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ABSTRACT

Learning expressive stochastic policies instead of deterministic ones has been
proposed to achieve better stability, sample complexity, and robustness. Notably, in
Maximum Entropy Reinforcement Learning (MaxEnt RL), the policy is modeled
as an expressive Energy-Based Model (EBM) over the Q-values. However, this
formulation requires the estimation of the entropy of such EBMs, which is an
open problem. To address this, previous MaxEnt RL methods either implicitly
estimate the entropy, resulting in high computational complexity and variance
(SQL), or follow a variational inference procedure that fits simplified actor dis-
tributions (e.g., Gaussian) for tractability (SAC). We propose Stein Soft Actor-
Critic (S?AC), a MaxEnt RL algorithm that learns expressive policies without
compromising efficiency. Specifically, S2AC uses parameterized Stein Varia-
tional Gradient Descent (SVGD) as the underlying policy. We derive a closed-
form expression of the entropy of such policies. Our formula is computationally
efficient and only depends on first-order derivatives and vector products. Em-
pirical results show that S?AC yields more optimal solutions to the MaxEnt
objective than SQL and SAC in the multi-goal environment, and outperforms
SAC and SQL on the MuJoCo benchmark. Our code is available at: https:
//anonymous.4open.science/r/Stein-Soft-Actor-Critic/

1 INTRODUCTION

MaxEnt RL (Todorov, [2006} Ziebart,|2010; Haarnoja et al.,

2017}, Kappen, 2005} Toussaint, 2009; Theodorou et al.} S2AC

2010; |Abdolmaleki et al., 2018; |[Haarnoja et al., [2018a; O eerony A7 (ours) “N\Jlum. SVGD steps =0
Vieillard et al.,[2020) has been proposed to address chal- / \
lenges hampering the deployment of RL to real-world saL SAC
applications, including stability, sample efficiency (Gu| —®moRee 1) (Reamoja otal. ICMLL18)

et al.| [2017), and robustness (Eysenbach & Levine} 2021). . 9

Instead of learning a deterministic policy, as in classical Figure 12: Comparing SAC to SQL and
RL (Sutton et al}[1999; Schulman et al, 2017; Silver etal, SAC. SAC with a parameterized pol-
2014} Lillicrap et al, 2015), MaxEnt RL learns a stochas- €Y 18 reduced to SAC if the number of
tic policy that captures the intricacies of the action space. >YGD Steps 1s 0. SQL becomes equiva-
This enables better exploration during training and even- lent .to. S AC if the ent.ropy is evaluated
tually better robustness to environmental perturbations at  SXPlicitly with our derived formula.

test time, i.e., the agent learns multimodal action space distributions which enables picking the next
best action in case a perturbation prevents the execution of the optimal one. To achieve this, MaxEnt
RL models the policy using the expressive family of EBMs (LeCun et al., 2006). This translates
into learning policies that maximize the sum of expected future reward and expected future entropy.
However, estimating the entropy of such complex distributions remains an open problem.

To address this, existing approaches either use tricks to go around the entropy computation or make
limiting assumptions on the policy. This results in either poor scalability or convergence to suboptimal
solutions. For example, SQL (Haarnoja et al.,2017) implicitly incorporates entropy in the Q-function
computation. This requires using importance sampling, which results in high variability and hence
poor training stability and limited scalability to high dimensional action spaces. SAC (Haarnoja
et al.l [2018a)), on the other hand, follows a variational inference procedure by fitting a Gaussian
distribution to the EBM policy. This enables a closed-form evaluation of the entropy but results
in a suboptimal solution. For instance, SAC fails in environments characterized by multimodal
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Figure 2: S?2AC learns a more optimal solution to the MaxEnt RL objective than SAC and SQL. We
design a multigoal environment where an agent starts from the center of the 2-d map and tries to
reach one of the three goals (G1, Gs, and G3). The maximum expected future reward (level curves)
is the same for all the goals but the expected future entropy is different (higher on the path to G3=G3):
the action distribution (@js) is bi-modal on the path to the left (G5 and G3) and unimodal to the
right (G1). Hence, we expect the optimal policy for the MaxEnt RL objective to assign more weights
to Gy and G3. We visualize trajectories (in blue) sampled from the policies learned using SAC, SQL,
and S2AC. SAC quickly commits to a single mode due to its actor being tied to a Gaussian policy.
Though SQL also recovers the three modes, the trajectories are evenly distributed. S2AC recovers
all the modes and approaches the left two goals more frequently. This indicates that it successfully
maximizes not only the expected future reward but also the expected future entropy.

