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ABSTRACT

Representation learning is increasingly employed to generate representations that
are predictive across multiple downstream tasks. The development of represen-
tation learning algorithms that provide strong fairness guarantees is thus im-
portant because it can prevent unfairness towards disadvantaged groups for all
downstream prediction tasks. In this paper, we formally define the problem of
learning representations that are fair with high confidence. We then introduce
the Fair Representation learning with high-confidence Guarantees (FRG) frame-
work, which provides high-confidence guarantees for limiting unfairness across
all downstream models and tasks, with user-defined upper bounds. After proving
that FRG ensures fairness for all downstream models and tasks with high prob-
ability, we present empirical evaluations that demonstrate FRG’s effectiveness at
upper bounding unfairness for multiple downstream models and tasks.

1 INTRODUCTION

In every prediction task, machine learning (ML) algorithms assume two distinct roles: the data pro-
ducer and the data consumer (Zemel et al., 2013; Dwork et al., 2012; Madras et al., 2018). The data
consumer’s role is to make accurate predictions using the data provided by the data producer. While
the data producer may distribute raw data, it is also common for it to generate new representations
for the input data (referred to as representation learning) that are predictive.

When multiple data consumers’ prediction tasks involve inputs of the same type, such as natural
language text or images, the data producer can generate general representations that are predictive
to multiple subsequent tasks. With the increasing prominence of deep learning methods for tasks
involving language, audio, and visual data, the adoption of these general representations has become
prevalent in both academic and industrial settings. Examples of this trend include the Variational
Autoencoder (VAE) (Kingma & Welling, 2013) and recent language models such as BERT (Devlin
et al., 2019) and GPT-4 (OpenAI, 2023).

While representation learning can benefit various downstream predictions, it is also susceptible to
the risk of producing unintended or undesirable behaviors in the downstream tasks. More precisely,
the representations can be used to generate predictions that display unfairness or bias against certain
disadvantaged groups. This is especially problematic in critical domains, such as loan underwrit-
ing (Byrnes, 2016), hiring (Miller, 2015) and criminal sentencing (Angwin et al., 2016), where the
consequences of algorithmic bias may severely impact individuals. In these cases, fairness may
mean that a person’s sensitive attributes, such as race and gender, should not be pertinent to the
model’s predictions. Given these risks, researchers propose that fairness should be a concern not
only for the data consumer that uses the representations, but also for the data producer that generates
them (Zemel et al., 2013; Madras et al., 2018). A data producer that ensures fairness in the data
representation ensures fairness in all downstream tasks. As a result, the data producer can release
the data representation to any data consumer without concern.

To ensure the fairness of representations, simply removing sensitive attributes from the dataset is in-
sufficient as sensitive information can still inadvertently leak through non-sensitive attributes Castel-
novo et al. (2022). Numerous studies have proposed methods for learning fair representations, col-
lectively referred to as fair representation learning (Zemel et al., 2013). These methods are designed
to reduce the presence of sensitive information in the representations, ensuring fairness across all
downstream models and tasks. In Section 8 we present a detailed discussion of related work such
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as the works of Louizos et al. (2016); Madras et al. (2018); Moyer et al. (2018); Song et al. (2019);
Gupta et al. (2021); Balunović et al. (2022); Kim et al. (2022) and Jovanović et al. (2023).

While much of the previous work has demonstrated effectiveness in promoting fairness in specific
downstream tasks, the majority of these approaches provide little to no assurance that the unfair-
ness of all downstream models will be consistently controlled or bounded by a user-defined error
threshold with high probability. In many areas of supervised learning, providing high-confidence
guarantees is considered essential for ensuring fairness, privacy, and safety of the learning algorithm
(Li et al., 2022; Abadi et al., 2016; Thomas et al., 2019). This need for high-confidence guaran-
tees becomes even more critical in the context of learning fair representation as the absence of such
guarantees can lead to undesired behaviors across multiple downstream applications.

Our main contributions in this paper are as follows. We provide formal definition of learning rep-
resentations that are fair with high confidence in Section 3. This definition ensures that unfair-
ness, measured using demographic parity, is consistently upper-bounded by a user-defined threshold
across all downstream predictions with high probability. Under this definition, we introduce the
Fair Representation learning with high-confidence Guarantees (FRG) framework in Section 4. Af-
ter proving that FRG ensures fairness for all downstream models and tasks with high probability in
Section 5, we present empirical evaluations that demonstrate FRG’s effectiveness at upper bounding
unfairness for multiple downstream models and tasks in Section 7.

2 BACKGROUND

In this section, we introduce the notation used for representation learning, define a measure of unfair-
ness for classification models, and review a useful property relevant to fair representation learning.

2.1 NOTATION FOR REPRESENTATION LEARNING

Let X be a random variable called the feature vector, S be a random variable called the sensitive
attribute, and D := {(Xi, Si)}ni=1 be the dataset, where X1 . . . Xn are i.i.d. random variables with
the same distribution as X , S1 . . . Sn are i.i.d. random variables with the same distribution as S, and
each (Xi, Si) has the same joint distribution as (X,S). We define D to be the set of all possible D.
Let ϕ ∈ Φ be the representation model parameters and qϕ be the representation model parameterized
by ϕ. Then, we define Z to be the representation for (X,S) where Z ∼ qϕ(·|X,S) and Z ∈ Rl.

We assume that the learned representation will be used for subsequent supervised learning tasks,
which we call downstream tasks. We denote the label for such a downstream task as the random
variable Y . The objective in a downstream task is to predict Y given (X,S). Instead of using
(X,S) directly as input, we use Z as input to a downstream model τ : Rl → R. Let Ŷ := τ(Z)

denote the prediction of Y produced by model τ . We call Ŷ the downstream prediction. Notice that
different downstream tasks correspond to different joint distributions of (X,S, Y ), but we assume
all downstream tasks share the same joint distribution of (X,S). Thus, the same representation Z
can be used for multiple downstream tasks.

2.2 A MEASURE OF UNFAIRNESS FOR DOWNSTREAM MODELS

We will define a fair representation model to be one that ensures fairness for all possible downstream
tasks and all possible downstream models. To achieve this, we must first establish a definition of
fairness for downstream models and tasks. In this work, we focus on classification tasks and a
widely used group fairness measure based on demographic parity (Dwork et al., 2012). Let Y and
S be binary, leading to the following definition.

Definition 2.1 (A measure of how unfair a downstream model τ is under demographic parity)
Let ∆DP(τ, ϕ) denote a measure of how unfair downstream predictions Ŷ are when using represen-
tation parameters ϕ and downstream model τ . Specifically,

∆DP(τ, ϕ) :=
∣∣∣Pr(Ŷ = 1|S = 1)− Pr(Ŷ = 1|S = 0)

∣∣∣. (1)

When S is non-binary, ∆DP(τ, ϕ) is defined as the maximum absolute difference between the con-
ditional probabilities, Pr(Ŷ = 1|S), with any pair of values of S (Bird et al., 2020).
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2.3 MUTUAL INFORMATION BOUNDS DEMOGRAPHIC PARITY

The demographic-parity-based measure is specified for downstream models. However, we want our
representation model to guarantee fairness for every possible downstream model and downstream
task. Gupta et al. (2021) derived a bound for ∆DP(τ, ϕ) that removes the dependency on the down-
stream model τ . Specifically, Gupta et al. (2021) showed that the mutual information between the
representation and the sensitive attributes, denoted by I(Z;S), can be used to limit the demographic
parity of downstream models.

Property 2.2 (Relation of mutual information to ∆DP(τ, ϕ)) For all downstream models τ in all
downstream tasks,

I(Z;S) ≥ ψ(∆DP(τ, ϕ)),
where ψ is a strictly increasing non-negative convex function derived by Gupta et al. (2021), and
the details of which are in Appendix A.2. Proof. See the work of Gupta et al. (2021).

Notice that Property 2.2 does not provide a direct upper bound on ∆DP(τ, ϕ). Instead, it provides
an upper bound on a strictly increasing non-negative convex function of ∆DP(τ, ϕ). We use this
property later to guarantee fairness for representation models with high confidence (see Sec. 4).

