
Active Sequential Posterior Estimation
for Sample-Efficient Simulation-Based Inference

Sam Griesemer1 Defu Cao1 Zijun Cui1,2† Carolina Osorio3,4 Yan Liu1

1USC 2MSU 3Google Research 4HEC Montréal
{samgriesemer,defucao,yanliu.cs}@usc.edu

cuizijun@msu.edu
osorioc@google.com

Abstract

Computer simulations have long presented the exciting possibility of scientific
insight into complex real-world processes. Despite the power of modern comput-
ing, however, it remains challenging to systematically perform inference under
simulation models. This has led to the rise of simulation-based inference (SBI), a
class of machine learning-enabled techniques for approaching inverse problems
with stochastic simulators. Many such methods, however, require large numbers of
simulation samples and face difficulty scaling to high-dimensional settings, often
making inference prohibitive under resource-intensive simulators. To mitigate these
drawbacks, we introduce active sequential neural posterior estimation (ASNPE).
ASNPE brings an active learning scheme into the inference loop to estimate the
utility of simulation parameter candidates to the underlying probabilistic model.
The proposed acquisition scheme is easily integrated into existing posterior estima-
tion pipelines, allowing for improved sample efficiency with low computational
overhead. We further demonstrate the effectiveness of the proposed method in the
travel demand calibration setting, a high-dimensional inverse problem commonly
requiring computationally expensive traffic simulators. Our method outperforms
well-tuned benchmarks and state-of-the-art posterior estimation methods on a large-
scale real-world traffic network, as well as demonstrates a performance advantage
over non-active counterparts on a suite of SBI benchmark environments.

1 Introduction

High-fidelity computer simulations have been embraced across countless scientific domains, fur-
thering the ability to understand and predict behaviour in complex real-world systems. Modern
computing architectures and flexible programming paradigms have further lowered the barrier to
capturing approximate models for scientific study in silico, enabling wide-spread use of computational
experiments across disciplines. However, despite the relative ease of capturing real-world gener-
ative processes programmatically, the resulting black-box programs are often difficult to leverage
for inverse problems. This is a common challenge in practical applications; the simulator is often
computationally expensive to evaluate, its implicit likelihood function is generally intractable, and
the dimensionality of high-fidelity outputs is typically prohibitive. To address these issues, likelihood-
free inference methods have been introduced, operating under the broadly applicable assumption
that no tractable likelihood function is available. Early success along this direction was achieved
through easy-to-use methods like Approximate Bayesian Computation (ABC) [41, 6], or extensions
of kernel density estimation. The scale of real-world applications demands more flexible and scalable
approaches, which has lead to the integration of aptly suited deep learning methods in likelihood-free

†Work completed while at USC.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

settings. Neural network-based methods [33, 29, 17] have since been proposed, introducing greater
flexibility when approximating probabilistic components (e.g., the posterior, likelihood ratio, etc)
in the inference pipeline. The use of the term "simulation-based inference" (SBI) has since been
colloquially embraced [11] when referring to this emerging class of techniques.

SBI methods primarily leverage deep learning through their use of neural density estimators (NDE),
neural network-based parametrizations of probability density functions. Common choices of NDE in
practice include mixture density networks [8] and normalizing flows [40, 34], along with popular
extensions (e.g., Real NVP [12], MAE [16], MAF [35], etc). Methods also vary in the probabilistic
form they elect to approximate; the posterior [33], the likelihood [36], and the likelihood ratio [19, 13]
are all common choices for well-established methods.

While many SBI techniques leverage basic principles from active learning (AL), they are mostly
established as a helpful heuristic for increased sample efficiency, rather than an explicit optimization
over a defined acquisition function. For example, methods like Sequential Neural Posterior Estimation
(SNPE) [33] boost sample efficiency (over non-sequential methods) by iteratively updating a proposal
prior p̃(θ), steering simulator parameters to values expected to be more useful for learning the
posterior under observations xo of interest.

While sequential proposal updates are an effective first-order step to more informative simulation
runs, there are many key factors that remain overlooked. For example, the updated proposal does
not take into account the current parameters of the NDE itself, and parameter samples in the batch
are drawn from the current proposal independently. This fails to fully utilize myopic AL strategies
and batch optimization, leading to large amounts of simulation runs with high expected information
overlap and wasted computation. To address this issue, we formulate an active learning scheme that
(1) selects samples expected to target epistemic uncertainty in the underlying probabilistic model,
and (2) makes acquisition evaluation simple and efficient when using any Bayesian NDE.

We demonstrate the effectiveness of our method on the origin-destination (OD) calibration task. OD
calibration aims to identify OD matrices that yield simulated traffic metrics that accurately reflect
field-observed traffic conditions. It can be seen as a parameter tuning process, akin to model fitting in
machine learning. From the machine learning perspective, OD calibration presents challenges due to
the requirement of calibrating specific unique samples from observed traffic information, such as link
flows, trip speeds, etc.

Our contributions are summarized as follows:

• Active Sequential Neural Posterior Estimation (ASNPE), an SNPE variant that incorporates
active acquisition of informative simulation parameters θ to the underlying (direct) posterior
estimation model, without the use of additional surrogate models. This helps to drive down
uncertainty in parameters of the utilized NDE and improve sample efficiency, both of which
are particularly important when interfacing with computationally costly simulation-based
models.

• An efficient approximation to the proposed acquisition function above, along with a means
of training Bayesian flow-based generative models for density estimation during posterior
approximation (both with open source implementations3). Leveraging this class of models
enables direct uncertainty quantification in the acquisition function, and is more flexible,
efficient to train, and scalable to high-dimensional data than many traditional Bayesian
model choices (e.g., Gaussian processes).

• A Bayesian formulation of the OD calibration problem and coupled statistical framework for
performing sequential likelihood-free inference with neural posterior estimation methods.
We show ASNPE outperforms baseline methods across a wide variety of simulation scenarios
on a large-scale traffic network. We also evaluate ASNPE on three broader SBI benchmark
environments and find it acheives a performance advantage over non-active counterparts.

3https://github.com/samgriesemer/seqinf

2

https://github.com/samgriesemer/seqinf

2 Background

2.1 Neural posterior estimation

Given observational data of interest xo and a prior p(θ), we want to carry out statistical inference
to approximate the posterior p(θ|x = xo) under the model p(x|θ). We assume p(x|θ) is defined
implicitly via a simulation-based model, where direct evaluation of p(x|θ) is not possible but samples
x ∼ p(x|θ) can be drawn. Conventional Bayesian inference is thus not accessible in this setting, and
we instead look to approximate the posterior using N generated pairs {(θi, xi)}Ni=1.

Neural Posterior Estimation (NPE) methods attempt to approximate the posterior directly with a
neural density estimator qϕ(θ|x) trained on samples {(θi, xi)}Ni=1, where θi ∼ p(θ) and xi ∼ p(x|θi),
by minimizing the loss

L(ϕ) = Eθ∼p(θ)Ex∼p(x|θ) [− log qϕ(θ|x)]

for learnable parameters ϕ. Provided qϕ is sufficiently expressive, qϕ(θ|x) will converge to the true
posterior p(θ|x) as N → ∞.