action distributions. Similar to SAC, IAPO (Marino et al.| 2021)) models the policy as a uni-modal
Gaussian. Instead of optimizing a MaxEnt objective, it achieves multimodal policies by learning
a collection of parameter estimates (mean, variance) through different initializations for different
policies. To improve the expressiveness of SAC, SSPG (Cetin & Celiktutan| [2022)) and SAC-NF
(Mazoure et al., 2020) model the policy as a Markov chain with Gaussian transition probabilities
and as a normalizing flow (Rezende & Mohamed, 2015), respectively. However, due to training
stability issues, the reported results in|Cetin & Celiktutan| (2022 show that though both models learn
multi-modal policies, they fail to maximize the expected future entropy in positive rewards setups.

We propose a new algorithm, S?AC, that yields a more optimal solution to the MaxEnt RL objective.
To achieve expressivity, S2AC models the policy as a Stein Variational Gradient Descent (SVGD)
(Liul 2017) sampler from an EBM over Q-values (target distribution). SVGD proceeds by first
sampling a set of particles from an initial distribution, and then iteratively transforming these particles
via a sequence of updates to fit the target distribution. To compute a closed-form estimate of the
entropy of such policies, we use the change-of-variable formula for pdfs (Devore et al., 2012)). We
prove that this is only possible due to the invertibility of the SVGD update rule, which does not
necessarily hold for other popular samplers (e.g., Langevin Dynamics (Welling & Tehl 2011)). While
normalizing flow models (Rezende & Mohamed, 2015) are also invertible, SVGD-based policy is
more expressive as it encodes the inductive bias about the unnormalized density and incorporates a
dispersion term to encourage multi-modality, whereas normalizing flows encode a restrictive class of
invertible transformations (with easy-to-estimate Jacobian determinants). Moreover, our formula is
computationally efficient and only requires evaluating first-order derivatives and vector products. To
improve scalability, we model the initial distribution of the SVGD sampler as an isotropic Gaussian
and learn its parameters, i.e., mean and standard deviation, end-to-end. We show that this results in
faster convergence to the target distribution, i.e., fewer SVGD steps. Intuitively, the initial distribution
learns to contour the high-density region of the target distribution while the SVGD updates result in
better and faster convergence to the modes within that region. Hence, our approach is as parameter
efficient as SAC, since the SVGD updates do not introduce additional trainable parameters.

Note that S?AC can be reduced to SAC when the number of SVGD steps is zero. Also, SQL becomes
equivalent to S2AC if the entropy is computed explicitly using our formula (the policy in SQL is
an amortized SVGD sampler). Beyond RL, the backbone of S2AC is a new variational inference
algorithm with a more expressive and scalable distribution characterized by a closed-form entropy
estimate. We believe that this variational distribution can have a wider range of exciting applications.

We conduct extensive empirical evaluations of S2AC from three aspects. We start with a sanity
check on the merit of our derived SVGD-based entropy estimate on target distributions with known
entropy values (e.g., Gaussian) or log-likelihoods (e.g., Gaussian Mixture Models) and assess its
sensitivity to different SVGD parameters (kernel, initial distribution, number of steps and number
of particles). We observe that its performance depends on the choice of the kernel and is robust to
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variations of the remaining parameters. In particular, we nd out that the kernel should be chosen to
guarantee inter-dependencies between the particles, which turns out to be essential for invertibility.
Next, we assess the performance 6AS on a multi-goal environment (Haarnoja el al., 2017) where
different goals are associated with the same positive (maximum) expected future reward but different
(maximum) expected future entropy. We show thAS learns multimodal policies and effectively
maximizes the entropy, leading to better robustness to obstacles placed at test time. Finally, we test
S?AC on the MuJoCo benchmark (Duan ef al., 20168AG yields better performances than the
baselines on four out of the ve environments. Moreove\S shows higher sample ef ciency as it
tends to converge with fewer training steps. These results were obtained from running SVGD for
only three steps, which results in a small overhead compared to SAC during training. Furthermore, to
maximize the run-time ef ciency during testing, we train an amortized SVGD version of the policy

