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ABSTRACT

The accurate modeling of dynamics in interactive environments is critical for suc-
cessful long-range prediction. Such a capability could advance Reinforcement
Learning (RL) and Planning algorithms, but achieving it is challenging. Inaccu-
racies in model estimates can compound, resulting in increased errors over long
horizons. We approach this problem from the lens of Koopman theory, where the
nonlinear dynamics of the environment can be linearized in a high-dimensional
latent space. This allows us to efficiently parallelize the sequential problem of
long-range prediction using convolution while accounting for the agent’s action
at every time step. Our approach also enables stability analysis and better control
over gradients through time. Taken together, these advantages result in significant
improvement over the existing approaches, both in the efficiency and the accuracy
of modeling dynamics over extended horizons. We also show that this model
can be easily incorporated into dynamics modeling for model-based planning and
model-free RL and report promising experimental results.

1 INTRODUCTION

The ability to predict the outcome of an agent’s action over long horizons is a crucial unresolved
challenge in Reinforcement Learning (RL) (Sutton & Barto, 2018; Mnih et al., 2015; Silver et al.,
2017; Mnih et al., 2016). This is especially important in model-based RL and planning, where
deriving a policy from the learned dynamics models allows one to efficiently accomplish a wide
variety of tasks in an environment (Du & Narasimhan, 2019; Hafner et al., 2020; Sikchi et al., 2021;
Hansen et al., 2022; Schrittwieser et al., 2020; Jain et al., 2022). In fact, state-of-the-art model-free
techniques also rely on dynamics models to learn a better representation for downstream value
prediction tasks (Schwarzer et al., 2020). Thus, obtaining accurate long-range dynamics models in the
presence of input and control is crucial. In this work, we leverage techniques and perspectives from
Koopman theory (Koopman, 1931; Mauroy et al., 2020; Koopman & Neumann, 1932; Brunton et al.,
2021) to address this key problem in long-range dynamics modeling of interactive environments.
The application of Koopman theory allows us to linearise a nonlinear dynamical system by creating
a bijective mapping to linear dynamics in a possibly infinite dimensional space of observables.1
Conveniently, a deep neural network can learn to produce such a mapping, enabling a reliable
approximation of the non-linear dynamics in the finite dimension of a linear latent space so that only
a finite subset of the most relevant (complex-valued) Koopman observables need to be tracked.

We show that this linearization has two major benefits: 1) The eigenvalues of the linear latent-space
operator are directly related to the stability and expressive power of the controlled dynamics model.
Furthermore, spectral Koopman theory provides a unifying perspective over several existing directions
on stabilizing gradients through time, including long-range sequence modeling using state-space
models (Gu et al., 2020; 2022b;a; Gupta et al., 2022), and the use of unitary matrices (Arjovsky
et al., 2016) in latent dynamic models; 2) This can help to avoid a computational bottleneck due

∗Correspondence: arnab.mondal@mila.quebec. Work done while at ServiceNow Research
1The term observables can be misleading as it refers to the latent space in the machine learning jargon.
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Figure 1: A comparison of our Koopman-based linear dynamics model with a non-linear MLP-based
dynamics model. The Diagonal Koopman formulation allows for modeling longer horizons efficiently
with control over gradients. Here BPTT stands for Backpropagation Through Time.

to the sequential nature of dynamics. This is achieved by a reformulation using convolution and
diagonalization of the linear operator. In other words, one can perform efficient parallel training of
the model over time steps, despite dealing with a controlled dynamical system.

Our experimental results in offline-RL datasets demonstrate the effectiveness of our approach for
reward and state prediction over a long horizon. In particular, we report competitive results against
dynamics modeling baselines that use Multi-Layer Perceptrons (MLPs), Gated Recurrent Units
(GRUs), Transformers and Diagonal State Space Models Gu et al. (2022a) while being significantly
faster. Finally, we also present encouraging results for model-based planning and model-free RL with
our Koopman-based dynamics model.

In summary, our contributions are:

1. We formulate an efficient linear latent dynamics model from Koopman theory that can be
parallelized during training for long-range dynamics modeling in interactive environments.

2. We demonstrate the use of the spectral decomposition of the Koopman matrix, which enables
better control over gradients through time and accelerated training.

3. We show that our technique serves as a preferred alternative for existing dynamics models
in planning and RL algorithms, offering enhanced performance, speed and training stability.

2 PRELIMINARIES

2.1 KOOPMAN THEORY FOR DYNAMICAL SYSTEMS

In the context of non-linear dynamical systems, the Koopman operator, a.k.a. the Koopman-von
Neumann operator, is a linear operator for studying the system’s dynamics. The Koopman operator is
defined as a linear transformation that acts on the space of functions or observables of the system,
known as the observables space F . For a non-linear discrete or continuous time dynamical system

xt+1 = F (xt) or
dx

dt
= f(x)

the Koopman operator K : F → F , is defined as Kg ∼= g ◦ F where F is the set of all functions
or observables that form an infinite-dimensional Hilbert space. In other words, for every function
g : X → R belonging to F , where xt ∈ X ⊂ Rn, we have

(Kg)(xt) = g(F (xt)) = g(xt+1).
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The infinite dimensionality of the Koopman operator presents practical limitations. Addressing this,
we seek to identify a subspace G ⊂ F , spanned by a finite set of observables g1, . . . , gm where
typically m ≫ n, that approximates invariance under the Koopman operator.

Constraining the Koopman operator on this invariant subspace results in a finite-dimensional linear
operator K ∈ Cm×m, called the Koopman matrix, which satisfies g(xt+1) = Kg(xt). Usually,
the base observation functions {gi}i are hand-crafted using knowledge of the system’s underlying
physics. However, data-driven methods have recently been proposed to learn the Koopman operator
by representing the base observations or their eigenfunction basis using deep neural networks, where
a decoder reconstructs the input from linear latent dynamics (e.g., Lusch et al., 2018; Champion
et al., 2019). Linearizing the dynamics allows for closed-form solutions for the predictions of the
dynamical system, as well as stability analysis based on the eigendecomposition of the Koopman
matrix Fan et al. (2022); Yi & Manchester (2023).

The observation functions {gi}i spanning an invariant subspace can always be chosen to be eigenfunc-
tions {ϕi}i of the Koopman operator, i.e., Kϕi(x) = λiϕi(x),∀x. With this choice of observation
functions, the Koopman matrix becomes diagonal,

KD = diag(λ1, . . . , λm), λi ∈ C ∀i. (1)

By using a diagonal Koopman matrix, we are effectively offloading the task of learning the suitable
eigenfunctions of the Koopman operator that form an invariant subspace to the neural network
encoder. Additionally, for a continuous time input, to be able to model higher-order frequencies
in the eigenspectrum and provide better approximations, one could adaptively choose the most
relevant eigenvalues and eigenfunctions for the current state (Lusch et al., 2018). This means
g(xt+1) = KD(λ(g(xt)))g(xt), where λ : G → Cm can be a neural network.

2.2 APPROXIMATE KOOPMAN WITH CONTROL INPUT

The Koopman operator can be extended to non-linear control systems, where the state of the sys-
tem is influenced by an external control input ut such that xt+1 = F (xt, ut) or dx

dt = f(x, u).
Simply treating the pair (x, u) as the input x, the Koopman operator becomes (Kg)(xt, ut) =
g(F (xt, ut), ut+1) = g(xt+1, ut+1). If the effect of the control input on the system’s dynamics is
linear, i.e., the control affine setting, we have

f(x, u) = f0(x) +

m∑
i=1

fi(x)ui.

assuming a finite number of eigenfunctions. For such control-affine system, one could show that the
Koopman operator is bilinearized (Brunton et al., 2021; Bruder et al., 2021):

g(xt+1) = K(u)g(xt) = (K0 +

m∑
i=1

uiKi)g(xt).

