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Abstract

Predicting the binding structure of a small molecule ligand to a protein—a task
known as molecular docking—is critical to drug design. Recent deep learning meth-
ods that treat docking as a regression problem have decreased runtime compared to
traditional search-based methods but have yet to offer substantial improvements in
accuracy. We instead frame molecular docking as a generative modeling problem
and develop DIFFDOCK, a diffusion generative model over the non-Euclidean
manifold of ligand poses. To do so, we map this manifold to the product space
of the degrees of freedom (translational, rotational, and torsional) involved in
docking and develop an efficient diffusion process on this space. Empirically,
DIFFDOCK obtains a 38% top-1 success rate (RMSD<2Å) on PDBBind, signifi-
cantly outperforming the previous state-of-the-art of traditional docking (23%) and
deep learning (20%) methods. Moreover, DIFFDOCK has fast inference times and
provides confidence estimates with high selective accuracy.

1 Introduction

Biological mechanisms are mediated by proteins, whose functions may be modulated by small
molecule ligands (such as drugs) that bind to them. Thus, a crucial task in computational drug design
is molecular docking—predicting the position, orientation, and conformation of a ligand when bound
to a target protein—from which the effect of the ligand (if any) might be inferred. Recent works [1, 2]
have developed deep learning models to predict the binding pose in one shot, framing docking as a
regression problem. However, we argue (Appendix B) that common molecular docking applications
and evaluation metrics better correspond to maximizing the likelihood of the data under a generative
process. We thus frame molecular docking as a generative modeling problem—given a ligand and
target protein structure, we learn a distribution over ligand poses.

We develop docking diffusion (DIFFDOCK), a diffusion generative model (DGM) over the space
of ligand poses for molecular docking. We define a diffusion process over the degrees of freedom
involved in docking: the position of the ligand relative to the protein (locating the binding pocket),
its orientation in the pocket, and the m torsion angles describing its conformation. While DGMs
have been applied to other problems in molecular machine learning [3, 4, 5], existing approaches are
ill-suited for molecular docking, where the space of ligand poses lies near an (m+ 6)-dimensional
submanifoldM⊂ R3n. To develop DIFFDOCK, we recognize that the docking degrees of freedom
defineM as the space of poses accessible via a set of allowed ligand pose transformations. We
use this idea to map elements in M to the product space of the groups corresponding to those
transformations, where a DGM can be developed and trained more efficiently. We then train a
confidence model to rank the DGM samples and select the final prediction.

Empirically, on the standard blind docking benchmark PDBBind, DIFFDOCK achieves 37% of top-1
predictions with ligand root mean square distance (RMSD) below 2Å, nearly doubling performance
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Figure 1: DIFFDOCK’s diffusion generative process. Initial poses are randomly sampled before the
score model updates their location, rotation, and torsion angles in each denoising step to produce
docking candidates.

of the previous state-of-the-art deep learning model (20%). DIFFDOCK also significantly outperforms
state-of-the-art classical search-based docking methods (23%), while still being significantly faster.

2 Method

A ligand pose is an assignment of atomic positions in R3, so in principle we can regard a pose x as
an element in R3n, where n is the number of atoms. However, this encompasses far more degrees
of freedom than are relevant in molecular docking. Traditional docking methods, as well as most
ML ones, take as input a seed conformation c ∈ R3n of the ligand in isolation, and change only the
relative position and the torsion degrees of freedom in the final bound conformation. The space of
ligand poses consistent with c is, therefore, a (m+ 6)-dimensional submanifoldMc ⊂ R3n, where
m is the number of rotatable bonds. We follow this paradigm of taking as input a seed conformation
c, and formulate molecular docking as learning a probability distribution pc(x | y) over the manifold
Mc, conditioned on a protein structure y.

DGMs on submanifolds have been formulated by [6] in terms of projecting a diffusion in ambient
space onto the submanifold. However, the kernel p(xt | x0) of such diffusion is not available
in closed form and must be sampled numerically with a geodesic random walk, making training
very inefficient. We instead define a one-to-one mapping to another, “nicer” manifold where the
diffusion kernel can be sampled directly, and develop a DGM in that manifold. To start, we restate
the discussion in the last paragraph as follows: Any ligand pose consistent with a seed conformation
be reached by a combination of (1) ligand translations (2) ligand rotations and (3) changes to torsion
angles. This suggests that given a continuous family of ligand pose transformations corresponding to
the m + 6 degrees of freedom, a distribution onMc can be lifted to a distribution on the product
manifold of the corresponding groups.

2.1 Ligand Pose Transformations

We associate translations of ligand position with the 3D translation group T(3), rigid rotations of the
ligand with the 3D rotation group SO(3), and changes in torsion angles at each rotatable bond with a
copy of the 2D rotation group SO(2). More formally, we define operations of each of these groups
on a ligand pose c ∈ R3n. The translation Atr : T(3)× R3n → R3n is defined straightforwardly as
Atr(r,x)i = xi + r using the isomorphism T(3) ∼= R3 and where xi ∈ R3 is the position of the ith
atom. Similarly, the rotation Arot : SO(3)×R3n → R3n is defined by Arot(R,x)i = R(xi− x̄) + x̄
where x̄ = 1

n

∑
xi, corresponding to rotations around the (unweighted) center of mass of the ligand.

Many valid definitions of a change in torsion angles are possible, as the torsion angle around
any bond (ai, bi) can be updated by rotating the ai side, the bi side, or both. However, we can
disentangle changes in torsion angles from rotations or translations by defining them to cause a
minimal perturbation (in an RMSD sense) to the structure:
Definition. Let Bk,θk(x) ∈ R3n be any valid torsion update by θk around the kth rotatable bond
(ak, bk). We define Ator : SO(2)m × R3n → R3nsuch that

Ator(θ,x) = RMSDAlign(x, (B1,θ1 ◦ · · ·Bm,θm)(x)) (1)
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where θ = (θ1, . . . θm) and RMSDAlign(x,x′) = argminx†∈{gx′|g∈SE(3)} RMSD(x,x†)

This means that we apply all the m torsion updates in any manner, and then perform a global RMSD
alignment with the unmodified pose. The definition is motivated by ensuring that the infinitesimal
effect of a torsion is orthogonal to any rototranslation, which has a pleasing physical interpretation as
inducing no linear or angular momentum (Appendix A):
Proposition 1. Let x(t) := Ator(tθ,x) for some θ and where tθ = (tθ1, . . . tθm). Then the linear
and angular momentum are zero: d

dt x̄|t=0 = 0 and
∑
i(xi − x̄)× d

dtxi|t=0 = 0 where x̄ = 1
n

∑
i x.