to mimic the SVGD-based policy. Hence, this reduces inference to a forward pass through the policy
network without compromising the performance.

2 PRELIMINARIES

2.1 SAMPLERS FORENERGY-BASED MODELS

In this work, we study three representative methods for sampling from EBMs: (1) Stochastic Gradient
Langevin Dynamics (SGLD) & Deterministic Langevin Dynamics (DLD) (Welling & [Teh, 2011),
(2) Hamiltonian Monte Carlo (HMC] (Neal et dl., 2011), and (3) Stein Variational Gradient Descent
(SVGD) (Liu & Wang,[2016). We review SVGD here since it is the sampler we eventually use in
S?AC, and leave the rest to Appen@.l. SVGD is a particle-based Bayesian inference algorithm.
Compared to SGLD and HMC which have a single particle in their dynamics, SVGD operates on a set
of particles. Speci cally, SVGD samples a setrofparticlesf a g'.; from an initial distributiong®

which it then transforms through a sequence of updates to t the target distribution. Formally, at every
iterationl, SVGD applies a form of functional gradient descerfit that minimizes the KL-divergence
between the target distributignand the proposal distributicsp induced by the particlese., the
update rule for thé® particles is:a™* = al +  f (al) with

f(al) = By q k(a:;a)r o logp(a)) + 1 o k(aj;a) : (1)

Here, is the step size arki( ; ) is the kernel functiong.g, the RBF kernelk(a;; a;) = exp(jja;
3 jj?=2 2). The rst term within the gradient drives the particles toward the high probability regions
of p, while the second term serves as a repulsive force to encourage dispersion.

2.2 MAXIMUM -ENTROPY RL

We consider an in nite horizon Markov Decision Process (MDP) de ned by a t(lé\; p;r),
whereS is the state spacé, is the action spaceamqm: S A S'! [0; 1 ]is the state transition
probability modeling the density of the next state; 2 S given the current statg 2 S and
actiona; 2 A. Additionally, we assume that the environment emits a bounded reward function

r 2 [rmin; Fmax] at every iteration. We use (s;) and (st; a;) to denote the state and state-action
marginals of the trajectory distribution induced by a polidiajs;). We consider the setup of
continuous action spaces Lazaric el al. (2007); Lee et al. (2018); Zhou & Lu|(2023). MaxEnt
RL (Todorov, 2006; Ziebart, 2010; Rawlik etjal., 2012) learns a polida;jst), that instead of
maximizing the expected future rc;ward, maximizes the sum of the expected future reward and entropy:

= arg max . tE(st;a‘) r(s;a)+ H( (jst) ; 2

where is a temperature parameter controlling the stochasticity of the policHgndjs;)) is the
entropy of the policy at statg. The conventional RL objective can be recovered far 0. Note

that the MaxEnt RL objective above is equivalent to approximating the policy, modeled as an EBM
over Q-values, by a variationa)l(distributior@atjst) (see proof of equivalence in Appendix Dk.,

. D (js)kexp(Q(st; )= )=Z ; ®)

whereDy is the KL-divergence and is the normalizing constant. We now review two landmark
MaxEnt RL algorithms: SAC (Haarnoja et al., 2018a) and SQL (Haarnoja et al., 2017).

