

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ARE SMALL LANGUAGE MODELS THE SILVER BUL- LET TO LOW-RESOURCE LANGUAGES MACHINE TRANSLATION?

Anonymous authors

Paper under double-blind review

ABSTRACT

Small language models (SLMs) represent parameter-efficient variants of large language models, designed to achieve computational efficiency while retaining core linguistic competencies. This study investigates the persistent challenges associated with translation performance in low-resource languages (LRLs) through a systematic evaluation of SLMs across 200 languages. In contrast to prior research, which has only marginally addressed LRL-oriented distillation, this work provides empirical evidence that transferring knowledge from large-scale teacher models to compact SLMs (2B/3B parameters) using predominantly monolingual LRL data yields substantial translation improvements, at times even surpassing models of up to 70B parameters. The primary contributions of this work can be summarized as follows: (1) the introduction of the first comprehensive quantitative benchmark evaluating SLMs over 200 languages with explicit emphasis on LRL limitations; (2) the demonstration that knowledge distillation for LRLs enhances translation quality without provoking catastrophic forgetting, while also elucidating key design priorities—prioritizing full-scale models over LoRA-based strategies, privileging data quality over data volume, and favoring decoder-only architectures as teachers over encoder-decoder frameworks; and (3) the confirmation of the robustness and transferability of these improvements across a wide spectrum of LRLs, thereby establishing a scalable and cost-effective methodology for addressing fairness disparities in multilingual translation. Overall, this study offers a rigorous validation of the feasibility and methodological best practices for applying SLMs in the context of LRLs, thereby laying an empirical foundation for their reliable deployment in low-resource language scenarios ¹.

1 INTRODUCTION

Persistent LRL underperformance Low-resource languages (LRLs) continue to face substantial challenges due to the scarcity of linguistic resources, rooted in socioeconomic, geographical, and political constraints, which limits their representation in both academic and industrial contexts (Nigatu et al., 2024); despite advances in multilingual transfer learning and pretraining approaches (Conneau et al., 2020; Artetxe & Schwenk, 2019), exemplified by No Language Left Behind (NLLB; (Costajussa et al., 2022)), translation quality for LRLs still lags behind that of high-resource languages (HRLs), particularly in sensitive domains such as finance and government, where privacy and offline deployment are crucial Zhong et al. (2024). Transformer-based models (Zhao et al., 2023), whether encoder-decoder with attention (Bahdanau et al., 2015; Vaswani et al., 2017; Naveed et al., 2024) or decoder-only frameworks like GPT (Gao et al., 2022; Hendy et al., 2023), have driven progress through techniques such as back-translation (Sennrich et al., 2016), unsupervised training (Lample et al., 2018), and multilingual initiatives like OPUSMT (Tiedemann & Thottingal, 2020), yet decoder-only models often underperform for LRLs due to English-centric data distributions (Brown et al., 2020; Hasan et al., 2024), leading to inaccuracies and hallucinations (Benkirane et al., 2024), although some evidence suggests they may outperform encoder-decoder methods in certain contexts (Gao et al., 2022; Silva et al., 2024). In general, language models exhibit consistent degradation on

¹Tuned models are openly available. https://anonymous.4open.science/r/mt_luxembourgish-408D

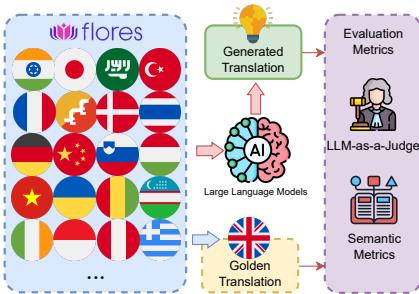
054 LRLs relative to HRLs (Robinson et al., 2023), caused by unbalanced training distributions (Lank-
 055 ford et al., 2021), tokenization biases, and limited exposure to linguistic diversity (Shen et al., 2024),
 056 underscoring the need for targeted data augmentation, domain-specific adaptation, and specialized
 057 fine-tuning to narrow the performance gap (Elsner et al., 2024; Li et al., 2025b).

058 **Costly, slow gigantism** Furthermore, because translation is a highly common and high-frequency
 059 use case across both industry and individual users, inference with very large models (e.g., ChatGPT-
 060 scale systems) is often impractical for academic or industrial deployment due to cost and latency
 061 constraints; however, for Small Language Models (SLMs), encountering LRL inputs substantially
 062 increases hallucination rates, rendering them not only unreliable for translation but also broadly un-
 063 suitable for other applications that contain LRL content. Drawing inspiration from recent work on
 064 grammars versus parallel data (Ayccock et al., 2025), which investigates grammar learning in the
 065 context of extremely low-resource translation, the authors conclude that nearly all models’ under-
 066 standing of low-resource languages stems primarily from parallel corpora rather than from grammatical
 067 descriptions or related sources. In this paper, the following research questions are formulated
 068 to empirically validate and begin to address SLMs in LRLs: **(RQ1)** How effectively can decoder-
 069 only language models address low-resource machine translation, and what performance gaps emerge
 070 across different model scales and languages? **(RQ2)** To what degree does distillation from mono-
 071 lingual low-resource data translate into measurable improvements in smaller large language models
 072 (LLMs) translation quality? **(RQ3)** How do varying supervised fine-tuning (SFT) configurations af-
 073 fect translation quality in low-resource languages, and do these configurations compromise broader
 074 model capabilities or instead yield consistent improvements across diverse LRLs?

075 2 LRLs’ DEFICIENCIES

076 2.1 SITUATION OF LANGUAGE SUPPORT

077 Recent investigations have revealed that although LLMs are increasingly advertised as multilingual,
 078 their effective support in languages is often limited to a subset of HRLs. Moreover, systematic eval-
 079 uations of language-specific performance remain scarce (for example Lai et al. (2024); Marchisio
 080 et al. (2024); Lifewire (2024); Ahuja et al. (2024)). Table 1 summarizes several models included
 081 in our experiments, their approximate parameter sizes, and the estimated number of languages they
 082 reportedly support. These figures are derived from official model documentation, benchmarking
 083 reports, and recent academic studies.



084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 Figure 1: Evaluation pipeline

Model	Size	Languages	Date
GPT-4o-mini	—	~25	Jul. 2024
Llama-3.1-8B-it	8B/3B	~30	Jul. 2024
Llama-3.2-3B-it	3B	~20	Sept. 2024
Mistral-8B-Instruct-2410	8B	~25	Oct. 2024
Phi-3-mini-4k-instruct	4B	~20	Apr. 2024
Phi-3.5-mini-instruct	4B	~20	Aug. 2024
Qwen2.5 Instruct	1.5B/3B	~25	Sept. 2024
Gemma2 Instruct	2B/9B	~20	Jul. 2024

Table 1: Multilingual Support of LLMs

100 Despite these encouraging multilingual claims, the existing literature reveals that rigorous language-
 101 specific performance evaluations, especially for low-resource languages, are insufficient. Most cur-
 102 rent research focuses on high-resource benchmarks, leaving open critical questions about fairness
 103 and the accessibility of LLMs for diverse linguistic communities.

104 2.2 EVALUATING LRLS TRANSLATION ABILITY

105 We use the **FLORES-200** benchmark to systematically assess the performance of LLMs in multilin-
 106 gual machine translation tasks Costa-jussa et al. (2022); Goyal et al. (2021b); Guzmán et al. (2019).

FLORES-200 offers rigorously curated human-validated translation datasets across 200 languages that span diverse linguistic families and writing systems, making it highly effective for evaluating translation quality in high-resource and low-resource linguistic contexts. Our experiments leverage the full FLORES-200 dataset to comprehensively evaluate translation quality across as many languages as possible, emphasizing translations from various source languages into English.

In addition to traditional metrics, we evaluated translation quality using the **LLM-As-A-Judge** (LL-MaaJ) scores (Niklaus et al., 2025), which uses a large LLM to score translations from 0 to 1 based on semantic equivalence and naturalness. A score of 1.0 denotes a perfect translation and 0.0 a totally incorrect one. In practice, we consider a score ≥ 0.8 as indicative of a good translation. Research has shown that LL-MaaJ tolerates synonyms, paraphrases, and cross-linguistic structural variations, enabling it to better assess translation quality when there are multiple valid phrasings or when grammatical and typological differences (e.g., omitted pronouns) are acceptable (Zheng et al., 2023; Piergentili et al., 2025).

Regarding the LLMs investigated, as shown in Figure 1, we systematically traversed prominent proprietary APIs and open source models (refer to Table 1), presenting results using LL-MaaJ metrics with quantitative semantic evaluations. Detailed LL-MaaJ and BLEU scores for all source-to-English translations are provided in the Appendix Table 8 and the Appendix Table 9.

2.3 MODELS PERFORMANCE IN FLORES-200

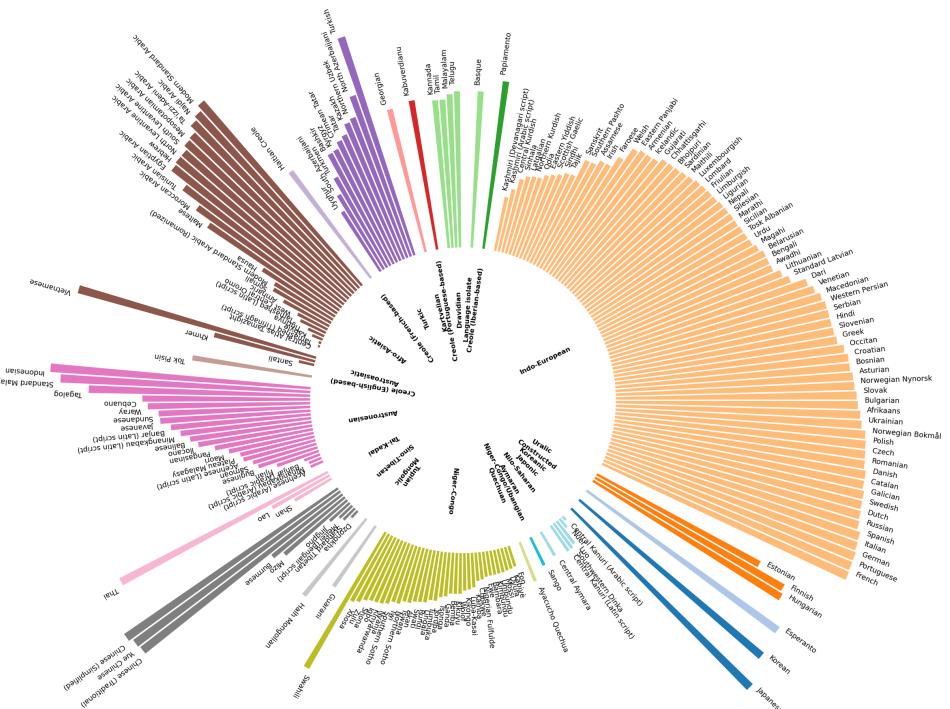


Figure 2: "Low-Resource" Linguistic results grouped by language families

We present the performance distribution in Figure 2, which visualizes more precisely the performance gap of languages across our evaluation set by linguistic family and script, thereby addressing RQ1, and complement this with the regional distribution shown in Figure 7 for finer-grained regional insights. Each bar length is calculated based on the average score, explicitly excluding the GPT4o-mini model's score to identify which LRLs are included in our experiments and how they are situated in the broader typological space.

Each bar in Figure 2 represents one language, grouped by its primary family, with bar length corresponding to the average LL-MaaJ score. The figure reveals that LRLs are not evenly distributed across families: many under-resourced African, Austronesian, and Indigenous American languages cluster toward the lower end of the performance spectrum, while certain Indo-European LRLs (e.g.,

162 Luxembourgish, Maltese) perform moderately better, likely due to greater data availability or proximity
 163 to high-resource relatives.

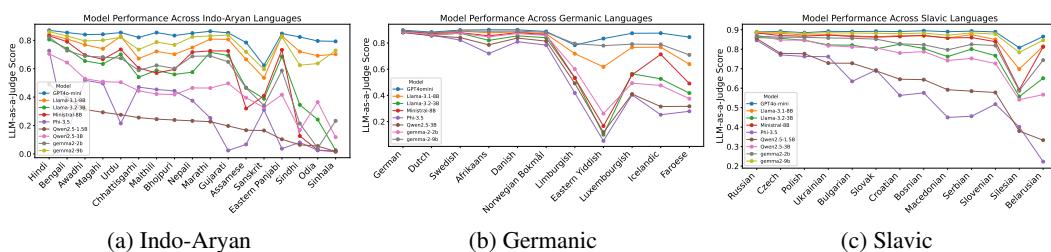
164 The circular layout also highlights structural gaps in the evaluation set. Languages absent from
 165 FLORES-200—such as many North American Indigenous languages—do not appear here, not be-
 166 cause models perform well on them, but because no evaluation data exist. This is particularly rele-
 167 vant for languages with small speaker populations or those concentrated in politically marginalized
 168 communities, which remain invisible in current multilingual benchmarks.

169 Consistent with previous work (Nekoto et al., 2020; Joshi et al., 2020), the lowest scores are observed
 170 for many Niger–Congo, Austronesian, and smaller Afro-Asiatic languages, reflecting the severe data
 171 scarcity. In contrast, LRLs in Eastern Europe and South/Southeast Asia—such as Macedonian or
 172 Sinhala—achieve slightly higher average scores, possibly benefiting from historical ties to better-
 173 supported high-resource languages. However, the overall pattern remains unchanged: LRLs across
 174 all families systematically lag behind high-resource languages, underscoring the need for targeted
 175 data collection, typologically diverse benchmarks, and bias mitigation strategies to ensure equitable
 176 progress in multilingual NLP.

178 2.4 GAP BETWEEN DWARF(SMALLER) AND GIANT LLMs

180 **Small Language Models are consistently bad in LRLs** Across the Indo-Aryan, Germanic, and
 181 Slavic branches in Figure 3 (panels (a)–(c)), we observe a consistent pattern: smaller LLMs suffer
 182 a substantially larger performance drop on LRLs than on high-resource ones, while larger LLMs
 183 degrade far less. Concretely, LRLs such as Sinhala (Indo-Aryan), Luxembourgish (Germanic), and
 184 Silesian (Slavic) exhibit steep declines in smaller models but remain comparatively competitive
 185 in larger models, as visualized in Figure 3. This disparity indicates a systematic bias in current
 186 systems—particularly pronounced in smaller models—toward high-resource languages.

187 **Solving requires training but lacks exploration** Addressing this gap calls for better LRL data
 188 curation, knowledge distillation from larger LLMs, inclusive evaluation suites, and bias-mitigation
 189 strategies to ensure NLP benefits all language communities. According to the Universal Approxima-
 190 tion Theorem (Hornik, 1991), if neural translation is viewed as a linear mapping between semantic
 191 spaces, small networks struggle to capture complex patterns and are more vulnerable to interference
 192 from HRL data. Thus, fine-tuning on high-quality paired data becomes especially crucial for smaller
 193 models, yet there remains a lack of comprehensive research on LRLs in SLMs.