Now consider the product space P = T3 × SO(3)× SO(2)m and define A : P× R3n → R3n as

A((r, R,θ),x) = Atr(r, Arot(R,Ator(θ,x))) (2)

These definitions collectively provide the sought-after product space corresponding to the docking
degrees of freedom. Indeed, for a seed ligand conformation c, we can formally define the space of
ligand posesMc = {A(g, c) | g ∈ P}, which corresponds precisely to the intuitive notion of the
space of ligand poses that can be reached by rigid-body motion plus torsion angle flexibility.

2.2 Diffusion on the Product Space

We now proceed to show how the product space can be used to learn a DGM over ligand poses in
Ms. First, we need a theoretical result (proof in Appendix A):
Proposition 2. For a given seed conformation c, the map A(·, c) : P→Mc is a bijection.

which means that the inverse A−1
c :Mc → P given by A(g, c) 7→ g maps ligand poses x ∈Mc to

points on the product space P. We are now ready to develop a diffusion process on P.

[6] established that the DGM framework transfers straightforwardly to Riemannian manifolds.
Thus, to implement a diffusion model on P, it suffices to develop a method for sampling from
and computing the score of the diffusion kernel on P. Since P is a product manifold, the forward
diffusion proceeds independently in each manifold [7], and the tangent space is a direct sum:
TgP = TrT3 ⊕ TRSO(3)⊕ TθSO(2)m ∼= R3 ⊕ R3 ⊕ Rm where g = (r, R,θ). Thus, it suffices to
sample from the diffusion kernel and regress against its score in each group independently.

In all three groups, we define the forward SDE as dx =
√
dσ2(t)/dt dw where σ2 = σ2

tr, σ
2
rot, or

σ2
tor for T(3), SO(3), and SO(2)m respectively and where w is the corresponding Brownian motion.

Since T(3) ∼= R3, the translational case is trivial and involves sampling and computing the score of
a standard Gaussian with variance σ2(t). The diffusion kernel on SO(3) is given by the IGSO(3)
distribution [8, 9], which can be sampled in the axis-angle parameterization by sampling a unit vector
ω̂ ∈ so(3) uniformly and random angle ω ∈ [0, π] according to

p(ω) =
1− cosω

π
f(ω) where f(ω) =

∞∑
l=0

(2l + 1) exp(−l(l + 1)σ2)
sin((l + 1/2)ω)

sin(ω/2)
(3)

Further, the score of the diffusion kernel is∇ ln pt(R
′ | R) = ( ddω log f(ω))ω̂ ∈ TR′SO(3), where

R′ = R(ωω̂)R is the result of applying Euler vector ωω̂ to R. The score computation and sampling
can be accomplished efficiently by precomputing the truncated infinite series and interpolating the
CDF of p(ω), respectively. Finally, the SO(2)m group is diffeomorphic to the torus Tm, on which
the diffusion kernel is a wrapped normal distribution with variance σ2(t). This can be sampled
directly and the score can be precomputed as a truncated infinite series [5].

2.3 Training, Inference and Architecture

Diffusion model. Although we have defined the diffusion kernel and score matching objectives on
P, we nevertheless develop the training and inference procedures to operate on ligand poses in 3D
coordinates directly. Providing the full 3D structure, to the score model allows it to reason about
physical interactions using SE(3) equivariant models, not be dependent on arbitrary definitions of
torsion angles [5] and better generalize to unseen complexes.

The training and inference procedures technically depend on the choice of seed conformation c used
to define the mapping betweenMc and the product space. However, providing a definite choice of c

3



to the score model introduces an arbitrary inference-time parameter that may affect the final predicted
distribution, which is undesirable. Thus, we develop approximate training and inference procedures
that remove the dependence on the c; intuitively, these assume that updates to points in the product
space P can be applied to ligand poses inMc directly. While these are only an approximation of the
theoretically correct procedures, we find that they work well in practice (Appendix C).

Confidence model. Once the diffusion model is trained, in order to collect training data for the
confidence model, we run the diffusion model to obtain a set of candidate poses for every training
example and generate labels by testing whether or not each pose has RMSD below 2Å. The confidence
model is then trained with cross-entropy loss to correctly predict the binary label for each pose.
During inference, the diffusion model is run to generate N poses in parallel, which are passed to the
confidence model that ranks them based on its confidence that they have an RMSD below 2Å.

Model Architecture We construct the score model s(x,y, t) and the confidence model d(x,y) to
take as input the current ligand pose x and protein structure y in 3D space. The score model and
confidence model have similar architectures based on SE(3)-equivariant convolutional networks.
The output of the score model must be in the tangent space TrT3 ⊕ TRSO(3)⊕ TθSO(2)m. The
space TrT3

∼= R3 corresponds to translation vectors and TRSO(3) ∼= R3 to rotation (Euler) vectors,
both of which are SE(3)-equivariant. Finally, TθSO(2)m corresponds to scores on SE(3)-invariant
quantities. The architectural components are detailed in Appendix D.

3 Experiments

Table 1: PDBBind blind docking. Percentage of predictions with RMSD < 2Å and the median
RMSD. For our method in parenthesis we specify the number of sampled poses.

Top-1 RMSD (Å) Top-5 RMSD (Å) Average
Method %<2 Med. %<2 Med. Runtime (s)

QVINAW [10] 20.9 7.7 49*
GNINA [11] 22.9 7.7 32.9 4.5 127
SMINA [12] 18.7 7.1 29.3 4.6 126*
GLIDE [13] 21.8 9.3 1405*
EQUIBIND [1] 5.5 6.2 - - 0.04
TANKBIND [2] 20.4 4.0 24.5 3.4 0.7/2.5

DIFFDOCK (10) 34.5±0.3 3.61±0.05 40.1±1.1 2.79±0.09 10
DIFFDOCK (40) 37.5±0.5 3.46±0.04 43.3±0.5 2.53±0.05 40

Experimental setup. We evaluate our method on the complexes from PDBBind [14], a large
collection of protein-ligand structures collected from PDB [15], which was used with time-based
splits to benchmark many previous works [1, 16, 2]. We compare DIFFDOCK with state-of-the-art
scoring methods SMINA [12], QuickVina-W [10], GLIDE [13], and GNINA [11] and the recent
deep learning methods EquiBind and TANKBind presented above. Extensive details about the
experimental setup, data, baselines, and implementation are in Appendix E.2.

Docking accuracy. As the results of Table 1 show, DIFFDOCK significantly outperforms all previous
methods. In particular, DIFFDOCK obtains an impressive 36.6% top-1 RMSD below 2Å,vastly
surpassing the performance of state-of-the-art commercial software such as GLIDE (21.8%) and the
previous state-of-the-art deep learning method TANKBind (20.4%).