3 PROBLEM STATEMENT

In this section, we define what it means for a representation model to be fair. We then formulate the
problem of learning representation models with high-confidence fairness guarantees.

3.1 THE DEFINITION OF FAIR REPRESENTATION MODELS

A fair representation model should ensure with high confidence that the representations it generates
will not lead to unfairness for downstream tasks. Specifically, a representation model is fair if and
only if it results in fair predictions (as defined in Def. 1) for every possible downstream model and
downstream task. That is, for all downstream tasks and all τ , ∆DP(τ, ϕ) must be upper-bounded by
a small constant, ϵ. Formally, we define an “ϵ-fair” representation model as follows.

Definition 3.1 (“ϵ-fair” representation model) Representation model qϕ is “ϵ-fair” with parame-
ter ϵ ∈ [0, 1] if and only if ∆DP(τ, ϕ) ≤ ϵ, for every downstream model τ and downstream task.

3.2 PROBLEM FORMULATION

We define a representation learning algorithm a : D → Φ to be an algorithm that takes as input a
data set and produces as output representation model parameters. In this paper, we aim to provide
a representation learning algorithm such that any representation model it learns is guaranteed to be
ϵ-fair under Def. 3.1, with high confidence. Such an algorithm has the following formal definition.

Definition 3.2 (A representation learning algorithm with high-confidence fairness guarantees)
Given ϵ ∈ [0, 1], δ ∈ (0, 1), and a dataset D, a representation learning algorithm a is said to
provide a 1− δ confidence “ϵ-fairness” guarantee if and only if

Pr (gϵ(a(D)) ≤ 0) ≥ 1− δ, (2)
where gϵ(ϕ) := supτ ∆DP(τ, ϕ)− ϵ.

Observe that qϕ is an ϵ-fair representation model if and only if gϵ(ϕ) ≤ 0 (Def. 3.1). Therefore, any
algorithm under Def. 3.2 guarantees that any representation model with parameters learned by this
algorithm has at least 1− δ probability to be an ϵ-fair representation model.

According to Thomas et al. (2019), such algorithms can be categorized as Seldonian algorithms.

Special case: unachievable ϵ-fair representation models. In some scenarios it may not be possible
for any non-degenerate algorithm to ensure fairness with the specified confidence 1−δ, for example
when ϵ, δ, and the amount of available training data are all very small. In such cases, we allow the
algorithm to output No Solution Found (NSF) as a way of indicating that it is unable to provide the
required confidence that the learned representation will be fair given the amount of data it has been
provided. To indicate that it is always fair for the algorithm to return NSF, we define gϵ(ϕ) = 0.
However, if an algorithm constantly returns NSF, it is of no value. We empirically evaluate the
probability of returning a solution (i.e., not NSF) for our algorithm in Section 7.
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Candidate Selection
Fairness Test or NSF

Figure 1: An overview of FRG. See Sec. 4 for discussion.

4 METHODOLOGY

In this section, we introduce the framework Fair Representation learning with high-confidence
Guarantees (FRG). It is the first representation learning algorithm that provides the high-confidence
fairness guarantee specified in Def. 3.2. An overview of FRG is provided in Fig. 1.

FRG consists of two major components called candidate selection and the fairness test. First we
present a high-level summary of the algorithm before discussing each component in more detail.
FRG first splits the data D into disjoint sets, Dc and Df . Candidate selection uses Dc to optimize
and propose candidate solution ϕc, while the fairness test usesDf to evaluate whether ϕc can satisfy
gϵ(ϕc) ≤ 0 (Def. 3.2) on future unseen data with sufficient confidence. Finally, FRG returns ϕc or
NSF according to the result of the fairness test. Notice that a candidate selection algorithm that
does not consider fairness may often propose candidate solutions that fail the fairness test, resulting
in NSF. In the following subsections, we introduce the fairness test and then provide details for a
candidate selection algorithm that proposes candidate solutions that generate representations of high
expressiveness and that are likely to pass the fairness test.

4.1 FAIRNESS TEST

The goal of the fairness test is to evaluate whether a candidate solution ϕc induces a fair representa-
tion model with high confidence. In this section, we first develop g̃ϵ(ϕ) where g̃ϵ(ϕ) ≤ gϵ(ϕ), and
propose evaluating g̃ϵ(ϕ) ≤ 0 to provably determine whether a representation model ϕ is ϵ-fair, i.e.,
gϵ(ϕ) ≤ 0. We then propose the construction of a high-confidence upper bound on g̃ϵ(ϕ). We finally
detail the evaluation process for a candidate solution ϕc using this high-confidence upper bound.

A mutual-information-based evaluation. Our goal is to evaluate whether gϵ(ϕ) ≤ 0 with high
confidence. However, estimating gϵ(ϕ) = supτ ∆DP(τ, ϕ) − ϵ is intractable because it requires
knowledge of all downstream models and all downstream tasks. To remove the dependency on
downstream models, we apply Property 2.2, and evaluate whether I(Z;S) − ψ(ϵ) ≤ 0 instead
of supτ ∆DP(τ, ϕ) − ϵ ≤ 0 (ψ is derived by Gupta et al. (2021) and defined in Appendix A.2).
Intuitively, when the mutual information between the representation and the sensitive attribute is
low, it is hard for any model to predict S given Z with high accuracy. Therefore, any downstream
model that does not explicitly aim to predict S is even less likely to take advantage of the sensitive
attribute to produce unfair predictions. Theoretically, evaluating I(Z;S) − ψ(ϵ) ≤ 0 can provably
determine the ϵ-fairness of ϕ under Def. 3.1. We postpone the theoretical analysis to Sec. 5.

Unfortunately, computing I(Z;S) is intractable because it requires marginalizing the joint distri-
bution of (X,S,Z) over feature vector X , and so even this approach remains intractable. Multiple
previous works have derived tractable upper bounds on I(Z;S), which we discuss in detail in Ap-
pendix D. Let Ĩ(Z;S) be one of these tractable upper bounds on I(Z;S). Then, we define

g̃ϵ(ϕ) := Ĩ(Z;S)− ψ(ϵ). (3)

With this upper bound, we now evaluate the ϵ-fairness of ϕ by evaluating g̃ϵ(ϕ) ≤ 0. In Lemma 5.1,
we prove if Pr (g̃ϵ(a(D)) ≤ 0) ≥ 1 − δ, then algorithm a provides the desired high-confidence
fairness guarantee.

1 − δ confidence upper bound on g̃ϵ(ϕ). We follow two steps to compute a 1 − δ confidence
upper bound on g̃ϵ(ϕ) (if this high-confidence upper bound is at most zero, then we can conclude
that g̃ϵ(ϕ) ≤ 0 with confidence 1 − δ). (1) Obtain m i.i.d. unbiased estimates ĝ(1), . . . , ĝ(m) of
g̃ϵ(ϕ) using Df , i.e., E[ĝ(j)] = g̃ϵ(ϕ) for any j ∈ [1, ...,m]. (2) Apply standard statistical tools
such as Student’s t-test (Student, 1908) or Hoeffding’s inequality (Hoeffding, 1963) to construct a
1 − δ confidence upper bound on g̃ϵ(ϕ) using ĝ(1), . . . , ĝ(m). Note that we use Student’s t-test for
our experiments (Sec. 7).
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We define Uϵ : (Φ,D) → R to be such a function that produces a 1 − δ confidence upper bound.
Specifically, for Uϵ(ϕ,Df ), we have the following,

Pr
(
g̃ϵ(ϕ) ≤ Uϵ(ϕ,Df )

)
≥ 1− δ. (4)

Evaluation of candidate solutions. Suppose the fairness test gets a candidate solution ϕc and
Uϵ(ϕc, Df ) ≤ 0, it follows that there is at least confidence 1 − δ that g̃ϵ(ϕc) ≤ 0 (Inequality 4).
Then, the fairness test concludes with at least 1 − δ confidence that qϕc is an ϵ-fair representation
model, and ϕc passes the test. If, however, Uϵ(ϕc, Df ) > 0, then the algorithm cannot conclude that
gϵ(ϕc) ≤ 0 with high confidence. Therefore, the fairness test concludes that there is not sufficient
confidence that qϕc is an ϵ-fair representation model, and ϕc fails the test.