To examine generalizability, we additionally include Ukrainian, Assamese and Khasi (an endangered language), both exhibiting similar linguistic and resource profiles, as supplementary tasks to broaden the scope of the analysis. Furthermore, generating LRL from English is more challenging for LLMs than in the reverse direction of previous research (Howcroft & Gkatzia, 2022). Regarding translation performance, LLMs exhibit a certain degree of fluent translation from LRL to English, but not vice versa (Gao et al., 2020). This asymmetry is also reflected to some extent in the hallucination issues observed when generating Luxembourgish, more details can be found in the appendix E.2.

3.2 DISTILLATIONS AND SOFT-TARGET QUALITY

In our scenario, having only a Luxembourgish corpus without English translations rules out conventional parallel-corpus training approaches, accurately reflecting the typical data situation and model generation of LRLs. To bridge the gap between comprehension and generation in this low-resource scenario, we propose a distillation-based approach. Using a teacher model that demonstrates a robust understanding of Luxembourgish, we can distill its knowledge into a student model using the available LRL single-side corpus. This process is expected to enhance the generation capabilities of the student model, enabling it to produce high-quality Luxembourgish output despite the limited data, and thus address the core challenge of low-resource language translation. According to further human labeling of our GPT-4o distillation dataset in Luxembourgish to English translation, **92%** of our samples were marked as fully correct.

3.3 DATA COLLECTION AND AUGMENTATIONS

For the training data set, we constructed a Luxembourg data set using multiple sources, including the LuxemBERT corpus, example sentences in the Luxembourg Online Dictionary (LOD) dataset², and additional news articles collected from previous research published data on RTL Ltzeburg³, following the LuxemBERT work.

Previous research has demonstrated that integrating dictionary entries can effectively enrich low-resource translation systems by providing explicit lexical alignments and clarifying semantic nuances. For example, Ghazvininejad’s work improved translation fidelity in settings where parallel data is scarce (Ghazvininejad et al., 2023). Inspired by these findings, we also explore how the addition group of datasets with dictionary checks using LOD can complement our distillation approach as shown in Figure 4. Details of using the dictionary usage in the Appendix C.

4 EXPERIMENTS

4.1 MODELS AND DATASETS

Models The latest open-source models are used as benchmark models, and their instruction-tuned versions are utilized to leverage their general capabilities in generating dialogues and answering questions. Based on the current leaderboard for Luxembourgish proficiency in LLMs Lothritz & Cabot (2025), combined with the experimental results for the Germanic language group in Section 2, we select the top two base tiny models, which are Llama-3.2-3B-Instruct from Meta and Gemma-2-2b-it from Google.

Input Prompts The design of the training input templates is considered crucial. In order to prevent the model from losing its general communication and generalization abilities after instruction tuning, it is necessary for prompts to be designed in alignment with chat templates that can be understood by the model. Based on this, basic prompt testing is conducted to identify the most suitable prompt

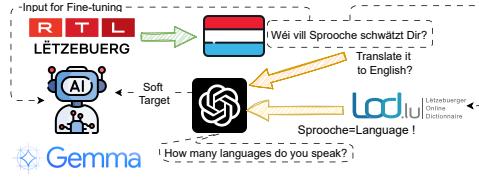


Figure 4: Pipeline of data augmentation

²<https://data.public.lu/en/datasets/letzebuerger-online-dictionnaire-lod-linguistesch-daten/>

³<https://www rtl.lu/>

270 for the model. Chat-based models have been observed to be prone to losing their communication
 271 capabilities after SFT, leading to the generation of endless content and a significant increase in the
 272 likelihood of hallucinations. Therefore, in the design of the questions, the corresponding starting
 273 prompts are set at the beginning of the model responses, such as "Here is the translation: ". Through
 274 this linguistic guidance, the probability of hallucination is reduced and the model is also able to
 275 learn when to stop.

276 **Distilled from LRL side** For the training data set, the LRL monolingual corpus is used primarily as
 277 the base material, from which the LRL-to-English mapping capability is distilled from larger mod-
 278 els. As described in Section 3.3, publicly available press datasets and dictionary example sentences
 279 are utilized as the monolingual corpus, and distillation is performed using various teacher mod-
 280 els. Finally, the correct word-to-word mapping capability is reinforced through the lemma search
 281 to verify the dictionary content. We classify fake targets distilled into four categories: fake tar-
 282 gets obtained by distilling facebook/nllb-200-3.3B (**Distill-NLLB**, DN), the fake targets obtained by
 283 distilling meta-llama/Llama-3.3-70B-Instruct. (**Distill-Llama**, DL), the fake targets obtained by dis-
 284 tilling GPT-4o-mini (**Distill-GPT4O**, DG), and the fake targets obtained after performing dictionary
 285 checking (**Distill-GPT-Dict-Checking**, DGDC). Each category contains 621,033 data samples used
 286 for model training, all having the same LRL side texts, while the corresponding fake targets are gen-
 287 erated by different teacher models. For the validation set, the latest 300 press data entries (**Val 300**)
 288 from 2024 are used as monolingual corpus data, and the corresponding LRL entities are identified
 289 for the English mappings, thus preventing biases that may arise from the model having been trained
 290 on the validation dataset. And we also do a manual check for English translations. Furthermore, we
 291 utilize the FLORES-200 benchmark as an additional validation test set.

292 4.2 METRICS

294 There are multiple options of metrics available for MT tasks (Lo et al., 2023) and we mainly used
 295 the following three metrics for performance evaluation in our experiments: spBLEU (Sentence-
 296 Piece BLEU), ChrF++, and the Jaccard index. spBLEU measures the similarity between machine
 297 translation outputs and reference translations using n-gram precision, employing a standardized Sen-
 298 tencePiece model for subword tokenization and allowing effective differentiation between the per-
 299 formance of high-resource and low-resource languages, making it very valuable for comparative
 300 evaluation of multilingual models. ChrF++ extends the character-level F score (Popović, 2015) met-
 301 ric used for machine translation evaluation, incorporating both character and word n-grams, showing
 302 a strong correlation with human judgments at both the system and the segment levels. The Jaccard
 303 index (da F. Costa, 2021) represents a fundamental statistical method to measure the similarity be-
 304 tween sample sets, offering mathematical simplicity and interpretability, which makes it widely
 305 applicable across scientific disciplines. For LLMaJ, we use google/gemma-3-27b-it as the judge
 306 throughout the entire paper.

307 4.3 RESULTS

309 4.3.1 CAN SMALL LANGUAGE MODELS LEARN?

311 The results in Table 2 clearly demonstrate that fine-tuning in both translation directions is highly
 312 effective. For example, the baseline EN→LB models exhibit spBLEU scores around 30, but after
 313 fine-tuning, these scores increase to nearly 38–40 values approaching our threshold for high-quality
 314 translations ($\text{spBLEU} > 40$). In contrast, LB→EN translations consistently score above 40, yet
 315 generating fluent Luxembourgish in the EN→LB direction remains a significant challenge. Further-
 316 more, our experiments indicate that even a 3B model, when effectively distilled, can rival or even
 317 surpass larger models in low-resource language translation tasks. Our results indicate that GPT-4o-
 318 based distillation methods, in particular, produce substantial improvements in translation quality,
 319 confirming that parallel corpora generated by LLM represent a viable and promising strategy for
 320 supporting LRL translation tasks. In order to validate the model translation performance, we also
 321 extracted a portion of the data and asked Luxembourgers who are at least bilingual in Luxembour-
 322 gish and English to label it as ground truth for data quality validation. The spBLEU score achieved
 323 with this labeled data was 51.08 on our fine-tuned Gemma-2-2b-it, showing a comparable score
 calculated using GPT-generated data as ground truth. Regarding the LLMaJ score of the model,
 we obtained performance evaluation results and trends that are largely consistent with those of the

324 spBLEU parameter, further cross-validating the feasibility of LLMaaJ. However, since LLMs are
 325 black-box models with limited interpretability, the scores produced by LLMaaJ can only serve as a
 326 reference and do not guarantee accuracy or validity.
 327
 328

329 330 MT Direction	331 Models	332 Methods	333 Val 300				334 FLORES-200			
			335 spBLEU	336 ChrF++	337 Jaccard	338 LLMaaJ	339 spBLEU	340 ChrF++	341 Jaccard	342 LLMaaJ
339 340 EN-LB	Nllb-200-3.3B	341 BM	19.97	37.03	0.27	0.75	31.14	49.62	0.35	0.85
	Llama-3.3-70B-Instruct		24.35	46.58	0.27	0.87	22.55	43.08	0.26	0.83
	342 Llama-3.2-3B-Instruct	343 BM	6.46	26.78	0.12	0.36	4.80	22.10	0.09	0.36
		344 DN	37.98	55.41	0.37	0.82	14.61	38.04	0.19	0.51
		345 DL	40.71	57.37	0.40	0.79	20.93	41.51	0.22	0.52
		346 DG	42.01	57.89	0.41	0.88	22.80	42.26	0.25	0.70
		347 DGDC	42.16	57.87	0.42	0.89	23.40	42.90	0.26	0.83
	348 Gemma-2-2b-it	349 BM	5.82	22.71	0.10	0.50	4.61	20.78	0.07	0.51
		350 DN	41.77	57.71	0.42	0.89	20.41	41.21	0.25	0.78
		351 DL	43.78	59.02	0.44	0.87	23.03	42.95	0.28	0.79
		352 DG	44.58	59.73	0.45	0.87	23.47	42.72	0.28	0.76
		353 DGDC	44.12	59.10	0.45	0.90	23.50	42.49	0.28	0.82
354 355 LB-EN	Nllb-200-3.3B	356 BM	40.51	56.81	0.48	0.81	48.45	65.03	0.56	0.85
	Llama-3.3-70B-Instruct		54.14	74.24	0.57	0.89	33.96	58.02	0.41	0.86
	357 Llama-3.2-3B-Instruct	358 BM	26.31	45.98	0.33	0.58	17.62	36.79	0.26	0.46
		359 DN	42.78	59.33	0.48	0.82	29.37	53.88	0.38	0.79
		360 DL	54.64	70.98	0.57	0.82	31.72	56.50	0.41	0.79
		361 DG	59.88	74.97	0.63	0.90	32.78	57.69	0.42	0.81
		362 DGDC	57.88	73.46	0.60	0.89	32.56	57.60	0.41	0.85
	363 Gemma-2-2b-it	364 BM	27.11	47.44	0.34	0.60	14.99	37.77	0.26	0.45
		365 DN	41.58	57.63	0.49	0.83	42.46	60.55	0.51	0.83
		366 DL	58.95	72.15	0.62	0.83	41.47	60.33	0.50	0.82
		367 DG	65.44	76.96	0.68	0.86	42.67	61.30	0.51	0.86
		368 DGDC	62.75	75.13	0.65	0.89	42.73	61.25	0.51	0.85

348 Table 2: This table presents the performance results obtained from training on datasets generated
 349 using different distillation models and methods. We report experimental results on two datasets,
 350 VAL 300 and FLORES 200. Additionally, we evaluated the performance of Nllb-200-3.3B and
 351 Llama-3.3-70B-Instruct on the same datasets, which strongly validate the effectiveness of our training
 352 approach. BM refers to the Base Model without any SFT. LLMaaJ refers to LLM-as-a-Judge,
 353 which gives a score from 0.0 to 1.0 with a granularity of 0.1.

354
 355 Moreover, it is worth noting that DN underperforms DG by approximately 5–15 percentage points
 356 overall, and, interestingly, the “**sudden stop**” phenomenon observed in Nllb-200-3.3B (Section §
 357 E.4) is faithfully inherited by the student model, which directly explains the comparatively lower
 358 post-fine-tuning performance; accordingly, selecting a teacher of the same decoder-only family during
 359 fine-tuning helps avoid this issue. **To address RQ2**, fine-tuning with data distillation yields
 360 highly significant gains: for both evaluated models, improvements are reflected in spBLEU scores
 361 that surpass those of certain expert translation systems. Furthermore, the enhancement in the
 362 EN→LB direction exceeds that of the reverse direction, further strengthening the model’s Lux-
 363 embourgish generation ability. Therefore, data distillation can substantially improve translation
 364 capacity for low-resource languages, enabling even smaller models to achieve promising results.

365
 366
 367 Table 3: Impact of LoRA Rank on sp-
 368 BLEU During Fine-Tuning, Evaluated
 369 Across Three Rank Values

370 EN-LB	371 Rank (LoRA)	372 Val 300 spBLEU	373 FLORES 200 spBLEU
374 Llama-3.2-3B-Instruct	375 Base Model	6.46	4.80
	376 32	12.95	9.46
	377 64	13.05	9.23
	378 128	13.32	9.27
379 Gemma-2-2b-it	380 Base Model	5.82	4.61
	381 32	13.07	8.88
	382 64	13.17	9.12
	383 128	13.31	9.21

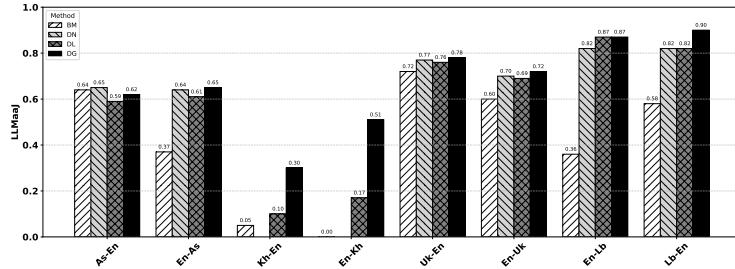
384
 385
 386 Figure 5: Performance vs. training data ratio;
 387 dashed lines show ChrF++ trends, solid lines
 388 x-axis is data proportion.