4 Conclusion

We presented DIFFDOCK, a diffusion generative model tailored to the task of molecular docking,
representing a paradigm shift from previous regression-based deep learning approaches. To produce
a fast and accurate generative model, we designed a diffusion process over the manifold describing
the main degrees of freedom of the task. Empirically, DIFFDOCK outperforms the state-of-the-art
by large margins on PDBBind. Thus, DIFFDOCK can offer great value for many existing real-world
pipelines and opens up new avenues of research on similar ideas in protein-protein docking.
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A Proofs

A.1 Proof of Proposition 1

Proposition 1. Let x(t) := Ator(tθ,x) for some θ and where tθ = (tθ1, . . . tθm). Then the linear
and angular momentum are zero: d

dt x̄|t=0 = 0 and
∑
i(xi − x̄)× d

dtxi|t=0 = 0 where x̄ = 1
n

∑
i x.
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Proof. Let x(t) = R(t)(B(tθ,x) − x̄0) + x̄0 + p(t) where B(tθ, ·) = B1,tθ1 ◦ · · ·Bm,tθm and
R(t),p(t) are the rotation (around x̄0 := x̄(0)) and translation associated with the optimal alignment
between B(tθ,x) and x. By definition of RMSD, we have

||x(t)− x(0)|| = min
R,p
||R(t)(B(tθ,x(0))− x̄0) + x̄0 + p(t)− x(0)|| (4)

which, in the limit of t→ 0, becomes∣∣∣∣∣∣∣∣ ddtx(t)
∣∣∣∣∣∣∣∣2
t=0

= min
R,p

∣∣∣∣∣∣∣∣ ddt (R(t)(B(tθ,x(0))− x̄0) + p(t))

∣∣∣∣∣∣∣∣2
t=0

(5)

The derivative in the LHS of Equation 5 at t = 0 is

R′(t)(x− x̄) +B′(tθ,x(0)) + p′(t) (6)

and represents the instantaneous velocity of the points xi at t = 0. Denoting ri = xi − x̄0, our
objective is to minimize

∑
i ||r′i||

2. Then, if we describe R′(t)(x − x̄0) = R′(t)r by an angular
velocity ω and abbreviate B′(tθ,x(0))i := bi and p′ = v, we have∑

i

∣∣∣∣r′i∣∣∣∣2 =
∑
i

(bi + ω × ri + v) · (bi + ω × ri + v)

=
∑
i

[
||bi||2 + 2bi · (ω × ri) + 2bi · v + (ω × ri) · (ω × ri) + 2(ω × ri) · v + ||v||2

]
=
∑
i

||bi||2 + 2ω ·
∑
i

(ri × bi) + 2

(∑
i

bi

)
· v + n ||v||2 + ωTI(r)ω

(7)
where we have used the fact that

∑
i ri = 0 and where I(r) = (

∑
i ri · ri) I −

∑
i rir

T
i is the 3× 3

inertia tensor. Then setting gradients with respect to v,ω gives

v = − 1

n

∑
i

bi and ω = −I(r)−1

(∑
i

ri × bi

)
(8)

Now with r′i = bi + ω × ri + v we evaluate the linear momentum

1

n

∑
i

r′i =
1

n

(∑
i

bi + ω ×
∑
i

ri + nv

)
= 0 (9)

Similarly, we evaluate the angular momentum∑
i

ri × r′i =
∑
i

ri × bi +
∑
i

ri × (ω × ri) +
∑
i

ri × v

=
∑
i

ri × bi + I(r)ω = 0
(10)

Thus, the linear and angular momentum are zero at t = 0 for arbitrary x(0).

Note that since we did not use the particular form of B(tθ,x) in the above proof, we have shown
that RMSD alignment can be used to disentangle rotations and translations from the infinitesimal
action of any arbitrary function.

A.2 Proof of Proposition 2

Proposition 2. For a given seed conformation c, the map A(·, c) : P→Mc is a bijection.

Proof. Since we definedMc = {A(g, c) | g ∈ P}, A(·, c) is automatically surjective. We now show
that it is injective. Assume for the sake of contradiction that A(·, c) is not injective, so that there exist
elements of the product space g1, g2 ∈ P with g1 ̸= g2 but with A(g1, c) = A(g2, c) = c′. That is,

Atr(r1, Arot(R1, Ator(θ1, c))) = Atr(r2, Arot(R2, Ator(θ2, c))) (11)
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which we abbreviate as c(1) = c(2). Since only Atr changes the center of mass
∑
i ci/n, we have∑

i c
(1)
i /n =

∑
i ci/n+r1 and

∑
i c

(2)
i /n =

∑
i ci/n+r2. However, since c(1) = c(2), this implies

r1 = r2. Next, consider the torsion angles τ1 = (τ
(1)
1 , . . . τ

(1)
m ) of c(1) corresponding to some choice

of dihedral angles at each rotatable bond. Because Atr and Arot are rigid-body motions, only Ator

changes the dihedral angles; in particular, by definition we have τ (1)i
∼= τi + θ

(1)
i mod 2π and

τ
(2)
i
∼= τi+θ

(2)
i mod 2π for all i = 1, . . .m. However, because τ (1)i = τ

(2)
i , this means θ(1)i ∼= θ

(2)
i

for all i and therefore θ1 = θ2 (as elements of SO(2)m). Now denote c⋆ = Ator(θ1, c) = Ator(θ2, c)
and apply Atr(−r1, ·) = Atr(−r2, ·) to both sides of Equation 11. We then have

Arot(R1, c
⋆) = Arot(R2, c

⋆) (12)

which further leads to
c⋆ − c̄⋆ = R−1

1 R2(c
⋆ − c̄⋆) (13)

In general, this does not imply that R1 = R2. However, R1 ̸= R2 is possible only if c⋆ is degenerate,
in the sense that all points are collinear along the shared axis of rotation of R1, R2. However, in
practice conformers never consist of a collinear set of points, so we can safely assume R1 = R2.
We now have (r1, R1,θ1) = (r2, R2,θ2), or g1 = g2, contradicting our initial assumption. We thus
conclude that A(·, c) is injective, completing the proof.

B Docking as Generative Modeling

Although EquiBind and other ML methods have provided strong runtime improvements by avoiding
an expensive optimization process over ligand poses, their performance has not reached yet that of
traditional methods. As our analysis below argues, this may be caused by the models’ uncertainty
and the optimization of an objective function that does not correspond with how molecular docking is
used and evaluated in practice.