Sequential Neural Posterior Estimation (SNPE) methods break up the NPE process across several
iterations, and can improve sample efficiency by leveraging the fact that p(θ|x = xo) is often
far more narrow than p(θ). While accurately representing p(θ|x) for any x ∈ X is ideal (where
X is the simulation output space), doing so can require prohibitively large simulation samples,
including outputs from parameters with low posterior density under xo. To combat this, SNPE
methods draw θ expected to be more informative about p(θ|xo) by using a successively updated
proposal distribution p̃(θ) which approximates p(θ|x = xo). Training the NDE qϕ on samples
θ̃ ∼ p̃(θ) when p̃ is not the true prior, however, will cause it to converge instead to the proposal
posterior p̃(θ|x) = p(θ|x) p̃(θ)p(x)p̃(x)p(θ) , rather than the true posterior (as shown in [33]). Existing SNPE
methods correct for this in different ways: SNPE-A [33] trains qϕ(θ|x) to approximate p̃(θ|x) during
each round and employs importance reweighting afterward, SNPE-B [29] directly minimizes an
importance weighted loss, and SNPE-C [17] (also known as Automatic Posterior Transformation, or
APT) maximizes an estimated proposal posterior that easily transforms to the true posterior.

2.2 Bayesian active learning

Bayesian active learning is a selective data-labeling technique commonly employed in data-scarce
learning environments. Active learning assesses the strength of candidate data points using a
so-called acquisition function, often capturing some notion of expected utility to the underlying
model given the currently available data. Given an acquisition function α, computing the next
best point to label includes optimization of α over a domain of as yet unlabeled points U : x∗ =
argmaxx∈Uα(x, p(θ|D)), where x are input data points and p(θ|D) is the posterior of the Bayesian
model parameters θ given the current training dataset, i.e., the distribution over parameters after
training the model. In modern Bayesian deep learning pipelines, this model is often a Bayesian neural
network [15, 21]. Many acquisition functions used in practice are extensions or approximations of
expected information gain (EIG) [20]

argmaxxH(θ|D)− Ey∼p(y|x,D)

[
H[θ|D ∪ {(x, y)}]

]
, (1)

where H[·|·] is conditional entropy, and y are input labels.

Several existing works explore the use of Bayesian optimization (BO) in the likelihood-free inference
setting. [18, 22] employ Gaussian processes (GPs) as surrogate models for the discrepancy as a
function of θ, and select parameter candidates by optimizing this surrogate with BO. GPs are also
used as a surrogate by [30] to represent the proposal distribution in MCMC ABC. [4] further extends
these principles to deep Gaussian processes and leverage these models as surrogate likelihoods. In this
work, we explicitly avoid the use of likelihood surrogates and aim to leverage only the approximate
posterior NDE model, with the express intent of subverting additional computational overhead and
enabling the use of powerful NDEs (e.g., flow-based generative models).

3

Figure 1: Depiction of the proposed active learning-integrated method. Demonstrates the high-
level ASNPE pipeline. Samples θi are drawn from sequentially updated proposal distributions p̃(θ),
filtered according to the acquisition function α(θ1:N , p(ϕ|D)), and run through the simulator p(x|θ)
to generate B pairs (θi, xi) for training the approximate posterior qϕ. The learned posterior is then
conditioned by the target observation xo, producing the next round’s proposal p̃(θ) = qϕ(θ|xo).

2.3 Origin-destination calibration

OD calibration is an important task for transportation agencies and practitioners who develop traffic
simulation models of road networks and use them to inform a variety of planning and operational
decisions. Calibrating the input parameters of these simulators is an important offline optimization
problem that agencies must face on a regular basis (e.g., when new traffic data are made available,
when changes to the road network have occurred, etc). These simulators are often computationally
expensive to evaluate, however, and highlight the practical importance of developing sample efficient
calibration methods.

Previous works primarily approach OD calibration using general-purpose simulation-based opti-
mization (SO) algorithms, such as Simultaneous Perturbation Stochastic Approximation (SPSA)
methods [5, 47, 25, 7] and genetic algorithms [24, 43, 47]. These general-purpose SO algorithms
tend to require large numbers of simulation evaluations, which can be computationally costly. To
address this issue, recent extensions of SPSA have been proposed [10, 27, 1, 45]. Analytic meta-
models have also been considered and shown to reduce the need for large numbers of function
evaluations [31, 32, 48, 3].

3 Methodology

3.1 Active learning for SNPE

SNPE methods produce iteratively updated proposal priors p̃(r+1)(θ) ≈ p(θ|x = xo) from
qϕ(θ|xo, D

(r)) at each round r in the inference process, where D(r) is the accumulated dataset
{(θi, xi)}rBi=1 by round r and B is the number of newly collected pairs per round. These sequentially
updated proposals provide a means of drawing parameter values θ(r) ∼ p̃(r)(θ) that are increasingly
useful (i.e., high likelihood) to the posterior estimate of interest p(θ|xo). As such, SNPE offers a clear
possible benefit for improved sample efficiency over non-sequential NPE, which cannot explicitly
sample new values at expected high likelihood regions under xo. Despite this, it’s difficult to quantify
theh value of any particular θ ∼ p̃(r+1)(θ) and whether it’s worth the computational cost to obtain
x ∼ p(x|θ) with respect to its utility to the underlying NDE qϕ(θ|x,D(r)).

In high-cost simulation environments, we want to take every measure to sample only at highly
informative regions of the parameter space to improve our estimate qϕ(θ|xo) of p(θ|x = xo). This
entails a more principled analysis of candidate simulation parameters θ before investing in the
simulation run x ∼ p(x|θ). In an attempt to quantify the prospective impact of any particular θ on
our posterior estimate, we look to Bayesian active learning, and acquisition functions such as EIG.
EIG considers the reduction in uncertainty of model parameters under the inclusion of new data in

4

expectation over the predictive posterior. Adapting Eq. (1) to our NPE context gives

argmaxθH(ϕ|D)− Ex∼p(x|θ,D)

[
H[ϕ|D ∪ {(θ, x)}]

]
,

which seeks to drive down uncertainty in NDE parameters ϕ by optimizing for θ with simulation out-
puts x ∼ p(x|θ,D) expected to be most informative. Unfortunately, EIG and related approximations
require p(x|θ,D), which we cannot evaluate nor do we directly approximate in the NPE setting. This
makes it considerably more difficult to quantify the utility of candidate θ values, as we have no direct
means of sampling likely simulation outputs.

3.2 Characterizing posterior uncertainty

Instead of relying on the marginal distribution p(x|θ,D), we seek instead to capture uncertainty
across different parameterizations of the NDE. Broadly speaking, we want to simulate θ expected to
be informative to our NDE model, reducing epistemic uncertainty as measured by p(ϕ|D) and further
elucidating parameter sets ϕ likely to explain the probabilistic mapping from simulation outputs x to
parameter inputs θ. Given that qϕ models this relationship as the conditional distribution qϕ(θ|x),
we consider the uncertainty over distributional estimates induced by p(ϕ|D). This allows for the
targeting of epistemic uncertainty in the NDE model according to how that uncertainty appears across
feasible target posterior forms qϕ(θ|x). More precisely, for some divergence measure D(·||·), we
represent this distributional uncertainty as

HD(x) = Eϕ|D[D (p(θ|x,D)||p(θ|x, ϕ))], (2)

where p(θ|x, ϕ) is the corrected posterior produced by qϕ(θ|x) (see Section 2.1), and p(θ|x,D) is the
NDE’s marginal posterior (under model parameters ϕ) for simulation posterior estimates (parameters
θ):

p(θ|x,D) =

∫
Φ

p(θ|x, ϕ)p(ϕ|D)dϕ.

Intuitively, HD captures a notion of dissimilarity between the posterior estimates from different
draws of ϕ ∼ p(ϕ|D). Put another way, HD indicates how certain the NDE is in assigning likelihood
values across θ ∈ Θ under a chosen x; a relatively low value would indicate that likely parameter
draws ϕ ∼ p(ϕ|D) produce posterior estimates p(θ|x, ϕ) that tend to agree with the “marginal”
posterior p(θ|x,D), for instance. Note that when we let the divergence measure be the KL divergence
D = DKL, we have HDKL = I[ϕ; θ|xo, D] (see proof A.1). Computing this exactly is difficult in
practice, however, and we therefore seek a practically appropriate approximation below.