More generally, one could make the Koopman operator a function of ut, so that the resulting
Koopman matrix satisfies g(xt+1) = K(ut)g(xt). This is the approach taken by Weissenbacher
et al. (2022) to model symmetries of dynamics in offline RL. When combined with the diagonal
Koopman matrix of Eq. (1), and fixed modulus |λi| = 1∀i, the Koopman matrix becomes a product
of SO(2) representations, and the resulting latent dynamics model, resembles a special setting of the
symmetry-based approach of Mondal et al. (2022), where group representations are used to encode
states and state-dependent actions.

An alternate approach to approximating the Koopman operator with a control signal assumes a decou-
pling of state and control observables g(x, u) = [g(x), f(u)] = [g1(x), ..., gm(x), f1(u), ..., fn(u)]
Brunton et al. (2021); Bruder et al. (2019). This gives rise to a simple linear evolution:

g(xt+1) = Kg(xt) + Lf(ut) (2)

where K ∈ Cm×m and L ∈ Cm×l are matrices representing the linear dynamics of the state
observables and control input, respectively. We build on this approach in our proposed methodology.
Although, as shown in Brunton et al. (2016; 2021); Bruder et al. (2019), even assuming a linear
control term Lut can perform well in practice, we use neural networks for both f and g. Our
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rationale for choosing this formulation is that the additive form of Eq. (2) combined with the
diagonalized Koopman matrix of Eq. (1), enable fast parallel training across time-steps using a
convolution operation where the convolution kernel can be computed efficiently. Moreover, this
setting is amenable to the analysis of gradient behaviour, as discussed in Section 3.2.1. For a more
comprehensive overview of Koopman theory in the context of controlled and uncontrolled dynamics,
we direct readers to Brunton et al. (2021); Mauroy et al. (2020).

3 PROPOSED MODEL
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Figure 2: A schematic of the latent Koopman dynamics model. Both actions and initial state
embedding are encoded into a latent space in complex (C) domain before passing through the
Koopman dynamics block. (see Appendix J for an efficient Jax implementation of the model)

3.1 LINEAR LATENT DYNAMICS MODEL

Our task in dynamics modeling is to predict the sequence of future states st+1, ...., st+τ given
a starting state st and some action sequence at, at+1, ..., at+τ−1, assuming a Markovian system.
Following the second approach described in Section 2.2, we assume that state and control observables
are decoupled, and use neural network encoders2 to encode both states and actions

xt = gθ(st) and ut = fϕ(at). (3)

Due to this decoupling, the continuous counterpart of latent space dynamics Eq. (2) is

dx

dt
= Kx(t) + Lu(t), (4)

and the solution is given by x(s) = eKsx(0)+
∫ s

0
eK(s−t)Lu(t)dt where eKs is a matrix exponential.

One could discretize this to get x̂t+1 = K̄xt + L̄ut, where K̄ and L̄ are obtained by Zero-Order
Hold (ZOH) discretization of the continuous-time equation (Iserles, 2009):

K̄ = exp(∆tK) L̄ = (K)−1(exp(∆tK)− 1)L

In practice, we assume that observations are sampled uniformly in time and use a learnable time step
parameter ∆t. Unrolling the discrete version of the dynamics for τ steps, we get:

[x̂t+1, · · · , x̂t+τ ] = [K̄, · · · , K̄τ ]xt + [ct, · · · , ct+τ−1]


I K̄ . . . K̄τ−1

0 I · · · K̄τ−2

...
...

. . .
...

0 0 · · · I


︸ ︷︷ ︸

Γ

, (5)

where ct+k = L̄ut+k, Γ encodes the effect of each input on all future observables, and theˆin x̂
distinguishes the prediction from the ground truth observable x. (see Appendix B)

We can then recover the predicted state sequence by inverting the function gθ, using a decoder network
ŝt+k = dξ(x̂t+k). Loss functions in both input and latent space can be used to learn the encoder,

2We use a CNN for pixel input and an MLP for state-based input and actions.
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decoder, and latent dynamics model. We refer to these loss functions as the Koopman consistency
loss and the state-prediction loss, respectively:

Lconsistency =

τ∑
k=1

∥x̂t+k − xt+k∥22 Lstate-pred =

τ∑
k=1

∥dξ(x̂t+k)− st+k∥22 (6)

3.2 DIAGONALIZATION, EFFICIENCY AND STABILITY OF THE KOOPMAN OPERATOR

Since the set of diagonalizable matrices is dense in Cm×m and has a full measure, we can always
diagonalize the Koopman matrix as shown in Eq. (1). Next, we show that this diagonalization can be
leveraged for efficient and parallel forward evolution and training.

To unroll the latent space using Eq. (5) we need to perform matrix exponentiation and dense multi-
plication. Using a diagonal Koopman matrix K̄ = diag(λ̄1, . . . , λ̄m), this calculation is reduced to
computing an m× (τ + 1) complex-valued Vandermonde matrix Λ, where Λi,j = λ̄j

i , and doing a
row-wise circular convolution of this matrix with a sequence of vectors.

Recall that x, c ∈ Cm are complex vectors. We use superscript to index their elements – i.e., xt =
[x1

t , . . . , x
m
t ]. With this notation, the i-th element of the predicted Koopman observables for future

time steps is given by (see Appendix B for the derivation):

[x̂i
t+1, . . . , x̂

i
t+τ ] = [λ̄i, . . . , λ̄

τ
i ]x

i
t + [1, λ̄i, . . . , λ̄

τ−1
i ]⊛ [cit, ..., c

i
t+τ−1] (7)

where ⊛ is circular convolution with zero padding. The convolution can be efficiently computed for
longer time steps using Fast Fourier Transform. (Brigham, 1988) (see Appendix J)

3.2.1 GRADIENTS THROUGH TIME

We show how we can control the behavior of gradients through time by constraining the real part of
the eigenvalues of the Diagonal Koopman matrix. Let µ and ω refer to the real and imaginary part of
the Koopman eigenvalues – that is λj = µj + iωj .
Theorem 3.1. For every time step k ∈ {1, .., τ} in the discrete dynamics, the norm of the gradient of
any loss at k-step given by Lk with respect to latent representation at time step t given by xt is a
scaled version of the norm of the gradient of the same loss by xt+k, where the scaling factor depends
on the exponential of the real part of the Koopman eigenvalues, that is:

|∂Lk

∂xj
t

| = ek∆tµj | ∂Lk

∂xj
t+k

| ∀j ∈ {1, ..,m}.

and similarly, for all l ≤ k, the norm of the gradient of Lk with respect to the control input at time
step t+ l− 1 given by is cjt+l−1 is a scaled version of the norm of the gradient of Lk by xt+k, where
the scaling factor depends on the exponential of the real part of the Koopman eigenvalues, that is:

| ∂Lk

∂cjt+l−1

| = e(k−l)∆tµj | ∂Lk

∂x̂j
t+k

| ∀j ∈ {1, ..,m}

A proof of this theorem is provided in Appendix A. The theorem implies that the amplitude of the
gradients from a future time step scales exponentially with the real part of each diagonal Koopman
eigenvalue. We use this theorem for better initialization of the diagonal Koopman matrix as explained
in the next section.