378 4.3.2 WHAT IS THE MOST PROMISING PATHWAY TO UNLOCKING LRLS WITHIN SLMs?
379380 **Can we do LoRA?** We also carried out experiments using the same data to assess how the LoRA
381 rank parameter influences training performance in translation tasks involving Luxembourgish and
382 English. Specifically, we evaluated the ranks 32, 64 and 128 in our models. The results, presented
383 in Table 3 and 6, indicate that variations in the LoRA rank parameter have a minimal influence on
384 the overall translation performance, with differences typically within 1 to 2 spBLEU points. More
385 importantly, models fine-tuned using LoRA consistently underperformed compared to their fully
386 fine-tuned counterparts, achieving notably lower performance in Table 2. Moreover, after LoRA-
387 based SFT, we also observed an increased tendency toward hallucination. Due to the consistently
388 lower performance and negligible differences observed among the varying LoRA ranks, we do not
389 to recommend to use LoRA fine-tuning in LRLs translation tasks. These findings suggest that, while
390 LoRA provides computational efficiency, its limited parameter updates are insufficient to capture the
391 nuanced linguistic features required for effective translation of LRLs and may even be harmful.
392393 **Does data size really matter?** Figure 5 illustrates the strong influence of the size of the data set
394 on the quality of the translation in both directions (English \leftrightarrow Luxembourgish), more detailed data in
395 the Appendix Table 7. Even using as little as 1% of the available data yields modest improvements
396 over the base model, yet the most substantial gains emerge only at higher data ratios. For example,
397 increasing the data from 25% to 100% nearly doubles spBLEU in the EN \rightarrow LB direction for both
398 Llama-3.2-3B-Instruct and Gemma-2-2b-it. Notably, Gemma-2-2b-it seems to learn faster in the
399 lower data regimes, but shows some performance attenuation beyond the 50% threshold.
400401 **Catastrophic forgetting?** As a general-purpose model, it is capable of not only performing transla-
402 tion tasks but also handling multiple tasks such as planning, solving mathematical problems, coding,
403 etc., other than translation. However, after training the model specifically for translation purposes,
404 a critical question arises: Does the model suffer catastrophic forgetting? This issue is of urgent
405 concern and has significant implications for the potential of the model for generalized usage. To in-
406 vestigate this, we compared the model performance with the SuperGLUE benchmark (Sarlin et al.,
407 2020) before and after training which is a widely adopted benchmark suite for evaluating LLM
408 general performance. Table 4 presents the performance results, indicating that fine-tuning, while
409 enhancing translation capabilities, has a minimal impact on the model’s proficiency in other tasks,
410 demonstrating its robustness and adaptability. The analysis confirms that distillation can enhance
411 translation performance while preserving the overall aptitude of the model across various tasks.
412413

MT Direction	Model	BOOLQ	CB	COPA	MULTIRC	RECORD	RTE	WIC	WSC	Avg
BM(Base Model)	Llama-3.2-3B-Instruct	0.62	0.55	0.71	0.52	0.41	0.64	0.51	0.28	0.53
	Gemma-2-2b-it	0.73	0.55	0.86	0.81	0.56	0.82	0.49	0.56	0.67
En-LB	Llama-3.2-3B-Instruct-FT	0.64	0.39	0.60	0.52	0.39	0.60	0.48	0.11	0.47
	Gemma-2-2b-it-FT	0.71	0.52	0.89	0.75	0.41	0.72	0.51	0.49	0.62
LB-EN	Llama-3.2-3B-Instruct-FT	0.64	0.30	0.69	0.51	0.46	0.62	0.52	0.24	0.50
	Gemma-2-2b-it-FT	0.69	0.25	0.90	0.76	0.45	0.73	0.51	0.43	0.59

414 **Table 4:** Variations in overall performance on the SuperGLUE benchmark before and after distilla-
415 tion training, evaluating whether fine-tuning on LRLs induces catastrophic forgetting. The model
416 names appended with the suffix “-FT” denote the models after applying the proposed distillation
417 fine-tuning method.
418419 **How about other LRLs?** We demonstrate that distillation from various large teacher models can
420 elevate the low-resource translation performance of smaller models to a level comparable to that of
421 expert systems, thereby confirming the potential of small models in translation tasks. To further ver-
422 ify the generality of our findings, we additionally extracted 10,000 sentences from the WMT 2025
423 in Khasi, Assamese, and Ukrainian (Facebook-WikiMatrix-1-eng-ukr subset filtered for sentence
424 lengths between 200 and 299 tokens), along with 1,000 pairs of corresponding sentences as a vali-
425 dation set. Using the same methodology, we performed data distillation for one-sided sentences with
426 three different models: the previously mentioned NLLB model, the Llama 3.3-70B model, and GPT-
427 4o-mini. We then trained Llama-3.2-3B-Instruct with identical prompts and evaluated performance
428 on the validation set using the corresponding ground-truth annotations provided by the dataset. As
429 shown in Figure 6 and Table 10, when the model performance is already high—such as in the As-En
430 direction, where the base model reaches a score of 0.64—the effect of distillation is not pronounced.
431 In contrast, for the En-As, En-Kh, En-Lb, and Lb-En directions, the results reveal that distillation

432 from the teacher model is critical, leading to substantial improvements in translation quality. This
 433 suggests that distilled data can effectively impart knowledge of resource-scarce languages to small
 434 models, with minimal degradation in their general performance.
 435



445 Figure 6: This figure compares the performance of four LRL pairs under the base model (Llama-
 446 3.2-3B-Instruct) and under knowledge distillation from different teacher models, evaluated using
 447 the LLMaaJ metric. “As” denotes Assamese, “Kh” denotes Khasi, and “Uk” denotes Ukrainian.
 448 Notably, the Kh—En and En—Kh directions lack results for the DN setting (i.e., using NLLB-200-
 449 3.3B as the teacher model), as NLLB does not provide support for Khasi.
 450

451 5 CONCLUSION

452 This paper demonstrates that support for LRLs is even more uneven than previously assumed, ex-
 453 hibiting a strong positive correlation with the Human Development Index as mentioned in G.1.
 454 Fine-tuning small models with monolingual corpora, knowledge distillation, and data augmentation
 455 yields more consistent and reliable translations that help bridge this gap and to some extent
 456 strengthen social and technological equity as well as humanistic fairness, especially by thoroughly
 457 exploring the feasibility of small models in low-resource scenarios. In contrast, the use of LoRA
 458 provides only marginal improvements, while training on LRLs does not degrade other model capa-
 459 bilities. Overall, despite the rapid progress of LLMs, LRLs remain underrepresented. Small models
 460 are still insufficient for robust translation or for lightweight agent applications that require LRLs as
 461 one of the working languages; however, the systematic monolingual distillation analysis presented
 462 in this paper offers a promising and practical pathway toward leveraging SLMs for LRLs, which can
 463 help partially mitigate the resource scarcity.
 464

465 Practical takeaways

- 466 1. SLMs perform extremely poorly in LRLs, and languages from different families exhibit
 467 distinct traits, resulting in large performance gaps across LLMs.
- 468 2. Beginning with monolingual corpora, the knowledge distilled from large models can be
 469 effectively transferred to smaller models, leading to significant performance improvements.
 470 In fact, a 3B-parameter small model can surpass a 70B-parameter large model.
- 471 3. In LRLs translation tasks, LoRA is not recommended. High-quality data matters more
 472 than large amounts, and it is better to use decoder-only teacher models instead of other
 473 architectures like encoder-decoder.
- 474 4. Models do not suffer from catastrophic forgetting when fine-tuned on low-resource lan-
 475 guages. Therefore, for small model agents designed for low-resource language related
 476 tasks, fine-tuning can be confidently applied.

477 **Limitations** Distillation for synthetic data training is not new, but comprehensive training on SLMs
 478 for low-resource languages remains underexplored. From our research, with appropriate training,
 479 small models can also learn to handle very challenging low-resource languages. However, this
 480 approach relies on powerful pretrained models for knowledge distillation, which may not always be
 481 available in extremely low-resource settings. Standard metrics such as BLEU cannot fully capture
 482 linguistic or cultural accuracy, so other evaluation metrics such as CometKiwi (Rei et al., 2022) and
 483 human evaluation are still necessary to better validate the results. Another concern is the lack of
 484 interpretability in neural translation, as it is unclear whether models truly understand LRLs, high-
 485 lighting the need for more work on explainability.

486 ETHICS STATEMENT
487488 All models and resources developed in this work are strictly intended for research and educational
489 purposes according to OpenAI usage guidelines; no model weights or derivatives are used — or
490 will be used — for any commercial application. We exclusively utilize publicly available corpora
491 or datasets for which explicit authorization has been obtained from the original data providers. All
492 license terms have been reviewed to ensure full compliance with copyright, attribution, and sharing
493 requirements.494 No personally identifiable information (PII) is collected during this research. All data processing,
495 storage, and retention policies are fully aligned with the EU General Data Protection Regulation
496 (GDPR). The dataset of LOD.lu is under the CC0 license. As most of RTL datasets are based on
497 articles from RTL, we cannot publish them, but we make them available to researchers on request.498 All code, models, and processed data artifacts will be released under an open-source, research-
499 oriented license (e.g., CC BY-NC), accompanied by comprehensive documentation and bias-
500 analysis methodology to promote transparency and reproducibility. We commit to ongoing ethical
501 oversight through periodic reevaluation of datasets and model outputs, prompt updates in response
502 to emerging concerns, and consultation with interdisciplinary advisory boards to ensure adherence
503 to the highest ethical standards.504
505 REPRODUCIBILITY STATEMENT
506507 All experiments were implemented and evaluated on four NVIDIA H100 GPUs with a per-device
508 batch size of 8 using the TRL library for training. The complete codebase, configuration files, and
509 training/evaluation scripts are available in the anonymous repository: https://anonymous.4open.science/r/mt_luxembourgish-408D. Pretrained checkpoints and selected fine-
510 tuned models are released to facilitate independent verification and reuse. The repository includes
511 environment specifications, dependency pins, and command-line recipes that enable end-to-end re-
512 production of the reported results.513
514 REFERENCES
515516 Sanchit Ahuja, Divyanshu Aggarwal, Varun Gumma, Ishaan Watts, Ashutosh Sathe, Millicent
517 Ochieng, Rishav Hada, Prachi Jain, Mohamed Ahmed, Kalika Bali, et al. Megaverse: Bench-
518 marking large language models across languages, modalities, models and tasks. In *Proceedings
519 of the 2024 Conference of the North American Chapter of the Association for Computational
520 Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 2598–2637, 2024.521
522 Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings for zero-shot
523 cross-lingual transfer and beyond. *Transactions of the association for computational linguistics*,
524 7:597–610, 2019.525 Seth Aycock, David Stap, Di Wu, Christof Monz, and Khalil Sima'an. Can llms really learn to
526 translate a low-resource language from one grammar book?, 2025. URL <https://arxiv.org/abs/2409.19151>.527
528 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
529 learning to align and translate. In Yoshua Bengio and Yann LeCun (eds.), *3rd International
530 Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
531 ference Track Proceedings*, 2015.532
533 Kenza Benkirane, Laura Gongas, Shahar Pelles, Naomi Fuchs, Joshua Darmon, Pontus Stenetorp,
534 David Adelani, and Eduardo Sánchez. Machine translation hallucination detection for low and
535 high resource languages using large language models. In *Findings of the Association for Compu-
536 tational Linguistics: EMNLP 2024*, pp. 9647–9665, 2024.537
538 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
539 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

540 Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
 541 Francisco Guzmán, Édouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsuper-
 542 vised cross-lingual representation learning at scale. In *Proceedings of the 58th Annual Meeting*
 543 *of the Association for Computational Linguistics*, pp. 8440–8451, 2020.

544

545 Marta Costa-jussa, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffer-
 546 nan, Elahe Kalbassi, Daniel Licht, Jean Maillard, Anna Sun, Skyler Wang, Guillaume Wenzek,
 547 Al Youngblood, Bapi Akula, Loïc Barrault, Gabriel Gonzalez, Prangthip Hansanti, and Jeff
 548 Wang. No language left behind: Scaling human-centered machine translation. *arXiv preprint*
 549 *arXiv:2207.04672*, 2022.

550

551 Luciano da F. Costa. Further generalizations of the jaccard index. *CoRR*, abs/2110.09619, 2021.
 552 URL <https://arxiv.org/abs/2110.09619>.

553

554 Micha Elsner et al. Shortcomings of llms for low-resource translation: Retrieval and understanding
 555 are both the problem. In *Proceedings of the Ninth Conference on Machine Translation*, pp. 1332–
 556 1354, 2024.

557

558 Luyu Gao, Xinyi Wang, and Graham Neubig. Improving target-side lexical transfer in multilin-
 559 gual neural machine translation. In *Findings of the Association for Computational Linguistics: EMNLP* 2020, pp. 3560–3566, 2020.

560

561 Yingbo Gao, Christian Herold, Zijian Yang, and Hermann Ney. Is encoder-decoder redundant for
 562 neural machine translation? In *Proceedings of the 2nd Conference of the Asia-Pacific Chapter*
 563 *of the Association for Computational Linguistics and the 12th International Joint Conference on*
 564 *Natural Language Processing (Volume 1: Long Papers)*, pp. 562–574, 2022.

565

566 Marjan Ghazvininejad, Hila Gonen, and Luke Zettlemoyer. Dictionary-based phrase-level prompt-
 567 ing of large language models for machine translation. *arXiv preprint arXiv:2302.07856*, 2023.

568

569 Google. Gemma-2-2b-it model card, 2024. URL <https://huggingface.co/google/gemma-2-2b-it>.

570

571 Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, San-
 572 jana Krishnan, Marc’Aurelio Ranzato, Francisco Guzmán, and Angela Fan. The FLORES-
 573 101 evaluation benchmark for low-resource and multilingual machine translation. *CoRR*,
 574 abs/2106.03193, 2021a. URL <https://arxiv.org/abs/2106.03193>.

575

576 Naman Goyal, Cynthia Gao, Vishrav Chaudhary, Peng-Jen Chen, Guillaume Wenzek, Da Ju, San-
 577 jana Krishnan, Marc’Aurelio Ranzato, Francisco Guzmán, and Angela Fan. The flores-101 eval-
 578 uation benchmark for low-resource and multilingual machine translation. 2021b.

579

580 Francisco Guzmán, Peng-Jen Chen, Myle Ott, Juan Pino, Guillaume Lample, Philipp Koehn,
 581 Vishrav Chaudhary, and Marc’Aurelio Ranzato. Two new evaluation datasets for low-resource
 582 machine translation: Nepali-english and sinhala-english. 2019.

583

584 Md. Arid Hasan, Prerona Tarannum, Krishno Dey, Imran Razzak, and Usman Naseem. Do large
 585 language models speak all languages equally? a comparative study in low-resource settings, 2024.
 586 URL <https://arxiv.org/abs/2408.02237>.

587

588 Amr Hendy, Mohamed Abdelrehim, Amr Sharaf, Vikas Raunak, Mohamed Gabr, Hitokazu Mat-
 589 sushita, Young Jin Kim, Mohamed Afify, and Hany Hassan Awadalla. How good are gpt models
 590 at machine translation? a comprehensive evaluation, 2023. URL <https://arxiv.org/abs/2302.09210>.

591

592 Kurt Hornik. Approximation capabilities of multilayer feedforward networks. *Neural Net-
 593 works*, 4(2):251–257, 1991. ISSN 0893-6080. doi: [https://doi.org/10.1016/0893-6080\(91\)90009-T](https://doi.org/10.1016/0893-6080(91)90009-T). URL <https://www.sciencedirect.com/science/article/pii/089360809190009T>.

593

594 David M Howcroft and Dimitra Gkatzia. Most nlg is low-resource: here’s what we can do about it.
 595 In *Proceedings of the 2nd Workshop on Natural Language Generation, Evaluation, and Metrics*
 596 (*GEM*), pp. 336–350, 2022.

594 Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika Bali, and Monojit Choudhury. The state and
 595 fate of linguistic diversity and inclusion in the NLP world. In *Proceedings of the 58th Annual*
 596 *Meeting of the Association for Computational Linguistics*, pp. 6282–6293. Association for Com-
 597 putational Linguistics, 2020. URL [https://aclanthology.org/2020.acl-main.](https://aclanthology.org/2020.acl-main.560/)
 598 560/.

599 Wen Lai, Mohsen Mesgar, and Alexander Fraser. Llms beyond english: Scaling the multilingual
 600 capability of llms with cross-lingual feedback. *arXiv preprint arXiv:2406.01771*, 2024.