3.3 Acquisition of informative parameters

Eq. (2) provides a basis for evaluating uncertainty in an NDE without relying on access to or
approximations of the likelihood p(x|θ). Given the posterior estimation problem at hand, we’re
particularly interested in how to select simulation parameters θ expected to reduce HD at or around
xo. Here we take inspiration from [23], who seek to drive down uncertainty at θ with noisy estimates
of the log joint probability (albeit in a context where likelihoods p(x|θ) are available). While HD
provides a measure of distributional uncertainty, we can target specific θ whose assigned likelihood is
widely disagreed upon across draws of ϕ ∼ p(ϕ|D):

θ∗ = argmaxθEϕ|D

[
(p(θ|xo, D)− p(θ|xo, ϕ))

2
]
. (3)

While optimization of Eq. (3) over all θ in the prior support may be ideal, this is computationally
infeasible given the posterior estimates from all parameters ϕ ∼ ϕ|D required in expectation.
Additionally, note that Eq. (3) does not explicitly account for relative likelihoods of θ under the
posterior or available approximations, possibly leading to θ∗ with high uncertainty under xo but with
low-likelihood under p(θ|xo) in expectation. We account for this explicitly during integration with
specific SNPE approaches, as seen in the section below.

5

Algorithm 1 Active Sequential Neural Posterior Estimation (ASNPE)
Input: Prior p(θ), target observation xo, round-wise selection size B, round-wise sample size N ,
total rounds R
Output: Approximate posterior qϕ(θ|xo)

Let D(0) = {}
Let p̃(θ) = p(θ)
for r ∈ [1, . . . , R] do

Draw N samples {θi}1:N ∼ p̃(θ)
Sort {θi}1:N by expected divergence (Eq (4)), select top-B {θi}1:B
for b ∈ [1, . . . , B] do

Simulate xb ∼ p(x|θb)
Set D(r−1) = D(r−1) ∪ {(θb, xb)}

end for
Set D(r) = D(r−1)

Train NDE qϕ on D(r): ϕ∗ = argminϕ −
∑

(θi,xi)∈D(r) log q̃ϕ(θi|xi)

Let p̃(θ) = qϕ(θ|xo)
end for

3.4 Integration with APT

In order to tractably approximate Eq. (3), we impose two additional restrictions to bring the parameter
acquisition into the SNPE loop:

1. Require the NDE be updated according to APT [17], i.e., trained via maximum likelihood
on L̃(ϕ) = −

∑N
i=1 log q̃ϕ(θi|x), where

q̃ϕ(θ|x) = qϕ(θ|x)
p̃(θ)

p(θ)

1

Z(x, ϕ)
,

and by Proposition 1 of [33] ensures qϕ(θ|x) → p(θ|x) as N → ∞ without requiring post-
hoc updates to the NDE’s distributional estimate. This allows the model parameter posterior
p(ϕ|D) to be used directly in the contexts of Eq. (2) and Eq. (3), whereas otherwise the
corrective terms involved would need to be accounted for explicitly.

2. To account for the likelihood of θ under the posterior estimate as captured by the proposal
prior p̃(θ) ≈ p(θ|x = xo) in a given round of SNPE, we adjust Eq. (3):

α(θ, p(ϕ|D)) = p̃(θ) · Eϕ∼ϕ|D

[
(p(θ|xo, D)− p(θ|xo, ϕ))

2
]
. (4)

Further, in practice we approximate this by optimizing Eq. (4) over samples θ ∼ p̃(r)(θ),
straightforwardly integrating the acquisition mechanism into the standard SNPE pipeline.
Round-wise proposals p̃(r)(θ) = qϕ(θ|x) are set after N = rB samples are collected (for
round r with B samples collected per round), and qϕ(θ|x) → p(θ|x) as N → ∞. All round-
wise proposal distributions share the support of the prior p(θ), which itself is established as
having support over the entire parameter domain of interest Θ.
Thus, optimizing α over a sample of size N drawn from a proposal distribution p̃(r)(θ) at any
round r recovers the true optimum of α as N → ∞; each proposal’s support connects back
to the prior’s support, which covers Θ. As a result, at each round a fixed sample size N drawn
from the proposal can be used to approximate the acquisition maxima, while additionally
adhering to the round-wise proposal sampling required to ensure qϕ(θ|x) → p(θ|x). Refer
to Section A.2 for additional discussion on the functional form of the acquisition function.

3. (Optional, depending on model) To approximate the Bayesian model parameter posterior
p(ϕ|D), neural network-based NDEs (such as flow-based generative models or mixture
density networks) can be trained via MC-dropout [21, 14]. See additional details regarding
consistent sampling and log probability evaluation in MAFs under MC dropout in Appendix
C.

Altogether, this constitutes the ASNPE method, which is more succinctly described in Algorithm 3.3.
See Figure 1 for a visual depiction of this process.

6

3.5 Bayesian origin-destination calibration

We now position OD calibration as a Bayesian inference problem, with a posterior density of interest
to be approximated by SNPE methods. During a time interval of interest [ts, te] on a traffic network
G, we consider a single OD matrix d = {dz}z∈Z , where dz represents the expected travel demand
for the origin-destination pair z. Z is the set of OD pair indices, i.e., Z = {1, 2, . . . ,Z}, for all pairs
of interest on G. OD pairs are typically defined between elements in a fixed set of Traffic Assignment
Zones (TAZs) whose size may not be uniform due to variable demand density; see Figure 7 for zones
drawn on two candidate networks. Figure 2 loosely depicts the acquisition pipeline for traffic data,
corresponding the collection process shown in Figure 1.

Figure 2: Simple depiction of the data ac-
quisition and simulation process for the OD
calibration application. The acquisition step
selects parameter candidates (OD matrices)
to then be simulated (via SUMO) and pro-
duce outputs (network flow observations)
that are used to update the approximate pos-
terior model.

Conventionally, OD calibration is formulated as a
simulation-based optimization problem over a traf-
fic simulator S(·;u1, u2), where u1, u2 are vectors
of endogenous simulation variables and exogenous
simulation parameters, respectively. The goal is to
obtain an OD matrix d∗ that yields simulation results
x∗ = S(d∗;u1, u2) that are sufficiently close to avail-
able observational data xo.

While many pre-existing methods adopt a traditional
optimization scheme and iteratively produce point es-
timates for d∗, we formulate the calibration problem
under the Bayesian paradigm and instead seek a pos-
terior p(d|x; d̂)

p(d|x; d̂) = p(x|d)p(d; d̂)
p(x; d̂)

=
p(x|d)p(d; d̂)∫
p(x|d)p(d; d̂)dd

(5)

where p(d; d̂) represents the prior distribution over OD
matrices, often defined around a noisy historical esti-
mate d̂. The posterior estimate under our observation
p(d|x = xo; d̂) can then be used to compute different
point estimates for d∗, used in other downstream tasks
as an informative prior, and can represent intrinsic un-
certainty in the calibration problem. This formulation
achieves parity with existing approaches, where d̂ is
otherwise used as a noisy starting point. Additionally,
the traffic simulator S is treated as a black-box that
implicitly defines the likelihood p(x|d):

p(x|d) =
∫

pS(x, z|d)dz =

∫
pS(x, u1, u2|d)du1du2, (6)

i.e., marginalizing over all possible latent trajectories z. As is typical in simulation-based inference
settings, this integral is intractable for simulators of sufficient complexity.