3.2.2 INITIALIZATION OF THE EIGENSPECTRUM

The imaginary part of the eigenvalues of the diagonal Koopman matrix captures different frequency
modes of the dynamics. Therefore, it is helpful to initialize them using increasing order of frequency,
that is, ωj := αjπ, for some constant α, to cover a wide frequency range.

From Theorem A.1, we know that the real part of the eigenvalues impacts the gradient’s behavior
through time. To avoid vanishing gradients and account for prediction errors over longer horizons,
one could eliminate the real part µj := 0. This choice turns the latent transformations into blocks
of 2D rotations (Mondal et al., 2022). This is also related to using Unitary Matrices to avoid
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(a) hopper-v2 (b) walker2d-v2 (c) halfcheetah-v2

Figure 3: Forward state and reward prediction error in Offline Reinforcement Learning environments.
We consider five dynamics modeling techniques and perform this prediction task over a horizon of
100 environment steps. The results are over 3 runs. Our Koopman-based method is competitive with
the best performing GRU baseline while being 2× faster. See Appendix E for exact numerical values.

vanishing or exploding gradients in Recurrent Neural Networks (Arjovsky et al., 2016). However,
intuitively, we might prefer to prioritize closer time steps. This can be done using small negative
values e.g., µj ∈ {−0.1,−0.2,−0.3}. An alternative to having a fixed real part is to turn it into
a bounded learnable parameter µj ∈ [−0.3,−0.1]. We empirically found µj := −0.2 ∀j, and
ωj := jπ to be good choices and use this as our default initialization. In Appendix H we report the
results of an ablation study with different initialization schemes.

4 EXPERIMENTS

4.1 LONG-RANGE FORWARD DYNAMICS MODELING WITH CONTROL

Figure 4: Training speed in iterations/second (↑)
for the state prediction task using different dy-
namics model on halfcheetah-expert-v2.
Each iteration consists of one gradient update of
the entire model using a mini-batch of 256 in A100
GPU. See Table 3 for exact numerical values.

We model the non-linear controlled dynamics of
MuJoCo environments (Todorov et al., 2012)
using our Koopman operator. We choose a
standard MLP-based latent non-linear dynam-
ics model with two linear layers followed by a
ReLU non-linearity as one of our baselines. To
make it easier to compare with Koopman dynam-
ics model, we use state embeddings of the same
dimensionality using gθ, which is an MLP, as de-
scribed in Section 3.1. This embedding is then
fed to the MLP-based latent dynamics model or
the diagonal Koopman operator. This approach
is widely used in RL for dynamics modeling
(Sikchi et al., 2021; Hansen et al., 2022; Schrit-
twieser et al., 2020; Schwarzer et al., 2020). To
further compare our model with more expres-
sive alternatives that can be trained in parallel,
we design a causal Transformer (Vaswani et al.,
2017; Chen et al., 2021) based dynamics model,
which takes a masked sequence of state-actions
and outputs representations that are used to predict next states and rewards.3 Following the success of
Hafner et al. (2020), we also design a GRU-based dynamics model that also takes a masked sequence

3All the states after the starting state are masked, but actions are fed to the model for all future time-steps.
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of state-actions to output representations for state and reward prediction. Finally, we use the same
strategy to also design a DSSM-based Gu et al. (2022a) dynamics model. To ensure a fair comparison
in terms of accuracy and runtime, we maintain an equal number of trainable parameters for all the
aforementioned models. (see Appendix F for more details)

For the forward dynamics modeling experiments, we use the D4RL Fu et al. (2020) dataset, which
is a popular offline-RL environment. We select offline datasets of trajectories collected from three
different popular Gym-MuJoCo control tasks: hopper, walker, and halfcheetah. These
trajectories are obtained from three distinct quality levels of policies, offering a range of data
representing various levels of expertise in the task: expert, medium-expert, and full replay. We
divide the dataset of 1M samples into 80:20 splits for training and testing, respectively. To train the
dynamics model, we randomly sample trajectories of length τ from the training data, where τ is the
horizon specified during training. We test our learned dynamics model for a horizon length of 100 by
randomly sampling 50,000 trajectories of length 100 from the test set. We use our learned dynamics
model to predict the ground truth state sequence given the starting state and a sequence of actions.

Training stability We can only train the MLP-based dynamics model for 10-time steps across all
environments. Using longer sequences often results in exploding gradients and instability in training
due to backpropagation through time (Sutskever, 2013). The alternative of using tanh in MLP-based
models can lead to vanishing gradients. In contrast, our diagonal Koopman operator handles long
trajectories without encountering vanishing or exploding gradients, in agreement with our discussion
in Section 3.2.1.

4.1.1 STATE AND REWARD PREDICTION

In Fig. 3, we evaluate our model’s accuracy in state and reward prediction over long horizons involving
100 environment steps. For this experiment, we add a reward predictor and jointly minimize the
reward prediction loss and the state prediction loss. We set the weight of the consistency loss in the
latent space to 0.001. We see that for longer horizon prediction, our model is considerably better in
predicting rewards and states accurately for hopper, walker, and halfcheetah in comparison
to MLP, Transformer and DSSM based model while being competitive with GRU-based model.
Furthermore, Fig. 4 empirically verifies that our proposed Koopman dynamics model is significantly
faster than an MLP, GRU, DSSM and Transformer based dynamics model. The results also reveal the
trend that our model’s relative speed-up over baselines grows with the length of the horizon.

Figure 5: Comparison of our Koopman-based dynamics model (with a horizon of 20) and an MLP-
based dynamics model of vanilla TD-MPC (Hansen et al., 2022). The results are over 5 random seeds
for each environment. Higher Mean & IQM and lower Optimality Gap is better.

Figure 6: Comparison of vanilla SAC (Haarnoja et al., 2018) and its integration with an MLP-based
(SPR) and a Koopman-based dynamics model for incorporating self-predictive representations in the
DeepMind Control Suite. The results are over 5 random seeds for each environment. Higher Mean &
IQM and lower Optimality Gap is better.
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4.2 KOOPMAN DYNAMICS MODEL FOR RL AND PLANNING

We now present promising results from integrating the diagonal Koopman model into two areas: (I)
model-based planning, and (II) model-free reinforcement learning (RL). In the latter, the dynamics
model enhances representation learning. Both approaches aim to solve continuous control tasks in a
data-efficient manner. We provide a brief summary of these methods and their modifications with the
Koopman dynamics model in Appendix C. While the same dynamics model can also be used for (III)
model-based RL, we leave that direction for future work.

Evaluation Metric To assess the performance of our algorithm, we calculate the average episodic
return at the conclusion of training and normalize it with the maximum score, i.e., 1000. However,
due to significant variance over different runs, relying solely on mean values may not provide reliable
metrics. To address this, Agarwal et al. (2021) suggests using bootstrapped confidence intervals
(CI) with stratified sampling, which is particularly suitable for small sample sizes, such as the
five runs per environment in our case. By utilizing bootstrapped CI, we obtain interval estimates
indicating the range within which an algorithm’s aggregate performance is believed to fall and report
the Interquartile Mean (IQM). The IQM represents the mean across the middle 50% of the runs,
providing a robust measure of central tendency. Furthermore, we calculate the Optimality Gap (OG),
which quantifies the extent to which the algorithm falls short of achieving a normalized score of 1.0. 4

4.2.1 MODEL-BASED PLANNING

We utilize TD-MPC (Hansen et al., 2022) as the baseline for our model-based planning approach.
TD-MPC combines the benefit of a model-free approach in long horizons by learning a value function
while using an MLP-based “Task-Oriented Latent Dynamics” (TOLD) model for planning over
shorter horizons. To assess the effectiveness of our proposed dynamics model, we replace TOLD
with our diagonal Koopman operator. Subsequently, we trained the TD-MPC agent from scratch
using this modified Koopman TD-MPC approach. See Appendix C.4 for details on this adaptation.
To evaluate the performance of our variation, we conducted experiments in four distinct environ-
ments: Quadruped Run, Quadruped Walk, Cheetah Run, and Acrobot Swingup.
We run experiments in the state space and compare them against vanilla TD-MPC.

