
Identifying Effects of Disease on Single-Cells with
Domain-Invariant Generative Modeling

Abdul Moeed
German Cancer Research Center (DKFZ)

Heidelberg, Germany
abdul.moeed@dkfz-heidelberg.de

Martin Rohbeck
German Cancer Research Center (DKFZ)

Heidelberg, Germany
martin.rohbeck@dkfz-heidelberg.de

Kai Ueltzhöffer
European Molecular Biology Laboratory (EMBL)

Heidelberg, Germany
kai.ueltzhoeffer@embl.de

Pavlo Lutsik
German Cancer Research Center (DKFZ)

Heidelberg, Germany
p.lutsik@dkfz-heidelberg.de

Oliver Stegle
German Cancer Research Center (DKFZ)

Heidelberg, Germany
o.stegle@dkfz-heidelberg.de

Marc Jan Bonder
German Cancer Research Center (DKFZ)

Heidelberg, Germany
m.bonder@dkfz-heidelberg.de

Abstract

A core challenge in computational biology is predicting the effects of disease on
healthy tissue. From the machine learning perspective, effects of disease and other
stimulations on gene expression of single cells can be modeled as a domain shift
in a low-dimensional latent space applied to healthy cells. Guided by principles
of domain-invariance and compositional models, we present single-cell Domain
Shift Autoencoder (scDSA), a deep generative model for disentangling disease-
invariant and disease-specific gene programs at single-cell resolution. scDSA
uncovers latent factors that are conserved across healthy and disease cell states, and
learns how these factors interact with disease. We show that our model i) predicts
counterfactual healthy cell-types of diseased cells in unseen patients, ii) captures
interpretable representations of disease(s), and iii) learns interaction of disease
effects and cell-types. scDSA helps to further our understanding of how diseases
perturb healthy tissue on a patient-specific basis therefore enabling advances in
personalized healthcare.

1 Introduction

Advancements in RNA sequencing technologies are enabling researchers to measure gene expression
levels of thousands of genes in individual cells – giving rise to so-called single-cell RNA sequencing
(scRNA-seq) data. As the scale of such data has grown, so has the need to process and extract
meaningful information from it. Such high resolution data holds the promise to deepen our knowledge
of how certain diseases affect healthy tissue on a cellular level.

Variation in gene expression of cells can be explained by biological processes (cell/tissue-specific
functionality) as well as technical artefacts of sequencing (batch effects). Additionally, these sources
of variation may be further influenced by disease. While existing machine learning approaches serve
adequately to explain latent sources of variation in single-cell gene expression absent of disease
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Table 1: scDSA comparison with related methods.
Method Count-based Domain-invariant space Domain-specific space OOD predictor

scVI ✓ - - -
CPA ✓ - ✓ -

MOFA ✓ ✓ - -
DIVA - ✓ ✓ ✓

scDIVA ✓ ✓ ✓ ✓
scDSA ✓ ✓ ✓ ✓

[1, 2, 3], it remains an open challenge to explain how specific diseases impact specific tissue at
cellular scale.

Building on existing ideas related to domain-invariant representation learning [4, 5], our approach
relies on disentangling disease from healthy signal in cells, by learning invariant representations of
cells across healthy and disease states. This allows us to infer disease effect and apply it to healthy
cells – subsequently admitting for counterfactual predictions for both healthy and disease cells. To
this end, we propose the single-cell Domain Shift Autoencoder (scDSA) – a deep generative model
which i) learns to remove disease effects from cells in order to learn a domain-invariant latent space,
and ii) adds these effects back to the latent space linearly to recover the input. As diseases can affect
cell-types differentially, we also model an interaction effect of domain and cell-type in the latent
space. To be able to predict counterfactual healthy cell-types of disease cells, we encourage cell-type
information to be encoded in the domain-invariant space via an auxillary cell-type prediction task.
To achieve domain-invariant representations, we explicitly penalize leakage of domain information
in the domain-invariant space through adversarial training. Through various tasks and benchmarks
we show that scDSA predicts both raw gene expression counts and cell-type labels in unseen disease
conditions (out-of-distribution setting), achieving either comparable or superior results to existing
methods. Moreover, we analyze disease embeddings learned by scDSA and show that they capture
meaningful dimensions of diseases.