4 Experimental results

We explore the performance of the proposed ASNPE method in the context of OD calibration on a
challenging real-world traffic network. Our goal here is to 1) compare the general purpose utility
of our approach in complex settings against tuned benchmark methods, and 2) verify ASNPE’s
candidacy as a sample efficient posterior estimation tool in high-dimensional, data-scarce settings.
These objectives are directly in line with the needs of practitioners, both in the urban mobility
community and broadly across scientific disciplines.

4.1 Experimental setup

We conducted a case study on the large-scale regional Munich network seen in [37]. The Munich
network includes 5329 configurable origin-destination pairs (constituting simulation input), as

7

Hours 5:00-6:00 Hours 8:00-9:00
Cong. level A Cong. level B Cong. level A Cong. level B

Prior I
r = 0.6
q = 0.3

Prior OD 0.178 0.165 0.181 0.150
Setting prior 0.396 0.488 0.539 0.387

SPSA 0.563 ± 0.089 0.521 ± 0.052 0.453 ± 0.078 0.384 ± 0.049
PC-SPSA 0.193 ± 0.063 0.185 ± 0.097 0.159 ± 0.036 0.159 ± 0.046
MC-ABC 0.275 ± 0.047 0.295 ± 0.066 0.343 ± 0.036 0.305 ± 0.036

SNPE 0.201 ± 0.085 0.167 ± 0.092 0.187 ± 0.059 0.314 ± 0.025
(ours) ASNPE 0.147 ± 0.011 0.157 ± 0.097 0.165 ± 0.064 0.161 ± 0.079

Prior II
r = 0.75
q = 0.45

Setting prior 0.340 0.311 0.245 0.277
SPSA 0.316 ± 0.074 0.342 ± 0.045 0.258 ± 0.061 0.189 ± 0.025

PC-SPSA 0.180 ± 0.029 0.189 ± 0.055 0.163 ± 0.032 0.155 ± 0.031
MC-ABC 0.143 ± 0.034 0.190 ± 0.036 0.169 ± 0.023 0.140 ± 0.010

SNPE 0.137 ± 0.025 0.157 ± 0.032 0.142 ± 0.024 0.135 ± 0.016
(ours) ASNPE 0.130 ± 0.024 0.148 ± 0.034 0.138 ± 0.025 0.132 ± 0.016

Table 1: RMSNE scores on the Munich traffic network, as described in Section 4.1. Note that methods
like SPSA (poor convergence aside) can produce RMSNE scores larger than the reported setting prior
due to noise in the starting sample. The “setting prior” value is an average RMSNE score over many
θ draws from the shifted prior. Reported errors are empirical standard deviations computed over the
five trial runs.

(a)

(b)

Figure 3: Plots of the (averaged) calibration horizons for each of the evaluated methods on the Prior
I, Hours 5:00-6:00, Congestion level A scenario. (a) RMSN(E) scores reached throughout the 128
sample simulation horizon for each evaluated method, averaged over five repeated trials (mean line
plotted) and with error bars calculated as bootstrapped 95% confidence intervals. (b) The same scores
shown in (a), but instead plotted against the wallclock time passed before the score was reached (for
each method’s single best run). Note that the full 128-sample method trajectories are included, and
the variability in line lengths demonstrates both 1) the impact of NPE-based methods’ ability to run
simulations in parallel, and 2) noisiness in simulation runtimes due to the variable inputs explored by
each method. See Appendix E for all scenario plots.

8

Method C2ST MMD MED-DIST MEAN-ERR
Bernoulli

GLM
SNPE-C 0.749 ± 0.017 0.210 ± 0.024 11.454 ± 0.255 0.188 ± 0.117
ASNPE 0.725 ± 0.012 0.146 ± 0.057 11.993 ± 0.172 0.150 ± 0.085

SLCP
distractors

SNPE-C 0.987 ± 0.001 0.172 ± 0.001 16.716 ± 1.014 0.899 ± 0.065
ASNPE 0.985 ± 0.002 0.148 ± 0.022 16.547 ± 0.499 0.906 ± 0.220

Gaussian
mixture

SNPE-C 0.773 ± 0.009 0.167 ± 0.006 1.051 ± 0.037 0.532 ± 0.074
ASNPE 0.771 ± 0.006 0.150 ± 0.025 1.010 ± 0.066 0.440 ± 0.164

Table 2: Results comparing SNPE-C and ASNPE for various metrics on the Bernoulli GLM, SLCP
distractors, and Gaussian mixture tasks from [28]. Experimentation details, metrics, and associated
plots can be found in Appendix B.

well as 507 detector locations (positions of reported output traffic flows), resulting in a highly
underdetermined system.

We build and evaluate a number of synthetic demand scenarios, following an established framework
for fair evaluation of urban demand calibration methods ([2, 39, 9]). Each of the test demand scenarios
are constructed from combinations of the following factors:

Time interval: a time interval of interest is specified through which to simulate traffic flows on
the network. Prior ODs are chosen to reflect real-world traffic patterns for the affiliated times. We
evaluate peak morning demand for hour-long intervals at 5:00am-6:00am and 8:00am-9:00am.

Congestion level: within a given time interval, we can further control the level of traffic congestion
exposed during the hour. The distribution of frequencies present in the starting ODs plays a critical
role in determining route time across the traffic network. Here we define two congestion levels,
“A” and “B,” to reflect different average frequencies assigned to OD pairs. Here we use a truncated
normal distribution (lower bound at 0) to sample OD counts with varying means and variance:
(1) (µ = 5, σ = 25) for hours 5:00-6:00, congestion level A, (2) (µ = 10, σ = 50) for hours
5:00-6:00, congestion level B, (3) (µ = 25, σ = 50) for hours 8:00-9:00, congestion level A, (4)
(µ = 50, σ = 100) for hours 8:00-9:00, congestion level B.

Prior bias and noise: under each time interval and congestion level, we further perturb the generated
OD matrices to represent realistic variance found in real-world sampling of traffic observations. Here
we use the following noise model, mirroring that of [39]: xc = (r + q × δ)× d̂, where δ ∼ N(0, 1

3).
We then formulate two perturbed settings: 1) Prior I: r = 0.6, q = 0.3, and 2) Prior II: r = 0.75,
q = 0.45. Prior I constitutes a heavily under-congested estimate with relatively little added noise,
while Prior II is less biased from the true OD but noisier. Both priors represent underestimations of
the true demand, reflecting the fact that most prior ODs from real-world settings are constructed from
historic travel demand observations.

The eight synthetic combinations constitute starting ODs/priors that span a variety of different settings
important for real-world urban demand calibration tasks. Each synthetic setting yields a particular
prior OD estimate d̂, which is then used to construct a prior p(d; d̂). A fixed sample is drawn
from p(d; d̂) and passed through the open-source traffic simulator Simulation of Urban MObility
(SUMO) [26] to generate an associated “true” network flow xo.

4.2 Comparison to SOTA Calibration Methods

We evaluate the effectiveness of the proposed solution by comparing against available SOTA bench-
marks commonly employed in the OD calibration space: Simultaneous Perturbation Stochastic
Approximation (SPSA) [42] and principal component (PC)-based SPSA, or PC-SPSA [37]. SPSA
is a widely employed algorithm for travel demand calibration, and PC-SPSA is an effective exten-
sion that optimizes over parameters in a lower-dimensional subspace, as defined by the principal
components of computed travel demand history matrix. Both of these methods are conventional
optimization-based methods, and do not leverage neural networks. Additionally, these methods
in their canonical form cannot be parallelized, requiring serial simulation evaluations across each
iteration.