Our Koopman dynamics model was trained with a horizon of 20-time steps. We observe that TD-MPC
suffers from training instability, performance degradation and high variance when using 20-time steps.
Consequently, we opted to use a horizon of 5-time steps for the vanilla approach. Fig. 5 suggests that
the Koopman TD-MPC outperforms the MLP-based baseline while being more stable.

4.2.2 MODEL-FREE RL

Current data-efficient model-free RL approaches like (SPR; Schwarzer et al., 2020) use dynamics
modeling as an auxiliary task to improve representation learning. We apply our dynamics model to
this model-free RL framework, where we use an adaptation of SPR as our baseline. This adaptation
uses an MLP-based dynamics model rather than the original CNN used in SPR in order to eliminate
the advantage of the original SPR for image inputs. SPR uses an auxiliary consistency loss similar
to Eq. (6), as well as augmentations and other techniques from Grill et al. (2020) to prevent repre-
sentation collapse. It also improves the encoder’s representation quality by making it invariant to
the transformations that are not relevant to the dynamics using augmentation; see also Srinivas et al.
(2020); Yarats et al. (2021). To avoid overconstraining the latent space using the dynamics model,
SPR uses projection heads. Similarly, we encode the Koopman observables using a projection layer
above the representations used for Q-learning. We provide more details on the integration of the
Koopman dynamics model into the SPR framework in Appendix C.5.

We perform experiments on five different environments from the DeepMind Control (DMC)
Suite (Tunyasuvunakool et al., 2020; Tassa et al., 2018) (Ball in Cup Catch, Cartpole
Swingup, Cheetah Run, Finger Spin, and Walker Walk) in pixel space, and com-
pare it with an MLP-based dynamics model (SPR) and no dynamics model, i.e., SAC (Haarnoja et al.,
2018) as baselines. Figure 6 demonstrates that for a horizon of 5 time steps Koopman-based model
outperforms the SAC plus MLP-based dynamics model baseline while being more efficient.

4A smaller Optimality Gap indicates superior performance.
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5 RELATED WORK

Diagonal state space models (DSSMs). DSSMs (Gu et al., 2022a; Gupta et al., 2022; Mehta
et al., 2022) have been shown to be an efficient alternative to Transformers for long-range sequence
modeling. DSSMs with certain initializations have been shown Gu et al. (2022a) to approximate
convolution kernels derived for long-range memory using the HiPPO (Gu et al., 2020) theory. This
explains why DSSMs can perform as well as structured state space models (S4) (Gu et al., 2022b),
as pointed out by Gupta et al. (2022). Inspired by the success of gating in transformers (Hua et al.,
2022), Mehta et al. (2022) introduced a gating mechanism in DSS to increase its efficiency further.
However, a DSSM is a non-linear model used for sequence modeling and functions differently from
our Koopman-based dynamics model, as explained in Appendix D.

Probabilistic latent spaces. Several early papers use approximate inference with linear and non-
linear latent dynamics so as to provide probabilistic state representations (Haarnoja et al., 2016;
Becker et al., 2019; Shaj et al., 2021; Hua et al., 2022; Fraccaro et al., 2017). A common theme in
several of these articles is the use of Kalman filtering, using variational inference or MCMC, for
estimating the posterior over the latents and mechanisms for disentangled latent representations.
While these methods vary in their complexity, scalability, and representation power, similar to an
LSTM or a GRU, they employ recurrence and, therefore, cannot be parallelized.

Koopman Theory for Control. The past work in this area has solely focused on learning the
Koopman operator or discovering representations for Koopman spectrum for control (Shi & Meng,
2022; Watter et al., 2015). Korda & Mezić (2018) extends the Koopman operator to controlled
dynamical systems by computing a finite-dimensional approximation of the operator. Furthermore,
they demonstrate the use of these predictors for model predictive control (MPC). Han et al. (2020)
tasks a data-driven approach to use neural networks to represent the Koopman operator in controlled
dynamical system setting. Kaiser et al. (2021) introduces a method using Koopman eigenfunctions
for effective linear reformulation and control of nonlinear dynamical systems. Song et al. (2021)
proposes deep Koopman reinforcement learning that learns control tasks with a small amount of data.
However, none of these works focus on the training speed and stability for predicting longer horizon.

6 CONCLUSION

Dynamics modeling has a key role to play in sequential decision-making: at training time, having
access to a model can lead to sample-efficient training, and at deployment, the model can be used
for planning. Koopman theory is an attractive foundation for building such a dynamics model
in Reinforcement Learning. The present article shows that models derived from this theoretical
foundation can be made computationally efficient. We also demonstrate how this view gives insight
into the stability of learning through gradient descent in these models. Empirically, we show the
remarkable effectiveness of such an approach in long-range dynamics modeling and provide some
preliminary yet promising results for model-based planning and model-free RL.

7 LIMITATIONS AND FUTURE WORK

Although our proposed Koopman-based dynamics model has produced promising results, our current
treatment has certain limitations that motivate further investigation. Our current model is tailored
for deterministic environments, overlooking stochastic dynamics modeling. We intend to expand
our research in this direction, based on developments around stochastic Koopman theory (Mezić,
2005; Wanner & Mezic, 2022), where Koopman observables become random variables, enabling
uncertainty estimation in dynamics. Secondly, although our state prediction task yielded impressive
results, we have identified areas for further growth, particularly in its applications to RL and planning.

We hypothesize that the distribution shift during training and the objective change in training and
evaluation hurt the performance of our Koopman dynamics model. We also plan to conduct a more
comprehensive study involving a wider range of tasks and environments. Additionally, we aim to
explore the compatibility of our model with different reinforcement learning algorithms to showcase
its adaptability. Finally, we believe that the diagonal Koopman operator holds promise for model-
based RL, where robust dynamics modeling over long horizons is precisely what is currently missing.
We intend to investigate this direction, potentially unlocking new avenues for advancement.
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Igor Mezić. Spectral properties of dynamical systems, model reduction and decompositions. Nonlin-
ear Dynamics, 41:309–325, 2005.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. ICML, 2016.

Arnab Kumar Mondal, Vineet Jain, Kaleem Siddiqi, and Siamak Ravanbakhsh. Eqr: Equivariant
representations for data-efficient reinforcement learning. In International Conference on Machine
Learning, pp. 15908–15926. PMLR, 2022.

Masashi Okada and Tadahiro Taniguchi. Variational inference mpc for bayesian model-based
reinforcement learning. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (eds.),
Proceedings of the Conference on Robot Learning, volume 100 of Proceedings of Machine
Learning Research, pp. 258–272. PMLR, 30 Oct–01 Nov 2020. URL https://proceedings.
mlr.press/v100/okada20a.html.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to com-
binatorial optimization, Monte-Carlo simulation, and machine learning, volume 133. Springer,
2004.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347, 2017.

Max Schwarzer, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron C. Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations, 2020.