SAC is an actor-critic algorithm that alternates between policy evaluatmpevaluating the Q-values
forapolicy (aijst):

Q (s;a) r(s;a)+ Esua Q (stsr;a+1)+ H( (jst+1)) (4)

= argmin . Es
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and policy improvement,e., using the updated Q-values to compute a better policy:
X
=argmax  Esa, Q (ast)+ H( (jst)) - ®)

SAC models as an isotropic Gaussiairge., (js)= N( ; ). While this enables computing
a closed-form expression of the entropy, it incurs an over-simpli cation of the true action distribution,
and thus cannot represent complex distributi@ng, multimodal distributions.

SQL gpes around the entropy computation, by de ning a soft version of the value funttien
log , exp 1Q (s;a% dal . This enables expressing the Q-value (B)) independently from
the entropyj.e, Q (si;a) = r(s;;a)+ Es,, plV (St+1)]. Hence, SQL follows a soft value

iteration which alternates between the updates of the “soft” versio@sawfd value functions:

Q (s;a) r(s;a)+ Es., plV (st+1)]; 8(st; &) (6)
V(st) log ,exp 1Q (si;a) da®; 8si: @)

Once theQ andV functions converge, SQL uses amortized SVGD Wang & Liu (2016) to learn a
stochastic sampling netwofk( ;s¢) that maps noise samplesnto the action samples from the

EBM policy distribution (aijs;) =exp (Q (si;a) V (st)) . The parameters are obtained

by minimizing the loss) (s;) = D (jsjiexp 1(Q (s;) V (st)) with respect to .

Here, denotes the policy induced By. SVGD is designed to minimize such KL-divergence
without explicitly computing . In particular, SVGD provides the most greedy direction as a
functional f (;s;) (Eq (1)) which can be used to approximate the grad@id=@ga Hence, the
gradient of the losg with respectto is: @J(s))=@/ E f (;s1)@f(;st)=@ . Note that

the integral in E((7) is approximated via importance sampling, which is known to result in high
variance estimates and hence poor scalability to high dimensional action spaces. Moreover, amortized
generation is usually unstable and prone to mode collapse, an issue similar to GANs. Therefore, SQL
is outperformed by SAC Haarnoja et al. (2018a) on benchmark tasks like MuJoCo.

3 APPROACH

We introduce 3AC, a new actor-critic MaxEnt RL algorithm that uses SVGD as the underlying
actor to generate action samples from policies represented using EBMs. This choice is motivated
by the expressivity of distributions that can be tted via SVGD. Additionally, we show that we can
derive a closed-form entropy estimate of the SVGD-induced distribution, thanks to the invertibility
of the update rule, which does not necessarily hold for other EBM samplers. Besides, we propose
a parameterized version of SVGD to enable scalability to high-dimensional action spaces and non-
smooth Q-function landscapes’A&& is hence capable of learning a more optimal solution to the
MaxEnt RL objective (Eq (2)) as illustrated in Figure 2.

3.1 STEIN SOFTACTORCRITIC

Like SAC, SAC performs soft policy iteration which alternates between policy evaluation and policy
improvement. The difference is that we model the actor parameterized sampler from an EBM
Hence, the policy distribution corresponds to an expressive EBM as opposed to a Gaussian.

Critic. The critic's parameters are obtained by minimizing the Bellman loss as traditionally:
=argmin Ei,ay  (Q (Sta) 9% (8)

with the targe®) = re(s;a) +  E(s.y sa ) Q (st+1;a+1)+ H( (jst+1)) :Here isan
exponentially moving average of the value network weights (Mnih et al., 2015).

Actor as an EBM sampler. The actor is modeled as a sampler from an EBM over the Q-values.
To generate a set of valid actions, the actor rst samples a set of partialgsfrom an initial
distributiong® (e.g, Gaussian). These particles are then updated over several itetafidfsl ],
i.e,fa*lg f a'g+ h(fag;s) following the sampler dynamics characterized by a transformation

h (e.g, for SVGD,h = f in Eq(1)). If ¢V is tractable andh is invertible, it's possible to compute a
closed-form expression of the distribution of the particles at'thiéeration via the change of variable
formula Devore et al. (2012} (d'js) = d (a' ljs) det(l + r yh(@;s)) ;8 2 [LL]. In

this case, the policy is represented using the particle distribution at the nal.sbéphe sampler
dynamicsj.e, (ajs)= g-(a'js) and the entropy can be estimated by averatpogl- (a- js) over

a set of particles (Section 3.2). We study the invertibility of popular EBM samplers in Section 3.3.