For NPE-based approaches, we evaluate our proposed method ASNPE alongside SNPE-C (or
APT)[17] and Approximate Bayesian Computation (ABC)[41, 6]. ABC serves primarily as a less

9

sophisticated baseline that reflects early approaches to likelihood-free inference, and it typically faces
difficulty scaling and is far less flexible compared to its NPE counterparts.

For all of the eight scenario priors p(d; d̂), each calibration method is ran for a maximum of 128
SUMO simulations, seeking to recover xo. The root mean squared normalized error (RMSNE) is
recorded for each method’s simulation horizon, as used in [39] (see also Appendix A.3). To account
for the stochasticity across evaluations, we report RMSNE averaged of five repeated simulation runs.
See Table 1 for reported values for each method across each of the eight synthetic scenarios, as well
as paired prior plots in Figure 3.

4.3 Analyzing calibration performance

ASNPE outperforms all other methods across most explored settings: as can be seen in Table 1,
our method outperforms both the well-tuned PC-SPSA method commonly employed by the urban
mobility community, as well as popular simulation-based inference (SBI) methods like SNPE, across
almost all of the explored settings. In general, PC-SPSA tends to quickly converge but demonstrates a
limited ability to further improve beyond the first 10-20 encountered simulations. Both SBI methods
tend to make steady improvements throughout the entire trial, however, albeit often doing so more
slowly in the first 20-40 simulations than PC-SPSA. This is primarily due to the limited feedback
SNPE/ASNPE receive comparatively, only incorporating new simulation data in batches (in this case,
every 32 simulation draws).

Additionally, ASNPE reliably reaches better RMSNE scores than SNPE with fewer simulations, as
well as Approximate Bayesian Computation (MC-ABC). This can be seen as early as the first NDE
update, before which the two methods encounter the same (seeded) simulation samples. This also
empirically supports our central methodological contribution, i.e., optimization over informative
simulation parameters can more efficiently improve the accuracy of the inferred posterior estimate.

ASNPE is outperformed in some cases: ASNPE is outperformed by PC-SPSA in two of our
explored settings (under Prior I, Hours 8:00-9:00). While we wouldn’t expect a single method to be
the best choice for all variations in such a high-dimensional setting, this particular scenario serves as
an opportunity to better understand possible failure modes of the proposed method.

As alluded to above, ASNPE updates its internal model only after a batch of simulation samples is
generated, whereas PC-SPSA adjusts its parameters after each simulation run. While generating
samples in batches can be beneficial (and is often necessary) for early stability of ASNPE, it can
mean informative simulation data is incorporated later in the trial. This explains the occasional gap
that opens up between SBI methods and PC-SPSA in the first 30 simulations, only after which is
ASNPE/SNPE able to incorporate the samples to improve its posterior estimate. Note, however, that
most of the early advantage PC-SPSA may have over ASNPE is dwarfed by the ability to obtain its
simulation draws in parallel, whereas PC-SPSA must run simulations serially. This allows for larger,
more stable improvements in less time, which can be seen in subplot (b) of Figure 3.

4.4 Performance on common SBI benchmarks

We additionally report results on several common SBI benchmark environments, and compare against
the performance of (non-active) SNPE. Numerical results can be found in Table 2, along with plots
and more details in Appendix B. These additional results demonstrate the wider applicability of our
method beyond the travel demand calibration task.

5 Conclusion

In this paper, we introduced Active Sequential Neural Posterior Estimation (ASNPE), an SNPE variant
that actively incorporates informative simulation parameters θ to drive down epistemic uncertainty in
the neural density estimator and improve sample efficiency for high-quality estimates. We evaluate
this method on a complex, high-dimensional problem in urban demand calibration, and show it
reliably outperforms available benchmark methods across a variety of scenarios with variable bias
and noise. We additionally provide results on several common SBI benchmark environments, and find
ASNPE is capable of outperforming state-of-the-art SNPE methods on key posterior approximation
metrics.

10

6 Acknowledgements

This work was supported in part by the National Science Foundation under awards #2226087 and
#1837131.

References
[1] C. Antoniou, C. L. Azevedo, L. Lu, F. Pereira, and M. Ben-Akiva. W–spsa in practice:

Approximation of weight matrices and calibration of traffic simulation models. Transportation
Research Procedia, 7:233–253, 2015.

[2] C. Antoniou, J. Barceló, M. Breen, M. Bullejos, J. Casas, E. Cipriani, B. Ciuffo, T. Djukic,
S. Hoogendoorn, V. Marzano, et al. Towards a generic benchmarking platform for origin–
destination flows estimation/updating algorithms: Design, demonstration and validation. Trans-
portation Research Part C: Emerging Technologies, 66:79–98, 2016.

[3] N. Arora, Y.-f. Chen, S. Ganapathy, Y. Li, Z. Lin, C. Osorio, A. Tomkins, and I. Tsogsuren.
An efficient simulation-based travel demand calibration algorithm for large-scale metropolitan
traffic models. arXiv preprint arXiv:2109.11392, 2021.

[4] A. Aushev, H. Pesonen, M. Heinonen, J. Corander, and S. Kaski. Likelihood-free inference
with deep gaussian processes, 2021.

[5] R. Balakrishna, M. Ben-Akiva, and H. N. Koutsopoulos. Offline calibration of dynamic traffic
assignment: simultaneous demand-and-supply estimation. Transportation Research Record,
2003(1):50–58, 2007.

[6] M. A. Beaumont, W. Zhang, and D. J. Balding. Approximate bayesian computation in population
genetics. Genetics, 162(4):2025–2035, 2002.

[7] M. E. Ben-Akiva, S. Gao, Z. Wei, and Y. Wen. A dynamic traffic assignment model for highly
congested urban networks. Transportation research part C: emerging technologies, 24:62–82,
2012.

[8] C. M. Bishop. Mixture density networks. Technical report, 1994.

[9] G. Cantelmo, M. Qurashi, A. A. Prakash, C. Antoniou, and F. Viti. Incorporating trip chaining
within online demand estimation. Transportation Research Procedia, 38:462–481, 2019.

[10] E. Cipriani, M. Florian, M. Mahut, and M. Nigro. A gradient approximation approach for
adjusting temporal origin–destination matrices. Transportation Research Part C: Emerging
Technologies, 19(2):270–282, 2011.

[11] K. Cranmer, J. Brehmer, and G. Louppe. The frontier of simulation-based inference. Proceedings
of the National Academy of Sciences, 117(48):30055–30062, 2020.

[12] L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using real nvp, 2017.

[13] C. Durkan, I. Murray, and G. Papamakarios. On contrastive learning for likelihood-free
inference, 2020.

[14] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In M. F. Balcan and K. Q. Weinberger, editors, Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1050–1059, New York, New York, USA, 20–22 Jun 2016. PMLR.

[15] Y. Gal, R. Islam, and Z. Ghahramani. Deep bayesian active learning with image data, 2017.

[16] M. Germain, K. Gregor, I. Murray, and H. Larochelle. Made: Masked autoencoder for distribu-
tion estimation, 2015.

[17] D. S. Greenberg, M. Nonnenmacher, and J. H. Macke. Automatic posterior transformation for
likelihood-free inference, 2019.

11

[18] M. U. Gutmann and J. Corander. Bayesian optimization for likelihood-free inference of
simulator-based statistical models, 2015.

[19] J. Hermans, V. Begy, and G. Louppe. Likelihood-free mcmc with amortized approximate ratio
estimators, 2020.

[20] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Predictive entropy search for
efficient global optimization of black-box functions, 2014.