12

https://www.sciencedirect.com/science/article/pii/S000510981830133X
https://www.sciencedirect.com/science/article/pii/S000510981830133X
https://openreview.net/forum?id=Byey7n05FQ
https://openreview.net/forum?id=Byey7n05FQ
https://proceedings.mlr.press/v100/okada20a.html
https://proceedings.mlr.press/v100/okada20a.html


Published as a conference paper at ICLR 2024

Vaisakh Shaj, Philipp Becker, Dieter Büchler, Harit Pandya, Niels van Duijkeren, C James Taylor,
Marc Hanheide, and Gerhard Neumann. Action-conditional recurrent kalman networks for forward
and inverse dynamics learning. In Conference on Robot Learning, pp. 765–781. PMLR, 2021.

Haojie Shi and Max Q.-H. Meng. Deep koopman operator with control for nonlinear systems. IEEE
Robotics and Automation Letters, 2022.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In 5th
Annual Conference on Robot Learning, 2021. URL https://openreview.net/forum?
id=1GNV9SW95eJ.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, and Marc Lanctot. Mastering the
game of go with deep neural networks and tree search. Nature, 550:354–359, 2017.

Lixing Song, Junheng Wang, and Junhong Xu. A data-efficient reinforcement learning method based
on local koopman operators. In 2021 20th IEEE International Conference on Machine Learning
and Applications (ICMLA), 2021.

A. Srinivas, Michael Laskin, and P. Abbeel. Curl: Contrastive unsupervised representations for
reinforcement learning. In International Conference on Machine Learning, 2020.

Ilya Sutskever. Training recurrent neural networks. University of Toronto Toronto, ON, Canada,
2013.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi: https://doi.
org/10.1016/j.simpa.2020.100022. URL https://www.sciencedirect.com/science/
article/pii/S2665963820300099.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Mathias Wanner and Igor Mezic. Robust approximation of the stochastic koopman operator. SIAM
Journal on Applied Dynamical Systems, 21(3):1930–1951, 2022.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
2015.

Matthias Weissenbacher, Samarth Sinha, Animesh Garg, and Kawahara Yoshinobu. Koopman q-
learning: Offline reinforcement learning via symmetries of dynamics. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of
the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pp. 23645–23667. PMLR, 17–23 Jul 2022. URL https://proceedings.
mlr.press/v162/weissenbacher22a.html.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling, 2015. URL https://arxiv.org/abs/
1509.01149.

13

https://openreview.net/forum?id=1GNV9SW95eJ
https://openreview.net/forum?id=1GNV9SW95eJ
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://proceedings.mlr.press/v162/weissenbacher22a.html
https://proceedings.mlr.press/v162/weissenbacher22a.html
https://arxiv.org/abs/1509.01149
https://arxiv.org/abs/1509.01149


Published as a conference paper at ICLR 2024

Grady Williams, Paul Drews, Brian Goldfain, James M Rehg, and Evangelos A Theodorou.
Information-theoretic model predictive control: Theory and applications to autonomous driv-
ing. IEEE Transactions on Robotics, 34(6):1603–1622, 2018.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=GY6-6sTvGaf.

Bowen Yi and Ian R Manchester. On the equivalence of contraction and koopman approaches for
nonlinear stability and control. IEEE Transactions on Automatic Control, 2023.

14

https://openreview.net/forum?id=GY6-6sTvGaf


Published as a conference paper at ICLR 2024

A PROOF OF THEOREM 3.1

Theorem A.1. For every time step k ∈ {1, .., τ} in the discrete dynamics, the norm of the gradient
of any loss at k-step given by Lk with respect to latent representation at time step t given by xt is a
scaled version of the norm of the gradient of the same loss by xt+k, where the scaling factor depends
on the exponential of the real part of the Koopman eigenvalues, that is:

|∂Lk

∂xj
t

| = ek∆tµj | ∂Lk

∂xj
t+k

| ∀j ∈ {1, ..,m}.

and similarly, for all l ≤ k, the norm of the gradient of Lk with respect to the control input at time
step t+ l− 1 given by is cjt+l−1 is a scaled version of the norm of the gradient of Lk by xt+k, where
the scaling factor depends on the exponential of the real part of the Koopman eigenvalues, that is:

| ∂Lk

∂cjt+l−1

| = e(k−l)∆tµj | ∂Lk

∂x̂j
t+k

| ∀j ∈ {1, ..,m}

Proof. We now provide a proof sketch of Theorem 3.1. As λj = µj + iωj , discretizing the diagonal
matrix (using ZOH) and taking its k-th power gives us K̄k

j = ek∆tµjeik∆tωj . Using this we can write

x̂j
t+k = K̄k

j x
j
t +

k∑
l=1

K̄k−l
j cjt+l−1

Now applying the chain rule, we get derivatives of the loss with respect to xj
t and cjt+l−1:

=⇒ ∂Lk

∂xj
t

=
∂x̂j

t+k

∂xj
t

∂Lk

∂x̂j
t+k

= K̄k
j

∂Lk

∂x̂j
t+k

= ek∆tµjeik∆tωj
∂Lk

∂x̂j
t+k

=⇒ ∂Lk

∂cjt+l−1

=
∂x̂j

t+k

∂cjt+l−1

∂Lk

∂x̂j
t+k

= K̄k−l
j

∂Lk

∂x̂j
t+k

= e(k−l)∆tµjei(k−l)∆tωj
∂Lk

∂x̂j
t+k

As |eiθ| = 1, we get the result of partial derivatives given in Theorem 3.1.

B ADDITIONAL DETAILS ON THE DERIVATIONS

We first provide additional steps for the derivation of Eq. (5). As x̂t+1 = K̄xt + L̄ut, we can unroll
it to get future predictions up to τ time steps that is:

x̂t+1 = K̄xt + L̄ut

x̂t+2 = K̄x̂t+1 + L̄ut+1 = K̄(K̄xt + L̄ut) + L̄ut+1 = K̄2xt + K̄L̄ut + L̄ut+1

x̂t+3 = K̄x̂t+2+L̄ut+2 = K̄(K̄2xt+K̄L̄ut+L̄ut+1)+L̄ut+2 = K̄3xt+K̄2L̄ut+K̄L̄ut+1+L̄ut+2

· · ·
x̂t+τ = K̄τxt + K̄τ−1L̄ut + K̄τ−2L̄ut+1 + · · ·+ L̄ut+τ−1

Writing the above equations in a matrix form and using ct+k = L̄ut+k we get Eq. (5). Now to
derive Eq. (7), we use the property of matrix exponential of diagonal matrices. In particular, we have
K̄ = diag(λ̄1, . . . , λ̄m) implies that K̄τ = diag(λ̄τ

1 , . . . , λ̄
τ
m). Using the notations from Section 3.2,

we get that for i-th index of predicted vectors x̂t+k s the following equations hold:

x̂i
t+1 = λ̄ix

i
t + cit

x̂i
t+2 = λ̄i

2
xi
t + λ̄ic

i
t + cit+1

· · ·
x̂i
t+τ = λ̄τ

i x
i
t + λ̄τ−1

i cit + λ̄τ−2
i cit+1 + · · ·+ cit+τ−1

The above equations can be denoted by an expression using the circular convolution operator as
written in Eq. (7).
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C PROPOSED MODIFIED DYNAMICS MODEL IN RL AND PLANNING

C.1 REINFORCEMENT LEARNING

The RL setting can be formalized as a Markov Decision Process (MDP), where an agent learns to
make decisions by interacting with an environment. The agent’s goal is to maximize a cumulative
reward signal, where a reward function r(s, a) assigns a scalar value to each state-action pair (s, a).
The agent’s policy, denoted by π(a|s), defines the probability distribution over actions at a given state.
The agent’s objective is to learn a policy that maximizes the expected discounted sum of rewards over
time, also known as the return: J(π) = Eπ [

∑∞
t=0 γ

tr(st, at)] where γ ∈ [0, 1] is the discount factor
and st and at are the state and action at time step t, respectively. The agent’s expected cumulative
reward can also be represented by the Value function, which is defined as the expected cumulative
reward starting from a given state and following a given policy.