Finally, if ϕc passes the fairness test, FRG outputs ϕc. Otherwise, it outputs NSF. When ϕc fails
the fairness test, we do not search for and test another representation model because this would
result in the well known “multiple comparisons problem.” In this case, each run of the fairness test
can be viewed as a hypothesis test for determining whether the representation is fair with sufficient
confidence.

4.2 CANDIDATE SELECTION

Notice that a representation learning algorithm using the fairness test mechanism as designed in
Sec. 4.1 provides the desired 1 − δ confidence ϵ-fairness guarantee (Def. 3.2) regardless of the
choice of candidate selection, as shown in Thm. 5.2. However, candidate selection is considered
ineffective if most of its proposed solutions fail the fairness test. In this section, we introduce an
effective design for candidate selection. This design results in candidate solutions that are both likely
to pass the fairness test and optimized for high expressiveness.

4.2.1 PREDICTING WHETHER A CANDIDATE SOLUTION WILL PASS THE FAIRNESS TEST

The candidate selection mechanism proposes a candidate solution ϕc that it predicts will pass the
fairness test. Such a prediction can be naturally made by leveraging knowledge of the exact form
of the fairness test, except using dataset Dc instead of Df , i.e., checking whether Uϵ(ϕc, Dc) ≤ 0.
However, there is one caveat. We repeatedly use the same dataset Dc to construct high confidence
upper bounds while searching for the candidate solution. Therefore, we may overfit to Dc, resulting
in an overestimation of the confidence that the candidate solution will pass the fairness test. To mit-
igate this issue, we inflate (double the width of) the confidence interval used in candidate selection.
We denote the inflated 1− δ confidence upper bound on g̃ϵ(ϕc) as Ûϵ(ϕc, Dc). Finally, we propose
using the constraint Ûϵ(ϕc, Dc) ≤ 0 during candidate selection to find a candidate solution ϕc that
is likely to pass the fairness test.

4.2.2 OPTIMIZING FOR A CANDIDATE SOLUTION WITH A CONSTRAINED OBJECTIVE

In addition to finding a candidate solution that is likely to pass the fairness test, candidate selection
also favors candidate solutions that have high expressiveness, so that the representations it gener-
ates are effective for downstream tasks. We propose a candidate selection mechanism that achieves
this goal without being limited to a specific learning algorithm. We support most parameterized
representation learning architectures proposed in previous work, including the VAE-based meth-
ods (Kingma & Welling, 2013; Louizos et al., 2016), contrastive learning methods (Gupta et al.,
2021; Oh et al., 2022), etc. In our experiments, we focus on an adaptation of VAE (Louizos et al.,
2016) to construct the objective function that candidate selection optimizes. Specifically, we define
X ∼ pθ(·|Z, S) as the generative model forX with input (Z, S) parameterized by θ. Let KL denote
KL-divergence, and p(Z) be a standard isotropic Gaussian prior, i.e., p(Z) = N (0, I), where I is
the identity matrix. Overall, we define the candidate selection process as approximating a solution
to the constrained optimization problem:

max
θ,ϕ

Eqϕ(Z|X,S)

[
log pθ(X|Z, S)

]
−KL

(
qϕ(Z|X,S)∥p(Z)

)
(5)

s.t. Ûϵ(ϕ,Dc) ≤ 0. (6)

We propose using a gradient-based optimization to approximate an optimal solution (θ, ϕ). When
using gradient based optimizers, the inequality constraint can be incorporated into the objective
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using the KKT conditions. That is, we find saddle-points of the following Lagrangian function:

L(θ, ϕ;λ) := −Eqϕ(Z|X,S)

[
log pθ(X|Z, S)

]
+KL

(
qϕ(Z|X,S)∥p(Z)

)
+ λÛϵ(ϕ,Dc), (7)

where λ ≥ 0 is the Lagrange multiplier.

5 THEORETICAL ANALYSIS

In this section we prove that FRG is a representation learning algorithm that provides the desired
high confidence ϵ-fairness guarantee, i.e., the probability that it produces a representation that is not
ϵ-fair for every downstream task and model is at most δ.

We prove this claim in two steps. We first prove in Lemma 5.1 that if an algorithm a satisfies
Pr (g̃ϵ(a(D)) ≤ 0) ≥ 1 − δ, then algorithm a provides the 1 − δ confidence ϵ-fairness guarantee
described in Def. 3.2. We then prove in Theorem 5.2 that FRG indeed satisfies Pr (g̃ϵ(a(D)) ≤ 0) ≥
1 − δ. Altogether, we can conclude that FRG guarantees with 1 − δ confidence that ∆DP(τ, a(D))
is upper-bounded by ϵ for any τ (recall that here a corresponds to FRG and a(D) corresponds to the
representation model parameters returned by FRG when run on dataset D).

Lemma 5.1 If algorithm a satisfies Pr (g̃ϵ(a(D)) ≤ 0) ≥ 1−δ, then algorithm a provides the 1−δ
confidence ϵ-fairness guarantee described in Def. 3.2. Proof. See Appendix B.

Theorem 5.2 FRG provides a 1− δ confidence ϵ-fairness guarantee. Proof. See Appendix C.

6 PRACTICAL CONSIDERATIONS FOR UPPER BOUNDING ∆DP

So far we have discussed using mutual information to upper bound ∆DP (the violation of the de-
mographic parity constraint), and ensure the ϵ-fairness of a representation model with high confi-
dence (Sec. 4.1). Since I(Z;S) is intractable, in Appendix D we review four tractable upper bounds
on I(Z;S), and also discuss why in our experiments we adopt the first upper bound, Ĩ1(Z;S), de-
rived by Song et al. (2019, Section 2.2). We then test whether Ĩ1(Z;S) ≤ ψ(ϵ) to obtain the desired
fairness guarantee (Eq. 3).

Because mutual information can be intractable, one might consider alternative methods for bounding
∆DP. In Appendix E, we explore potential alternatives for upper bounding ∆DP but find limitations
that prevent the adoption of these methods in FRG. Hence, we return to the original idea of using
mutual information, I(Z;S), to limit ∆DP. However, using mutual information has another draw-
back we must overcome. There tend to be significant gaps between I(Z;S) and ψ(supτ ∆DP(τ, ϕ)),
and between Ĩ1(Z;S) and I(Z;S) (demonstrated with an example in Appendix Fig. 4). Hence, us-
ing the ψ-based bound on Ĩ1(Z;S) results in exceedingly conservative bounds on ∆DP. We analyze
the gap between I(Z;S) and ψ(supτ ∆DP(τ, ϕ)) in Appendix F, and the gap between Ĩ1(Z;S) and
I(Z;S) in Appendix G. Based on these analyses, one might consider using a constraint of the form

I(Z;S) ≤ ψ(ϵ) + γ + υ, (8)
where γ ≥ 0 and υ ≥ 0. If γ lower bounds the gap between I(Z;S) and ϕ(ϵ), and υ lower bounds
the gap between Ĩ1(Z;S) and I(Z;S), then Ĩ1(Z;S) upper bounds ψ(∆DP(τ, ϕ)). One can then let

g̃′ϵ(ϕ) := Ĩ1(Z;S)− (ψ(ϵ) + γ + υ), (9)

and use FRG to ensure g̃′ϵ(ϕ) ≤ 0, i.e., Ĩ1(Z;S) ≤ ψ(ϵ) + γ + υ, with high probability.

However, we do not know which values of γ and υ satisfy γ ≤ I(Z;S)−ψ(ϵ) and υ ≤ Ĩ1(Z;S)−
I(Z;S). While one might consider treating γ, υ as tunable hyperparameters, doing so would com-
promise the algorithm’s ability to provide a high-confidence guarantee that supτ ∆DP(τ, ϕ) ≤ ϵ. In
summary, excluding γ, υ can make it difficult and sometimes impossible for any algorithm to return
ϵ-fair solutions with the desired confidence. However, including γ, υ (as hyperparameters) in our
method prevents it from providing the high-confidence fairness guarantee as defined in Def. 3.2.