[21] L. V. Jospin, W. Buntine, F. Boussaid, H. Laga, and M. Bennamoun. Hands-on bayesian neural
networks – a tutorial for deep learning users, 2020.

[22] M. Järvenpää, M. U. Gutmann, A. Pleska, A. Vehtari, and P. Marttinen. Efficient acquisition
rules for model-based approximate bayesian computation. Bayesian Analysis, 14(2), June 2019.

[23] K. Kandasamy, J. Schneider, and B. Poczos. Bayesian active learning for posterior estimation.
In Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI ’15),
pages 3605 – 3611, July 2015.

[24] H. Kim, S. Baek, and Y. Lim. Origin-destination matrices estimated with a genetic algorithm
from link traffic counts. Transportation Research Record, 1771(1):156–163, 2001.

[25] J.-B. Lee and K. Ozbay. New calibration methodology for microscopic traffic simulation
using enhanced simultaneous perturbation stochastic approximation approach. Transportation
Research Record, 2124(1):233–240, 2009.

[26] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd, R. Hilbrich, L. Lücken,
J. Rummel, P. Wagner, and E. Wiessner. Microscopic traffic simulation using sumo. In 2018
21st International Conference on Intelligent Transportation Systems (ITSC), pages 2575–2582,
2018.

[27] L. Lu, Y. Xu, C. Antoniou, and M. Ben-Akiva. An enhanced spsa algorithm for the calibration
of dynamic traffic assignment models. Transportation Research Part C: Emerging Technologies,
51:149–166, 2015.

[28] J.-M. Lueckmann, J. Boelts, D. Greenberg, P. Goncalves, and J. Macke. Benchmarking
simulation-based inference. In A. Banerjee and K. Fukumizu, editors, Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of
Machine Learning Research, pages 343–351. PMLR, 13–15 Apr 2021.

[29] J.-M. Lueckmann, P. J. Goncalves, G. Bassetto, K. Öcal, M. Nonnenmacher, and J. H. Macke.
Flexible statistical inference for mechanistic models of neural dynamics, 2017.

[30] E. Meeds and M. Welling. Gps-abc: Gaussian process surrogate approximate bayesian compu-
tation, 2014.

[31] C. Osorio and M. Bierlaire. A simulation-based optimization framework for urban transportation
problems. Operations Research, 61(6):1333–1345, 2013.

[32] C. Osorio and K. Nanduri. Urban transportation emissions mitigation: Coupling high-resolution
vehicular emissions and traffic models for traffic signal optimization. Transportation Research
Part B: Methodological, 81:520–538, 2015.

[33] G. Papamakarios and I. Murray. Fast ε-free inference of simulation models with bayesian
conditional density estimation. Advances in neural information processing systems, 29, 2016.

[34] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan. Nor-
malizing flows for probabilistic modeling and inference, 2021.

[35] G. Papamakarios, T. Pavlakou, and I. Murray. Masked autoregressive flow for density estimation,
2018.

[36] G. Papamakarios, D. C. Sterratt, and I. Murray. Sequential neural likelihood: Fast likelihood-free
inference with autoregressive flows, 2019.

12

[37] M. Qurashi, Q.-L. Lu, G. Cantelmo, and C. Antoniou. Dynamic demand estimation on large
scale networks using principal component analysis: The case of non-existent or irrelevant
historical estimates. Transportation Research Part C: Emerging Technologies, 136:103504, 03
2022.

[38] M. Qurashi, Q.-L. Lu, G. Cantelmo, and C. Antoniou. Dynamic demand estimation on large
scale networks using principal component analysis: The case of non-existent or irrelevant
historical estimates. Transportation Research Part C: Emerging Technologies, 136:103504,
2022.

[39] M. Qurashi, T. Ma, E. Chaniotakis, and C. Antoniou. Pc–spsa: employing dimensionality
reduction to limit spsa search noise in dta model calibration. IEEE Transactions on Intelligent
Transportation Systems, 21(4):1635–1645, 2019.

[40] D. J. Rezende and S. Mohamed. Variational inference with normalizing flows, 2016.

[41] D. B. Rubin. Bayesianly justifiable and relevant frequency calculations for the applied statisti-
cian. The Annals of Statistics, 12(4):1151–1172, 1984.

[42] J. C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332–341, 1992.

[43] A. Stathopoulos and T. Tsekeris. Hybrid meta-heuristic algorithm for the simultaneous optimiza-
tion of the o–d trip matrix estimation. Computer-Aided Civil and Infrastructure Engineering,
19(6):421–435, 2004.

[44] A. Tejero-Cantero, J. Boelts, M. Deistler, J.-M. Lueckmann, C. Durkan, P. J. Gonçalves, D. S.
Greenberg, and J. H. Macke. sbi: A toolkit for simulation-based inference. Journal of Open
Source Software, 5(52):2505, 2020.

[45] A. Tympakianaki, H. N. Koutsopoulos, and E. Jenelius. c-spsa: Cluster-wise simultaneous per-
turbation stochastic approximation algorithm and its application to dynamic origin–destination
matrix estimation. Transportation Research Part C: Emerging Technologies, 55:231–245, 2015.

[46] P. J. Van Laarhoven, E. H. Aarts, P. J. van Laarhoven, and E. H. Aarts. Simulated annealing.
Springer, 1987.

[47] V. Vaze, C. Antoniou, Y. Wen, and M. Ben-Akiva. Calibration of dynamic traffic assignment
models with point-to-point traffic surveillance. Transportation Research Record, 2090(1):1–9,
2009.

[48] T. Zhou, C. Osorio, and E. Fields. A data-driven discrete simulation-based optimization
algorithm for large-scale two-way car-sharing network design. Massachusetts Inst. Technol.,
Boston, MA, USA, Tech. Rep, 2017.

13

A Appendix

A.1 Connection between mutual information and HDKL

Expanding the definition of mutual information for I[ϕ; θ|xo, D], we have the following (note that xo

and D are fixed):

I[ϕ; θ|xo, D] =

∫
Φ

∫
Θ

p(θ, ϕ|xo, D) log

(
p(θ, ϕ|xo, D)

p(θ|xo, D)p(ϕ|xo, D)

)
dθdϕ

=

∫
Φ

∫
Θ

p(θ|ϕ, xo, D)p(ϕ|xo, D) log

(
p(θ|xo, ϕ)p(ϕ|xo, D)

p(θ|xo, D)p(ϕ|xo, D)

)
dθdϕ

=

∫
Φ

p(ϕ|xo, D)

[∫
Θ

p(θ|xo, ϕ) log

(
p(θ|xo, ϕ)

p(θ|xo, D)

)
dθ

]
dϕ

=

∫
Φ

p(ϕ|xo, D) [DKL (p(θ|xo, ϕ)||p(θ|xo, D))] dϕ

= Ep(ϕ|xo,D) [DKL (p(θ|xo, ϕ)||p(θ|xo, D))]

This aligns with the expected divergence term introduced in Eq. 2 when we let the measure D = DKL.
The connection to mutual information helps to position our motivation for the acquisition function
ultimately introduced in Eq. 4. That is, by seeking to drive down disagreement between “marginal”
and “component” posteriors p(θ|x,D) and p(θ|x, ϕ), respectively, we are attempting to realize the
information we expect θ to tell us about our NDE parameters ϕ, thereby minimizing the remaining
mutual information between the two.