601

602 Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato. Unsupervised
 603 machine translation using monolingual corpora only. In *International Conference on Learning*
 604 *Representations (ICLR)*, 2018.

605 Séamus Lankford, Haithem Alfi, and Andy Way. Transformers for low-resource languages: Is féidir
 606 linn! In *Proceedings of Machine Translation Summit XVIII: Research Track*, pp. 48–60, 2021.

607

608 Lujun Li, Lama Sleem, Niccolò’ Gentile, Geoffrey Nichil, and Radu State. Exploring the impact
 609 of temperature on large language models: Hot or cold? *Procedia Computer Science*, 264:242–
 610 251, 2025a. ISSN 1877-0509. doi: <https://doi.org/10.1016/j.procs.2025.07.135>. URL <https://www.sciencedirect.com/science/article/pii/S1877050925021854>. In-
 611 ternational Neural Network Society Workshop on Deep Learning Innovations and Applications
 612 2025.

613

614 Zihao Li, Yucheng Shi, Zirui Liu, Fan Yang, Ali Payani, Ninghao Liu, and Mengnan Du. Language
 615 ranker: A metric for quantifying llm performance across high and low-resource languages. In
 616 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 28186–28194,
 617 2025b.

618 Lifewire. Llama 3 vs. llama 2: Why the newest model leaves its predecessor in the dust, 2024. URL
 619 <https://www.lifewire.com/llama-3-vs-llama-2-8714445>. Accessed: 2025-
 620 02-03.

621

622 Meta Llama. Llama-3.2-3b-instruct model card, 2024. URL <https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct>.

623

624 Chi-ku Lo, Rebecca Knowles, and Cyril Goutte. Beyond correlation: Making sense of the score
 625 differences of new MT evaluation metrics. In Masao Utiyama and Rui Wang (eds.), *Pro-
 626 ceedings of Machine Translation Summit XIX, Vol. I: Research Track*, pp. 186–199, Macau
 627 SAR, China, September 2023. Asia-Pacific Association for Machine Translation. URL <https://aclanthology.org/2023.mtsummit-research.16/>.

628

629 Cedric Lothritz and Jordi Cabot. Testing low-resource language support in llms using language
 630 proficiency exams: the case of luxembourgish. *arXiv preprint arXiv:2504.01667*, 2025.

631

632 Cedric Lothritz, Bertrand Lebichot, Kevin Allix, Lisa Veiber, Tegawendé François D Assise Bis-
 633 syande, Jacques Klein, Andrey Boytsov, Anne Goujon, and Clément Lefebvre. Luxembert: Sim-
 634 ple and practical data augmentation in language model pre-training for luxembourgish. In *13th*
 635 *Language Resources and Evaluation Conference (LREC 2022)*, 2022.

636

637 Kelly Marchisio, Wei-Yin Ko, Alexandre Bérard, Théo Dehaze, and Sebastian Ruder. Understanding
 638 and mitigating language confusion in llms. In *Proceedings of the 2024 Conference on Empirical*
 639 *Methods in Natural Language Processing*, pp. 6653–6677, 2024.

640

641 Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
 642 Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
 643 models, 2024. URL <https://arxiv.org/abs/2307.06435>.

644

645 Wilhelmina Nekoto, Vukosi Marivate, Tshinondiwa Matsila, Timi Fasubaa, Tajudeen Kola-
 646 wole, Taiwo Fagbohungbe, Solomon Oluwole Akinola, Shamsuddeen Muhammad, Salomon
 647 Kabongo Kabenamualu, Salomey Osei, et al. Participatory research for low-resourced machine
 648 translation: A case study in african languages. In *Findings of the Association for Computational*
 649 *Linguistics: EMNLP 2020*, pp. 2144–2160. Association for Computational Linguistics, 2020.
 650 URL <https://aclanthology.org/2020.findings-emnlp.195/>.

648 Hellina Hailu Nigatu, Attafu Lambebo Tonja, Benjamin Rosman, Thamar Solorio, and Mono-
 649 jit Choudhury. The zeno’s paradox of ‘low-resource’ languages. In *Proceedings of the 2024*
 650 *Conference on Empirical Methods in Natural Language Processing*, pp. 17753–17774. Asso-
 651 ciation for Computational Linguistics, 2024. doi: 10.18653/v1/2024.emnlp-main.983. URL
 652 <https://aclanthology.org/2024.emnlp-main.983/>.

653

654 Joel Niklaus, Jakob Merane, Luka Nenadic, Sina Ahmadi, Yingqiang Gao, Cyrill A. H. Chevalley,
 655 Claude Humbel, Christophe Gösken, Lorenzo Tanzi, Thomas Lüthi, Stefan Palombo, Spencer
 656 Poff, Boling Yang, Nan Wu, Matthew Guillod, Robin Mamié, Daniel Brunner, Julio Pereyra,
 657 and Niko Grupen. Swiltra-bench: The swiss legal translation benchmark, 2025. URL <https://arxiv.org/abs/2503.01372>.

658

659 Chinasa T Okolo and Marie Tano. Closing the gap: A call for more inclusive language technologies.
 660 2024.

661

662 Andrea Piergentili, Beatrice Savoldi, Matteo Negri, and Luisa Bentivogli. An llm-as-a-judge ap-
 663 proach for scalable gender-neutral translation evaluation. *arXiv preprint arXiv:2504.11934*, 2025.

664

665 Alistair Plum, Tharindu Ranasinghe, and Christoph Purschke. Text generation models for luxem-
 666 bourgish with limited data: A balanced multilingual strategy. *arXiv preprint arXiv:2412.09415*,
 667 2024.

668

669 Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In Ondřej Bojar,
 670 Rajan Chatterjee, Christian Federmann, Barry Haddow, Chris Hokamp, Matthias Huck, Varvara
 671 Logacheva, and Pavel Pecina (eds.), *Proceedings of the Tenth Workshop on Statistical Machine*
 672 *Translation*, pp. 392–395, Lisbon, Portugal, September 2015. Association for Computational Lin-
 673 guistics. doi: 10.18653/v1/W15-3049. URL <https://aclanthology.org/W15-3049/>.

674

675 Ricardo Rei, Marcos Treviso, Nuno M. Guerreiro, Chrysoula Zerva, Ana C. Farinha, Christine
 676 Maroti, José G. C. de Souza, Taisiya Glushkova, Duarte M. Alves, Alon Lavie, Luisa Coheur,
 677 and André F. T. Martins. Cometkiwi: Ist-unbabel 2022 submission for the quality estimation
 678 shared task, 2022. URL <https://arxiv.org/abs/2209.06243>.

679

680 Nathaniel Robinson, Perez Ogayo, David R Mortensen, and Graham Neubig. Chatgpt mt: Com-
 681 petitive for high-(but not low-) resource languages. In *Proceedings of the Eighth Conference on*
 682 *Machine Translation*, pp. 392–418, 2023.

683

684 Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Super glue:
 685 Learning feature matching with graph neural networks. In *Proceedings of the IEEE/CVF confer-
 686 ence on computer vision and pattern recognition*, pp. 4938–4947, 2020.

687

688 Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models
 689 with monolingual data. In *ACL*, pp. 86–96. Association for Computational Linguistics, 2016.

690

691 Lingfeng Shen, Weiting Tan, Sihao Chen, Yunmo Chen, Jingyu Zhang, Haoran Xu, Boyuan Zheng,
 692 Philipp Koehn, and Daniel Khashabi. The language barrier: Dissecting safety challenges of llms
 693 in multilingual contexts. In *Findings of the Association for Computational Linguistics ACL 2024*,
 694 pp. 2668–2680, 2024.

695

696 Ana Silva, Nikit Srivastava, Tatiana Moteu Ngoli, Michael Röder, Diego Moussallem, and Axel-
 697 Cyrille Ngonga Ngomo. Benchmarking low-resource machine translation systems. In Atul Kr.
 698 Ojha, Chao-hong Liu, Ekaterina Vylomova, Flammie Pirinen, Jade Abbott, Jonathan Washington,
 699 Nathaniel Oco, Valentin Malykh, Varvara Logacheva, and Xiaobing Zhao (eds.), *Proceedings*
 700 *of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages*
 701 *(LoResMT 2024)*, pp. 175–185, Bangkok, Thailand, August 2024. Association for Computational
 702 Linguistics. doi: 10.18653/v1/2024.loresmt-1.18. URL <https://aclanthology.org/2024.loresmt-1.18/>.

703

704 Yewei Song, Saad Ezzini, Jacques Klein, Tegawende Bissyande, Clément Lefebvre, and Anne Gou-
 705 jon. Letz translate: Low-resource machine translation for luxembourgish. In *2023 5th Interna-
 706 tional Conference on Natural Language Processing (ICNLP)*, pp. 165–170. IEEE, 2023.

702 Jörg Tiedemann and Santhosh Thottingal. Opus-mt–building open translation services for the world.
 703 In *Annual Conference of the European Association for Machine Translation*, pp. 479–480. Euro-
 704 pean Association for Machine Translation, 2020.

705
 706 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 707 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-*
 708 *tion processing systems*, 30, 2017.

709 Yang Zhao, Jiajun Zhang, and Chengqing Zong. Transformer: A general framework from machine
 710 translation to others. *Machine Intelligence Research*, 20(4):514–538, 2023.

711 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 712 Zi Lin, Zuhuan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 713 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

714
 715 Tianyang Zhong, Zhenyuan Yang, Zhengliang Liu, Ruidong Zhang, Yiheng Liu, Haiyang Sun,
 716 Yi Pan, Yawei Li, Yifan Zhou, Hanqi Jiang, Junhao Chen, and Tianming Liu. Opportunities and
 717 challenges of large language models for low-resource languages in humanities research, 2024.
 718 URL <https://arxiv.org/abs/2412.04497>.

719
 720 APPENDIX
 721

722 A DATA PROCESSING
 723

724 Dataset selection directly impacts the reliability and generalizability of experimental results. Our
 725 criteria include having enough test samples, providing reference responses, and minimizing potential
 726 biases from overlap with pre-training data.

727 FLORES-200 (Costa-jussa et al., 2022) is a benchmark dataset specifically designed for low-
 728 resource and multilingual machine translation, serving as an extended version of FLORES-101
 729 (Goyal et al., 2021a). It covers 200 languages and consists of sentences extracted from 842 web
 730 articles, with an average length of approximately 21 words. These sentences are divided into three
 731 datasets: dev, devtest, and a hidden test set. Since we require additional evaluation metrics, we
 732 use devtest as our set of tests in this study. In our paper, we primarily evaluate the translation per-
 733 formance of all 200 languages into English. However, in the subsequent model training, we focus
 734 solely on the Luxembourgish-English language pair for training and testing.

735 The VAL 300 validation set was constructed using 300 pieces of official news content from July 2024
 736 as the source data. The corresponding ground truth in Luxembourg was generated using ChatGPT,
 737 followed by dictionary-based verification to ensure validity. Furthermore, we extracted 30 sam-
 738 ples from the dataset and engaged Luxembourgish-English bilingual speakers to perform a quality
 739 assessment.

740
 741 B EXPERIMENTS SETTINGS
 742

743 In our experiments, we used primarily two distinct models for supervised fine-tuning (SFT) to eval-
 744 uate performance and optimization strategies. To ensure an effective training process, several hyper-
 745 parameters and model configurations were meticulously selected. Specifically, the warm-up ratio
 746 was set to 0.5, facilitating a gradual increase in the learning rate during the initial training phase
 747 for improved convergence stability. The maximum gradient norm was restricted to 0.3, serving as a
 748 mechanism to prevent excessively large parameter updates and promote stable optimization dyna-
 749 mics. Furthermore, the input sequence length was capped at 512 tokens, ensuring that all processed
 750 data adhered to this fixed-length constraint. A weight decay of 0.01 was applied to regularize the
 751 model parameters and mitigate the risk of overfitting. It is worth noting that all of our models
 752 were trained for only one epoch. This decision was based on our observation that evaluation met-
 753 rics reached their optimal performance after a single epoch, while additional epochs amplified the
 754 influence of noisy data without bringing performance gains. Moreover, we observed an increased
 755 likelihood of hallucinations and the re-emergence of uncontrolled generation, suggesting that the
 dialogue capability of the model after instruction fine-tuning may deteriorate due to overtraining

756 across multiple epochs. **Therefore, we recommend employing only one epoch for translation**
 757 **training of LRLs on SLMs, as this constitutes a valuable training insight that warrants careful**
 758 **consideration.**

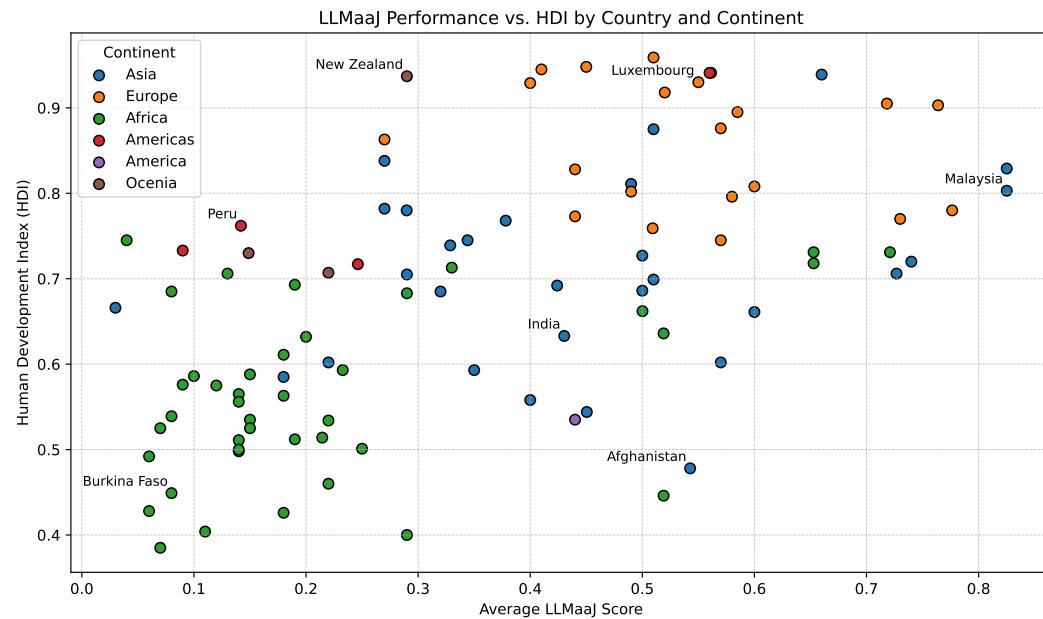
759 To ensure reproducibility across experiments, a fixed random seed of 3407 was utilized. For model
 760 architecture selection, two distinct approaches were considered: standard fine-tuning and LoRA. In
 761 cases where LoRA was employed, specific layers were targeted for adaptation, including "q_proj,"
 762 "k_proj," "v_proj," "o_proj," "gate_proj," "up_proj," and "down_proj." The LoRA alpha parameter
 763 was configured to a value of 8, while the dropout rate for LoRA layers was set to 0, indicating that
 764 no dropout-based regularization was applied to these low-rank adaptation layers.