Molecular docking objective. Molecular docking plays a critical role in drug discovery because the
prediction of the 3D structure of a bound protein-ligand complex enables further computational and
human expert analyses on the strength and properties of the binding interaction. Therefore, a docked
prediction is only useful if its deviation from the true structure does not significantly affect the output
of such analysis. Concretely, a prediction is considered acceptable when the distance between the
structures (measured in terms of ligand RMSD) is below some small tolerance on the order of the
length scale of atomic interactions (a few angstroms). Consequently, the standard evaluation metric
used in the field has been the percentage of predictions with a ligand RMSD (relative to the ground
truth) within some value ϵ.

However, the objective of maximizing the proportion of predictions with RMSD within some tolerance
ϵ is not differentiable and therefore cannot be used for the training of models with stochastic gradient
descent. Instead, we observe that maximizing the expected proportion of predictions with RMSD < ϵ
corresponds to maximizing the likelihood of the true structure under the model’s output distribution,
in the limit as ϵ goes to 0.

Generative model. This observation motivates training a generative model to minimize an upper
bound on the negative log-likelihood of the observed structures under the model’s distribution. Thus,
we view molecular docking as the problem of learning a distribution over ligand poses conditioned
on the protein structure and develop a diffusion generative model over this space.

Confidence model. With a trained diffusion model, it is possible to sample an arbitrary number of
ligand poses from the posterior distribution of poses according to the model. However, researchers
are often interested in seeing only one or a small number of predicted poses for downstream analysis
and an associated confidence measure2. Thus, we train a confidence model over the poses sampled by
the diffusion model and ranks them based on its confidence they are within the error tolerance. The
top-ranked ligand pose and the associated confidence are then taken as DIFFDOCK’s top-1 prediction
and the confidence score.

Problem with regression methods. The difficulty with the development of deep learning models
for molecular docking lies in the intrinsic aleatoric uncertainty on the pose often present and the

2For example, the pLDDT confidence score of AlphaFold2 [17] has had a very significant impact in many
applications [18, 19].
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TANKBindCrystal EquiBind DiffDock samples DiffDock top-1

Figure 2: Left: Visual diagram of the advantage of generative models over regression models. Given
uncertainty in the correct pose (represented by the orange distribution), regression models tend
to predict the mean of the distribution, which may lie in a region of low density. Center: when
there is a global symmetry in the protein (aleatoric uncertainty), EquiBind places the molecule in
the center while DIFFDOCK is able to sample all the true poses. Right: even in absence of strong
aleatoric uncertainty, the epistemic uncertainty causes EquiBind’s prediction to have steric clashes
and TankBind’s to have many self-intersections. DIFFDOCK top-1 indicates the sample with the
highest confidence, while DIFFDOCK samples the other diffusion model samples.

complexity of the task compared with the limited model capacity and data available (epistemic
uncertainty). Therefore, given the available co-variate information (only protein structure and ligand
identity), any method will be unsure how to favor the correct among many viable alternative poses.
Any regression-style method that is forced to select a single configuration that minimizes the expected
square error would learn to predict the (weighted) mean of such alternatives. In contrast, a generative
model with the same co-variate information would instead aim to capture the distribution over the
alternatives, populating all/most of the significant modes even if similarly unable to distinguish
the correct target. This behavior, illustrated in Figure 2, causes the regression-based models to
produce significantly more physically implausible poses than our method. In particular, we observe
frequent steric clashes (e.g., 26% of EquiBind’s predictions) and self-intersections in EquiBind’s and
TANKBind’s predictions (Figures 3 and 6). We found no intersections in DIFFDOCK’s predictions.
Visualizations and quantitative evidence of these phenomena are in Appendix F.1.

C Training and Inference

In this section we present the training and inference procedures of the diffusion generative model.
First, however, there are a few subtleties of the generative approach to molecular docking that are
worth mentioning. Unlike the standard generative modeling setting where the dataset consists of
many samples drawn from the data distribution, each training example (x⋆,y) of protein structure y
and ground-truth ligand pose x⋆ is the only sample from the corresponding conditional distribution
px⋆(· | y) defined overMx⋆ . Thus, the innermost training loop iterates over distinct conditional
distributions px⋆(· | y), along with a single sample from that distribution, rather than over samples
from a common data distribution pdata(x).

As discussed in Section 2, during inference c is the ligand structure generated with a method such
as RDKit. However, during training we requireMc =Mx⋆ in order to define a bijection between
c ∈Mx⋆ and P. If we take c ∈Mx⋆ , there will be a distribution shift between the manifoldsMc

considered at training time, and those considered at inference time. To circumvent this issue, at
training time we predict c with RDKit and replace x⋆ with argminx†∈Mc

RMSD(x⋆,x†) using the
conformer matching procedure described in [5].

The above paragraph may be rephrased more intuitively as follows: during inference, the generative
model docks a ligand structure generated by RDKit, keeping its non-torsional degrees of freedom
(e.g., local structures) fixed. At training time, however, if we train the score model with the local
structures of the ground truth pose, this will not correspond to the local structures seen at inference
time. Thus, at training time we replace the ground truth pose by generating a ligand structure with
RDKit and aligning it to the ground truth pose while keeping the local structures fixed.
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With these preliminaries, we now continue to the full procedures. The training and inference
procedures of a score-based diffusion generative model on a Riemannian manifold consist of (1)
sampling and regressing against the score of the diffusion kernel during training; and (2) sampling a
geodesic random walk with the score as a drift term during inference [6]. Because we have developed
the diffusion process on P but continue to provide the score model with elements inMc ⊂ R3n, the
full training and inference procedures involve repeatedly interconverting between the two spaces
using the bijection given by the seed conformation c.

Algorithm 1: Training procedure (single epoch)
Input: Training pairs {(x⋆,y)}, RDKit predictions {c}
foreach c,x⋆,y do

Let x0 ← argminx†∈Mc
RMSD(x⋆,x†);

Compute (r0, R0,θ0)← A−1
c (x0);

Sample t ∼ Uni([0, 1]);
Sample ∆r,∆R,∆θ from diffusion kernels ptr

t (· | 0), prot
t (· | 0), ptor

t (· | 0);
Set rt ← r0 +∆r;
Set Rt ← (∆R)R0;
Set θt ← θ0 +∆θ mod 2π;
Compute xt ← A((rt, Rt,θt), c);
Predict scores α ∈ R3, β ← R3, γ ∈ Rm = s(xt, c,y, t) ;
Take optimization step on loss
L = ||α−∇ptr

t (∆r | 0)||2 + ||β −∇prot
t (∆R | 0)||2 + ||γ −∇ptor

t (∆θ | 0)||2

Algorithm 2: Inference procedure
Input: RDKit prediction c, protein structure y (both centered at origin)
Output: Sampled ligand pose x0

Sample θN ∼ Uni(SO(2)m), RN ∼ Uni(SO(3)), rN ∼ N (0, σ2
tor(T ));