We provide one way to select values for γ and υ that likely lower bound the mutual information
gaps, as detailed in Appendix. H. Additionally, in Sec. 7.2, we present empirical evaluations to
demonstrate that FRG with these practical adjustments tends to satisfy ∆DP(τ, ϕ) ≤ ϵ, although the
formal guarantee is no longer ensured.
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Figure 2: On the left, we give an example of employing FRG to provide high-confidence fairness guarantees
(Def. 3.2) on the Adult dataset, including VAE as a baseline. On the right, we show the comparisons between
baselines and FRG with the practical adjustments (Sec. 6) on Adult. The first three plots on both sides are: (1)
the average AUC when applying the representations to the designated downstream task, (2) the fraction of trials
that returned a solution excluding NSF, and (3) the fraction of trials that violates ∆DP(τ, ϕ) ≤ ϵ on the ground
truth dataset. The fourth plot on the left shows the average ∆DP on the downstream task.

7 EXPERIMENTS

Datasets. We use 2 real-world datasets: UCI Adult’s sensitive attribute is gender and a downstream
task predicts income; UTK-Face’s sensitive attribute is ethnicity and downstream labels are gender
and age. We include detailed descriptions in Appendix I and the statistics in Appendix Table 1.

Evaluations. We are interested in addressing three research questions when evaluating FRG. (1) Do
the empirical results align with our expectation that FRG produces ϵ-fair representation models?
In other words, is ∆DP of all downstream models and tasks upper-bounded by a desired ϵ with
high probability? To address this question, we estimate the probabilities of violating the constraint
∆DP(τ, ϕ) ≤ ϵ using results from multiple runs of the algorithm with different training samples.
(2) Can FRG learn expressive representations that are useful for downstream predictions? We eval-
uate the prediction performance on downstream tasks using the area under the ROC curve (AUC).
(3) Would FRG frequently result in NSF to avoid unfairness even when a sufficient amount of data
and reasonable values of ϵ and δ are provided? To address this question, we evaluate the probability
that FRG provides a solution other than NSF.

Experiment setup. For each dataset, we hold out 20% of the data as the test dataset. To assess the
probabilities of ∆DP being bounded by ϵ for all downstream models, we generate multiple training
datasets from the remaining 80% of the data and train multiple representation models on these
datasets. To construct the training datasets, we initially generate 10 datasets by resampling 80% of
the data (excluding the test dataset) with replacement. Next, we extract proportions of 10%, 15%,
25%, 40%, 65% or 100% from each resampled dataset above to create a single training dataset.
In total, we apply each algorithm to 60 training datasets, resulting in 60 representation models.
Subsequently, we assess the results using all these models on the test dataset.

For the remainder of this section, we start by providing an example of using FRG to find represen-
tation models with high-confidence fairness guarantees. We then apply the practical adjustments (as
described in Sec. 6) to FRG, and compare with competitive baselines. We conduct ablation studies
on FRG with these adjustments in Appendix L.1

7.1 EVALUATION ON FRG THAT PROVIDES HIGH CONFIDENCE FAIRNESS GUARANTEE

We evaluate FRG that provides high-confidence fairness guarantees (Def. 3.2) on the Adult dataset.
For demonstration purposes, we select ϵ = 0.2 and δ = 0.1, which means that FRG guarantees with
90% confidence that downstream models do not violate ∆DP(τ, ϕ) ≤ 0.2. It is worth noting that the
selected ϵ = 0.2 is smaller than both the ∆DP calculated with the true labels (as shown in Appendix
Table 1), and the upper bound on ∆DP calculated with the prediction labels from a predictor that
achieves equalized odds (Zhao et al., 2020, Theorem 3.1). We estimate Pr(S = 1) ≈ 0.668 from the
dataset, which yields ψ(ϵ) ≈ 0.0044. We incorporate the constraint Ĩ1(Z;S) ≤ ψ(ϵ) to guarantee ϵ-
fairness with 1−δ confidence (Ĩ1(Z;S) denotes the upper bound to I(Z;S) as derived by Song et al.
(2019, Section 2.2)). We include a vanilla VAE without any fairness consideration as a baseline.

1For Figures 3–4, each panel shows the mean (point) and standard deviation (shaded region) of a quantity
as a function of the amount of data (in log scale). The black dashed line is set at the desired confidence level δ.
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Figure 3: We show the comparisons between baselines and FRG with the practical adjustments (Sec. 6) on
UTK-Face. Note that there are two downstream tasks, predicting gender and age. Since a learned representation
model is used by all downstream tasks, there is only one probability of returning a solution excluding NSF.

We show the result in Fig. 2 Left. As demonstrated in the third and fourth plots, FRG violates the
constraint ∆DP(τ, ϕ) ≤ 0.2 with a probability smaller than 0.1, whereas VAE violates the constraint
with a probability larger than 0.1 when it uses less than 65% of the training data. According to the
second plot, FRG can also return solutions (i.e., not NSF) for all the trials.

Nonetheless, as discussed in Sec. 6, the constraint Ĩ1(Z;S) ≤ ψ(ϵ) is overly conservative, which
leads to relatively low AUC on average, as illustrated in the first plot. Additionally, the fourth plot
demonstrates FRG’s ability to consistently keep ∆DP near zero. Hence, applying an even stricter ϵ
constraint on FRG for high-confidence fairness guarantees is impractical and unnecessary.

7.2 EVALUATION ON THE PRACTICAL ADJUSTMENTS ON FRG

Considering the impracticality of strictly adhering to Def. 3.2 for FRG to provide high-confidence
fairness guarantees, we evaluate FRG with the practical adjustments (as detailed in Sec. 6) that guar-
antees the constraint Ĩ1(Z;S) ≤ ψ(ϵ)+γ+υ is satisfied with high confidence. We compare it with
several baselines including LMIFR (Song et al., 2019), ICVAE (Moyer et al., 2018), VFAE (Louizos
et al., 2016)and vanilla VAE. Detailed descriptions of these baselines are provided in Appendix J.

We set ϵ = 0.08, δ = 0.1 for evaluations on both the Adult and the UTK-Face datasets. For
FRG, We estimate ϕ(ϵ) + γ + υ according to Appendix H and arrive at g̃′ϵ(ϕ) = Ĩ1(Z;S) − 0.32

for Adult, and g̃′ϵ(ϕ) = Ĩ1(Z;S) − 1.18 for UTK-Face. We note that as FRG does not restrict
the choices of architectures for maximizing representation models’ expressiveness and downstream
prediction performance, we ensure fair comparisons by adopting the VAE-based primary objective as
proposed in Sec. 4.2.2, and a multilayer perceptron (MLP) with one hidden layer as the downstream
model across all baselines. We find hyperparameters that achieve Pr(∆DP(τ, ϕ) > ϵ) < δ while
maximizing AUC on one designated downstream task. Detailed procedures for hyperparameter
tuning are provided in Appendix K. We show the results for Adult in Fig. 2 Right, and UTK-Face in
Fig. 3.

For both datasets, FRG can limit the probabilities that ∆DP(τ, ϕ) > 0.08 to be at most 0.1 while
maintaining AUC values comparable to those of baselines. FRG also exhibits a high probability of
returning solutions, excluding NSF, in most cases. The only exception occurs with the Adult dataset
when data size is only 10% of the total training data. Our hypothesis is that with a small amount of
training data, it becomes challenging for candidate selection to recommend candidate solutions that
satisfies g̃′ϵ(ϕ) ≤ 0 with high probability while simultaneously achieving high AUC.

On the Adult dataset, among the methods that upper bound the probabilities of violating
∆DP(τ, ϕ) ≤ 0.08 by 1 − δ, FRG achieves the highest AUC. Although LMIFR (evaluated with
65% and 100% of the training data) and VAE achieve higher AUC, they are more likely to violate
the ϵ-fairness constraint. In all other baseline evaluations, the need to tune hyperparameters to ensure
high probabilities of ∆DP(τ, ϕ) ≤ 0.08 often results in subpar predictions in terms of AUC.