765 For tokenization and input preparation, a standardized procedure was adopted to ensure consistency
 766 in sequence length across the examples. The tokenizer processed each input field by truncating se-
 767 quences exceeding the maximum length of 512 tokens and padding shorter sequences to this fixed
 768 length. This was achieved using the 'padding="max_length"' option, thereby guaranteeing uniform-
 769 ity in input representation prior to model training. During the inference stage, we set the tempera-
 770 ture parameter to 0.1 (close to 0), which has been shown to help achieve optimal machine translation
 771 performance (Li et al., 2025a). In addition, we set max_new_tokens to 512, enable do_sample
 772 = True, and set top_p = 0.9.

Model	Reference	SFT Methods
Llama-3.2-3B-Instruct	(Llama, 2024)	FS/ LoRA SFT
Gemma-2-2b-it	(Google, 2024)	FS/ LoRA SFT

778 Table 5: Various models and their SFT methods. "FS/ Lora SFT" refers to full-size and "Lora SFT"
 779 denotes Low-Rank Adaptation SFT only.

781 C DICTIONARY PROCESSING



804 Figure 7: Scatter Plot of LLMaaJ Score and HDI Relation for LRLs

805 In our approach to enhancing translation accuracy, particularly for Luxembourgish, we developed
 806 a retrieval pipeline using Haystack 2.0. The pipeline utilizes a BM25 retriever to identify relevant
 807 dictionary entries that align closely with the input text. The retrieved dictionary entries are then
 808 incorporated directly into the prompt provided to GPT-4O, offering multiple lexical choices that
 809 help clarify ambiguous terms.

810 This method operates as follows: first, the BM25 retriever ranks and returns the most relevant dictionary
 811 entries based on the Luxembourgish input. These entries serve as additional context within
 812 the prompt, guiding GPT-4o toward more accurate translations. Subsequently, the original Lux-
 813 embourgish sentence and the relevant dictionary context are submitted to GPT-4o for translation.
 814 By explicitly integrating these dictionary options into the prompt, GPT-4o is better equipped to re-
 815 solve lexical ambiguities and correct potential translation errors, enhancing translation accuracy and
 816 coherence.

817
 818 Table 6: Impact of LoRA Rank on Performance During Fine-Tuning, Evaluated Across Three Rank
 819 Values

820 EN-LB	821 Rank (LoRA)	822 Val 300			823 FLORES 200		
		824 spBLEU	825 ChrF++	826 Jaccard	827 spBLEU	828 ChrF++	829 Jaccard
830 Llama-3.2-3B-Instruct	831 Base Model	6.46	26.78	0.12	4.80	22.10	0.09
	832 r = 32	12.95	33.09	0.19	9.46	29.64	0.14
	833 r = 64	13.05	33.59	0.19	9.23	28.93	0.14
	834 r = 128	13.32	34.09	0.20	9.27	29.16	0.14
835 Gemma-2-2b-it	836 Base Model	5.82	22.71	0.10	4.61	20.78	0.07
	837 r = 32	13.07	33.36	0.21	8.88	27.93	838 0.16
	839 r = 64	13.17	33.35	0.21	9.12	28.06	0.16
	840 r = 128	13.31	841 33.69	0.21	9.21	28.20	0.16

842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **D DATASET SIZE INFLUENCE**
865866 Table 7 in the appendix presents a comprehensive analysis of how dataset size influences translation
867 performance in our low-resource Luxembourgish-English setting. We experimented with dataset
868 sizes ranging from as small as 1% to the full dataset (100%). The results demonstrate a clear, positive
869 correlation between the amount of data utilized during fine-tuning and the subsequent translation
870 quality, as measured by BLEU scores.871 In both translation directions (EN→LB and LB→EN), we observed that even very small datasets
872 (e.g., 1%–5%) provide measurable improvements over baseline models, indicating that the models
873 begin acquiring beneficial linguistic patterns early in the fine-tuning process. However, substantial
874 performance gains occur predominantly when increasing the dataset size beyond 25%. For instance,
875 moving from 25% to 100% dataset size nearly doubles the spBLEU scores for the EN→LB direction,
876 clearly highlighting the significance of sufficient data availability for generating fluent, accurate
877 translations in low-resource languages.878 Interestingly, the Gemma-2-2b-it model displayed a relatively faster learning trajectory compared
879 to the Llama-3.2-3B-Instruct model in smaller data regimes (below 50%). Nevertheless, Gemma-2-
880 2b-it exhibited a notable attenuation in performance improvements beyond the 50% data threshold,
881 suggesting a diminishing return effect when datasets grow larger. Conversely, the Llama-3.2-3B-
882 Instruct model showed steadier improvements without significant attenuation up to the full dataset
883 size, potentially indicating better scalability of linguistic capabilities with increased training data.884
885 Table 7: Impact of Dataset Size on the Performance of Fine-Tuning886
887

English to Luxembourgish	Dataset Ratio	Val 300			FLORES 200		
		spBLEU	ChrF++	Jaccard	spBLEU	ChrF++	Jaccard
Llama-3.2-3B-Instruct	0%	6.46	26.78	0.12	4.80	22.10	0.09
	1%	9.36	31.88	0.16	6.53	26.31	0.10
	10%	18.61	40.51	0.23	9.79	30.65	0.14
	50%	27.75	47.52	0.30	13.39	34.67	0.17
	100%	42.16	57.87	0.42	23.40	42.90	0.26
Gemma-2-2b-it	0%	5.82	22.71	0.10	4.61	20.78	0.07
	1%	14.36	35.06	0.21	9.01	27.99	0.15
	10%	30.58	49.32	0.34	15.99	36.12	0.22
	50%	41.32	57.18	0.42	22.30	41.69	0.27
	100%	44.12	59.10	0.45	23.50	42.49	0.28
Luxembourgish to English	Val 300			FLORES 200			
	spBLEU	ChrF++	Jaccard	spBLEU	ChrF++	Jaccard	
	0%	26.31	45.98	0.33	17.62	36.79	0.26
	1%	34.18	54.63	0.4	22.68	45.98	0.32
	10%	43.28	61.86	0.48	26.11	50.51	0.36
Llama-3.2-3B-Instruct	50%	49.60	67.15	0.53	29.18	54.35	0.39
	100%	57.88	73.46	0.60	32.56	57.60	0.41
	0%	27.11	47.44	0.34	14.99	37.77	0.26
	1%	43.00	59.80	0.47	29.25	49.15	0.38
	10%	54.41	68.86	0.58	36.14	55.67	0.45
Gemma-2-2b-it	50%	61.26	73.91	0.64	41.06	59.94	0.49
	100%	62.75	75.13	0.65	42.73	61.25	0.51

909 **E CASE STUDY**
910911 This section mainly presents several interesting text cases encountered during the pre-trained LLM
912 generation process, which were identified through our manual quality checks.913
914 **E.1 UNCONTROLLABLE OUTPUT**
915916 A notable translation issue arises from unnecessary explanatory notes appended by the model, which
917 negatively affects automated evaluation metrics. Consider the following example, where the original
English input was:

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

"He added that "they should not, however, be asked to take on obligations that go beyond their development stage, responsibility and capabilities."

The model produced:

"Dëi gouf och gesäftlech gesëtt datt "si si och net an Obergrenzen vum ieren Entwécklungsschatz, Responsabilität a Fähigkeiten uerecht bestallt." (Note: Please keep in mind that Luxembourgish is a complex and nuanced language, and translations may vary depending on regional dialects and contexts. This translation is provided in standard Luxembourgish)"

The corresponding ground truth translation in Luxembourgish is:

"Hien huet bägefügt, datt "se awer net opgefuerdert sollte ginn, Verflichtungen ze iwwerhuelen, déi iwwer hiren Entwécklungsniveau, hir Verantwortung a Fäegkeeten erausginn."

The inclusion of this extraneous note, likely originating from instruction-tuned general translation settings or cautious model outputs designed for conversational contexts, significantly impacts BLEU and related metrics. Such notes introduce irrelevant lexical content and length discrepancies, lowering similarity scores and thereby inaccurately reflecting the model's genuine translation ability.

To mitigate this issue, explicit prompt engineering or fine-tuning with specific stopping criteria and clearer output formatting instructions is essential. This strategy helps ensure that model-generated translations remain concise, relevant, and aligned closely with evaluation metric expectations.

E.2 REPETITION PROBLEM

During pre-training, we frequently encountered the issue of model hallucination, characterized by repetitive generation. This problem was notably less severe in the Gemma model compared to the Llama model. The repetitive generation primarily occurred in the English-to-Luxembourgish translation direction, largely due to the model's insufficient understanding of Luxembourgish. Consequently, the model frequently confused Luxembourgish with German, exacerbating this confusion further.

Below is an example of input:

Translate the following English input text into Luxembourgish. Do not include any additional information or unrelated content. Input: The United States Strategic Command of the U.S. Department of Defense office is tracking the debris.

Below is an illustrative output that presents repetitive generation:

Here is the translation: D'United States Strategic Command vum ustrategeschen vum ustrategeschen Ufuerderungsbüro vum ustrategeschen ...

We also observed that when distillation datasets contained a small amount of hallucinated data—such as infinitely repeating Luxembourgish content (particularly prominent in Llama 3.3 70B)—the subsequently fine-tuned models strongly inherited these hallucination patterns, resulting in substantial performance degradation. Therefore, maintaining high-quality data for fine-tuning is crucial. In comparison, data distilled from ChatGPT rarely exhibited infinite repetition issues, enabling the model to learn appropriate stopping criteria during generation. Additionally, we found that incorporating certain generation prompts during training, such as "Here is the translation: ", could partially mitigate the inherited infinite generation problems originating from distilled models of Llama.

972 E.3 HALLUCINATION TO GERMAN
973974 Given the English input sentence:
975976 "At first glance, it looks slightly chaotic at the arrival, the children make a game of clapping
977 hands with everyone who arrives, but that also contributes to the special charm of the event.
978 The Widdebierg is not as high as one might assume from the logo, but it is still 386 meters,
979 which is not nothing."
980981 Model produced the following output:
982983 "Bei der Ankunft blickt man zunächst etwas chaotisch aus, die Kinder machen ein Spiel mit
984 der Klatsch der Hände mit jedem, der kommt, aber das tragen auch zur besonderen Charme
985 vun der Ävent vun der Éieren. Dëi Widdebiergëstcher Ääschten, well dass méi méi vun der
986 Logo, mä si méi och 386 Méter, wéi déi éis gët nach Léck, wat déiweis méi och net."
987988 In contrast the Luxembourgish ground truth is
989990 "Op den éischte Bléck gesät et op der Arrivée liicht chaotesch aus, d'Kanner maache sech
991 e Spaass draus, jidderengem, deen ukënnt, an d'Hand ze klatschen, mä och dat dréit zum
992 spezielle Charme vun der Manifestatioun bää. De Widdebierg ass wuel net esou héich wéi
993 een dat um Logo kéint unhuelen, mä èmmerhi sinn et 386 Meter, dat ass net grad näisch."
994995
996 This incorrect translation output primarily results from excessive usage of German vocabulary rather
997 than proper Luxembourgish expressions. This phenomenon likely arises due to several factors:
9981000 • **Data Sparsity and Language Proximity:** Luxembourgish and German share considerable
1001 lexical and syntactic similarities. In conditions of limited Luxembourgish-specific training
1002 data, the model might unintentionally rely heavily on its knowledge of German, leading to
1003 significant linguistic interference.
1004
1005 • **Pretraining Corpus Bias:** The predominance of German texts over Luxembourgish in
1006 multilingual pretraining datasets likely reinforces German lexical and structural patterns,
1007 especially under resource-constrained fine-tuning conditions.
1008
1009 • **Limited Distinctive Training Examples:** Insufficient distinct Luxembourgish examples
1010 during fine-tuning might not effectively guide the model away from Germanic lexical
1011 choices, resulting in mixed-language outputs or incorrect lexical selections.
10121013 Addressing this issue effectively requires either extensive additional training data or targeted linguis-
1014 tic resources explicitly designed to emphasize lexical and grammatical distinctions between closely
1015 related languages such as Luxembourgish and German.
10161017 E.4 SUDDEN STOP FROM NLLB MODELS DISTILLATION
10181019 We observed an intriguing phenomenon when using NLLB models: regardless of size (3.3B or the
1020 700M distilled variant), the model would sometimes abruptly stop translating longer passages with-
1021 out warning, as if refusing to continue, and this occurred randomly. During subsequent training,
1022 it proved difficult to detect which outputs were complete versus incomplete translations; moreover,
1023 data curated with NLLB exhibited a severe failure to stop generation at the correct endpoint. In-
1024 troducing explicit tags and an end-of-translation marker (e.g., "End of Translation") resolved the
1025 non-stopping generation issue; however, the abrupt early-stop behavior from NLLB was fully inher-
ited by downstream models, as shown below.

1026
1027

English Source Sentences

1028
1029
1030
1031
1032
1033

The government warns against fraudsters selling fake tickets for events such as concerts or sporting events. “Be extra cautious when purchasing tickets online” - that is the government’s warning as the Olympic Summer Games and the European Championship are about to start and the festival season is also approaching. Sellers are therefore required to provide all essential information, such as the price, category, and seating location in the hall or stadium.

1034

1035
1036

Translation results for one model distilled from GPT4o-mini

1037
1038
1039
1040
1041
1042

D’Regierung warnt virun Bedruchsbetriben, déi falsch Tickete fir Evenementer wéi Conceren oder Sport-Evenementer verkafen. “Extra virsichteg sinn, wann een Ticketen online kafe wéll” - dat ass d’Warnung vun der Regierung, well d’Olympesch Summerspiller an d’Europameeschterschaft untrieden an och d’Festival-Saison untrétt. D’Vendeuren mussen deemno all wichteg Informatiounen, wéi de Präis, d’Kategorie an d’Sétzplaz am Sall oder am Stadion, matginn.

1043
1044

Translation results for one model distilled from NLLB-3.3B

1045
1046
1047
1048
1049

D’Regierung warnt virun Betrüger, déi gefälschte Ticketen fir Evenementer wéi Conceren oder Sportveranstaltungen verkafen. “Sidd extra virsichteg beim Ticketkaaf online” - dat ass d’Warnung vun der Regierung, well d’Olympesch Summerspiller an d’Europameeschterschaft ufänken an d’Festivalsaison och no kënnt. [.....MISSING.....]

1050

F PROMPT DESIGN FOR LLM

1051
1052

F.1 PROMPT FOR LLM-AS-A-JUDGE

1053
1054
1055
1056
1057
1058
1059
1060

For the prompt, we mainly adopt the previous legal translation prompt structure (Niklaus et al., 2025) but customize it simply for only the translation needs without any domain emphasis specification. In this paper, we primarily employ google/gemma-3-27b-it as the evaluation model to assess translation quality, given its strong instruction-following capabilities and competitive performance among open-weight LLMs. For efficient model inference, we adopt SGLang as the serving framework, which enables streamlined deployment and low-latency response for both evaluation and generation tasks.