4
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Parameterized initialization. To reduce the
number of steps required to converge to the tar-
get distribution (hence reducing computation
cost), we further propose modeling the initial
distribution as a parameterized isotropic Gaus-
sian,i.e,a® N ( (s); (s)). The parame-
terization trick is then used to exprealas a
function of . Intuitively, the actor would learn
such that the initial distribution is close to th
target distribution. Hence, fewer steps are

é:igure 3: SAC(; ) achieves faster conver-
'%ence to the target distribution (in orange) than

2 .. . ) . . .
quired to converge, as illustrated in Figure AC( ) by parameterizing the initial distribution

Note that if the number of steppis= 0, SPAC is (5 ) ofthe SVGD sampler.

reduced to SAC. Besides, to deal with the non-smooth nature of deep Q-function landscapes which
might lead to particle divergence in the sampling process, we bound the particle updates to be within
a few standard deviations)(from the mean of the learned initial distributidre., t a t

8l 2 [1;L]. Eventually, the initial distributiom? learns to contour the high-density region of the
target distribution and the following updates re ne it by converging to the spanned modes. Formally,
the parameters are computed by minimizing the expected KL-divergence between the plicy
induced by the particles from the sampler and the EBM of the Q-values:

=arg max ES(D at Q (St;aL) + Esop [H( (js)]
st t a t ; 8l2[LL] (9)

Here,D is the replay buffer. The derivation is in Appendix E. Note that the constraint does not
truncate the particles as it is not an invertible transformation which then violates the assumptions of
the change of variable formula. Instead, we sample more particles than we need and select the ones
that stay within the range. We caf8C(; )and SAC( ) as two versions of S\C with/without the
parameterized initial distribution. The complet®A& algorithm is in Algorithm 1 of Appendix A.

3.2 A CLOSED-FORM EXPRESSION OF THEPOLICY'S ENTROPY

A critical challenge in MaxEnt RL is how to ef ciently compute the entropy téfh (jsi+1)) in
Eq(2). We show that, if we model the policy as an iterative sampler from the EBM, under certain
conditions, we can derive a closed-form estimate of the entropy at convergence.

Theorem 3.1. LetF : R" ! R" be an invertible transformation of the forf(a) = a+ h(a).

We denote by (a') the distribution obtained from repeatedly applyifgo a set of samplefa’g

from an initial distributiong®(a®) overL stepsj.e,a- = F F F (a%). Under the condition
jir a h(a)ji1 1, 8 2 [1; L], the distribution of the particles at tHe" step is:

X
logd (@) logc(@®) " T(r wh(d)+ O( 2dL): (10)

Here,d is the dimensionality od, i.e., a 2 RY andO( 2dL) is the order of approximation error.
Proof Sketch: As F is invertible, we apply the change of varisble formula (Appendix C.2) on the trans-
formationF F F and obtainiogg-(a“) = log ¢®(a%) ~ |,'log det(l + r yh(a@)) . Un-
der the assumptiorjjr o, h(a)jj1 1, we apply the corollary of Jacobi's formula (Appendix C.3)
and get Eq(10). The detailed proof is in Appendix F. Note that the conditijin 5, h(a;)jj1 1
can always be satis ed when we choose a suf ciently small step siaethe gradient ofi(a) is
small,i.e., h(a) is Lipschitz continuous with a suf ciently small constant.
It follows from the theorem above, that the entropy of a policy modeled as an EBM samplé))Eq
can be expressed analytically as:

h i h
H( (is)= Eaxo g logd-(a"js) Eao ¢ logdl(2%s)

In the following, we drop the dependency of the action dar simplicity of the notation.

i
lzolTr rh@:s) : (11)

3.3 INVERTIBLE POLICIES
Next, we study the invertibility of three popular EBM samplers: SVGD, SGLD, and HMC as well as
the ef ciency of computing the tracég., Tr(r 4, h(a';s)) in Eq(10)for the ones that are invertible.