On UTK-Face, achieving ϵ-fairness is more challenging with a multinomial and imbalanced sen-
sitive attribute, especially when ϵ = 0.08. Note that we tune hyperparameters and estimate g̃′ϵ(ϕ)
(Appendix H) using only the gender labels while keeping the age labels hidden. The result shows
that FRG can indeed effectively upper bound ∆DP by a small ϵ across multiple downstream tasks
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with a high probability. Although baseline methods can occasionally achieve higher AUC, and IC-
VAE and LMIFR can maintain ∆DP ≤ 0.08 most of the time, they cannot consistently ensure ∆DP
remains below 0.08 on either downstream task with sufficient probabilities. This highlights the im-
portance of providing high-confidence fairness guarantees when training fair representation models.

8 RELATED WORK

Fair representation learning (FRL) has been studied since at least 2013 (Zemel et al., 2013). While
some prior works (Lahoti et al., 2019b;a; Peychev et al., 2022; Ruoss et al., 2020) focus on individual
fairness, we focus on group fairness with unfairness quantified by metrics like demographic parity,
equalized odds, equal opportunity, and others (Dwork et al., 2012; Hardt et al., 2016).

Several FRL studies prioritize optimization with respect to a specific downstream task (Calmon
et al., 2017; McNamara et al., 2017; Zehlike et al., 2019; Calmon et al., 2018; Gordaliza et al., 2019;
Shui et al., 2022; Zhu et al., 2021; Rateike et al., 2022). In this paper, we instead focus on learning
general representations that are fair, even when downstream tasks are unknown or unlabeled.

Numerous related studies aim to achieve FRL without relying on labels from downstream tasks (Hort
et al., 2022; Mehrabi et al., 2021). One category of these methods draws inspiration from informa-
tion theory and probability theory, focusing on either reducing the mutual information between
sensitive attributes and representations (Song et al., 2019; Jaiswal et al., 2020; Kairouz et al., 2022;
Kim & Cho, 2020; Liu et al., 2022b; Moyer et al., 2018; Gupta et al., 2021), or maximizing the
conditional entropy of sensitive attributes given representations (Xie et al., 2017; Roy & Boddeti,
2019; Sarhan et al., 2020). One work explores the use of distance covariance as an alternative to
mutual information (Liu et al., 2022a). Some methods can limit downstream unfairness by constrain-
ing the total variation distance between the representation distributions of different groups (Madras
et al., 2018; Zhao et al., 2020; Shen et al., 2021; Balunović et al., 2022). Other approaches promote
independence among sensitive attributes through penalization based on Maximum Mean Discrep-
ancy (Louizos et al., 2016; Oneto et al., 2020a; Deka & Sutherland, 2023), adversarial training that
limits the adversary’s performance in predicting sensitive attributes (Edwards & Storkey, 2016; Feng
et al., 2019; Qi et al., 2022; Wu et al., 2022; Kim et al., 2022), meta-learning (Oneto et al., 2020b),
PCA (Lee et al., 2022; Kleindessner et al., 2023), measures for statistical dependence (Grari et al.,
2021; Quadrianto & Sharmanska, 2019), learning a shared feature space between groups (Cerrato
et al., 2021), or disentanglement (Creager et al., 2019; Oh et al., 2022; Locatello et al., 2019).

Some FRLs provide theoretical analyses. Madras et al. (2018); Gupta et al. (2021); Zhao et al.
(2020); Shen et al. (2021) offer provable upper bounds on the unfairness of all downstream models
and tasks. Gitiaux & Rangwala (2021) present a method to compute an empirical upper bound on the
expected values of unfairness for all downstream models and tasks. Some recent work (Jovanović
et al., 2023; Balunović et al., 2022) provides practical certificates that serve as high-confidence upper
bounds on the unfairness, using finite samples, but their methods are limited to particular represen-
tation model architectures (e.g., decision trees, normalizing flows) and representation distributions
(e.g., discrete), which may not be ideal in some situations. Furthermore, these methods do not pro-
vide a framework for learning fair representation models with high confidence. Specifically, they
do not accept a user-defined threshold and ensure with high confidence that the unfairness of all
downstream models is upper-bounded by that threshold.

Finally, some prior work (Li et al., 2022; Thomas et al., 2019; Hoag et al., 2023) provides high-
confidence guarantees for fair classification, but does not explore the representation learning setting.

9 CONCLUSION AND FUTURE WORK

In this work, we introduced FRG, a fair representation learning framework that provides high-
confidence fairness guarantees, ensuring that unfairness for all downstream models and tasks is
upper-bounded by a user-defined threshold. After substantiating our work with theoretical analy-
sis, we conducted empirical evaluations that demonstrate FRG’s effectiveness in upper-bounding
unfairness across various downstream models and tasks. In the future, we plan to extend FRG for
representation learning with other guarantees related to privacy, safety, robustness, and more.

9
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10 REPRODUCIBILITY STATEMENT

We provide the source code in an anonymous repository here2 and in the zip file in Supplementary
Material. The detailed instructions for creating the environment, acquiring the datasets, and running
FRG and baselines are presented in README.md. One may refer to Section 7 to get the details of
experiment setup and may refer to Appendix I, J, K to get the details of the datasets, the baselines
and the hyperparameter tuning procedure.
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A DETAILS OF PROPERTY 2.2

Gupta et al. (2021) has derived Property 2.2 where I(Z;S) is an upperbound for a strictly increasing
non-negative convex function in ∆DP of any τ , which we denote as ψ. Gupta et al. (2021) has also
found that when I(Z;S) = 0, ψ(∆DP(τ, ϕ)) = 0 and ∆DP(τ, ϕ) = 0. We now define ψ in detail by
first introducing a helper function f .

Definition A.1 (A helper function f )

f(V ) = max

(
log

(
2 + V

2− V

)
− 2V

2 + V
,
V 2

2
+
V 4

36
+
V 6

288

)
.

with domain V ∈ [0, 2).

Definition A.2 (function ψ with parameter ∆DP(τ, ϕ)) When S is binary, and f follows Def. A.1,

ψ(∆DP(τ, ϕ)) = (1− π)f(π∆DP(τ, ϕ)) + πf((1− π)∆DP(τ, ϕ))

where π = Ps(S = 1) with Ps as the marginal distribution of S ∈ {0, 1}.

When S is multinomial with K classes,

ψ(∆DP(τ, ϕ)) = f(α∆DP(τ, ϕ)), α = min
k=1,...,K

πk,

where πk = Ps(S = k) with Ps as the marginal distribution of S ∈ {1, . . . ,K}.

B PROOF OF LEMMA 5.1

Lemma B.1 (Lemma 5.1 restated) If algorithm a satisfies Pr (g̃ϵ(a(D)) ≤ 0) ≥ 1− δ, then algo-
rithm a provides the 1− δ confidence ϵ-fairness guarantee described in Def. 3.2.

Proof. Suppose Pr (g̃ϵ(a(D)) ≤ 0) ≥ 1 − δ. By Eq. 3, g̃ϵ(a(D)) = Ĩ(Z;S) − ψ(ϵ) ≥ I(Z;S) −
ψ(ϵ). By property 2.2, I(Z;S) ≥ supτ ψ(∆DP(τ, a(D))). So, the event (g̃ϵ(a(D)) ≤ 0) implies
that(I(Z;S)− ψ(ϵ) ≤ 0), which further implies (supτ ψ(∆DP(τ, a(D)))− ψ(ϵ) ≤ 0). Using the
fact that ψ is strictly increasing in [0, 1] (Appendix A.2), we have the following equivalent events:(

sup
τ
ψ(∆DP(τ, a(D)))− ψ(ϵ) ≤ 0

)
(10)

⇐⇒
(
ψ(sup

τ
∆DP(τ, a(D))) ≤ ψ(ϵ)

)
(11)

⇐⇒
(
sup
τ

∆DP(τ, a(D)) ≤ ϵ

)
(12)

⇐⇒
(
sup
τ

∆DP(τ, a(D))− ϵ ≤ 0

)
(13)

⇐⇒ (gϵ(a(D)) ≤ 0) . (14)

It follows that Pr (gϵ(a(D)) ≤ 0) ≥ Pr (g̃ϵ(a(D)) ≤ 0) ≥ 1 − δ. So, FRG (algorithm a) provides
the desired 1− δ confidence ϵ-fairness guarantee described in Def. 3.2, completing the proof.