Let xN = A((rN , RN ,θN ), c);
for n← N to 1 do

Let t = n/N and ∆σ2
tr = σ2

tr(n/N)− σ2
tr((n− 1)/N) and similarly for ∆σ2

rot,∆σ
2
tor;

Predict scores α ∈ R3, β ∈ R3, γ ∈ Rm ← s(xn, c,y, t);
Sample ztr, zrot, ztor from N (0,∆σ2

tr),N (0,∆σ2
rot),N (0,∆σ2

tor) respectively;
Set rn−1 ← r0 +∆σ2

trα+ ztr;
Set Rn−1 ← R(∆σ2

rotβ + zrot)Rn);
Set θn−1 ← θn + (∆σ2

torγ + ztor) mod 2π;
Compute xn−1 ← A((rn−1, Rn−1,θn−1), c);

Return x0;

However, as noted in the main text, the dependence of these procedures on the exact choice of
c is potentially problematic, as it suggests that at inference time, the model distribution may be
different depending on the orientation and torsion angles of c. Simply removing the dependence of
the score model on c is not sufficient, since the update steps themselves still occur on P and require
a choice of c to be mapped toMc. However, notice that the update steps—in both training and
inference—consist of (1) sampling the diffusion kernels at the origin; (2) applying these updates to
the point on P; and (3) transferring the point on P toMc via A(·, c). Might it instead be possible to
apply the updates to 3D ligand poses x ∈Mc directly?

It turns out that the notion of applying these steps to ligand poses “directly” corresponds to the
formal notion of group action. The operationsAtr, Arot, Ator that we have already defined are formally
group actions if they satisfy A(·)(g1g2,x) = A(g1, A(g2,x)). While true for Atr, Arot, this is not
generally true for Ator if we take SO(2)m to be the direct product group; however, the approximation
is increasingly good as the magnitude of the torsion angle updates decreases. If we then define P to be
the direct product group of its constituent groups, A is a group action of P onMc, as the operations
of Atr, Arot, Ator commute and are (under the approximation) individually group actions.
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The implication of A being a group action can be seen as follows. Let δ = gbg
−1
a be the update

which brings ga ∈ P to gb ∈ P via left multiplication, and let xa,xb be the corresponding ligand
poses A(ga, c), A(gb, c). Then

xb = A(gbg
−1
a ga, c) = A(δ,xa) (14)

which means that the updates δ can be applied directly to xa using the operation A. The training and
inference procedures then become Algorithm 3 and 4 below. The initial conformer c is no longer
used, except in the the initial steps to define the manifold—to find the closest point to x⋆ in training,
and to sample xN from the prior overMc in inference.

Conceptually speaking, this procedure corresponds to “forgetting” the location of the origin element
on Mc, which is permissible because a change of the origin to some equivalent seed c′ ∈ Mc

merely translates—via right multiplication by A−1
c (c′)—the original and diffused data distributions

on P, but does not cause any changes onMc itself. The training and inference routines involve
updates—formally left multiplications—to group elements, but as left multiplication on the group
corresponds to group actions onMc, the updates can act onMc directly, without referencing the
origin c.

We find that the approximation ofA as a group action works quite well in practice, and use Algorithms
3 and 4 for all training and experiments discussed in the paper. Of course, disentangling the torsion
updates from rotations in a way that makes Ator exactly a group action would justify the procedure
further, and we regard this as a possible direction of future work.

Algorithm 3: Approximate training procedure (single epoch)
Input: Training pairs {(x⋆,y)}, RDKit predictions {c}
foreach c,x⋆,y do

Let x0 ← argminx†∈Mc
RMSD(x⋆,x†);

Sample t ∼ Uni([0, 1]);
Sample ∆r,∆R,∆θ from diffusion kernels ptr

t (· | 0), prot
t (· | 0), ptor

t (· | 0);
Compute xt ← A((∆r,∆R,∆θ),x0);
Predict scores α ∈ R3, β ← R3, γ ∈ Rm = s(xt,y, t) ;
Take optimization step on loss
L = ||α−∇ptr

t (∆r | 0)||2 + ||β −∇prot
t (∆R | 0)||2 + ||γ −∇ptor

t (∆θ | 0)||2

Algorithm 4: Approximate inference procedure
Input: RDKit prediction c, protein structure y (both centered at origin)
Output: Sampled ligand pose x0

Sample θN ∼ Uni(SO(2)m), RN ∼ Uni(SO(3)), rN ∼ N (0, σ2
tor(T ));

Let xN = A((rN , RN ,θN ), c);
for n← N to 1 do

Let t = n/N and ∆σ2
tr = σ2

tr(n/N)− σ2
tr((n− 1)/N) and similarly for ∆σ2

rot,∆σ
2
tor;

Predict scores α ∈ R3, β ∈ R3, γ ∈ Rm ← s(xn,y, t);
Sample ztr, zrot, ztor from N (0,∆σ2

tr),N (0,∆σ2
rot),N (0,∆σ2

tor) respectively;
Set ∆r← r0 +∆σ2

trα+ ztr;
Set ∆R← R(∆σ2

rotβ + zrot);
Set ∆θ ← ∆σ2

torγ + ztor;
Compute xn−1 ← A((∆r,∆R,∆θ),xn);

Return x0;

D Architecture Details

We use convolutional networks based on tensor products of irreducible representations (irreps)
of SO(3) [20] as architecture for both the score and confidence models. In particular, these are
implemented using the e3nn library [21]. Below, ⊗w refers to the spherical tensor product of irreps
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with path weights w and ⊕ refers to normal vector addition (with possibly padded inputs). Features
have multiple channels for each irrep. Both the architectures can be decomposed in three main parts:
embedding layer, interaction layers and output layer. We outline each of them below.

D.1 Embedding layer

Geometric heterogeneous graph. Structures are represented as heterogeneous geometric graphs with
nodes representing ligand (heavy) atoms, receptor residues (located in the position of the α-carbon
atom) and receptor (heavy) atoms (only for the confidence model). Because of the high number
of nodes involved it is necessary for the graph to be sparsely connected for runtime and memory
constraints. Moreover, sparsity can act as a useful inductive bias for the model, however, it is critical,
for the model to find the right pose, that nodes that might have a strong interaction in the final pose to
be connected during the diffusion process. Therefore, to build the radius graph, we connect nodes
using cutoffs that are dependent on the types of nodes they are connecting:

1. Ligand atoms-ligand atoms, receptor atoms-receptor atoms, and ligand atoms-receptor atoms
interactions all use a cutoff of 5Å, standard practice for atomic interactions. For the ligand
atoms-ligand atoms interactions we also preserve the covalent bonds as separate edges with
some initial embedding representing the bond type (single, double, triple and aromatic). For
receptor atoms-receptor atoms interactions, we limit at 8 the maximum number of neighbors
of each atom. Note that the ligand atoms-receptor atoms only appear in the confidence
model where the final structure is already set.