Proposition 3.2(SVGD invertibility). Given the SVGD learning rateand RBF kernek( ; ) with
variance , if , the update rule of SVGD dynamics de ned in @Jjis invertible.
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(a) Recovering the GT entropy (b) Effect of onH(d") (c) Effect ofm andL onH (q")
Figure 4: Entropy evaluation results.

Proof SketchWe use the explicit function theorem to show that the Jacabigh (a; s) of the update
rule F (a; s) is diagonally dominated and hence invertible. This yields invertibiliti ¢d; s). See
detailed proof in Appendix G.3.

Theorem 3.3. The closed-form estimate loig g (a- js) for the SVGD based sampler with an RBF

kernelk( ; ) is )

logq- (a“js) logaP(a%js)+ = k(a;a) (@ a)r a Q(s;a)+ —ka ak® d
1=0 j=1al6a

Here,()” denotes the transpose of a matrix/vector. Note that the entropy does not depend on any
matrix computation, but only on vector dot products and rst-order vector derivatives. The proof is in
Appendix H.1. Intuitively, the derived likelihood is proportional to (1) the concavity of the curvature

of the Q-landscape, captured by a weighted average of the neighboring particles' Q-value gradients
and (2) pairwise-distances between the neighboring partidteal( a k* exp (ka] alk?)),i.e,

the larger the distance the higher is the entropy. We elaborate on the connection between this formula
and non-parametric entropy estimators in Appendix B.

Proposition 3.4(SGLD, HMC). The SGLD and HMC updates are not invertible wact.

Proof Sketch:SGLD is stochastic (noise term) and thus not injective. HMC is only invertible if
conditioned on the velocity. Detailed proofs are in Appendices G.1-G.2.

From the above theoretic analysis, we can see that SGLD update is not invertible and hence is not
suitable as a sampler fof 8C. While the HMC update is invertible, its derived closed-form entropy
involves calculating Hessian and hence computationally more expensive. Due to these considerations,
we choose to use SVGD with an RBF kernel as the underlying samplénd.S

4 RESULTS

We rst evaluate the correctness of our proposed closed-form entropy formula. Then we present the
results of different RL algorithms on multigoal and MuJoCo environments.

4.1 ENTROPYEVALUATION

This experiment tests the correctness of our entropy formula. We compare the estimated entropy
for distributions (with known ground truth entropy or log-likelihoods) using different samplers and
study the sensitivity of the formula to different samplers' parameté@)sRecovering the ground
truth entropy. In Figure 4a, we plot samples (black dots) obtained by SVGD, SGLD, DLD and
HMC at convergence to a Gaussian with ground truth entkb(y) = 3 :41, starting from the same
initial distribution (leftmost sub- gure). We also report the entropy values computed vidBqg.
Unlike SGLD, DLD, and HMC, SVGD recovers the ground truth entropy. This empirically supports
Proposition 3.4 that SGLD, DLD, and HMC are not invertib(2) Effect of the kernel variance.
Figure 4b shows the effect of different SVGD kernel variancewhere we use the same initial
Gaussian from Figure 4a. We also visualize the particle distributionslaf8&*GD steps for the
different con gurations in Figure 9 of Appendix I. We can see that when the kernel variance is too
small €.g, =0:1), the invertibility is violated, and thus the estimated entropy is wrong even at
convergence. On the other extreme when the kernel variance is toodagge €100), i.e.,, when the
particles are too scattered initially, the particles do not converge to the target Gaussian due to noisy
gradients in the rst term of E@Ll). The best con gurations hence lie somewhere in betwees (

2f 3;5; 79). (3) Effect of SVGD steps and particlesFigure 4c and Figure 10b (Appendix. ) show
the behavior of our entropy formula under different con gurations of the number of SVGD steps
and particles, on two settings: (i) GMM with an increasing number of componeMs and (ii)
distributions with increasing ground truth entropy values, Gaussians with increasing variances
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