C PROOF OF THEOREM 5.2

Theorem C.1 (Theorem 5.2 restated) FRG provides the 1− δ confidence ϵ-fairness guarantee de-
scribed in Def. 3.2.

Proof. By Lemma 5.1, if FRG satisfies Pr (g̃ϵ(a(D)) ≤ 0) ≥ 1− δ, then FRG provides the desired
1 − δ confidence ϵ-fairness guarantee. We prove by contradiction that when a represents FRG,
Pr (g̃ϵ(a(D)) ≤ 0) ≥ 1− δ.
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We begin by assuming the result is false and then derive a contradiction. The beginning assumption
is that Pr (g̃ϵ(a(D)) ≤ 0) < 1 − δ. By contrapositive, we have Pr (g̃ϵ(a(D)) > 0) ≥ δ. By the
construction of FRG, a(D) is either NSF or the proposed candidate solution ϕc ∈ Φ. Notice that
g̃ϵ(a(D)) > 0 if and only if a(D) does not return NSF but returns ϕc instead, i.e., a(D) = ϕc. The
fairness test in FRG returns ϕc if and only if Uϵ(ϕc, Df ) ≤ 0 (Sec. 4.1). Therefore, the following
events are equivalent (Pr(A,B) denotes the joint probability of A and B):

(g̃ϵ(a(D)) > 0) (15)
⇐⇒ (g̃ϵ(a(D)) > 0, a(D) = ϕc, Uϵ(ϕc, Df ) ≤ 0) (16)
⇐⇒ (g̃ϵ(ϕc) > Uϵ(ϕc, Df ), a(D) = ϕc). (17)

The joint event (g̃ϵ(ϕc) > Uϵ(ϕc, Df ), a(D) = ϕc) implies (g̃ϵ(ϕc) > Uϵ(ϕc, Df )). Therefore,

Pr (g̃ϵ(ϕc) > Uϵ(ϕc, Df )) ≥ Pr (g̃ϵ(ϕc) > Uϵ(ϕc, Df ), a(D) = ϕc) ≥ δ.

However, by construction of the fairness test, Pr (g̃ϵ(ϕc) ≤ Uϵ(ϕc, Df )) ≥ 1 − δ (Inequality 4),
which implies Pr (g̃ϵ(ϕc) > Uϵ(ϕc, Df )) < δ. This gives a contradiction, completing the proof.

We note that this theorem is true for any choice of candidate selection, as the proof assumes the
candidate solution ϕc is arbitrary.

D THE TRACTABLE UPPER BOUNDS ON I(Z;S)

To our best knowledge, there are four tractable upper bounds on mutual information I(Z;S) as
derived by previous work (Song et al., 2019; Moyer et al., 2018; Gupta et al., 2021). Next, we
discuss these approaches and their limitations. Although our general approach is compatible with
any upper bound on mutual information, given the limitations of each method, we consider the first
of the two approaches (Ĩ1(Z;S) below) by Song et al. (2019) the most suitable in practice. Thus,
we only adopt Ĩ1(Z;S) in our experiments.

Song et al. (2019) proposed two upper bounds on I(Z;S).

Ĩ1(Z;S): the first upper bound derived by (Song et al., 2019, Section 2.2). We denote the first
upper bound as Ĩ1(Z;S) and Ĩ1(Z;S) ≥ I(Z;X,S) ≥ I(Z;S) (Song et al., 2019, Section 2.2).
This is a theoretically guaranteed upper bound. We discuss the limitation of this upper bound in
Appendix G that using this upper bound may diminish the expressiveness of the representations.
However, we still find it effective for FRG to limit ∆DP by ϵ in experiment (Sec. 7).

Ĩ2(Z;S): the second upper bound derived by (Song et al., 2019, Section 2.3). Song et al. (2019)
proposed a tighter upper bound compared to Ĩ1(Z;S), which we denote as Ĩ2(Z;S). However, it
requires adversarial training, and the true upper bound can only be obtained when the adversarial
model approaches global optimality. This is not ideal because if the adversarial model is under-
performing, we may under-estimate the upper bound to I(Z;S), and guaranteeing Ĩ2(Z;S) ≤ ψ(ϵ)
does not guarantee I(Z;S) ≤ ψ(ϵ) or ϵ-fairness. This result has also been confirmed by prior work
including Xu et al. (2021); Elazar & Goldberg (2018); Gupta et al. (2021) and Gitiaux & Rangwala
(2021).

Ĩ3(Z;S): the upper bound derived by Moyer et al. (2018). Moyer et al. (2018) found
I(Z;S) = I(Z;X) − H(X|S) + H(X|Z, S) where H denotes entropy. They proposed ig-
noring the unknown positive constant term H(X|S) and using the reconstruction error, i.e.,
−Eqϕ(Z|X,S)

[
log pθ(X|Z, S)

]
to be an upper bound of H(X|Z, S) (Moyer et al., 2018, Equations

2–7). Let Ĩ3(Z;S) := I(Z;X) − Eqϕ(Z|X,S)

[
log pθ(X|Z, S)

]
. Suppose Ĩ3(Z;S) − I(Z;S) >

ψ(ϵ)+γ (γ is defined in Inequality 8), then any ϕ that satisfies Ĩ3(Z;S) ≤ ψ(ϵ)+γ would result in
I(Z;S) ≤ 0, which is a constraint that is impossible to satisfy. Moreover, it can be difficult to esti-
mate the gap Ĩ3(Z;S)− I(Z;S) because (1) H(X|S) is hard to estimate; (2) Ĩ3(Z;S) is sensitive
to the performance of the reconstruction model.

Ĩ4(Z;S): the upper bound derived by Gupta et al. (2021). Gupta et al. (2021) observed that
I(Z;S) = I(Z;S|X) + I(Z;X) − I(Z;X|S). They then derived a lower bound for the term
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Figure 4: Using the Adult dataset (details in Appendix. I), we run L-MIFR (Song et al., 2019) with different
hyper-parameters to find representation models that achieve different ∆DP(τ, ϕ). For each of the representation
model, we record the corresponding tractable upper bound to I(Z;S) by Song et al. (2019, Section 2.2),
denoted as Ĩ1(Z;S), and make the scatter plot in blue. We plot the function ψ(·) (Appendix A.2) in red. We
highlight that there exists a gap between Ĩ1(Z;S) and ψ(∆DP(τ, ϕ)), which consists of two gaps, Ĩ1(Z;S)−
I(Z;S) and I(Z;S)− ψ(∆DP(τ, ϕ)), and it can be observed empirically as shown by the plot.

I(Z;X|S) using constrative estimation so that I(Z;S) can be upper-bounded. Specifically, they
proved I(Z;X|S) ≥ Ep(X,Z,S)

[
log ef(X,Z,S)

1
M

∑M
m=1 ef(Xm,Z,S)

]
, where p(X,Z, S) is the joint distribution

of (X,Z, S), X1, · · · , XM ∼ pX|S , pX|S is the conditional distribution of X given S, and f is
an arbitrary function (Gupta et al., 2021, Proposition 5). Since the distribution pX|S is unknown,
the authors use the X,S pairs in the dataset as samples from this conditional distribution. When
making a point estimate of the expectation, they use one sample from the dataset to evaluate the
numerator, and use M samples from the same dataset to evaluate the denominator. This means that
the estimation of the expectation can be biased because the point estimates are not independent.
Empirically, we also observe this issue and find that it tends to result in over-estimates of I(Z;X|S)
and under-estimates of I(Z;S). Given how these terms are used in the expression for I(Z;S), this
results in bounds on mutual information that do not hold.