1061
1062
1063

Your task is to assess the accuracy, clarity, and fidelity of the model’s translation to the golden translation.

1064
1065
1066
1067
1068
1069
1070

You will be provided the golden translation, and the model’s translation. Your task is to judge how correct the model’s translation is based on the golden translation, and then give a correctness score. The correctness score should be one of the below numbers: 0.0 (totally wrong), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 1.0 (totally right). You should give the correctness score directly. The correctness score must strictly follow this format: “[score]”, e.g., “The correctness score: [[0.5]].

Golden Translation: {Golden Translation}

1071
1072
1073
1074

Model Translation: {Model’s Translation}

1075
1076

F.2 PROMPT FOR SFT

1077
1078
1079

We primarily adopt the classical SFT approach, where the model is trained to predict the next token by minimizing the cross-entropy loss. Consequently, training data typically consist of input-output pairs, such as question-answer or instruction-response formats. The input is usually referred to as the prompt and the output as the answer. During training, the prompt and answer are concatenated

1080 and fed into the model, with the objective of guiding the model to generate the answer portion. In
 1081 this work, we employ the following training template.
 1082

1083 Below is an instruction that describes a task, paired with an input that provides further
 1084 context. Write a response that appropriately completes the request.
 1085

1086 **### Instruction:**
 1087 Translate the following English input text into Luxembourgish. Do not include any
 1088 additional information or unrelated content.
 1089

1090 **### Input:**
 1091 **{The sentence to be translated}**
 1092

1093
 1094 **### Response:**
 1095 **{The translated sentence}**
 1096

1099 G LANGUAGE ABILITY ON LLMs

1100 G.1 TRANSLATION PERFORMANCE AND HUMAN DEVELOPMENT DISPARITIES

1103 In this analysis, LRLs are operationally defined as those that comprise less than 0.1% of web content
 1104 (according to W3Techs statistics⁴). The average *LLMaaJ* scores were calculated exclusively for the
 1105 selected LRLs that also exist in the FLORES-200 dataset. Country - LRLs pairs were identified
 1106 based on a mapping that utilizes Wikipedia-derived estimates of language speaker distribution.

1107 Figure 7 reveals a clear positive correlation between a country’s human development level (HDI)
 1108 and the translation quality of its low-resource languages as judged by LLMs. Each point in the
 1109 scatter represents a FLORES-200 language linked to a country’s HDI, and the overall trend slopes
 1110 upward – higher-HDI countries tend to have languages with higher *LLMaaJ* translation scores. This
 1111 suggests that socioeconomic factors underpin disparities in LLM translation coverage, echoing the
 1112 “digital language divide” observed in AI research (Okolo & Tano, 2024). In other words, languages
 1113 from more developed regions generally receive far better support in large multilingual models than
 1114 those from less developed regions.

1115 When grouping languages by development tiers, the performance gap is stark. Languages from
 1116 Very High HDI countries ($HDI \geq 0.80$) achieve an average *LLMaaJ* score of around 0.54, more
 1117 than double the 0.22 average for languages from Low HDI countries ($HDI < 0.55$). Median scores
 1118 likewise jump from only 0.15 in low-HDI settings to 0.53 in very-high-HDI settings. This means
 1119 a typical low-resource language in a highly developed society enjoys significantly better machine
 1120 translation quality than one in a low-development context. Crucially, it is not simply the number
 1121 of speakers but the socioeconomic context and digital resources that dictate how well a language is
 1122 served by AI. For instance, Hindi (with over 500 million speakers) has historically been treated as
 1123 “low-resource” for NLP, whereas a smaller language like Dutch (with a fraction of the speakers, but
 1124 backed by a high-HDI country) is well-supported. The greater availability of data and funding in
 1125 high-HDI environments allows LLMs to achieve markedly better translations for those languages.

1126 Geographic disparities are especially pronounced. Nearly all African languages in the study cluster
 1127 toward the lower-left of Figure 7, indicating both low HDI and poor translation performance. In fact,
 1128 none of the African languages evaluated approach the top tier of *LLMaaJ* scores – a finding consist-
 1129 ent with reports that even state-of-the-art multilingual models still lag on African languages due to
 1130 limited training data and quality. By contrast, European languages (from countries with generally
 1131 high HDI) occupy the upper range of the plot; these languages achieve some of the highest scores
 1132 (e.g. minority languages like Occitan in France reach *LLMaaJ* ≈ 0.76). Several Asian languages
 1133 spoken in high-HDI regions likewise perform strongly – for example, Standard Malay (Malaysi-

⁴https://w3techs.com/technologies/overview/content_language

1134 a/Brunei) attains average scores above 0.80 in our data. Meanwhile, many languages of low-HDI
 1135 countries remain at the bottom: Dzongkha of Bhutan (medium HDI) has one of the lowest scores
 1136 (LLMaaJ ≈ 0.03), and numerous Sub-Saharan African languages (e.g. Tigrinya of Eritrea) register
 1137 below 0.10. These patterns suggest that languages benefiting from a robust digital infrastructure
 1138 or from close linguistic ties to well-resourced tongues (as Occitan does to French) see far better
 1139 outcomes, whereas languages in impoverished or isolated settings are left behind.

1140 Overall, the strong HDI-performance correlation highlights a systemic inequality in LLM coverage.
 1141 The correlation coefficient score between HDI and LLMaaJ average score is 0.566, indicating a
 1142 medium-high correlation. Communities in low-development regions face a double disadvantage:
 1143 they are underserved by technology on top of existing socio-economic challenges. Indeed, globally
 1144 fewer than 1% of languages have sufficient data to be considered high-resource, leaving speakers
 1145 of the other 99% “essentially cut off from global technological progress”. This lack of access to
 1146 quality translation and language tools can hinder information access, education, and opportunities,
 1147 thereby exacerbating the digital divide and reinforcing global inequalities. Our findings underscore
 1148 that current multilingual AI models, despite their broad reach, de facto offer far stronger support for
 1149 languages of wealthy, high-HDI communities than for those of poorer regions. Addressing this gap
 1150 will require concerted efforts to bring truly inclusive language coverage to the forefront, rather than
 1151 merely adding more languages without improving quality for the most disadvantaged.

1152 G.2 RESULT TABLES

1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
1189
1190
1191
1192

Table 8: The LLMaJ results on the FLORES-200 dataset are derived from evaluations of 10 distinct large language models. Population estimates are based on heterogeneous sources, and the reported population are not guaranteed to be accurate. Therefore, they should be interpreted with appropriate caution.

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Language Name	Language Branch	Population	GPT4o mini	Llama-3.1-8B	Llama-3.2-3B	Minstral -8B	Phi-3	Phi-3.5	Qwen2.5 -1.5B	Qwen2.5 -3B	gemma2 -2b	gemma2 -9b
Central Atlas Tamazight	Berber	3-4 million	0.017	0.008	0.006	0.008	0.007	0.014	0.006	0.01	0.011	0.014
Kabyle		5 million	0.078	0.054	0.027	0.025	0.02	0.038	0.02	0.042	0.028	0.08
Tamasheq (Latin script)		500,000	0.143	0.101	0.067	0.082	0.088	0.093	0.061	0.09	0.096	0.142
Tamasheq (Tifinagh script)		500,000	0.021	0.009	0.007	0.009	0.008	0.022	0.005	0.013	0.016	0.018
Hausa	Chadic	40 million	0.774	0.534	0.166	0.132	0.089	0.101	0.082	0.11	0.228	0.656
Somali	Cushitic	20 million	0.735	0.257	0.112	0.143	0.077	0.121	0.063	0.107	0.112	0.5
West Central Oromo		10 million	0.617	0.079	0.067	0.047	0.028	0.051	0.023	0.07	0.035	0.121
Amharic	Semitic	32 million	0.627	0.254	0.015	0.024	0.008	0.013	0.018	0.054	0.148	0.59
Hebrew		9 million	0.892	0.859	0.587	0.853	0.464	0.599	0.578	0.757	0.802	0.874
Maltese		520,000	0.892	0.793	0.551	0.428	0.237	0.261	0.202	0.311	0.627	0.855
Modern Standard Arabic		335 millions	0.881	0.858	0.792	0.847	0.573	0.799	0.771	0.832	0.814	0.863
Tigrinya		9 million	0.209	0.066	0.006	0.02	0.016	0.017	0.007	0.026	0.041	0.211
Egyptian Arabic		60 million	0.851	0.807	0.701	0.776	0.451	0.68	0.658	0.753	0.718	0.815
Mesopotamian Arabic		15 million	0.862	0.839	0.715	0.794	0.497	0.713	0.686	0.774	0.751	0.83
Moroccan Arabic		30 million	0.816	0.659	0.529	0.596	0.316	0.508	0.491	0.58	0.555	0.736
Najdi Arabic		10 million	0.861	0.868	0.772	0.826	0.542	0.775	0.751	0.817	0.788	0.842
North Levantine Arabic		20 million	0.869	0.813	0.706	0.774	0.461	0.677	0.654	0.757	0.735	0.823
South Levantine Arabic		24 million	0.875	0.824	0.714	0.788	0.485	0.715	0.673	0.767	0.743	0.831
Ta, Añizzi-Adeni Arabic		11 million	0.869	0.857	0.748	0.816	0.525	0.75	0.725	0.802	0.783	0.842
Tunisian Arabic		11 million	0.837	0.724	0.611	0.686	0.418	0.611	0.57	0.667	0.631	0.773
Khmer	Khmer	16 million	0.797	0.718	0.415	0.08	0.061	0.082	0.117	0.259	0.233	0.699
Santali	Munda	7.5 million	0.018	0.073	0.007	0.002	0.004	0.005	0.001	0.01	0.052	0.387
Vietnamese	Vietic	76 million	0.881	0.867	0.839	0.856	0.623	0.676	0.833	0.854	0.849	0.875
Achinese (Arabic script)	Malayo-Polynesian	3.5 million	0.141	0.054	0.025	0.042	0.005	0.03	0.014	0.049	0.021	0.097
Achinese (Latin script)		3.5 million	0.394	0.309	0.195	0.213	0.169	0.219	0.157	0.235	0.209	0.385
Balinese		3.3 million	0.652	0.542	0.375	0.322	0.274	0.298	0.249	0.35	0.383	0.624
Banjar (Arabic script)		4 million	0.179	0.083	0.039	0.054	0.008	0.045	0.019	0.05	0.021	0.093
Banjar (Latin script)		4 million	0.688	0.604	0.459	0.436	0.282	0.297	0.302	0.422	0.47	0.69
Buginese		4 million	0.346	0.228	0.161	0.172	0.161	0.188	0.133	0.194	0.198	0.296
Cebuano		21 million	0.877	0.743	0.496	0.538	0.379	0.38	0.287	0.414	0.614	0.819
Ilocano		8 million	0.765	0.526	0.33	0.265	0.239	0.245	0.162	0.255	0.372	0.672
Indonesian		43 million L1	0.894	0.883	0.859	0.871	0.814	0.815	0.841	0.869	0.869	0.889
Javanese		82 million	0.837	0.7	0.489	0.376	0.256	0.308	0.286	0.436	0.527	0.767
Minangkabau (Arabic script)		6.5 million	0.157	0.057	0.03	0.037	0.006	0.044	0.012	0.038	0.018	0.081
Minangkabau (Latin script)		6.5 million	0.671	0.618	0.422	0.365	0.251	0.265	0.26	0.383	0.416	0.704
Pangasinan		1.5 million	0.487	0.38	0.282	0.291	0.292	0.298	0.206	0.269	0.319	0.492
Plateau Malagasy		5 million	0.813	0.313	0.126	0.289	0.069	0.098	0.074	0.129	0.13	0.504
Standard Malay		18 million L1	0.889	0.872	0.829	0.858	0.742	0.728	0.769	0.83	0.853	0.881
Sundanese		42 million	0.854	0.687	0.464	0.414	0.286	0.325	0.324	0.45	0.47	0.748
Tagalog		28 million	0.889	0.846	0.751	0.798	0.667	0.621	0.428	0.624	0.816	0.876
Waray		3.7 million	0.856	0.679	0.447	0.552	0.386	0.408	0.297	0.403	0.553	0.79
Fijian		330,000	0.501	0.146	0.072	0.094	0.084	0.108	0.057	0.097	0.103	0.226
Maori		185,000 (L2)	0.689	0.412	0.176	0.295	0.166	0.192	0.102	0.2	0.183	0.471
Samoan		500,000	0.728	0.313	0.117	0.118	0.09	0.121	0.076	0.121	0.126	0.4
Central Aymara	Aymara	2 million	0.168	0.085	0.074	0.083	0.072	0.092	0.061	0.093	0.087	0.126
Esperanto	Constructed	2 million (est.)	0.89	0.869	0.798	0.865	0.714	0.707	0.574	0.708	0.807	0.878
Tok Pisin	Dravidian	4 million	0.739	0.529	0.279	0.356	0.299	0.306	0.163	0.249	0.369	0.721
Haitian Creole		10 million	0.839	0.615	0.381	0.443	0.24	0.281	0.169	0.304	0.406	0.739
Papiamento		340,000	0.831	0.702	0.505	0.536	0.426	0.439	0.352	0.504	0.499	0.783
Kabuverdianu		1.2 million	0.786	0.587	0.436	0.496	0.38	0.412	0.319	0.459	0.454	0.672
Kannada		44 million	0.825	0.77	0.663	0.775	0.016	0.026	0.081	0.314	0.624	0.816
Malayalam	Celtic	38 million	0.845	0.797	0.664	0.777	0.015	0.027	0.102	0.341	0.663	0.844
Tamil		75 million	0.821	0.799	0.675	0.739	0.053	0.093	0.061	0.19	0.669	0.814
Telugu		81 million	0.846	0.802	0.731	0.772	0.031	0.045	0.108	0.337	0.667	0.831
Tosk Albanian	Albanian	3 million	0.884	0.828	0.655	0.806	0.263	0.288	0.213	0.365	0.622	0.836
Armenian	Armenian	6.7 million	0.867	0.835	0.569	0.838	0.080	0.124	0.078	0.22	0.634	0.841
Latgalian	Germanic	150,000	0.581	0.361	0.182	0.276	0.138	0.173	0.115	0.218	0.233	0.442
Lithuanian		3 million	0.877	0.815	0.668	0.801	0.297	0.292	0.326	0.541	0.787	0.864
Standard Latvian		1.75 million	0.886	0.822	0.665	0.812	0.322	0.35	0.353	0.59	0.785	0.872
Welsh		875,000 (L2)	0.896	0.816	0.577	0.749	0.136	0.183	0.118	0.285	0.419	0.813
Irish		1.2 million (L2)	0.86	0.731	0.428	0.58	0.107	0.137	0.082	0.21	0.249	0.72
Scottish Gaelic	Greek	60,000	0.8	0.567	0.276	0.249	0.098	0.134	0.073	0.174	0.144	0.564
Afrikaans		7 million	0.901	0.878	0.82	0.855	0.684	0.72	0.687	0.786	0.847	0.89
Danish		5.8 million	0.901	0.884	0.855	0.879	0.767	0.81	0.756	0.838	0.873	0.891
German		95 million (L1)	0.898	0.89	0.88	0.891	0.887	0.884	0.863	0.881	0.885	0.894
Limburgish		1.3 million	0.784	0.719	0.535	0.533	0.381	0.418	0.354	0.492	0.601	0.796
Eastern Yiddish		1 million	0.834	0.618	0.1	0.166	0.039	0.053	0.017	0.117	0.261	0.78
Faroese		70,000	0.845	0.639	0.417	0.491	0.254	0.279	0.183	0.317	0.375	0.709
Icelandic		350,000	0.876	0.768	0.526	0.714	0.241	0.252	0.173	0.315	0.476	0.789
Norwegian Bokmal		4 million	0.888	0.87	0.84	0.865	0.748	0.784	0.726	0.814	0.858	0.881
Norwegian Nynorsk		750,000	0.89	0.864	0.816	0.86	0.65	0.687	0.637	0.756	0.838	0.88
Swedish	Assamese	10 million	0.899	0.892	0.875	0.879	0.791	0.822	0.777	0.841	0.874	0.893
Dutch		24 million	0.883	0.874	0.859	0.873	0.81	0.86	0.828	0.856	0.864	0.878
Luxembourgish		400,000	0.874	0.767	0.565	0.557	0.396	0.404	0.281	0.41	0.493	0.792
Greek		13 million	0.88	0.854	0.791	0.852	0.604	0.635	0.475	0.672	0.82	0.868
Assamese		15 million	0.785	0.666	0.467	0.32	0.035	0.067	0.167	0.396	0.464	0.719
Awadhi	Bengali	38 million	0.841	0.769	0.655	0.696	0.243	0.519	0.313	0.53	0.689	0.796
Bengali		265 million	0.855	0.81	0.742	0.791	0.097	0.14	0.392	0.644	0.728	0.831
Bhojpuri		50 million	0.834	0.702	0.56	0.596	0.191	0.444	0.239	0.418	0.602	0.768
Chhattisgarhi		16 million	0.821	0.672	0.541	0.605	0.191	0.471	0.256	0.445	0.589	0.735
Eastern Panjabi		33										