2 Related work

Due to high-dimensionality of scRNA-seq data, latent variable methods such as factor analysis [6, 3]
and variational autoencoders (VAEs) [7, 2] have been popular choices to perform dimensionality
reduction. Such procedures not only explain how raw gene expression counts are generated by
co-expression patterns but also aid in downstream tasks such as cell-type classification. To account
for the multitude of sources of variation in scRNA-seq data – such as batch effects, perturbations and
disease – specialized models have been developed on top of the aforementioned techniques (Table 1).

Single-cell variation inference (scVI) [2] is a VAE tailored for scRNA-seq data. Being an amortized
version of the standard variational inference approach – it has no mechanism to disentangle sources
of variation per se. The compositional perturbation autoencoder (CPA) [8] extends this approach
by explicitly modeling domain-specific representations with residual variation pushed in the so-
called basal cell state. However, CPA encodes cell-types as covariates instead of encoding cell-type
information in the basal state, and as such cannot infer cell-types in OOD samples. Furthermore,
it does not model the interaction of cell-types and domains in latent space. MOFA [3] is a popular
approach that uses factor analysis to explain shared variation in multi-omic readouts. Domain-specific
variation in MOFA is treated as noise thus not modeled explicitly. The domain-invariant variational
autoencoder (DIVA) [9] model is a domain generalization method in the machine learning literature. It
aims to simultaneously disentangle domain-invariant and domain-specific representations via training
a domain-invariant predictor. However, it doesn’t enforce independence of domain-invariant and
domain-specific information which could leak from one space to the other. To make it amenable
for scRNA-seq data, we reimplemented DIVA – in the fashion of scVI – by replacing the Gaussian
data likelihood with a Negative Binomial likelihood (typical choice to model gene expression count
data [1, 2]), accounting for library size with a learnable parameter and conditioning the encoders and
decoder on batch ID to account for batch effects. We henceforth call this version single-cell DIVA
(scDIVA). Subsequently, we primarily focus on comparing scDSA to scDIVA.
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3 Method

+ + +
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Figure 1: Graphical illustration of the architecture of scDSA. The model learns a domain-invariant
representation zy of the input x, and learns a shift with learnable embeddings ωd and ηy in case it
is perturbed by disease (here depicted as cancer patients). Domain-invariance in zy is achieved via
predictor fψ and discriminator fδ which are trained jointly with the VAE. Top row of UMAP plot
sketches how each part of the latent space is expected to look like.

3.1 Model

Given observations in the form D = (xi, yi, di), where xi ∈ ND0 is the vector of expression counts of
D genes for sample i, yi and di are discrete cell-type and domain labels, we are interested in learning
a domain-invariant representation ziy ∈ RK of xi such that ziy ⊥⊥ di. In the following we drop index
i for readability. We assume that the observed gene counts in a cell are generated by low-dimensional
latent processes. For cells that are in the healthy state, these processes correspond to active cell-type
specific gene programs zy. Cells that are affected by disease, are assumed to have a perturbation
applied to zy . This is formalized as follows:

z = zy + 1d̸=healthy

[
ωd + ηy + ωd ⊙ ηy

]
, (1)

where z ∈ RK represents x in latent space, zy is the domain-invariant representation, 1d ̸=healthy is
an indicator function which denotes that the domain shift terms are only added to cells not in the
healthy domain, ωd ∈ RK is the shift vector for disease d, ηy ∈ RK is the shift vector for cell-type
y and ⊙ denotes the Hadamard-product of ωd and ηy. We assume that ωd captures global shift
properties of domain d independent of cell-type y, while ηy captures global shift effects for each
cell-type y regardless of domains. As we are dealing with count data, observed gene count vector x
follows a Negative Binomial distribution. As scRNA-seq readouts depend on the so-called library
size (larger cells correspond to more gene counts), we need to account for this artefact. Similar to [2],
it is modeled as a scalar l ∈ R sampled from a log normal distribution:

l ∼ log normal(lµ(zl), lσ(zl)), (2)

x ∼ NB(µ(z) ∗ l, r(z)), (3)
where µ(z) ∗ l ∈ RD and r ∈ RD are the mean and dispersion parameters respectively (Figure 1).