E ALTERNATIVE METHODS FOR UPPER-BOUNDING ∆DP

One might consider alternative methods for bounding ∆DP because mutual information can be in-
tractable and there can be a significant gap between mutual information and ψ(∆DP) (that is, the up-
per bound can be loose). Several alternative methods have been proposed, which can provide bounds
on ∆DP using bounds on the total variation between the conditional distributions pτ,ϕ(Ŷ |S = 0) and
pτ,ϕ(Ŷ |S = 1) (Zhao et al., 2020; Madras et al., 2018; Shen et al., 2021; Balunović et al., 2022).
However, to our knowledge, there is not a known function such as ψ (Appendix A.2) that expresses
the relation between the total variation and demographic parity, so total variation cannot be used to
upper bound supτ ∆DP(τ, ϕ) with a specific ϵ. In other work, Jovanović et al. (2023, Section 5) pro-
posed a practical certificate that upper bounds supτ ∆DP(τ, ϕ). However, their method requires Z
to be a discrete random variable, which is restrictive for general representation learning. Therefore,
these methods are not suitable for our framework as they cannot be used to learn ϵ-fair representation
models with a high-confidence guarantee.

F THE NON-TRIVIAL GAP BETWEEN I(Z;S) AND ψ(supτ ∆DP(τ, ϕ))

In this section, we analyze the non-trivial gap between I(Z;S) and ψ(supτ ∆DP(τ, ϕ)) that makes
it difficult for any algorithm to obtain ϵ-fairness.

As shown by Gupta et al. (2021, Figure 6), there tends to be a significant gap between I(Z;S) and
ψ(supτ ∆DP(τ, ϕ)). Using their Figure 6 as an example, when I(Z;S) ≈ 0.035, ∆DP(τ, ϕ) ≈ 0.15
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and ψ(∆DP(τ, ϕ)) ≈ 0.0025. So, to ensure that ∆DP(τ, ϕ) ≤ 0.15 with high confidence using the ψ-
based bound on mutual information, one must ensure that I(Z;S) ≤ 0.0025 with high confidence.
However, in reality ensuring that ∆DP(τ, ϕ) ≤ 0.15 only requires I(Z;S) ≤ 0.035. Obtaining a
solution that satisfies I(Z;S) ≤ 0.0025 is far more difficult than obtaining a solution that satisfies
I(Z;S) ≤ 0.035, and hence using the ψ-based bound on mutual information results in exceedingly
conservative bounds on ∆DP.

G THE NON-TRIVIAL GAP BETWEEN Ĩ1(Z;S) AND I(Z;S)

In this section we analyze the non-trival gap between Ĩ1(Z;S) and I(Z;S) where Ĩ1(Z;S) (Ap-
pendix D) is one of the upper bounds to I(Z;S) as derived by Song et al. (2019, Section 2.2).
We begin by analyzing the gap between I(Z;X,S) and I(Z;S). I(Z;X,S) − I(Z;S) =
H(Z|S) − H(Z|X,S) = H(X|S) − H(X|Z, S) = I(X;Z|S). This is the mutual information
between X and Z given S, which is closely related to the primary objective we hope to maximize.
Overall, we have the following:

I(Z;S) ≤I(Z;X,S) (18)
=I(Z;S) + I(X;Z|S) (19)

≤Ĩ1(Z;S) (20)

Although using a constraint Ĩ1(Z;S) ≤ ψ(ϵ) encourages both I(Z;S) and I(X;Z|S) to be small
which seems to diminish the expressiveness of the representation model, we show empirically that it
is effective for upper bounding mutual information and the ∆DP of the downstream tasks with high
probability in experiment (Sec. 7).

H PRACTICAL ADJUSTMENTS ON FRG

In this section, we detail an approach to construct the practical constraint Ĩ1(Z;S) ≤ ψ(ϵ) + γ + υ
(Inequality 8), and apply the constraint on FRG so that ∆DP is likely to be bounded by ϵ. We note,
however, that although this approach results in confidence intervals that hold with roughly the de-
sired probability, it does not result in an actual high-confidence guarantee. Although this is not
optimal, methods that tend to provide reasonable confidence intervals can often be useful even if the
confidence intervals do not actually have guaranteed coverage (see, for example, common applica-
tions of Student’s t-test to non-normal data and the use of bootstrap confidence intervals (Learned-
Miller & Thomas, 2020)).

To construct the constraint Ĩ1(Z;S) ≤ ψ(ϵ) + γ + υ, we do not need to determine γ and
υ separately. We only need to determine γ + υ, and we want γ + υ to under-estimate the
true gap Ĩ1(Z;S) − supτ ψ(∆DP(τ, ϕ)) so that satisfying Ĩ1(Z;S) ≤ ψ(ϵ) + γ + υ implies
supτ ψ(∆DP(τ, ϕ)) ≤ ψ(ϵ), and the representation model ϕ is ϵ-fair. We propose a practical way
of estimating a value for (γ + υ) using L-MIFR as follows. (1) Utilize the candidate selection data
Dc to run L-MIFR various hyperparameter settings, aiming to achieve ϵ − c ≤ ∆DP(τ, ϕ) ≤ ϵ on
Dc, where 0 ≤ c ≤ ϵ is a predetermined hyperparameter. For each value of ∆DP(τ, ϕ), record the
corresponding Ĩ1(Z;S) onDc. (2) Arrange all of the Ĩ1(Z;S) in ascending order, and select the one
associated with the representation model that achieves the best downstream prediction performance
with the k-th percentile (k is a hyperparameter). (3) Let γ + υ represent the difference between the
chosen Ĩ1(Z;S) and ψ(ϵ). Suppose none of the tried settings of L-MIFR achieves ∆DP(τ, ϕ) ≤ ϵ,
let FRG return NSF. We introduce the hyperparameter c to prevent overly conservative estimation
of γ + υ since ϵ− c serves as a lower bound for ∆DP. Additionally, we use the Ĩ1(Z;S) value from
the k-th percentile, rather than the smallest value, to estimate γ + υ because Ĩ1(Z;S) also serves
as an upper bound for I(X;Z|S) (Appendix G). To maintain the high expressiveness of the rep-
resentation models, it is essential that I(X;Z|S) remains relatively large. Therefore, we estimate
γ + υ using one of the smallest Ĩ1(Z;S) values that simultaneously satisfies ∆DP (τ, ϕ) ≤ ϵ and
avoids excessively reducing I(X;Z|S), which could lead to poor prediction performance. Overall,
we define

g̃′ϵ(ϕ) = Ĩ1(Z;S)− (ψ(ϵ) + γ + υ), (21)
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Datasets Sensitive (n groups) Downstream Tasks Data Size Data Fractions of Each Group ∆DP of True Labels Feature Dimensions
Adult Gender (2) Income 41034 0.668, 0.332 0.260 117

UTK-Face Ethnicity (5) Gender & Age 23700 0.425, 0.191, 0.145, 0.168, 0.071 0.120 & 0.319 48× 48

Table 1: Summary of dataset statistics. ∆DP of True Labels is calculated with |Pr(Y = 1|S = 1)− Pr(Y =
1|S = 0)| where Y is the true label.

and we use FRG to ensure that g̃′ϵ(ϕ) ≤ 0 with high probability.

While this approach is heuristic and may not provide the high-confidence fairness guarantee defined
in Def. 3.2, FRG can guarantee Ĩ1(Z;S) ≤ ψ(ϵ)+γ+υ with high confidence. We show empirically
in Sec. 7.2 that FRG with the practical adjustment in Sec. 6 using this estimation of γ + υ tends to
satisfy ∆DP(τ, ϕ) ≤ ϵ.

I DATASETS

The dataset statistics are listed in Table 1. The first dataset is the UCI Adult dataset,3 which contains
information of over 40,000 adults from the 1994 US Census. The downstream task is to predict
whether an individual earns more than $50K/year with gender as the sensitive attribute.

The second dataset is UTK-Face,4 which is a large-scale face dataset with over 20,000 face images
with annotations of age, gender, and ethnicity. We consider ethnicity as the sensitive attribute, and
we include two downstream binary prediction tasks: predicting gender and classifying age groups
(above or below 30). We use the pre-processed data from Kaggle.5

J BASELINES

We include four baselines, among which three are competitive fair representation learning methods.
We do not consider baselines that require supervision with a labelled downstream task, such as mod-
els proposed by Madras et al. (2018); Gupta et al. (2021), etc. We also do not include baselines that
restrict the choices of the representation models and the downstream models, such as models pro-
posed by Kim & Cho (2020); Balunović et al. (2022); Jovanović et al. (2023). We list the baselines
we include for experiment with descriptions as follows:

1. L-MIFR (Song et al., 2019) uses Lagrangian Multipliers to encourage a representation
model to satisfy constraints Ĩ1(Z;S) ≤ ϵ1 and Ĩ2(Z;S) ≤ ϵ2 where Ĩ2(Z;S) is an upper
bound on I(Z;S) that involves adversarial training(as discussed in Appendix D), ϵ1 and ϵ2
are hyperparameters.

