 0.1 51.7
MTL 70.9 ± 0.2 72.8 ± 0.3 10.5 ± 0.1 51.4
SagNet 71.8 ± 0.2 73.0 ± 0.2 10.3 ± 0.1 51.7
ARM 82.0 ± 0.5 76.5 ± 0.3 10.2 ± 0.0 56.2
VREx 72.4 ± 0.3 72.9 ± 0.4 10.2 ± 0.0 51.8
RSC 71.9 ± 0.3 73.1 ± 0.2 10.0 ± 0.2 51.7
DRM (ours) 71.4 ± 0.3 72.4 ± 0.4 69.7 ± 1.5 71.2
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Table 4: The results for 3DShapes

Algorithm +90% +80% -90% Avg
ERM 74.3 ± 0.4 75.5 ± 0.2 10.1 ± 0.1 53.3
IRM 74.2 ± 0.2 75.4 ± 0.1 10.0 ± 0.0 53.2
GroupDRO 74.6 ± 0.1 75.1 ± 0.1 10.5 ± 0.4 53.4
Mixup 74.6 ± 0.4 75.4 ± 0.2 10.2 ± 0.1 53.4
MLDG 75.0 ± 0.2 75.4 ± 0.1 10.1 ± 0.1 53.5
CORAL 74.6 ± 0.2 75.2 ± 0.2 10.0 ± 0.0 53.3
MMD 74.6 ± 0.1 75.2 ± 0.1 10.0 ± 0.1 53.2
DANN 74.6 ± 0.1 75.2 ± 0.1 10.0 ± 0.0 53.3
CDANN 74.4 ± 0.4 75.3 ± 0.0 10.0 ± 0.0 53.3
MTL 74.7 ± 0.2 75.4 ± 0.2 10.1 ± 0.0 53.4
SagNet 74.9 ± 0.1 75.1 ± 0.1 10.1 ± 0.1 53.4
ARM 81.8 ± 0.3 73.9 ± 0.8 10.0 ± 0.0 55.2
VREx 74.6 ± 0.4 75.2 ± 0.0 10.8 ± 0.3 53.5
RSC 74.4 ± 0.2 75.1 ± 0.1 10.1 ± 0.1 53.2
DRM (ours) 74.5 ± 0.2 75.1 ± 0.1 74.8 ± 0.1 74.8

Table 5: The results for DSprites

Algorithm +90% +80% -90% Avg
ERM 73.5 ± 0.2 74.8 ± 0.0 13.8 ± 0.5 54.0
IRM 73.5 ± 0.2 74.2 ± 0.1 14.5 ± 0.3 54.0
GroupDRO 73.8 ± 0.2 74.4 ± 0.1 15.0 ± 0.4 54.4
Mixup 73.4 ± 0.1 74.3 ± 0.2 14.0 ± 0.3 53.9
MLDG 73.9 ± 0.3 74.4 ± 0.3 14.3 ± 0.3 54.2
CORAL 73.4 ± 0.3 74.5 ± 0.1 13.8 ± 0.2 53.9
MMD 65.8 ± 6.4 74.2 ± 0.1 14.4 ± 0.0 51.4
DANN 73.7 ± 0.5 73.9 ± 0.2 14.7 ± 0.3 54.1
CDANN 73.7 ± 0.3 74.0 ± 0.1 14.4 ± 0.2 54.0
MTL 73.3 ± 0.0 74.8 ± 0.2 14.8 ± 0.5 54.3
SagNet 73.5 ± 0.1 74.8 ± 0.1 13.6 ± 0.1 54.0
ARM 86.9 ± 0.4 77.6 ± 0.4 14.5 ± 0.6 59.7
VREx 73.4 ± 0.2 74.6 ± 0.1 13.8 ± 0.3 53.9
RSC 73.7 ± 0.3 74.5 ± 0.2 13.3 ± 0.2 53.8
DRM (ours) 73.7 ± 0.2 74.4 ± 0.1 73.3 ± 0.5 73.8