2. Receptor residues-receptor residues use a cutoff of 15 Å with 24 as the maximum number
of neighbors for each residue.

3. Receptor residues-ligand atoms use a cutoff of 20 + 3 ∗ σtr Å where σtr represents the
current standard deviation of the diffusion translational noise present in each dimension
(zero for the confidence model). Intuitively this guarantees that with high probability any
of the ligand and receptors that will be interacting in the final pose the diffusion model
converges to are connected in the message passing at every step.

4. Finally, receptor residues are connected to the receptor atoms that form the corresponding
amino-acid.

Node and edge featurization. For the receptor residues, we use the residue type as a feature as well
as a language model embedding obtained from ESM2 [22]. The ligand atoms have the following
features: atomic number; chirality; degree; formal charge; implicit valence; the number of connected
hydrogens; the number of radical electrons; hybridization type; whether or not it is in an aromatic
ring; in how many rings it is; and finally, 6 features for whether or not it is in a ring of size 3, 4, 5, 6,
7, or 8. This are concatenated with sinusoidal embeddings of the diffusion time [23] and, in the case
of edges, radial basis embeddings of edge length [24]. These scalar features of each node and edge
are then transformed with learnable two-layer MLPs (different for each node and edge type) into a
set of scalar features that are used as initial representations by the interaction layers.

Notation Let (V, E) represent the heterogeneous graph, with V = (Vℓ,Vr) respectively ligand atoms
and receptor residues (receptor atoms Va, present in the confidence model, are for simplicity not
included here), and similarly E = (Eℓℓ, Eℓr, Erℓ, Err). Let ha be the node embeddings (initially only
scalar channels) of node a, eab the edge embeddings of (a, b), and µ(rab) radial basis embeddings of
the edge length. Let σ2

tr, σ
2
rot, and σ2

tor represent the variance of the diffusion kernel in each of the
three components: translational, rotational and torsional.

D.2 Interaction layers

At each layer, for every pair of nodes in the graph, we construct messages using tensor products of
the current node features with the spherical harmonic representations of the edge vector. The weights
of this tensor product are computed based on the edge embeddings and the scalar features—denoted
h0
a—of the outgoing and incoming nodes. The messages are then aggregated at each node and used
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to update the current node features. For every node a of type ta:

ha ← ha ⊕
t∈{ℓ,r}

BN(ta,t)

(
1

|N (t)
a |

∑
b∈N (t)

a

Y (r̂ab) ⊗ψab
hb

)

with ψab = Ψ(ta,t)(eab,h
0
a,h

0
b)

(15)

Here, t indicates an arbitrary node type, N (t)
a = {b | (a, b) ∈ Etat} the neighbors of a of type t, Y

are the spherical harmonics up to ℓ = 2, and BN the (equivariant) batch normalisation. The orders
of the output are restricted to a maximum of ℓ = 1. All learnable weights are contained in Ψ, a
dictionary of MLPs, which uses different sets of weights for different edge types (as an ordered pair
so four types for the score model and nine for the confidence) and different rotational orders.

D.3 Output layer

The ligand atom representations after the final interaction layer are used in the output layer to
produce the required outputs. This is where the score and confidence architecture differ significantly.
On one hand, the score model’s output is in the tangent space TrT3 ⊕ TRSO(3) ⊕ TθSO(2)m.
This corresponds to having two SE(3)-equivariant output vectors representing the translational and
rotational score predictions and m SE(3)-invariant output scalars representing the torsional score.
For each of these we design final tensor-product convolutions inspired by classical mechanics. On the
other hand, the confidence model outputs a single SE(3)-invariant scalar representing the confidence
score. Below we detail how each of these outputs is generated.

Translational and rotational scores. The translational and rotational score intuitively represent,
respectively, the linear acceleration of the center of mass of the ligand and the angular acceleration of
the rest of the molecule around the center. Considering the ligand as a rigid object and given a set of
forces and masses at each ligand a tensor product convolution between the atoms and the center of
mass would be capable of computing the desired quantities. Therefore, for each of the two outputs,
we perform a convolution of each of the ligand atoms with the (unweighted) center of mass c.

v← 1

|Vℓ|
∑
a∈Vℓ

Y (r̂ca) ⊗ψca ha

with ψca = Ψ(µ(rca),h
0
a)

(16)

We restrict the output of v to a single odd and a single even vectors (for each of the two scores).
Since we are using coarse-grained representations of the protein, the score will neither be even nor
odd, therefore, we sum the even and odd vector representations of v. Finally, the magnitude (but not
direction) of these vectors is adjusted with an MLP taking as input the current magnitude and the
sinusouidal embeddings of the diffusion time. Finally, we (revert the normalization) by multiplying
the outputs by 1/σtr for the translational score and by the expected magnitude of a score in SO(3)
with diffusion parameter σrot (precomputed numerically).

Torsional score. To predict the m SE(3)-invariant scalar describing the torsional score, we use a
pseudotorque layer similar to that of [5]. This predicts a scalar score δτ for each rotatable bond from
the per-node outputs of the atomic convolution layers. For rotatable bond g = (g0, g1) and b ∈ Vℓ, let
rgb and r̂gb be the magnitude and direction of the vector connecting the center of bond g and b. We
construct a convolutional filter Tg for each bond g from the tensor product of the spherical harmonics
with a ℓ = 2 representation of the bond axis r̂g:3

Tg(r̂) := Y 2(r̂g)⊗ Y (r̂) (17)

⊗ is the full (i.e., unweighted) tensor product as described in [25], and the second term contains the
spherical harmonics up to ℓ = 2 (as usual). This filter (which contains orders up to ℓ = 3) is then

3Since the parity of the ℓ = 2 spherical harmonic is even, this representation is indifferent to the choice of
bond direction.
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used to convolve with the representations of every neighbor on a radius graph:

Eτ = {(g, b) | g a rotatable bond, b ∈ Vℓ}
egb = Υ(τ)(µ(rgb)) ∀(g, b) ∈ Eτ

hg =
1

|Ng|
∑
b∈Ng

Tg(r̂gb)⊗γgb hb

with γgb = Γ(egb,h
0
b ,h

0
g0 + h0

g1)

(18)

Here, Ng = {b | (g, b) ∈ Eτ} and Υ(τ) and Γ are MLPs with learnable parameters. Since unlike [5],
we use coarse-grained representations the parity also here is neither even nor odd, the irreps in the
output are restricted to arrays both even h′

g and odd h′′
g scalars. Finally, we produce a single scalar

prediction for each bond:
δτg = Π(h′

g + h′′
g ) (19)

where Π is a two-layer MLP with tanh nonlinearity and no biases. This is also "denormalised"
multiplying by by the expected magnitude of a score in SO(2) with diffusion parameter σtor.