A.2 Regarding the functional form of the acquisition function

The family of functions α(θ, p(ϕ|D)) = p̃(θ)(Eϕ|D[. . .])λ under parameter λ constitutes valid
choices for the acquisition function for any λ, facilitating different levels of emphasis on uncertainties
at values of θ relative to their likelihoods under p̃. While several values of λ may be justifiable, the
choice to use λ = 1, implicit in Eq. 4, intuitively captures a desirable balance in the relationship
between uncertainties and likelihoods of θ.

In particular, under level sets α(·, p(ϕ|D)) = z (where p(ϕ|D) is held constant), as likelihoods
p̃(θ) decrease by a factor of n, the average deviation between p(θ|x,D) and p(θ|x, ϕ) need only
increase by a factor of

√
n, i.e., changes in uncertainty are sub-linear in the likelihood ratio. With the

introduction of variable λ, this factor generalizes to n1/(2λ), and may require additional measures
to balance the resulting sensitivity between the terms. We find that λ = 1 is a natural choice that
reasonably captures the desire to explore potentially unlikely parameters with high uncertainties
without ignoring them (e.g., λ → 0) or relying too heavily on them (e.g., λ → ∞).

A.3 Additional Definitions

The root mean squared normalized error (RMSNE) for a simulated output x̂ with respect to an
observational reference xo, as used in [39], is defined as

RMSNE =

√
n
∑n

i=1(x̂
(i) − x

(i)
o)2∑n

i=1 x
(i)
o

,

where there n is the number of observed segment flows, and both xo and x̂ are n-dimensional vectors.

B Additional SBI benchmarks

In order to appeal to the general utility of our proposed method, we provide additional experimental
results between ASNPE and SNPE-C [17] on three common SBI benchmark tasks: SLCP distractors,
Bernoulli GLM, and Gaussian Mixture. Each of these settings corresponds to a reproducible task

14

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

0.765

0.770

0.775

0.780

0.785

0.790

0.795

C2
ST

Metric: C2ST
SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

0.15

0.20

0.25

0.30

0.35

M
M

D

Metric: MMD
SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Po
st

er
io

r M
ed

ia
n

Di
st

an
ce

Metric: Posterior Median Distance
SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Po
st

er
io

r M
ea

n
Er

ro
r

Metric: Posterior Mean Error
SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

Figure 4: Results on various metrics between ASNPE and SNPE-C across four rounds of sequential
inference for the Gaussian mixture task.

environment from [28], and the corresponding implementation in the sbibm Python package is used
to run our experiments.

We additionally evaluated our method on these tasks using metrics beyond RMSNE, the primary
metric used for the travel demand calibration case study. These include classifier 2-sample tests
(C2ST), maximum mean discrepancy (MMD), the posterior median distance (median L2 norm
between simulated samples θi ∼ p(θ|xo) → xi ∼ p(x|θi) and the observation xo), and the posterior
mean error (normalized absolute error between the true posterior mean and the approximate posterior
mean). Full details for each of these tasks and metrics can be found in [28].

We evaluate both methods over medium-size sample horizons: 4 rounds with 256 samples per round,
for a total of 1024 simulation samples. Note that this is eight times larger than the sample sizes
collected for the trials on the travel demand task. For reference, 256 samples in our (non-parallelized)
SUMO environment takes ~6 hours, whereas 256 samples from the SLCP simulator takes ~10 seconds
on our hardware.

Trials were repeated five times for each method, and the average score and standard deviation for
each metric over these trials are shown in Figures 4, 5, 6. Note that smaller values are better for each
metric (C2ST ranges between 0.5− 1.0). While these simulation horizons are relatively small, we
find that, by the final round, ASNPE tends to outperform SNPE across most settings and on most
metrics. In particular, ASNPE outperforms SNPE on C2ST and MMD across all settings, along with
the distance-based metrics on all but the median distance for Bernoulli GLM and mean error for
SLCP Distractors.

While SNPE-C is a state-of-the-art benchmark method, comparing against it also constitutes an
ablation test for ASNPE’s acquisition component. Although parameter sets are chosen differently
and the underlying NDE varies (minimally to accommodate the need to approximate p(ϕ|D)) across
methods, the sequential inference procedures are otherwise identical. These results help to isolate
and identify the contribution of the active learning scheme across a wider range of tasks and metrics
for the overarching goal of producing accurate posterior approximations holistically (i.e., not just
well-calibrated point estimates).

15

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

0.75

0.80

0.85

0.90

0.95

C2
ST

Metric: C2ST
SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
M

D

Metric: MMD
SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

11

12

13

14

15

16

17

18

Po
st

er
io

r M
ed

ia
n

Di
st

an
ce

Metric: Posterior Median Distance
SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

0.00

0.05

0.10

0.15

0.20

Po
st

er
io

r M
ea

n
Er

ro
r

Metric: Posterior Mean Error

SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

Figure 5: Results on various metrics between ASNPE and SNPE-C across four rounds of sequential
inference for the Bernoulli GLM task.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

0.982

0.984

0.986

0.988

0.990

C2
ST

Metric: C2ST

SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

M
M

D

Metric: MMD
SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

15.5

16.0

16.5

17.0

17.5

Po
st

er
io

r M
ed

ia
n

Di
st

an
ce

Metric: Posterior Median Distance
SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Round (r)

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Po
st

er
io

r M
ea

n
Er

ro
r

Metric: Posterior Mean Error

SNPE-C mean
SNPE-C 95% CI
ASNPE mean
ASNPE 95% CI

Figure 6: Results on various metrics between ASNPE and SNPE-C across four rounds of sequential
inference for the SLCP Distractors task.

16

C Code reproducibility

In the spirit of reproducibility and in the hopes our code may be of use for follow-up works, we
provide the following Python packages:

1. seqinf package: this package includes a full implementation of ASNPE and convenient
abstractions around the popular sbi[44] and sbibm[28] Python packages for general se-
quential inference pipelines. This package also includes an implementation of the masked
autoregressive flow (MAF) with consistent MC-dropout that was used as an NDE for all
experiments. Available at https://github.com/samgriesemer/seqinf.

2. sumo_cal package: short for SUMO calibration, this package includes many general
programmatic utilities for calibrating traffic models using results from the SUMO traffic
simulator[26] with a high-level Pythonic interface, including collecting results from several
runs, running in multi-threaded contexts, employing standardized configuration, etc. See
Figure 11 for a snapshot of the SUMO interaction scheme. Available at https://github.
com/samgriesemer/sumo_cal.

D Additional demand calibration experimentation details

D.1 Descriptions of SOTA Calibration Methods

• SPSA: SPSA (Simultaneous Perturbation Stochastic approximation) is an optimization
algorithm for systems with multiple unknown parameters, which can be used for large-scale
models and various applications. It can find global minima, like simulated annealing [46].
SPSA works by approximating the gradient using only two measurements of the objective
function with gradients, making it scalable for high-dimensional problems [42].

• PC-SPSA: PC-SPSA is proposed to address fundamental scalability issues with SPSA. This
is because SPSA searches for the optimal solution in a high-dimensional space without
considering the structural relationships among the variables. PC–SPSA combines SPSA
with principal components analysis (PCA) to reduce the problem dimensionality and limit
the search noise. PCA captures the structural patterns from historical estimates and projects
them onto a lower-dimensional space, where SPSA can perform more efficiently and
effectively [39].

Specifically, we implement the SPSA and PC-SPSA algorithms according to [38] and associated
open-source implementations4. In addition, we employ the so-called Method-6, titled "Spatial,
Temporal, and Day-to-Day Correlation," as detailed in [38]. This provides a means of systematically
generating needed historical data for PCA, and according to the original work constitutes the most
robust and optimal solution among the proposed variants.