Table 6: The results for CelebA-HB

Algorithm +90% +80% -90% Avg
ERM 67.3 ± 0.2 71.8 ± 0.3 16.8 ± 1.2 52.0
IRM 65.9 ± 0.7 70.0 ± 0.7 20.4 ± 2.1 52.1
GroupDRO 68.3 ± 1.2 71.9 ± 0.2 18.3 ± 1.5 52.8
Mixup 68.4 ± 0.6 70.8 ± 0.6 17.9 ± 3.4 52.4
MLDG 68.3 ± 0.2 70.6 ± 0.1 20.0 ± 2.1 53.0
CORAL 68.3 ± 0.5 71.2 ± 0.2 17.7 ± 1.6 52.4
MMD 64.5 ± 0.6 70.1 ± 0.6 17.4 ± 1.8 50.7
DANN 67.0 ± 1.0 71.2 ± 1.5 16.9 ± 1.7 51.7
CDANN 66.8 ± 0.8 72.1 ± 0.4 18.6 ± 2.5 52.5
MTL 65.9 ± 0.9 71.6 ± 0.1 23.5 ± 1.4 53.7
SagNet 64.6 ± 1.0 71.6 ± 0.4 14.9 ± 0.6 50.4
ARM 66.7 ± 1.1 72.8 ± 0.1 22.8 ± 2.2 54.1
VREx 66.9 ± 0.3 71.4 ± 0.2 19.2 ± 1.8 52.5
RSC 67.4 ± 0.4 71.1 ± 0.9 18.9 ± 1.1 52.5
DRM (ours) 68.1 ± 1.0 69.3 ± 1.4 61.0 ± 4.9 66.1
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Table 7: The results for CelebA-NS

Algorithm +90% +80% -90% Avg
ERM 67.8 ± 1.0 69.1 ± 0.6 21.1 ± 0.4 52.7
IRM 68.2 ± 0.3 69.8 ± 0.1 21.5 ± 0.9 53.2
GroupDRO 68.0 ± 0.4 70.6 ± 0.3 21.2 ± 0.2 53.3
Mixup 68.7 ± 0.6 70.2 ± 0.7 22.2 ± 1.5 53.7
MLDG 67.7 ± 0.3 70.8 ± 0.1 22.7 ± 1.7 53.7
CORAL 68.2 ± 0.5 69.8 ± 0.1 22.1 ± 1.1 53.4
MMD 68.1 ± 0.3 69.4 ± 0.4 22.5 ± 0.6 53.3
DANN 69.3 ± 0.6 69.9 ± 0.6 21.8 ± 1.5 53.7
CDANN 68.0 ± 0.5 71.1 ± 0.4 22.5 ± 1.2 53.9
MTL 67.7 ± 0.4 69.5 ± 0.3 27.6 ± 1.2 54.9
SagNet 67.8 ± 0.3 69.5 ± 0.2 22.0 ± 0.6 53.1
ARM 67.7 ± 0.2 70.3 ± 0.3 21.1 ± 1.4 53.0
VREx 69.7 ± 0.4 69.7 ± 0.3 20.3 ± 0.4 53.2
RSC 68.9 ± 0.8 70.3 ± 0.2 23.7 ± 0.8 54.3
DRM (ours) 67.7 ± 1.1 68.6 ± 0.3 59.9 ± 2.6 65.4