Confidence output. The single SE(3)-invariant scalar representing the confidence score output is
instead obtained by concatenating the even and odd final scalar representation of each ligand atom,
averaging these feature vectors among the different atoms and finally applying a three layers MLP
(with batch normalization).

E Experimental Details

E.1 Experimental Setup

Data. We use the molecular complexes in PDBBind [14] that were extracted from the Protein Data
Bank (PDB) [15]. We employ the time-split of PDBBind proposed by [1] with 17k complexes from
2018 or earlier for training/validation and 363 test structures from 2019. This is motivated by the
further adoption of the same split [2] and the critical assessment of PDBBind splits by [16] who
favor temporal splits over artificial splits based on molecular scaffolds or protein sequence/structure
similarity. For completeness we also report the results on protein sequence similarity splits in
Appendix F.

Metrics. To evaluate the generated complexes we compute the heavy-atom RMSD between the
predicted and the crystal ligand atoms when the protein structures are aligned. To account for
permutation symmetries in the ligand, we use the symmetry-corrected RMSD of sPyRMSD [26]. For
these RMSD values, we report the percentage of predictions that have an RMSD that is less than
2Å. We choose 2Å since much prior work considers poses with an RMSD less that 2Å as "good" or
successful [27, 10, 11]. This is a chemically relevant metric unlike the mean RMSD as detailed in
Appendix B since for further downstream analyses such as determining function changes, a prediction
is only useful below a certain RMSD error threshold. Less relevant metrics such as the mean RMSD
are provided in Appendix F. We report the metrics for the highest ranked prediction as the top-1;
top-5 refers to selecting the best performing pose out of the 5 highest ranked predictions, which can
be important for many applications where multiple predictions are used for downstream tasks.

Implementation. We use Adam [28] as optimizer for the diffusion and the confidence model. The
diffusion model with which we run inference uses the exponential moving average of the weights
during training and we update the moving average after every optimization step with a decay factor
of 0.999. The batchsize is 16. We run inference with 20 denoising steps on 500 validation complexes
every 5 epochs and use the set of weights with the highest percentage of RMSDs less than 2Å as the
final diffusion model. We train on four 48GB RTX A6000 GPUs for 400 epochs (around 9 days). For
inference only a single GPU is required. Scaling up the model size seems to improve performance
and future work could explore whether this trend continues further. For the confidence model uses
the validation cross-entropy loss is used for early stopping and training only takes 70 epochs.

E.2 Baselines: implementation, used scripts, and runtime details

For obtaining the runtimes of the different methods we always used 16 CPUs except for GLIDE
as explained below. The runtimes do not include any preprocessing time for any of the methods.
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For instance, the time that it takes to run P2Rank is not included for TANKBind and P2Rank +
SMINA/GNINA since this receptor preparation only needs to be ran once when docking many ligands
to the same protein. In applications where different receptor are processed (such as reverse screening),
the experienced runtimes for TANKBind and P2Rank + SMINA/GNINA will thus be higher.

We note that for all these baselines we have used the default hyperparameters unless specified
differently below. Modifying some of these hyperparameters (for example the scoring method’s
exhaustiveness) will change the runtime and performance tradeoffs (e.g. if the searching routine is
left running for longer then better poses are likely to be found), however, we leave these analysis to
future work.

SMINA [12] improves Autodock Vina with a new scoring-function and user friendliness. The default
parameters were used with the exception of setting –num_modes 10. To define the search box, we
use the automatic box creation option around the receptor with the default buffer of 4Å on all 6 sides.

GNINA [11] builds on SMINA by additionally using a learned 3D CNN for scoring. The default
parameters were used with the exception of setting –num_modes 10. To define the search box, we
use the automatic box creation option around the receptor with the default buffer of 4Å on all 6 sides.

QuickVina-W [10] extends the speed-optimized QuickVina 2 [27] for blind docking. We reuse the
numbers from [1] which had used the default parameters except for increasing the exhaustiveness to
64.

GLIDE [13] is a strong heavily used commercial docking tool. These methods all use biophysics
based scoring-functions. We reuse the numbers from [1] since we do not have a license. As explained
by [1], the very high runtime of GLIDE with 1405 seconds per complex is partially explained by the
fact that GLIDE only uses a single thread when processing a complex. This fact and the parallelization
options of GLIDE are explained here https://www.schrodinger.com/kb/1165. With GLIDE,
it is possible to start data-parallel processes that compute the docking results for a different complex
in parallel. However, in the mentioned link, it is explained that each process also requires a separate
software license.

EquiBind [1], we reuse the numbers reported in their paper and generate the predictions that we
visualize with their code at https://github.com/HannesStark/EquiBind.

TANKBind [2], we use the code associated with the paper at https://github.com/luwei0917/
TankBind. The runtimes do not include the runtime of P2Rank or any preprocessing steps. In Table 1
we report two runtimes for GPU (0.72/2.5 sec) and CPU (1.95/3.7 sec). The first is the runtime when
making only the top-1 prediction and the second is for producing the top-5 predictions. Producing
only the top-1 predictions is faster since TANKBind produces distance predictions that need to be
converted to coordinates with a gradient descent algorithm and this step only needs to be run once for
the top-1 prediction while it needs to be run 5 times for producing 5 outputs. To obtain our runtimes
we run the forward pass of TANKBind on an RTX A6000 GPU or on an Intel Xeon Gold 6230
CPU with the default batchsize of 5 that is used in their GitHub repository. To compute the time the
distances-to-coordinates conversion step takes, we parallelizes the computation across 16 processes
which we also run on an Intel Xeon Gold 6230 CPU. This way we obtain 0.44 seconds runtime for
the conversion step of the top-1 prediction (averaged over the 363 complexes of the testset).

P2Rank [29], is a tool that predicts multiple binding pockets and ranks them. We use it for running
TANKBind and P2Rank + SMINA/GNINA. We download the program from https://github.
com/rdk/p2rank and run it with its default parameters.

EquiBind + SMINA/GNINA [1], the bounding box in which GNINA/SMINA searches for binding
poses is constructed around the prediction of EquiBind with the –autobox_ligand option of
GNINA/SMINA. EquiBind is thus used to find the binding pocket and SMINA/GNINA to find the
exact final binding pose. We use –autobox_add 10 to add an additional 10Å on all 6 sides of the
bounding box following [1].