3.2 Inference

In order to learn the aforementioned latent representation of the data, we use a VAE-based model.
We train an encoder qθ(zy|x) and decoder pϕ(x|z) as inference and generative models respectively.
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The decoder outputs parameters of the aforementioned Negative Binomial distribution. To enforce
cell-type information being encoded in zy, we put a conditional prior on the variational posterior,
also parametrized as an encoder pθy (zy|y). The variational lower bound thus becomes:

ELBO = log pϕ(x|z)− βyKL(qθzy (zy|x)||pθy (zy|y))− βlKL(qθzl (zl|x)||pθl(zl)) (4)

The posterior for library scale is inferred via encoder qθzl (zl|x) with prior pθl(zl) instantiated as
N (µl, σl) where µl and σl are the empirical mean and variance of the sequencing batch. The
embeddings ω and η are optimized as free parameters.

To enforce domain invariance in zy, a GAN-style strategy [10] is employed: we alternate between
1) optimizing a discriminator fδ which takes as input the domain-invariant representation zy and
predicts domain d, and 2) fixing fδ , computing cross-entropy loss, subtracting it from the VAE loss
and optimizing the VAE. Step 1 encourages fδ to improve prediction of domains from zy while step
2 ensures that the VAE is penalized in proportion to accuracy achieved by fδ. Finally, to further
enforce cell-type encoding in zy, a predictor fψ is trained in conjunction with the VAE to predict
cell-type y from zy . The complete objective function for scDSA is thus:

J = ELBO + αylog fψ(y|zy)− αdlog fδ(d|zy), (5)
where αy and αd are regularization parameters for the predictor and discriminator respectively, with
positive support. In cases where certain training data is missing cell-type annotations, we propose a
semi-supervised approach similar to [9]:

z = zy + 1d̸=healthy

[∑
y

fψ(y|zy)(ωd + ηy + ωd ⊙ ηy)
]
, (6)

where we impute cell-type information by pseudo-labeling cells using fψ. When training on a
semi-supervised batch, only the parameters of the VAE and discriminator are optimized while fψ is
kept fixed, in contrast to [9] where the predictor is also optimized.

For interpretation of disease embeddings compared to control samples, we initialize the embedding
corresponding to control domain as a zero vector and disable gradient updates on this embedding.

4 Results

We evaluate various aspects of model learning via different tasks: 1) transfer of labels to an unseen
experiment (referred to as query-to-reference data mapping), 2) inference of leukemic cells from
unseen cancer patients, and 3) inference of cells from an unseen perturbation (COVID) while trained
on control and Influenza A cells. For comparison, we use a vanilla VAE from the scVI package as
baseline. In addition, we use our scDIVA implementation which explicitly tries to disentangle domain-
specific variation from shared variation. We observe that scDIVA and scDSA have comparable data
fit on novel domains while outperforming VAE. Furthermore, adding the domain-celltype interaction
to scDSA further improves generalization (Table 2). For OOD cell-type prediction, we use the
trained predictors of scDIVA and scDSA, while for scVI, a neural network is trained on its latent
representations. To avoid circularity of cell-type predictions from gene expression, all datasets used
in our experiments derive cell-type labels from cell surface protein expression (CITE-seq).

For proof-of-concept, we start with mapping cells from unseen experiments onto cells of known
cell-types (query-to-reference mapping). The goal is to learn representations of cells such that they
generalize to data generated by unseen experiments. For this, we take healthy human bone marrow
(BMMC) and peripheral blood (PBMC) data from the Azimuth annotated reference atlas [11], that
includes cells from four experiments. Furthermore, we add healthy samples from [12] where the
authors study gene expression variation in patients with Acute Myeloid Leukemia (AML) – more on
this in Section 4.1. To evaluate how the model fits cells from unseen experiments, we holdout data
from one study during training. As seen in Table 2, scDSA out-performs scVI and has comparable
performance to scDIVA on data fit of the holdout set. Additionally, we assess the impact of interaction
of domain and cell-types in our model, where we see that adding the interaction term further decreases
the negative log-likelihood (NLL) of holdout data.