2. ICVAE (Moyer et al., 2018) is a baseline that adds a regularization term αĨ3(Z;S) to the
primary loss, where α ≥ 0 is a hyperparameter, and Ĩ3(Z;S) is an upper bound on I(Z;S)
(as discussed in Appendix D).

3. VFAE (Louizos et al., 2016) is a baseline that adds an Maximum Mean Discrepancy (MMD)
regularizer, which encourages statistical independence between S and Z.

4. Finally, we include the vanilla VAE, which is trained solely on the proposed primary objec-
tive (Sec.4.2.2) without the constraint and does not include extra consideration for fairness.

K HYPERPARAMETER TUNING

In our hyperparameter tuning process, we adjust various parameters, including the step sizes of
the primary objective, the Lagrange multiplier, and the adversary (for L-MIFR), the weight of the
regularizers (e.g. MMD for VFAE), the number of epochs, etc. The primary objective of hyperpa-
rameter tuning is not only to find a set of hyperparameters for the algorithm that minimizes ∆DP.

3https://archive.ics.uci.edu/ml/datasets/Adult
4https://susanqq.github.io/UTKFace/
5https://www.kaggle.com/datasets/nipunarora8/age-gender-and-ethnicity-face-data-csv?

resource=download
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Figure 5: We show the probabilities that ∆DP(τ, ϕ) > 0.08 evaluated on the validation sets (or fairness test
set for FRG) for both datasets. On the Adult dataset, all baselines except VAE can maintain the probability
that ∆DP(τ, ϕ) > 0.08 to be less than δ = 0.1. On the UTK-Face, when the data size is relatively large
(65% and 100% of the trianing data), we find a set of hyperparameters for FRG, LMIFR, ICVAE that keeps
Pr(∆DP(τ, ϕ) > 0.08) ≤ δ. However, when the data size is small, it is difficult for all methods to keep the
probability small on the validation sets.

Instead, our goal is to find hyperparameters that allow the algorithm to consistently provide a rep-
resentation model that is ϵ-fair with as high expressiveness as possible. Thus, one should not tune
hyperparameters separately for each of the training datasets we created. When we reuse the same
training or validation set for hyperparameter search, we end up evaluating ∆DP multiple times on
the same training or validation set. As a result, ∆DP evaluated on the model trained with the chosen
hyperparameters may provide a biased estimation of ∆DP on unseen future data. Consequently, the
estimation of the probability ∆DP ≤ ϵ will also be biased. Therefore, we create additional datasets
for hyperparameter tuning and adopt the same hyperparamters on different training datasets of the
same size.

For baselines, we create validation sets by sampling 20% of the training data, while for FRG, we
evaluate the models using the fairness test datasets (i.e., Df in Sec. 4.1). We tune each algorithm
with grid search according to the metrics evaluated on the validation sets (for baselines) or on the
fairness test sets (for FRG). For the UTK-Face dataset, as there are multiple downstream tasks, we
only assume the gender labels are available for hyperparameter tuning. We first consider hyperpa-
rameters that yield high probabilities (at least 1 − δ) of satisfying ∆DP ≤ ϵ . If the probabilities of
satisfying ∆DP ≤ ϵ for all sets of hyperparameters are lower than 1−δ, we select the sets that provide
the highest probabilities while maintaining the lowest average ∆DP. If there are ties, we prioritize
the hyperparameters that achieve the highest average AUC. Note that we set the minimum allowed
step size for the primary objective to 10−6. This choice is motivated by the fact that an algorithm
with an excessively small step size may have minimal impact on optimizing the primary objective
and could potentially produce random representations that lack utility for downstream predictions,
despite being highly likely to be fair. We also note that we use the same number of dimensions for
representation Z and the same hidden size for the downstream MLP for fair comparison. We show
the resulting Pr(∆DP(τ, ϕ) > 0.08) evaluated on the validation sets (or fairness test set for FRG)
for both the Adult and the UTK-Face datasets in Fig. 5.

L ABLATION STUDY

We conduct an ablation study on FRG with the practical adjustments (Sec. 6) with two changes:
(1) removing the fairness test component, (2) modifying the candidate selection process. Instead of
using Ûϵ(ϕ,Dc) ≤ 0 as an optimization constraint, where Ûϵ(ϕ,Dc) is a predicted high-confidence
upper bound on g̃′ϵ(ϕ) (Sec. 4.2), we only evaluate the expectation of g̃′ϵ(ϕ) using candidate selection
data Dc. Formally, the ablation solves the following constrained optimization problem using the
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Figure 6: Ablation study on FRG with the practical adjustments (Sec. 6) using the adult dataset. We include
the fourth plot which shows the probabilities the constraint g̃′ϵ(ϕ) ≤ 0 is violated. See Appendix L for discus-
sion.

ProbabilityAverage AUC Probability of Solut ion Probability
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Figure 7: Ablation study on FRG with the practical adjustments (Sec. 6) using the adult dataset. Different
from Fig. 6, it uses a slightly stricter constraint g̃′ϵ = Ĩ1(Z;S)− 0.3. See Appendix L for discussion.
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KKT conditions:

max
θ,ϕ

Eqϕ(Z|X,S)

[
log pθ(X|Z, S)

]
−KL

(
qϕ(Z|X,S)∥p(Z)

)
(22)

s.t. E
[
g̃′ϵ(ϕ)

]
≤ 0. (23)

We conduct the experiment on the Adult dataset, and we show the results in Fig. 6.

The results indicate that, although the ablated FRG achieves a slightly better AUC, it can produce
representation models that do not meet the ϵ-fairness requirement due to a lack of consistent con-
straints on g̃′ϵ(ϕ) ≤ 0 with high probabilities. This highlights the necessity of a fairness test that
assesses the high-confidence upper bounding of g̃′ϵ(ϕ) to ensure ϵ-fairness in representation models.

We also observe that the original method has the probabilities of returning NSF (the second plot)
that are equivalent to the ablated method’s probabilities of violating the constraint g̃′ϵ(ϕ) ≤ 0 (the
fourth plot). Including the fairness test for the ablated method would result in the same probability
of returning NSF as the original method. This demonstrates that using the constraint E

[
g̃′ϵ(ϕ)

]
≤ 0

and the constraint Ûϵ(ϕ,Dc) for optimization in candidate selection has a similar effect in this
experiment.

We use Ûϵ(ϕ,Dc) because previous work (Thomas et al., 2019; Metevier et al., 2019; Hoag et al.,
2023) has demonstrated its effectiveness in preventing overfitting to training data when aiming to
satisfy constraints with high probability on ground truth data. To assess whether using Ûϵ(ϕ,Dc)

provides an advantage, we evaluate FRG using a more stringent constraint, g̃′ϵ(ϕ) := Ĩ1(Z;S)−0.3,
as shown in the results in Fig. 7. As expected, with the smallest data size, because of a stricter
constraint, FRG is more likely to return NSF (the second plot) while the ablated FRG achieves a
lower probability of ∆DP(τ, ϕ) > 0.08 (the third plot). However, we observe on the fourth plot that
the ablated FRG violates g̃′ϵ(ϕ) ≤ 0 with a large probability, even larger than the probability that
the original FRG returns NSF. This observation may be explained by the hypothesis that using the
constraint E

[
g̃′ϵ(ϕ)

]
≤ 0 can lead to overfitting on the training data and does not provide a high

probability that the constraint g̃′ϵ(ϕ) ≤ 0 will be satisfied on future unseen data. For future work, we
will investigate whether there can be better alternative constraints than Ûϵ(ϕ,Dc) ≤ 0 in candidate
selection to find candidate solutions that are likely to pass the fairness test while achieving better
expressiveness.
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