Value-based RL algorithms have two steps of policy evaluation and policy improvement. For example,
Q-learning estimates the optimal action-value function, denoted by Q∗(s, a), that represents the
maximum expected cumulative reward achievable by taking action a in state s and improves the
policy by setting it to argmaxa Q

∗(s, a) (Mnih et al., 2013; 2015). A policy-based RL algorithm
directly optimizes the policy to maximize the expected return. Policy gradient methods update the
policy by adjusting the policy function’s parameters by estimating the gradient of J . Actor-critic
methods combine Q-learning and policy gradient ones, such that the Q-network (critic) learns the
action value under the current policy, and the policy network (actor) tries to maximize it Haarnoja
et al. (2018); Lillicrap et al. (2016); Schulman et al. (2017).

C.2 FORWARD DYNAMICS MODELING IN RL

Dynamics models have been instrumental in attaining impressive results on various tasks such as
Atari (Schrittwieser et al., 2020; Hafner et al., 2020) and continuous control (Hafner et al., 2020;
Jiang et al., 2020; Sikchi et al., 2021; Lowrey et al., 2019). By building a model of environment
dynamics, model-based RL can generate trajectories used for training the RL algorithm. This can
significantly reduce the sample complexity in comparison to model-free techniques. However, in
model-based RL, inaccurate long-term predictions can generate poor trajectory rollouts and lead to
incorrect expected return calculations, resulting in misleading policy updates. Forward dynamics
modeling has also been successfully applied to model-free RL to improve the sample efficiency of the
existing model-free algorithms. These methods use it to design self-supervised auxiliary losses for
representation learning using consistency in forward dynamics in the latent and the observation space
(Jaderberg et al., 2017; Schwarzer et al., 2020; Srinivas et al., 2020).

C.3 MODEL-BASED PLANNING

Model Predictive Control (MPC) is a control strategy that uses a dynamics model st+1 = f(st, at) to
plan for a sequence of actions at, at+1, . . . , at+τ−1 that maximizes the expected return over a finite
horizon. The optimization problem is:

arg max
at:t+τ−1

E

[
t+τ−1∑
i=t

γir(si, ai)

]
(8)

where γ is typically set to 1, that is, there is no discounting. Heuristic population-based methods,
such as a cross entropy method Rubinstein & Kroese (2004) are often used for dynamic planning.
These methods perform a local trajectory optimization problem, corresponding to the optimization
of a cost function up to a certain number of time steps in the future (Williams et al., 2015; 2018;
Okada & Taniguchi, 2020). In contrast to Q-learning, this is myopic and can only plan up to a certain
horizon, which is predetermined by the algorithm.

One can also combine MPC with RL to approximate long-term returns of trajectories that can be
calculated by bootstrapping the value function of the terminal state. In particular, methods like
TD-MPC (Hansen et al., 2022) and LOOP (?) combine value learning with planning using MPC.
The learned value function is used to bootstrap the trajectories that are used for planning using MPC.
Additionally, they learn a policy using the Deep Deterministic Policy Gradient (Lillicrap et al., 2016)
or Soft Actor-Critic (SAC) (Haarnoja et al., 2018) to augment the planning algorithm with good
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proposal trajectories. Alternative search method such as Monte Carlo Tree search (Coulom, 2006) is
used for planning in discrete action spaces. The performance of the model-based planning method
heavily relies on the accuracy of the learned model.

C.4 KOOPMAN TDMPC

TDMPC uses an MLP to design a Task-oriented Latent Dynamica (TOLD) model, which learns to
predict the latent representations of the future time steps. The learnt model can then be used for
planning. To stabilize training TOLD, the weights of a target encoder network gθ− , are updated with
the exponential moving average of the online network gθ.

Since dynamics modeling is no longer the only objective, in addition to the latent consistency of
Eq. (6), the latent xt is also used to predict the reward and Q-function, which takes the latent
representations as input. Hence, the dynamics model learns to jointly minimize the following:

LTOLD = c1

τ∑
k=1

λk∥x̂t+k − gθ−(st+k)∥22 + c2

τ∑
k=0

λk∥Rθ(x̂t+k, at+k)− rt+k∥22

+ c3

τ∑
k=0

λk∥Qθ(x̂t+k, at+k)− yt+k∥22 (9)

where Rθ, πθ, Qθ are respectively reward, policy and Q prediction networks, where yt+k = rt+k +
Qθ−(x̂t+k+1, πθ(x̂t+k)) is the 1-step bootstrapped TD target. Moreover, the policy network is
learned from the latent representation by maximizing the Q value at each time step. This additional
policy network helps to provide the next action for the TD target and a heuristic for planning. For
details on the planning algorithm and its implementation, see Hansen et al. (2022).

C.5 KOOPMAN SELF-PREDICTIVE REPRESENTATIONS

To avoid overconstraining the latent space using the dynamics model, SPR uses projection heads.
Similarly, we encode the Koopman observables using a projection layer above the representations
used for Q-learning. Using st for the input pixel space, the representation space for the Q-learning is
given by zt = eθ(st) where eθ is a CNN. The Koopman observables xt is produced by encoding zt
using a projector pθ such that xt = pθ(zt). Moreover, it can be decoded into zt using the decoder
dθ(x̂t). Loss functions are the prediction loss Eq. (6) and TD-error

LSSL =

τ∑
k=1

∥dθ(x̂t+k)− eθ−(st+k)∥22 + ∥Qθ(zt, at)− (rt +Qθ−(eθ−(st+1), at+1))∥22. (10)

Here, at+1 is sampled from the policy π. The policy is learned from the representations using Soft
Actor-Critic (SAC; Haarnoja et al., 2018). As opposed to SPR, we do not use moving averages for
the target encoder parameters and simply stop gradients through the target encoders and denote it as
eθ− . Moreover, we drop the consistency term in the Koopman space in Eq. (10) as we empirically
observed adding consistency both in Koopman observable (x), and Q-learning space (z) promotes
collapse and makes training unstable, resulting in a higher variance in the model’s performance.

D COMPARISON WITH DSSM

While our proposed Koopman model may look similar to a DSSM Gu et al. (2022a); Gupta et al.
(2022); Mehta et al. (2022), there are four major differences. First, our model is specifically derived
for dynamics modeling with control input using Koopman theory and not for sequence or time series
modeling. Our motivation is to make the dynamics and gradients through time stable, whereas, for
DSSMs, it is to approximate the 1D convolution kernels derived from HiPPO Gu et al. (2020) theory.
Second, a DSSM gives a way to design a cell that is combined with non-linearity and layered to get a
non-linear sequence model. In contrast, our Koopman-based model shows that simple linear latent
dynamics can be sufficient to model complex non-linear dynamical systems with control. Third,
DSSMs never explicitly calculate the latent states and even ignore the starting state. Our model works
in the state space, where the starting state is crucial to backpropagate gradients through the state
encoder. Fourth, a DSSM learns structured convolution kernels for 1D to 1D signal mapping so that
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for higher dimensional input, it has multiple latent dynamics models running under the hood, which
are implemented as convolutions. In contrast to this, our model runs a single linear dynamics model
for any dimensional input.