4.1 OOD prediction of cancer cell states

Next, in order to assess generalization of the model in cells with disease, we use the entire AML
dataset [12] which contains CITE-seq derived cell-type labels and clonal information identified by
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Table 2: Mean negative log-likelihood on OOD holdout sets (lower is better). Values have been
multiplied by a factor of 100 for readability. scDSA-interaction refers to model with disease-celltype
interaction included.

Task Holdout scVI scDIVA scDSA scDSA-interaction

Query-to-reference Study 31.2 ± 0.4 15.5 ± 0.2 17.3 ± 0.5 16.6 ± 1.3
AML Patients 62.1 ± 1.0 23.4 ± 0.2 24.1 ± 1.1 25.5 ± 1.7
COVID/IAV Condition 45.1 ± 0.5 17.6 ± 3.4 19.8 ± 0.3 19.1 ± 0.4

Figure 2: UMAP visualizations of latent spaces learned by scDSA on AML data. Top row: Colored
by cell-type, bottom row: Colored by domain. Each column depicts how domain shifts (with and
without cell-type interaction) affect latent space. Left-most column: domain-invariant representation
zy, Center column: Domain-shift vectors ωd added to zy, Right-most column: Full latent state with
interaction of domain and cell-types.

mitochondrial mutations. The dataset comprises of cells from two healthy donors, as well as a mixture
of healthy and leukemic cells from 13 AML patients. Data is split into three sets: training (8 leukemic
+ control donors), validation (3 patients) and holdout (2 patients). Healthy cells, regardless of
patient/donor, are assigned a single domain (’healthy’). AML cancer clones are highly heterogeneous
among patients; each patient is therefore treated as a separate domain. The latent space of the model
consists of 64 latent dimensions.

For qualitative assessment of the learned latent space of scDSA, we plot UMAP visualizations of the
training data as seen in Fig 2. As can be obvserved, predominantly cell-type information is encoded in
the domain-invariant space zy , regardless of the domain, as we aimed with this model. Next, we add
the clone/disease embeddings ω to each cell (column 2), where we see that patient-specific clusters
are formed. Finally, we add the interaction of clone and cell-types to zy to observe that clusters are
now both clone- and cell type-specific.

To quantify how well scDSA generalizes to unseen clones, we infer counterfactual healthy cell-types
of leukemic cells for samples of holdout patients. Due to imbalance of cell type abundance, the
results are stratified by cell types and reported in Fig 3a. As we can see, scDSA has an overall lead
over competing methods, while also being robust across cell types. In contrast, scDIVA is not able
to generalize to unseen clones. We hypothesize that this is due to scDIVA not explicitly penalizing
domain information flow into the domain-invariant space.

As an ablation for whether it helps to jointly train fψ as opposed to VAE having no supervision signal
for encoding cell-type information in zy , we compare effects on OOD prediction of different values
of predictor strength αy (Fig 3b). As we can see, having no predictor severely reduces OOD accuracy
of cell-type prediction. Interestingly, increasing αy exponentially has modest returns on this dataset.
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(a) Cell-type prediction accuracy of leukemic cells from holdout
patients.

(b) Effect of predictor strength αy on
average OOD accuracy.

Figure 3: Summary of prediction accuracy on Acute Myeloid Leukemia (AML) datasets
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Figure 4: Relevant latent dimensions of disease conditions – SARS-CoV-2 (COV), Influenza A virus
(IAV) – and top-n genes associated with each. Selected genes were queried with g:Profiler for known
pathways they are involved in.

4.2 Interpretation of disease embeddings

To interpret disease embeddings learned by scDSA, we use an scRNA-seq dataset with healthy
controls along with cells stimulated with Influenza A virus (IAV) and SARS-CoV-2 (COV) [13]. Our
goal here is to identify latent factors in disease embeddings ω that are either highly active or inactive
compared to control samples.

We train scDSA with 64 latent dimensions and three domains (not-stimulated (NS), IAV, COV).
As mentioned in Section 3, the control embedding is set to a null vector. We then identify latent
dimensions of ωCOV and ωIAV which have high positive or negative entries (Fig 4). Some dimensions
have high/low values for both diseases (e.g. dimensions 5, 14, 24) while others are relevant for only a
single condition (e.g. dimension 50). To find out which genes are highly associated with each of these
latent dimensions, we run Integrated Gradients [14]. Finally, to interpret which signalling pathways
these genes might play a role in, we use g:Profiler [15] to search for biological enrichments of genes
important in the latent factors. Controlling for background genes expressed in the dataset, we find
that the query genes are indeed involved in specific COVID-19 and IAV-related mechanisms, as well
as more general viral pathways such as ’viral genome replication’ (Fig 4).