D.1.1 Hyperparameter details & computing resources

Here we include a brief discussion on the implications of the hyperparameters found in ASNPE,
as well as the settings used in our experiments. Keeping the total number of simulation samples
constant,

1. The number of rounds R dictates how many times we update the proposal distribution over
the course of the simulation horizon. Increasing this value can enable quicker feedback to
the NDE, requiring fewer simulation samples before re-training the model. When the prior
is well-calibrated and simulation samples are representative of the observational data, this
can have a positive compounding effect that boosts the rate of convergence to the desired
posterior. However, for larger R the resulting batch sizes are smaller and the NDE receives
noisier updates, which can have the opposite effect and hurt early performance when the
prior is poor.

2. The number of selected samples B per round is directly determined by R when the total
number of simulations is held constant, and thus the above effects apply here.

4https://github.com/LastStriker11/calibration-modeling

17

https://github.com/samgriesemer/seqinf
https://github.com/samgriesemer/sumo_cal
https://github.com/samgriesemer/sumo_cal
https://github.com/LastStriker11/calibration-modeling

0 1000m

(a)
0 1000m

(b)

Figure 7: Depiction of traffic networks in the SUMO simulator. (a) depicts a relatively small synthetic
network for reference, with approximately 500 configurable OD pairs. (b) shows the larger Munich
network used in our reported experimental settings, with an order of magnitude more configurable
OD pairs than the synthetic network.

3. The number of proposal samples N per round governs the size of the parameter candidate
pool over which the acquisition function is evaluated. Increasing this value allows us to
consider more potentially relevant candidates under p̃(θ), and can thus increase the quality
of the resulting B-sized batch. Given the acquisition function can be evaluated over this
pool very efficiently (i.e., as a batched inference step through the NDE model), one can
practically scale this up arbitrarily to increase the sample coverage over the proposal support
(but with decreasing marginal utility).

The following are additional hyperparameter details for the evaluated methods:

1. In the SNPE loop: total number of rounds R (4 in reported experiments), round-wise sample
size N (between 256-512), round-wise selection size B (32 in reported experiments).

2. Neural Density Estimator (NDE) model: our model architecture (used for both SNPE
and ASNPE) is a masked autoregressive flow with 5 transform layers, each with masked
feedforward blocks containing 50 hidden units, and trained with a (consistent) MC-dropout
setting of 0.25. When collecting distributional estimates as described in Eq 4, we used 100
weight samples ϕ ∼ p(ϕ|D) (as generally recommended in [21]).

3. PC-SPSA: this method uses PCA to optimize OD estimates in a lower-dimensional subspace
of the 5329-dimensional parameter space. The number of the principal components is chosen
such that 95% of the variance is recovered in the provided historical OD estimate (which is
further dictated by the choice of prior distribution). The number of PCs used by this method
across the many explored settings presented in Section 4.1 varies from 99-117.

All experimentation code is written in Python 3.11. To run experiments, we employed our own
hardward locally, which is an linux-based machine running an Intel(R) Core(TM) i9-10900X CPU @
3.70GHz 64GB memory, and NVIDIA GeForce RTX 2080 Ti.

E Additional demand calibration plots

Figures 8, 9, and 10 are plots of calibration horizons for the remaining settings of the demand
calibration task not shown in the main paper (which highlighted the first scenario, Prior I, Hours
5:00-6:00, Congestion level A). The associated RMSNE scores can all be found in Table 1 in the
main paper body.

18

(a)

(b)

Figure 8: Plots of the (averaged) calibration horizons for each of the evaluated methods on the Prior
II, Hours 5:00-6:00, Congestion level B scenario.

(a)

(b)

Figure 9: Plots of the (averaged) calibration horizons for each of the evaluated methods on the Prior
I, Hours 8:00-9:00, Congestion level A scenario.

19

(a)

(b)

Figure 10: Plots of the (averaged) calibration horizons for each of the evaluated methods on the Prior
II, Hours 8:00-9:00, Congestion level B scenario.

F Additional distribution plots and schematics for demand calibration

F.1 Simulation schematic

Figure 11 provides a more detailed look at the programmatic interaction with the SUMO simulator.

F.2 Additional posterior plots

Figure 12 and figure 13 provide additional plots of the posterior approximation for the primary travel
calibration task.

20

Figure 11: This diagram provides a more detailed look at some of the internal details behind the
preparation of input to and the transformation of output from the simulator. An input OD vector
θ, drawn from some proposal distribution in the outer method context, 1) “enters” the diagram at
the left, 2) is transformed into a suitable representation for SUMO, 3) combined with additional
configuration and network files, and 4) run through the SUMO simulator, after which the output is
parsed to produce the resulting segment flows x under demand θ.

21

Figure 12: Pairwise density plots of a 20-dimensional slice of the final approximate posterior
p̃(R)(θ) = qϕ(θ|xo) produced by ASNPE on the Prior I, Hours 5:00-6:00, Congestion level A
scenario.

22

Figure 13: Pairwise density plots of a 20-dimensional slice of the “empirical likelihood” under the
final ASNPE posterior on the Prior I, Hours 5:00-6:00, Congestion level A scenario. Figure 12
shows the approximate posterior qϕ(θ|xo), whereas here we draw samples θi ∼ qϕ(θ|xo) and feed
them back through the simulator {θi}1:N → p(x|θ) to visualize the resulting data space. The target
observational data point xo is shown on top these pair plots as a red “plus”, which provides a visual
anchor for how well calibrated the posterior is around the observational data point of interest.

23

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction mention the proposed method and its demon-
strated qualities, and focus almost exclusively on related methods in both the general
simulation-based inference and demand calibration spaces.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The properties and limitations of the proposed method are discussed in
Section 3, and are broken down in further detail when analyzing empirical behavior on
reported results in Section 4.3.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

24

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The Background and Methodology sections provide sound context for the
methodological contributions, and theoretical details state relevant assumptions, proofs, or
build trivially on cited results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental setup is discussed extensively in Section 4.1, and relevant
hyperparameters and used compute resources are detailed in Section D.1.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

25

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide links to the two public code repositories (Python packages) that
were written to implement the introduced method and evaluate it on several tasks. See
Section C for full details.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setup is discussed extensively in Section 4.1, and relevant
hyperparameters and used compute resources are detailed in Section D.1.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars in reported plots and tabular data in Section 4 are provided and
explicitly mention the method of calculation.

Guidelines:

• The answer NA means that the paper does not include experiments.

26

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Experimental setup is discussed extensively in Section 4.1, and relevant
hyperparameters and used compute resources are detailed in Section D.1.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The Code of Ethics has been reviewed and our paper conforms to all guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: While not a large focus of our work, broader impacts and uses for practitioners
are discussed briefly in the Introduction and Background sections.

27

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The introduced method does not pose a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Simulation models, network data, and employed baseline methods all cite their
associated original works.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

28

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

29

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Background
	Neural posterior estimation
	Bayesian active learning
	Origin-destination calibration

	Methodology
	Active learning for SNPE
	Characterizing posterior uncertainty
	Acquisition of informative parameters
	Integration with APT
	Bayesian origin-destination calibration

	Experimental results
	Experimental setup
	Comparison to SOTA Calibration Methods
	Analyzing calibration performance
	Performance on common SBI benchmarks

	Conclusion
	Acknowledgements
	Appendix
	Connection between mutual information and HDKL
	Regarding the functional form of the acquisition function
	Additional Definitions

	Additional SBI benchmarks
	Code reproducibility
	Additional demand calibration experimentation details
	Descriptions of SOTA Calibration Methods
	Hyperparameter details & computing resources

	Additional demand calibration plots
	Additional distribution plots and schematics for demand calibration
	Simulation schematic
	Additional posterior plots