E DETAILED RESULTS FROM THE MAIN TEXT

In this section, we provide the numerical values in Table 1 and Table 2 of the results used in Fig. 3.
Table 3 provides the numerical values for training speed used in Fig. 4. In Fig. 7 and Fig. 8, we further
provide the environment-wise returns evaluated after every 5000 training steps for the planning and
RL experiments used in Fig. 5 and Fig. 6.

Table 1: Forward state prediction error in Offline Reinforcement Learning environments. The reported
number is the mean square error of the state prediction over a horizon of 100 environment steps.
The results include standard deviation over 3 runs.

Offline Datasets State Prediction Error (↓)
MLP Transformer GRU DSSM Koopman

hopper-expert-v2 0.500 ± 0.080 0.060 ± 0.007 0.006 ± 0.001 0.030 ± 0.008 0.007 ± 0.000
hopper-medium-expert-v2 0.550 ± 0.120 0.063 ± 0.009 0.011 ± 0.004 0.050 ± 0.008 0.012 ± 0.004
hopper-full-replay-v2 0.880 ± 0.150 0.240 ± 0.070 0.050 ± 0.005 0.180 ± 0.050 0.070 ± 0.004

walker2d-expert-v2 0.300 ± 0.060 0.130 ± 0.060 0.100 ± 0.005 0.140 ± 0.020 0.090 ± 0.008
walker2d-medium-expert-v2 1.320 ± 0.210 0.310 ± 0.070 0.190 ± 0.050 0.320 ± 0.070 0.220 ± 0.040
walker2d-full-replay-v2 4.500 ± 2.100 3.300 ± 0.350 0.850 ± 0.080 1.200 ± 0.090 0.910 ± 0.050

halfcheetah-expert-v2 2.860 ± 1.100 0.840 ± 0.160 0.280 ± 0.050 0.520 ± 0.050 0.300 ± 0.060
halfcheetah-medium-expert-v2 0.590 ± 0.090 0.540 ± 0.071 0.501 ± 0.031 0.910 ± 0.040 0.568 ± 0.040
halfcheetah-full-replay-v2 0.850 ± 0.200 0.930 ± 0.140 0.750 ± 0.030 0.950 ± 0.060 0.700 ± 0.040

Table 2: Forward reward prediction error in Offline Reinforcement Learning environments. The
reported number is the mean square error of the reward prediction over a horizon of 100 environment
steps. The results include standard deviation over 3 runs.

Offline Datasets Reward Prediction Error (↓)
MLP Transformer GRU DSSM Koopman

hopper-expert-v2 0.080 ± 0.005 0.030 ± 0.002 0.001 ± 0.000 0.002 ± 0.000 0.001 ± 0.000
hopper-medium-expert-v2 0.260 ± 0.050 0.046 ± 0.008 0.001 ± 0.000 0.005 ± 0.000 0.002 ± 0.000
hopper-full-replay-v2 0.400 ± 0.100 0.110 ± 0.040 0.009 ± 0.005 0.020 ± 0.004 0.012 ± 0.003

walker2d-expert-v2 0.015 ± 0.003 0.004 ± 0.001 0.004 ± 0.001 0.006 ± 0.001 0.003 ± 0.000
walker2d-medium-expert-v2 0.190 ± 0.030 0.032 ± 0.009 0.009 ± 0.003 0.015 ± 0.003 0.011 ± 0.002
walker2d-full-replay-v2 0.520 ± 0.080 0.220 ± 0.020 0.080 ± 0.015 0.091 ± 0.005 0.090 ± 0.008

halfcheetah-expert-v2 0.160 ± 0.050 0.070 ± 0.005 0.045 ± 0.004 0.120 ± 0.020 0.040 ± 0.006
halfcheetah-medium-expert-v2 0.230 ± 0.050 0.120 ± 0.070 0.050 ± 0.007 0.150 ± 0.007 0.060 ± 0.005
halfcheetah-full-replay-v2 0.170 ± 0.045 0.110 ± 0.052 0.105 ± 0.009 0.205 ± 0.011 0.091 ± 0.006

Table 3: Training speed (iterations/second) for a state prediction task using an MLP, a Transformer,
and a diagonal-Koopman dynamics model on halfcheetah-expert-v2. Each iteration consists
of one gradient update of the entire model.

Dynamics Model Type Training sequence length
10 50 100 200 500

MLP 478.00 115.54 55.85 28.02 11.20
Transformer 418.00 120.20 73.34 34.48 14.92

GRU 420.00 101.20 42.02 17.40 8.91
DSSM 530.32 148.50 76.10 37.12 17.20

Koopman 565.43 160.76 86.49 59.65 24.56
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Figure 7: Comparison of our Koopman-based dynamics model (with a horizon of 20) with an MLP-
based dynamics model of vanilla TD-MPC Hansen et al. (2022). The results are shown with 5 random
seeds with the standard deviation shown using the shaded regions.
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Figure 8: Comparison of vanilla RL (SAC Haarnoja et al. (2018)) and its integration with an MLP-
based (SPR Schwarzer et al. (2020)) and a Koopman-based dynamics model for incorporating
self-predictive representations in the DeepMind Control Suite. Shaded regions represent the standard
deviation.

F MORE DETAILS ON THE BASELINE DYNAMICS MODELS

For all the experiments, we used a model with around ∼ 500k trainable parameters to ensure that the
improved compute efficiency during training is not due to the model having fewer parameters. To
incorporate the causal transformer architecture with that many parameters, we reduced the embedding
dimension of both the state and action embedding to 64. We further reduced the number of heads to 4
to design a causal Transformer model that matches the size of our Koopman model. For the GRU
and MLP-based model, we keep these dimensions the same as the Koopman one. We use a hidden
dimension size of 64 for the GRU based-model in order to keep the parameters similar. Moreover, all
our experiments in Table 3 use one Nvidia A100 GPU for training.

G ABLATION STUDY ON INITIALIZATION

We now perform an ablation study on the different possible initialization methods presented in
Section 3.2.2. We report the results for halfcheetah-expert-v2, walker-2d-expert-v2
and hopper-expert-v2, in Table 4, 5 and 6 respectively. We see a constant value of −0.2 for
µi, and increasing the order of frequency for ωi gives a consistent performance boost over different
environments.
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Table 4: Ablation on initialization of the eigenvalues of the diagonal Koopman matrix: λi = µi+ jωi

for halfcheetah-expert-v2. The results are over three seeds.

µi ωi State Prediction Error (↓) Reward Prediction Error (↓)

constant increasing 0.300 ± 0.060 0.040 ± 0.006
constant random 0.340 ± 0.047 0.041 ± 0.005

learnable increasing 0.320 ± 0.024 0.048 ± 0.003
learnable random 0.360 ± 0.040 0.042 ± 0.007

Table 5: Ablation on initialization of the eigenvalues of the diagonal Koopman matrix: λi = µi+ jωi

for walker-2d-expert-v2. The results are over three seeds.

µi ωi State Prediction Error (↓) Reward Prediction Error (↓)

constant increasing 0.090 ± 0.008 0.003 ± 0.000
constant random 0.104 ± 0.008 0.004 ± 0.001

learnable increasing 0.102 ± 0.003 0.004 ± 0.000
learnable random 0.096 ± 0.007 0.003 ± 0.002

Table 6: Ablation on initialization of the eigenvalues of the diagonal koopman matrix: λi = µi + jωi

for hopper-expert-v2. The results are over three seeds.