5 Discussion

In this work, we propose scDSA – an approach to disentangle and identify disease-induced effects
on gene expression of single-cells. scDSA uses a compositional latent space where first, disease
effects are removed via adversarial training, and then linearly added back to an otherwise healthy
representation of a cell. It also models how specific interaction of a cell-type and disease might effect
this perturbation. We evaluate scDSA on various tasks: mapping a holdout dataset onto a reference,
learning clone-invariant and clone-specific states of AML cells as well as modeling cellular responses
to SARS-CoV-2 and Influenza A virus. While primarily focused on scRNA-seq data, we note that
scDSA can more generally be adapted to other omics data with minor modifications.

One major drawback of scDSA pertains to the complexity of model training. As scDSA is composed
of many separate components (VAE, discriminator, predictor) with each having its own set hyperpa-
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rameters, it might be a challenge to find the optimal set for certain tasks. Although in our experiments
minimal hyperparameter tuning was conducted, as most hyperparameters were kept fixed for all tasks,
in theory the choice of such variables can drastically alter model convergence rates.

Future work will focus on further understanding differential transformation of cell-types by known
mechanisms of certain diseases. In the case of cancer, for example, the domain shift embedding
ω could be modeled as a function of cellular copy number variation (CNV), mutational burden or
DNA methylation status. Another promising direction is incorporating single-cell spatial readouts.
With true single-cell spatial transcriptomic technologies such as Xenium on the rise, scDSA could be
modified to encode spatial dependencies of cells via Graph Neural Networks [16]. This is especially
useful in diseases where spatial architecture of cell systems plays an important role, as has been
demonstrated for breast cancer [17].
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Appendix

Data Pre-processing

1000, 1000, 3000 genes were selected for query-to-reference mapping, AML prediction and
COVID/IAV tasks respectively using scanpy’s [18] sc.pp.highly_variable_genes() function.
Label matching for Azimuth and AML datasets were done manually. For AML task, cells with
uncertain cancer/healthy label were dropped.

Model Architectures

All weights are initialized with torch.nn.init.xavier_uniform_().

Encoders

Table 3: Architecture of encoders used in scDSA and scDIVA
Layer Details (type, activation)

1 Linear(n-genes, 600), ReLU
2 Linear(600, 200), ReLU
3.1 Linear(200, 64), -
3.2 Linear(200, 64), Softplus

Decoders

Table 4: Architecture of decoders used in scDSA and scDIVA. 3.2 refers to dispersion parameter of
NB distribution which is shared across cells, therefore specified as a learnable tensor of size n-genes.

Layer Details (type, activation)

1 Linear(64, 400), SELU
2 Linear(400, 800), ReLU
3.1 Linear(800, n-genes), Softmax
3.2 Parameter(n-genes), -

Classifiers

The same architecture is used for predictors and discriminator. output-dim corresponds to n-domains
for discriminator and to n-celltypes for predictors.

Hyperparameters

Adam [19] optimizer is used for all parameter learning. To account for scale imbalance in loss
terms, we run a warmup epoch without optimization to evaluate normalization constants for each
loss component. Each loss term (VAE, predictor, discriminator) is then normalized by corresponding
constants during training. Each model is trained for max_epochs=200 with early stopping enabled.
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Table 5: Architecture of classifiers used in scDSA and scDIVA
Layer Details (type, activation)

1 Linear(64, 28), ReLU
2 Linear(28, 16), ReLU
3 Linear(16, output-dim), -

Table 6: Hyperparameters for scDSA training runs across tasks
Hyperparameter Value

αy 10
αd 1
βy 1
βl 1
learning-rateVAE 1e-3
learning-ratefψ 1e-2
learning-ratefδ 1e-2

Table 7: Hyperparameters for scDIVA training runs across tasks.
Hyperparameter Value

αy 4800
αd 2000
βy 1
βd 1
βl 1
learning-rateVAE 1e-3
learning-ratefy 1e-3
learning-ratefd 1e-3
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