1242	Gujarati	55 million	0.853	0.807	0.693	0.725	0.012	0.024	0.197	0.497	0.649	0.838
1243	Hindi	600 million (L2)	0.871	0.841	0.809	0.832	0.408	0.727	0.49	0.705	0.822	0.862
1244	Magahi	14 million	0.843	0.741	0.634	0.667	0.242	0.497	0.293	0.509	0.682	0.801
1245	Maithili	35 million	0.855	0.722	0.589	0.57	0.191	0.454	0.245	0.422	0.624	0.788
1246	Marathi	83 million	0.864	0.809	0.716	0.726	0.131	0.253	0.227	0.464	0.69	0.831
1247	Nepali	25 million	0.851	0.75	0.576	0.717	0.205	0.375	0.233	0.465	0.688	0.825
1248	Odia	37 million	0.796	0.692	0.242	0.027	0.014	0.025	0.055	0.365	0.041	0.637
1249	Sanskrit	14000+	0.624	0.536	0.389	0.41	0.18	0.31	0.165	0.327	0.341	0.596
1250	Sindhi	32 million	0.824	0.721	0.346	0.126	0.042	0.081	0.064	0.167	0.214	0.625
1251	Sinhala	17 million	0.793	0.703	0.026	0.019	0.011	0.016	0.017	0.118	0.233	0.729
1252	Urdu	100+ million L2	0.855	0.828	0.701	0.736	0.188	0.215	0.276	0.505	0.674	0.822
1253	Kashmiri (Arabic script)	7 million	0.497	0.315	0.17	0.221	0.051	0.089	0.062	0.145	0.202	0.383
1254	Kashmiri (Devanagari script)	7 million	0.411	0.213	0.146	0.191	0.069	0.132	0.073	0.144	0.16	0.299
1255	Central Kurdish	6 million	0.594	0.763	0.224	0.071	0.014	0.026	0.033	0.099	0.127	0.574
1256	Dari	10-12 million	0.86	0.873	0.745	0.793	0.405	0.415	0.561	0.684	0.775	0.84
1257	Northern Kurdish	15 million	0.615	0.454	0.187	0.455	0.078	0.114	0.1	0.16	0.131	0.447
1258	Southern Pashto	20 million	0.792	0.725	0.395	0.601	0.077	0.12	0.127	0.241	0.234	0.588
1259	Tajik	8-9 million	0.848	0.766	0.212	0.178	0.05	0.1	0.075	0.193	0.141	0.682
1260	Western Persian	55 million	0.873	0.894	0.804	0.839	0.438	0.463	0.601	0.741	0.822	0.864
1261	Catalan	4 million	0.895	0.885	0.851	0.88	0.781	0.792	0.785	0.843	0.859	0.886
1262	French	80+ million (L1)	0.896	0.891	0.885	0.892	0.892	0.889	0.881	0.887	0.886	0.894
1263	Friulian	600,000	0.796	0.689	0.501	0.577	0.45	0.46	0.376	0.504	0.492	0.751
1264	Galician	2.4 million	0.893	0.869	0.84	0.875	0.832	0.827	0.804	0.85	0.853	0.883
1265	Italian	65 million	0.891	0.882	0.872	0.887	0.884	0.879	0.863	0.875	0.878	0.889
1266	Ligurian	500,000	0.759	0.65	0.493	0.581	0.499	0.498	0.394	0.538	0.522	0.731
1267	Lombard	3.5 million (est.)	0.817	0.663	0.49	0.597	0.447	0.458	0.348	0.503	0.504	0.747
1268	Occitan	2 million	0.889	0.847	0.765	0.806	0.698	0.692	0.622	0.731	0.73	0.858
1269	Portuguese	230 million	0.899	0.891	0.879	0.892	0.888	0.884	0.873	0.883	0.886	0.892
1270	Romanian	24 million	0.898	0.889	0.867	0.873	0.729	0.77	0.754	0.829	0.867	0.893
1271	Sardinian	1 million	0.758	0.68	0.505	0.538	0.426	0.426	0.34	0.476	0.51	0.746
1272	Spanish	483 million L1	0.887	0.877	0.866	0.883	0.877	0.876	0.863	0.875	0.877	0.885
1273	Venetian	2 million	0.858	0.792	0.677	0.772	0.614	0.612	0.542	0.695	0.703	0.842
1274	Asturian	400,000	0.864	0.844	0.78	0.814	0.727	0.73	0.677	0.749	0.797	0.861
1275	Sicilian	4.7 million	0.829	0.704	0.537	0.628	0.419	0.454	0.343	0.509	0.544	0.782
1276	Belarusian	6.5 million	0.865	0.815	0.651	0.812	0.171	0.223	0.333	0.567	0.744	0.846
1277	Russian	150 million (L1)	0.889	0.883	0.86	0.884	0.791	0.846	0.855	0.872	0.867	0.888
1278	Ukrainian	35 million	0.892	0.875	0.822	0.873	0.616	0.762	0.729	0.818	0.858	0.885
1279	Bosnian	3 million	0.895	0.869	0.804	0.871	0.612	0.576	0.644	0.788	0.823	0.883
1280	Bulgarian	8 million	0.891	0.869	0.821	0.865	0.624	0.635	0.728	0.812	0.856	0.883
1281	Croatian	5.6 million	0.891	0.87	0.826	0.866	0.595	0.563	0.646	0.781	0.828	0.88
1282	Macedonian	2 million	0.89	0.858	0.762	0.858	0.432	0.45	0.592	0.742	0.797	0.872
1283	Serbian	6.5 million	0.893	0.875	0.801	0.86	0.423	0.456	0.585	0.753	0.825	0.884
1284	Slovenian	2.1 million	0.889	0.85	0.767	0.839	0.531	0.518	0.578	0.727	0.819	0.878
1285	Czech	10.5 million	0.892	0.882	0.856	0.87	0.697	0.771	0.779	0.847	0.862	0.887
1286	Polish	38 million	0.885	0.873	0.846	0.867	0.714	0.763	0.777	0.847	0.861	0.881
1287	Silesian	1 million	0.808	0.698	0.557	0.592	0.362	0.401	0.38	0.541	0.587	0.784
1288	Slovak	5.2 million	0.892	0.864	0.802	0.862	0.602	0.693	0.689	0.807	0.852	0.882
1289	Japanese	125 million	0.878	0.858	0.825	0.851	0.761	0.819	0.799	0.846	0.833	0.869
1290	Georgian	4 million	0.856	0.776	0.449	0.801	0.104	0.138	0.137	0.273	0.541	0.794
1291	Korean	81 million	0.875	0.843	0.786	0.842	0.573	0.766	0.76	0.823	0.792	0.861
1292	Basque	750,000	0.865	0.79	0.563	0.786	0.184	0.233	0.128	0.24	0.558	0.832
1293	Halk Mongolian	3 million	0.834	0.699	0.151	0.514	0.042	0.084	0.065	0.136	0.147	0.613
1294	Wolof	10 million	0.3	0.141	0.088	0.109	0.107	0.147	0.08	0.12	0.11	0.173
1295	Nigerian Fulfulde	14 million	0.191	0.105	0.061	0.072	0.075	0.092	0.05	0.085	0.081	0.128
1296	Bemba	4 million	0.302	0.13	0.092	0.107	0.098	0.11	0.068	0.103	0.124	0.249
1297	Chokwe	1.3 million	0.147	0.096	0.071	0.077	0.075	0.117	0.062	0.092	0.098	0.136
1298	Ganda	7 million	0.45	0.156	0.091	0.107	0.08	0.092	0.065	0.097	0.099	0.247
1299	Kamba	4 million	0.202	0.126	0.087	0.095	0.098	0.118	0.068	0.108	0.101	0.171
1300	Kikongo	7 million	0.267	0.118	0.074	0.103	0.101	0.11	0.076	0.12	0.112	0.189
1301	Kikuyu	8 million	0.239	0.158	0.095	0.116	0.112	0.139	0.085	0.119	0.122	0.199
1302	Kimbundu	3 million	0.133	0.077	0.056	0.075	0.071	0.087	0.054	0.077	0.082	0.125
1303	Kinyarwanda	12 million	0.788	0.296	0.096	0.098	0.071	0.091	0.068	0.115	0.114	0.494
1304	Lingala	8-10 million	0.554	0.156	0.095	0.134	0.117	0.135	0.094	0.141	0.118	0.225
1305	Luba-Kasai	6.5 million	0.201	0.1	0.083	0.115	0.104	0.125	0.087	0.112	0.121	0.188
1306	Northern Sotho	5 million	0.632	0.205	0.104	0.117	0.103	0.124	0.092	0.148	0.118	0.38
1307	Nyanja	12 million	0.7	0.215	0.11	0.129	0.101	0.127	0.086	0.133	0.166	0.436
1308	Rundi	9 million	0.679	0.194	0.083	0.083	0.07	0.086	0.062	0.113	0.101	0.322
1309	Shona	11 million	0.764	0.208	0.103	0.149	0.095	0.124	0.086	0.123	0.143	0.531
1310	Southern Sotho	5.6 million	0.744	0.196	0.095	0.1	0.089	0.111	0.087	0.136	0.125	0.461
1311	Swahili	100+ million L2	0.857	0.768	0.665	0.602	0.212	0.233	0.09	0.188	0.736	0.839
1312	Swati	2.5 million	0.55	0.168	0.111	0.112	0.081	0.103	0.073	0.122	0.116	0.382
1313	Tsonga	3 million	0.525	0.15	0.081	0.095	0.082	0.108	0.057	0.092	0.096	0.242
1314	Tswana	5 million	0.624	0.193	0.092	0.104	0.088	0.111	0.075	0.122	0.113	0.377
1315	Tumbuka	2 million	0.504	0.166	0.094	0.105	0.089	0.114	0.069	0.114	0.125	0.284
1316	Umbundu	6 million	0.135	0.076	0.063	0.069	0.064	0.086	0.045	0.078	0.087	0.122
1317	Xhosa	8.2 million	0.776	0.248	0.124	0.154	0.103	0.132	0.077	0.139	0.192	0.612
1318	Zulu	12 million	0.799	0.264	0.101	0.111	0.082	0.107	0.095	0.127	0.168	0.619
1319	Fon	1.7 million	0.108	0.075	0.054	0.065	0.068	0.079	0.041	0.062	0.075	0.107
1320	Ewe	7 million	0.138	0.097	0.071	0.08	0.068	0.083	0.054	0.074	0.077	0.124
1321	Kabiye	1.2 million	0.099	0.101	0.065	0.072	0.051	0.074	0.035	0.061	0.078	0.138
1322	Mossi	7.5 million	0.124	0.076	0.064	0.077	0.066	0.081	0.057	0.076	0.077	0.117
1323	Akan	11 million	0.511	0.201	0.109	0.127	0.128	0.148	0.088	0.135	0.147	0.306
1324	Twi	17 million	0.504	0.226	0.133	0.14	0.129	0.161	0.09	0.143	0.158	0.341
1325	Bambara	14 million	0.119	0.086	0.067	0.076	0.069	0.094	0.051	0.077	0.084	0.12
1326	Dyula	3 million	0.12	0.066	0.054	0.073	0.076	0.097	0.051	0.074	0.073	0.105
1327	Igbo	27 million	0.691	0.397	0.137	0.091	0.074	0.092	0.063	0.078	0.148	