µi ωi State Prediction Error (↓) Reward Prediction Error (↓)

constant increasing 0.007 ± 0.000 0.001 ± 0.000
constant random 0.010 ± 0.007 0.014 ± 0.005

learnable increasing 0.008 ± 0.006 0.002 ± 0.004
learnable random 0.008 ± 0.004 0.003 ± 0.001

H ABLATION STUDY ON HORIZON FOR PLANNING AND MODEL-FREE RL

We investigate the role of horizon (or rollout length) in both model-based planning (Section 4.2.1)
and model-free RL (Section 4.2.2) for our Koopman-based dynamics model. The corresponding
results are available in Fig. 9 and Fig. 10. We observe that for model-based planning, the performance
improves with longer horizon. However, for model-free RL, the performance is higher with a
prediction horizon of 5 and deteriorates for 20. This phenomenon is consistent with the results
reported in Figure 4 of Schwarzer et al. (2020).

Figure 9: Ablations of our Koopman-based dynamics model for horizon lengths of 5 and 20. The
results are over 5 random seeds for each environment. Higher Mean & IQM and lower Optimality
Gap is better.
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Figure 10: Ablations of our Koopman-based dynamics model for horizon lengths of 5 and 20 for
incorporating self-predictive representations with vanilla SAC Haarnoja et al. (2018) in the DeepMind
Control Suite. The results are over 5 random seeds for each environment. Higher Mean & IQM and
lower Optimality Gap is better.

I ABLATION ON THE DIMENSIONALITY OF LINEAR LATENT SPACE

We also ablate the dimensionality of the Koopman state observables: m in Table 7 and show that a
512 is enough for most of the environments, as the performance saturates there.

Table 7: Forward state prediction error in Offline Reinforcement Learning environments. The reported
number is the mean square error of the state prediction in halfcheetah-expert-v2 over a
horizon of 100 environment steps. We observe a general trend of a decrease in the error values with
an increase in the state embedding dimension which is aligned with the Koopman theory. We have
selected an embedding dimension of 512 for all our experiments as it has the lowest error value.

State Embedding Dim. (m) State Prediction Error (↓)

128 0.0097
256 0.0081
512 0.0073
1024 0.0075

J KOOPMAN DYNAMICS MODEL IN JAX

We provide the Jax code snippet to efficiently implement our Koopman-based dynamics model. Our
code can be found in https://github.com/arnab39/koopman-dynamica.
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Algorithm 1 Diagonal Koopman Dynamics model
import jax
import jax.numpy as jnp
from jax.nn.initializers import normal
from flax import linen as nn

# Main class to implement Diagonal Koopman Dynamics model
class BatchedDiagonalKoopmanDynamicsModel(nn.Module):

state_dim: int
action_emb_dim: int
real_init_type: str = 'constant'
real_init_value: float = -0.5
im_init_type: str = 'increasing_freq'
activations: Callable[[jnp.ndarray], jnp.ndarray] = nn.relu

def init_koopman_imaginary_params(self):
if self.im_init_type == 'increasing_freq':

self.K_im = self.param(
"K_im", increasing_im_init(), (self.state_dim // 4,)
)

elif self.im_init_type == 'random':
self.K_im = self.param(
"K_im", random_im_init(), (self.state_dim // 4,)
)

else:
raise ValueError

def init_koopman_real_params(self):
if self.real_init_type == 'constant':

self.K_real = self.real_init_value
elif self.real_init_type == 'learnable':

self.K_r = self.param(
"K_real", nn.initializers.ones, (self.state_dim // 4,)
) * self.real_init_value
self.K_real = jnp.clip(self.K_r, -0.4, -0.1)

else:
raise ValueError

def setup(self):
# model parameters
self.init_koopman_real_params()
self.init_koopman_imaginary_params()
self.action_encoder = MLP(
[128, self.action_emb_dim * 2],
activations=self.activations
)
self.L = self.param(
"L", normal(0.1), (self.action_emb_dim, self.state_dim // 2, 2)
)

# Step parameter
self.step = jnp.exp(self.param("log_step", log_step_init(), (1,)))

self.K_complex = jnp.concatenate(
[self.K_real + 1j * self.K_im,
self.K_real - 1j * self.K_im],
axis=-1

)
self.L_complex = self.L[:, :, 0] + 1j * self.L[:, :, 1]
self.K_dis, self.L_dis = discretize(

self.K_complex, self.L_complex, self.step
)

def __call__(self, actions, start_state_rep):
if len(actions.shape) == 2:

return koopman_forward_single(
self.K_dis, self.L_dis,
self.action_encoder(actions), start_state_rep

)
else:

Vand_K = jnp.vander(
self.K_dis, actions.shape[1] + 1, increasing=True

)
return koopman_forward(

Vand_K, self.L_dis,
self.action_encoder(actions), start_state_rep

)
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Algorithm 2 Helper functions for Diagonal Koopman Dynamics model
def causal_convolution(u, K):

assert K.shape[0] == u.shape[0]
ud = jnp.fft.fft(jnp.pad(u, (0, K.shape[0])))
Kd = jnp.fft.fft(jnp.pad(K, (0, u.shape[0])))
out = ud * Kd
return jnp.fft.ifft(out)[: u.shape[0]]

def compute_measurement_block(Ker, action_emb, init_state):
return causal_convolution(action_emb, Ker[:-1]) + Ker[1:] * init_state

def compute_measurement(Ker, action_emb, init_state):
return jax.vmap(

compute_measurement_block,
in_axes=(0, 1, 0),
out_axes=1

)(Ker, action_emb, init_state)

def discretize(K, L, step):
return jnp.exp(step*K), (jnp.exp(step*K)-1)/K * L

def log_step_init(dt_min=0.001, dt_max=0.1):
def init(key, shape):

return jax.random.uniform(key, shape) * (
jnp.log(dt_max) - jnp.log(dt_min)

) + jnp.log(dt_min)
return init

def increasing_im_init():
def init(key, shape):

return jnp.pi * jnp.arange(shape[0])
return init

def random_im_init():
def init(key, shape):

return jax.random.uniform(key, shape)
return init

@jit
def koopman_forward(Vand_K, L, actions_emb, start_state_rep):

action_emb_dim = actions_emb.shape[-1]
state_dim = start_state_rep.shape[-1]
actions_emb_complex = actions_emb[:, :, :action_emb_dim//2] \

+ 1j * actions_emb[:, :, action_emb_dim//2:]
start_state_rep_complex = start_state_rep[:, :state_dim // 2] \

+ 1j * start_state_rep[:, state_dim // 2:]

predicted_state_rep_complex = jax.vmap(
compute_measurement,
in_axes=(None, 0, 0),
out_axes=0

)(Vand_K, actions_emb_complex @ L, start_state_rep_complex)

predicted_state_rep = jnp.concatenate([
jnp.real(predicted_state_rep_complex),
jnp.imag(predicted_state_rep_complex)

], -1)
return predicted_state_rep

@jit
def koopman_forward_single(K, L, action_emb, start_state_rep):

action_emb_dim = action_emb.shape[-1]
state_dim = start_state_rep.shape[-1]
action_emb_complex = action_emb[:, :action_emb_dim//2] \

+ 1j * action_emb[:, action_emb_dim//2:]
start_state_rep_complex = start_state_rep[:, :state_dim // 2] \

+ 1j * start_state_rep[:, state_dim // 2:]
predicted_state_rep_complex = K[None, :] * start_state_rep_complex + \

.action_emb_complex @ L
predicted_state_rep = jnp.concatenate([

jnp.real(predicted_state_rep_complex),
jnp.imag(predicted_state_rep_complex)

], -1)
return predicted_state_rep
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