P2Rank + SMINA/GNINA. The bounding box in which GNINA/SMINA searches for binding
poses is constructed around the pocket center that P2Rank predicts as the most likely binding pocket.
P2Rank is thus used to find the binding pocket and SMINA/GNINA to find the exact final binding
pose. The diameter of the search box is the diameter of a ligand conformer generated by RDKit with
an additional 10Å on all 6 sides of the bounding box.
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F Additional Results

F.1 Physically plausible predictions

Table 2: Steric clashes. Percentage of test complexes for which the predictions of the different
methods exhibit steric clashes. Biophysics scoring-function based methods never produced steric
clashes.

Top-1 Top-5
Method % steric clashes % steric clashes

EQUIBIND 26 -
TANKBIND 7.2 4.4

DIFFDOCK 4.4 0.3

Due to the averaging phenomenon of regression based methods such as TANKBind and EquiBind,
they make predictions at the mean of the distribution. If aleatoric uncertainty is present, such as in
case of symmetric complexes, this leads to predicting the ligand to be at an un-physical state in the
middle of the possible binding pockets as visualized in Figure 7. The Figure also illustrates how
DIFFDOCK does not suffer from this issue and is able to accurately sample from the modes.

In the scenario when epistemic uncertainty about the correct ligand conformation is present, this
often results in "squashed-up" predictions of the regression based methods as visualized in Figure 3.
If there is uncertainty about the correct conformer, the square error minimizing option is to put all
atoms close to the mean.

These averaging phenomena in the presence of either aleatoric or epistemic uncertainty cause the
regression based methods to often generate steric clashes and self intersections. To investigate this
quantitatively, we determine the fraction of test complexes for which the methods exhibit steric
clashes. We define a ligand as exhibiting a steric clash, if one of its heavy atoms is within 0.4Å of a
heavy receptor atom. This cutoff is used by protein quality assessment tools and in previous literature
[30]. Table 2 shows that DIFFDOCK, as a generative model, produces fewer steric clashes than the
regression based baselines. We generally observe no unphysical predictions from DIFFDOCK unlike
the self intersections that, e.g., TANKBind produces (Figure 3) or its incorrect local structures (Figure
4).
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Figure 3: Ligand self-intersections. TANKBind (blue), EquiBind (cyan), DIFFDOCK (red), and
crystal structure (green). Due to the averaging phenomenon that occurs when epistemic uncertainty
is present, the regression based deep learning models tend to produce ligands with atoms that are
close together leading to self-intersections. DIFFDOCK, as a generative model, does not suffer from
this averaging phenomenon and we never found a self-intersection in any of the investigated results
of DIFFDOCK.

Figure 4: Chemically plausible local structures. TANKBind (blue), EquiBind (cyan), and DIFF-
DOCK (red) structures for complex 6g2f. EquiBind (without their correction step) produces very
unrealistic local structures and TANKBind, e.g., produces non-planar aromatic rings. DIFFDOCK’s
local structures are the realistic local structures of RDKit.
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F.2 Further results and selective accuracy

Figure 5-left shows the proportion of RMSDs below an arbitrary threshold ϵ with DIFFDOCK

exceeding previous methods for almost every possible ϵ. With the exception of very small ϵ <1Å
where GLIDE performs better than the other methods because it is the only one directly including
a final energy relaxation of the local structures inside the method, but this final relaxation could be
added to any of the other methods.

As the top-1 results show, DIFFDOCK’s confidence model is very accurate in ranking the sampled
poses for a given complex and picking the best one. We also investigate the selective accuracy of this
score across different complexes, by evaluating how DIFFDOCK’s accuracy increases if it only makes
predictions when the confidence is above a certain threshold, known as selective prediction.

In Figure 5 we plot the "success" rate as we decrease the percentage of complexes for which we
make predictions (selective accuracy), corresponding to increasing confidence threshold. When only
making predictions for the top one-third of complexes in terms of model confidence, the (RMSD
< 2Å)-rate improves from 37% to 85%. Additionally, there is a high Spearman correlation of 0.74
between DIFFDOCK’s confidence and the RMSD. Evidently, the confidence score is informative
for judging the quality of DIFFDOCK’s top-ranked sampled pose and provides a highly valuable
confidence measure for practitioners, a critical factor for many downstream applications.
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Figure 5: Left: cumulative density histogram of the methods’ RMSD. Right: DIFFDOCK’s selective
accuracy, the percentage of predictions with RMSD below 2Å when only making predictions for the
percentage of the dataset on the x-axis for which DIFFDOCK is the most confident.

F.3 Visualizations
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Figure 6: Randomly picked examples. The predictions of TANKBind (blue), EquiBind (cyan),
GNINA (magenta), DIFFDOCK (red), and crystal structure (green). Shown are the predictions once
with the protein and without it below. The complexes were chosen with a random number generator
from the test set. TANKBind often produces self intersections (examples at the top-right; middle-
middle; middle-right; bottom-right). DIFFDOCK and GNINA sometimes almost perfectly predict
the bound structure (e.g., top-middle). The complexes in reading order are: 6p8y, 6mo8, 6pya, 6t6a,
6e30, 6hld, 6qzh, 6hhg, 6qln.
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Figure 7: Symmetric complexes and multiple modes. EquiBind (cyan), DIFFDOCK highest
confidence sample (red), all other DIFFDOCK samples (orange), and the cystal structure (green). We
see that, since it is a generative model, DIFFDOCK is able to produce multiple correct modes and
to sample around them. Meanwhile, as a regression based model, EquiBind is only able to predict
a structure at the mean of the modes. The complexes are unseen during training. The PDB IDs in
reading order: 6agt, 6gdy, 6ckl, 6dz3.
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Figure 8: Generated samples for randomly picked examples. Generated samples after the reverse
diffusion. Shown are DIFFDOCK highest confidence sample (red), all other DIFFDOCK samples
(orange), and the cystal structure (green). The complexes were chosen with a random number
generator from the test set. The complexes in reading order are: 6p8y, 6mo8, 6pya, 6t6a, 6e30, 6hld,
6qzh, 6hhg, 6qln.
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Figure 9: Reverse Diffusion. Reverse diffusion of a randomly picked complex from the test set.
Shown are DIFFDOCK highest confidence sample (red), all other DIFFDOCK samples (orange), and
the cystal structure (green). Shown are the 20 steps of reverse diffusion process (in reading order) of
DIFFDOCK for the complex 6oxx.
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Figure 10: Reverse Diffusion. DIFFDOCK highest confidence sample (red), all other DIFFDOCK
samples (orange), and the cystal structure (green). Shown are the 20 steps of reverse diffusion process
(in reading order) of DIFFDOCK for the complex 6dz3 which was not seen during training.
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