Table 8: The result for RMNIST

Algorithm 0 15 30 45 60 75 Avg
ERM 95.9 ± 0.1 98.9 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 96.4 ± 0.0 98.0
IRM 95.5 ± 0.1 98.8 ± 0.2 98.7 ± 0.1 98.6 ± 0.1 98.7 ± 0.0 95.9 ± 0.2 97.7
GroupDRO 95.6 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.0 96.5 ± 0.2 98.0
Mixup 95.8 ± 0.3 98.9 ± 0.0 98.9 ± 0.0 98.9 ± 0.0 98.8 ± 0.1 96.5 ± 0.3 98.0
MLDG 95.8 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9
CORAL 95.8 ± 0.3 98.8 ± 0.0 98.9 ± 0.0 99.0 ± 0.0 98.9 ± 0.1 96.4 ± 0.2 98.0
MMD 95.6 ± 0.1 98.9 ± 0.1 99.0 ± 0.0 99.0 ± 0.0 98.9 ± 0.0 96.0 ± 0.2 97.9
DANN 95.0 ± 0.5 98.9 ± 0.1 99.0 ± 0.0 90.0 ± 0.1 98.9 ± 0.0 96.3 ± 0.2 97.8
CDANN 95.7 ± 0.2 98.8 ± 0.0 98.9 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 96.1 ± 0.3 97.9
MTL 95.6 ± 0.1 99.0 ± 0.1 99.0 ± 0.0 98.9 ± 0.1 99.0 ± 0.1 95.8 ± 0.2 97.9
SagNet 95.9 ± 0.3 98.9 ± 0.1 99.0 ± 0.1 99.1 ± 0.0 99.0 ± 0.1 96.3 ± 0.1 98.0
ARM 96.7 ± 0.2 99.1 ± 0.0 99.0 ± 0.0 99.0 ± 0.1 99.1 ± 0.1 96.5 ± 0.4 98.2
VREx 95.9 ± 0.2 99.0 ± 0.1 98.9 ± 0.1 98.9 ± 0.1 98.7 ± 0.1 96.2 ± 0.2 97.9
RSC 94.8 ± 0.5 98.7 ± 0.1 98.8 ± 0.1 98.8 ± 0.0 98.9 ± 0.1 95.9 ± 0.2 97.6
DRM(ours) 94.5 ± 0.6 98.6 ± 0.1 98.8 ± 0.1 99.1 ± 0.0 98.9 ± 0.0 96.0 ± 0.3 97.6

Table 9: The result for VLCS

Algorithm C L S V Avg
ERM 97.7 ± 0.4 64.3 ± 0.9 73.4 ± 0.5 74.6 ± 1.3 77.5
IRM 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.5
GroupDRO 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7
Mixup 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4
MLDG 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2
CORAL 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8
MMD 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5
DANN 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6
CDANN 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5
MTL 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2
SagNet 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8
ARM 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6
VREx 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3
RSC 97.9 ± 0.2 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 77.1
DRM(ours) 97.9 ± 0.2 65.1 ± 0.7 71.5 ± 0.9 77.1 ± 1.7 77.9
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Table 10: The result for PACS

Algorithm A C P S Avg
ERM 84.7 ± 0.4 80.8 ± 0.6 97.2 ± 0.3 79.3 ± 1.0 85.5
IRM 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5
GroupDRO 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4
Mixup 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6
MLDG 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9
CORAL 88.3 ± 0.2 80 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2
MMD 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.6
DANN 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.6
CDANN 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6
MTL 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6
SagNet 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80 ± 0.4 86.3
ARM 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1
VREx 86 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9
RSC 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2
DRM(ours) 85.0 ± 0.9 80.0 ± 0.5 96.7 ± 0.6 77.5 ± 1.2 84.8

Table 11: The result for OFFICEHOME

Algorithm A C P R Avg
ERM 61.3 ± 0.7 52.4 ± 0.3 75.8 ± 0.1 76.6 ± 0.3 66.5
IRM 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3
GroupDRO 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0
Mixup 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1
MLDG 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8
CORAL 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7
MMD 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.3
DANN 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9
CDANN 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.8
MTL 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4
SagNet 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1
ARM 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8
VREx 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4
RSC 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5
DRM(ours) 60.4 ± 0.6 52.5 ± 0.5 74.2 ± 0.6 75.5 ± 0.9 65.7

Table 12: The result for TERRAINCOGNITA

Algorithm L100 L38 L43 L46 Avg
ERM 49.8 ± 4.4 42.1 ± 1.4 56.9 ± 1.8 35.7 ± 3.9 46.1
IRM 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6
GroupDRO 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2
Mixup 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9
MLDG 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.7
CORAL 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.6
MMD 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2
DANN 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7
CDANN 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8
MTL 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6
SagNet 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6
ARM 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5
VREx 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4
RSC 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6
DRM(ours) 52.8 ± 3.6 42.7 ± 1.3 56.3 ± 1.2 41.1 ± 2.0 48.2

22



Under review as a conference paper at ICLR 2023

Table 13: The result for DOMAINNET

Algorithm clip info paint quick real sketch Avg
ERM 58.1 ± 0.3 18.8 ± 0.3 16.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GroupDRO 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.1 48.2 ± 0.5 39.2
MLDG 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.3 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
DRM(ours) 58.5 ± 0.5 19.5 ± 0.4 45.4 ± 0.1 13.8 ± 0.6 59.0 ± 1.0 49.9 ± 0.7 41.0
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