1296

1297	Central Kanuri (Arabic script)	Saharan	4 million	0.043	0.02	0.01	0.019	0.017	0.027	0.011	0.017	0.015	0.026
1298	Central Kanuri (Latin script)		4 million	0.153	0.1	0.073	0.092	0.112	0.12	0.074	0.104	0.087	0.143
1299	Ayacucho Quechua	Quechua II	1 million	0.232	0.182	0.109	0.112	0.113	0.139	0.084	0.129	0.126	0.194
1300	Chinese (Simplified)	Sinitic	920 million (L1)	0.884	0.872	0.847	0.871	0.775	0.829	0.859	0.868	0.855	0.878
1301	Chinese (Traditional)		31 million	0.881	0.861	0.825	0.857	0.714	0.807	0.847	0.855	0.842	0.871
1302	Yue Chinese		60 million	0.884	0.896	0.828	0.858	0.724	0.8	0.84	0.862	0.846	0.873
1303	Burmese	Tibeto-Burman	33 million	0.748	0.672	0.075	0.616	0.021	0.033	0.033	0.094	0.178	0.638
1304	Dzongkha		700,000	0.068	0.11	0.004	0.007	0.004	0.008	0.001	0.005	0.006	0.119
1305	Jingpho		900,000	0.131	0.093	0.075	0.08	0.084	0.106	0.065	0.097	0.072	0.111
1306	Meitei (Bengali script)		1.8 million	0.155	0.065	0.046	0.061	0.012	0.031	0.02	0.052	0.043	0.129
1307	Mizo		900,000	0.334	0.325	0.203	0.185	0.189	0.217	0.158	0.219	0.328	0.593
1308	Standard Tibetan		1.2 million	0.103	0.185	0.011	0.007	0.012	0.014	0.01	0.015	0.018	0.191
1309	Shan	Tai	3 million	0.128	0.417	0.085	0.092	0.107	0.132	0.08	0.1	0.118	0.191
1310	Lao		7.5 million	0.658	0.384	0.073	0.081	0.069	0.093	0.071	0.132	0.125	0.521
1311	Thai		36 million	0.879	0.868	0.819	0.828	0.451	0.591	0.773	0.831	0.818	0.872
1312	Guarani	Tupi	6-7 million	0.547	0.269	0.186	0.181	0.182	0.221	0.14	0.198	0.207	0.331
1313	Northern Uzbek	Karluk	27 million	0.866	0.765	0.539	0.733	0.115	0.151	0.168	0.349	0.501	0.787
1314	Uyghur		10 million	0.773	0.674	0.157	0.12	0.011	0.032	0.023	0.11	0.026	0.44
1315	Bashkir	Kipchak	1.2 million	0.837	0.762	0.311	0.463	0.128	0.192	0.143	0.243	0.384	0.746
1316	Crimean Tatar		300,000	0.765	0.609	0.42	0.518	0.175	0.257	0.215	0.366	0.418	0.705
1317	Kazakh		13 million	0.868	0.788	0.399	0.755	0.102	0.149	0.187	0.325	0.498	0.808
1318	Kyrgyz		4.5 million	0.827	0.731	0.333	0.655	0.086	0.15	0.162	0.278	0.308	0.709
1319	Tatar		5 million	0.863	0.776	0.376	0.715	0.112	0.177	0.158	0.266	0.375	0.739
1320	North Azerbaijani		9-10 million	0.837	0.776	0.618	0.749	0.21	0.262	0.267	0.491	0.636	0.804
1321	South Azerbaijani	Oghuz	15-20 million	0.572	0.437	0.236	0.413	0.065	0.117	0.094	0.146	0.273	0.546
1322	Turkish		75 million	0.884	0.857	0.809	0.82	0.497	0.614	0.625	0.775	0.825	0.878
1323	Turkmen		7 million	0.834	0.538	0.289	0.287	0.102	0.153	0.115	0.211	0.257	0.656
1324	Estonian		1.1 million	0.89	0.838	0.708	0.811	0.175	0.222	0.314	0.531	0.777	0.869
1325	Finnish	Finnic	5.4 million	0.89	0.867	0.805	0.843	0.453	0.606	0.42	0.61	0.821	0.881
1326	Hungarian		13 million	0.887	0.871	0.839	0.852	0.486	0.641	0.399	0.61	0.829	0.879

Table 9: The Corpus BLEU results on the FLORES-200 dataset are derived from evaluations of 10 distinct large language models. Population estimates are based on heterogeneous sources, and the reported population are not guaranteed to be accurate. Therefore, they should be interpreted with appropriate caution.

Language Name	Language Branch	Population	GPT4o Mini	Llama 3.1B	Llama 3.2B	Minstral 8B	Phi-3	Phi-3.5	Qwen2.5 1.5B	Qwen2.5 3B	gemma-2 2B	gemma-2 9B
Central Atlas Tamazight	Berber	3-4 million	1.4	0.4	0.4	0.2	1.0	0.8	0.2	0.8	0.4	1.4
Kabyle		5 million	4.0	3.3	1.4	0.9	1.7	0.7	0.5	1.5	1.4	4.3
Tamasheq (Latin script)		500,000	5.2	3.9	2.7	1.9	4.3	1.7	1.0	3.4	3.3	4.9
Tamasheq (Tifinagh script)		500,000	1.3	0.4	0.3	0.2	1.0	0.7	0.1	0.5	0.6	1.1
Hausa		40 million	30.4	20.0	7.5	2.9	3.9	1.6	1.5	4.5	8.9	25.9
Somali		20 million	26.6	10.8	5.3	3.2	4.0	1.3	1.9	4.0	4.2	19.1
West Central Oromo		10 million	17.2	3.5	1.9	0.9	1.7	0.7	0.3	1.5	1.1	4.2
Amharic		32 million	18.0	8.4	1.1	0.4	1.0	0.8	0.6	2.7	4.8	19.1
Hebrew		9 million	43.6	36.4	21.2	36.9	18.1	9.3	22.3	31.7	33.1	42.6
Maltese		520,000	51.8	41.1	26.1	16.8	9.1	3.6	4.4	12.2	28.3	49.4
Modern Standard Arabic	Semitic	330 million	39.2	30.1	29.5	33.9	19.0	16.0	27.2	32.6	31.3	38.6
Modern Standard Arabic (Romanized)		330 million	25.1	10.1	4.5	4.8	2.9	1.3	1.3	6.3	2.2	14.2
Tigrinya		9 million	4.7	1.8	0.7	0.3	0.7	0.7	0.2	1.3	1.1	5.5
Egyptian Arabic		60 million	30.9	11.6	21.6	24.9	13.0	10.5	18.4	23.6	21.7	29.5
Mesopotamian Arabic		15 million	33.8	12.2	23.0	26.7	14.9	12.5	20.8	25.9	24.7	31.9
Moroccan Arabic		30 million	29.1	13.7	17.0	18.1	9.9	7.3	13.2	18.4	16.3	25.7
Najdi Arabic		10 million	38.5	19.3	29.0	32.5	17.8	19.6	25.7	31.1	30.1	37.4
North Levantine Arabic		20 million	37.5	15.9	25.0	27.8	15.1	12.5	21.2	27.4	25.0	34.4
South Levantine Arabic		24 million	40.5	15.5	27.1	31.3	17.3	12.7	23.7	30.3	28.1	37.3
Ta’izzi-Adeni Arabic		11 million	35.6	11.2	25.6	29.2	16.3	15.7	23.3	28.0	27.3	33.9
Tunisian Arabic	Malayo-Polynesian	11 million	30.7	15.3	19.9	22.2	12.8	10.0	17.5	21.8	19.9	28.1
Khmer		16 million	25.3	17.4	12.5	2.0	3.1	1.7	3.5	9.2	6.3	22.3
Santali		7.5 million	0.7	3.9	0.5	0.1	0.4	0.3	0.1	0.1	2.1	12.7
Vietnamese		76 million	35.8	33.4	30.0	31.4	19.7	12.5	28.6	32.1	29.7	36.6
Acehnese (Arabic script)		3.5 million	4.8	1.5	1.0	0.9	0.6	0.5	0.4	1.6	0.5	3.1
Acehnese (Latin script)		3.5 million	12.7	10.7	6.9	5.4	6.1	2.8	2.7	6.2	6.2	13.5
Balinese		3.3 million	22.9	17.9	12.4	8.0	8.5	3.6	4.9	10.1	11.9	22.4
Banjar (Arabic script)		4 million	6.2	1.4	1.2	0.8	0.6	0.5	0.4	1.9	0.5	3.1
Banjar (Latin script)		4 million	24.9	22.4	15.9	12.7	10.0	4.7	7.3	14.4	15.8	27.1
Buginese		4 million	10.2	6.7	5.2	4.5	5.1	2.6	2.7	5.9	6.0	9.4
Cebuano	Plateau Malagasy	21 million	42.8	32.6	20.7	19.4	14.3	5.6	9.3	16.3	24.1	39.2
Ilocano		8 million	29.2	20.5	13.6	7.2	8.4	3.8	4.1	9.3	12.6	26.5
Indonesian		43 million L1	44.4	40.9	37.0	38.0	32.4	22.9	33.5	37.3	38.0	44.9
Javanese		82 million	37.7	27.2	18.1	10.3	8.3	3.0	6.7	14.2	18.1	33.4
Minangkabau (Arabic script)		6.5 million	5.7	1.3	0.8	0.7	0.6	0.5	0.3	1.3	0.3	2.9
Minangkabau (Latin script)		6.5 million	24.9	23.1	16.0	9.8	8.9	4.3	6.9	12.4	13.4	27.8
Pangasian		1.5 million	17.8	14.7	11.7	9.7	10.6	5.4	5.8	10.3	11.0	18.1
Plateau Malagasy		5 million	27.4	11.0	5.2	9.5	3.7	1.5	1.5	3.9	4.5	17.1
Standard Malay		18 million L1	44.5	38.6	34.9	37.7	28.4	17.1	30.1	35.3	36.7	44.5
Sundanese		42 million	35.7	23.5	15.0	10.2	8.0	3.0	6.8	13.6	14.6	29.2
Tagalog	Fijian	28 million	45.4	40.2	32.5	32.7	24.9	17.8	14.6	26.1	34.7	44.9
Waray		3.7 million	44.3	30.2	18.8	21.4	13.0	6.0	8.5	17.1	21.4	38.1
Fijian		330,000	13.3	5.9	3.5	3.0	3.7	1.5	1.5	3.7	3.6	8.9
Maori		50,000 L1	23.1	14.5	7.8	9.5	7.5	1.4	3.8	8.2	7.1	16.8
Samoan		500,000	26.2	12.5	5.9	3.9	4.5	1.3	1.9	4.6	4.4	16.0
Central Aymara		2 million	5.7	2.8	2.8	2.3	3.5	1.5	1.0	2.8	2.6	4.8

1350

1351

Esperanto	N/A		45.1	40.3	35.2	40.6	30.2	14.0	23.7	30.5	35.1	44.3
Tok Pisin	(English-based)	120,000 L1	19.8	15.2	9.9	11.4	10.4	2.9	3.7	8.0	11.2	22.6
Haitian Creole	(French-based)	10 million	37.8	24.7	15.3	15.7	8.5	1.9	4.2	11.3	14.9	32.2
Papiamento	(Iberian-based)	340,000	42.1	32.1	21.1	19.2	15.7	5.0	10.3	19.2	18.0	38.9
Kabuverdianu	(Portuguese-based)	1.2 million	39.6	24.2	17.3	18.1	14.8	5.9	9.3	17.7	16.4	31.1
Kannada	South Dravidian	44 million	29.1	17.8	19.2	23.0	1.2	1.3	2.1	8.6	16.3	28.8
Malayalam		38 million	30.8	21.6	18.6	22.7	1.4	0.9	2.3	8.8	18.1	31.4
Tamil		75 million	27.7	16.0	19.3	21.3	2.5	1.8	1.9	6.8	17.4	29.0
Telugu	South-Central Dravidian	81 million	34.8	25.0	23.9	25.0	2.2	1.9	3.0	9.5	19.5	33.5
Tosk Albanian	Albanian	3 million	39.1	28.9	22.8	31.5	8.7	3.0	5.6	12.1	21.1	36.3
Armenian	Armenian	6.7 million	37.6	28.7	18.6	31.9	3.1	1.3	2.8	8.2	20.9	35.3
Latgalian	Baltic	150,000	19.5	11.3	6.3	6.9	3.9	1.4	2.1	5.9	5.5	14.7
Lithuanian		3 million	33.7	28.0	20.2	26.1	8.6	3.9	8.7	16.7	25.7	33.9
Standard Latvian		1.75 million	36.1	28.0	20.1	27.8	8.5	3.0	9.2	18.3	27.0	35.0
Welsh	Celtic	875,000	55.0	45.4	29.5	37.8	7.4	2.2	5.5	14.7	19.5	47.0
Irish	Celtic (Goidelic)	170k L1	37.1	27.8	16.0	20.9	5.6	2.0	3.5	10.2	10.0	30.2
Scottish Gaelic		60,000	30.6	19.6	10.5	8.6	4.4	1.2	2.8	7.1	5.8	21.0
Afrikaans	Germanic	7 million	56.7	52.7	47.2	50.4	36.0	18.6	36.1	45.0	48.7	56.5
Danish		5.8 million	48.3	45.0	40.3	44.1	35.0	30.4	34.2	40.7	43.6	48.5
German		95 million (L1)	44.0	41.3	38.7	41.3	40.0	34.9	35.6	38.4	40.4	44.1
Limburgish		1.3 million	36.4	32.9	23.2	21.6	14.8	6.3	13.1	20.7	25.5	38.2
Eastern Yiddish		1 million	49.5	25.9	7.5	9.1	3.8	1.0	0.5	7.0	14.0	45.9
Faroese		70,000	36.9	25.8	16.5	17.9	10.4	3.9	5.9	12.5	14.0	29.9
Icelandic		350,000	35.2	27.0	17.5	24.4	9.6	4.0	6.9	12.4	16.5	30.0
Norwegian Bokmål		4 million	43.5	40.6	36.8	40.1	30.6	23.8	30.3	36.3	39.2	44.0
Norwegian Nynorsk		750,000	45.0	41.1	37.2	40.5	26.4	14.4	34.0	39.4	45.0	
Swedish		10 million	48.1	46.0	42.9	43.5	35.6	31.2	36.1	40.9	43.0	48.6
Dutch		24 million	31.6	29.7	28.5	29.7	25.8	25.0	25.6	28.6	29.9	32.1
Luxembourgish		400,000	46.6	34.4	23.7	22.5	14.0	5.7	7.0	15.4	19.0	38.6
Greek	Greek	13 million	35.5	32.4	28.2	31.2	19.3	13.9	15.5	23.7	29.8	35.8
Assamese	Indo-Aryan	15 million	26.3	15.5	12.7	6.9	1.8	1.2	4.2	9.2	11.6	23.3
Awadhi		38 million	33.0	6.0	18.6	19.0	6.8	6.1	7.7	13.7	19.1	29.3
Bengali		265 million	33.0	22.6	24.0	24.3	3.8	2.0	10.8	19.1	21.8	31.7
Bhojpuri		50 million	26.5	13.8	14.0	13.4	5.6	3.8	5.0	9.7	14.1	22.7
Chhattisgarhi		16 million	36.6	12.7	17.0	16.7	5.7	5.1	5.5	13.2	17.6	29.3
Eastern Panjabi		33 million	34.8	12.2	23.7	23.9	1.3	0.7	2.9	12.6	18.0	34.5
Gujarati		55 million	36.0	18.8	23.5	22.6	1.3	1.0	5.1	15.2	19.9	35.0
Hindi		600 million	38.8	33.2	29.9	30.6	12.5	16.3	13.8	23.2	30.1	39.1
Magahi		14 million	38.2	14.1	20.9	19.7	7.0	6.1	7.2	13.9	22.1	33.7
Maithili		35 million	36.9	12.0	16.1	12.6	5.1	3.3	4.9	9.4	15.3	28.4
Marathi		83 million	34.1	21.0	21.9	20.1	3.7	2.2	4.9	12.7	19.9	33.3
Nepali		25 million	37.6	24.0	17.1	22.4	5.8	4.6	5.3	13.3	20.4	34.9
Odia		37 million	27.3	21.2	5.7	0.6	1.4	1.1	1.9	9.5	1.1	18.9
Sanskrit		Few thousand L1	15.7	12.7	8.6	7.3	4.3	1.9	2.8	6.7	6.5	15.4
Sindhi	Iranian	32 million	35.9	8.2	11.6	2.8	1.9	0.9	1.6	4.9	5.7	24.4
Sinhala		17 million	25.8	20.0	1.0	0.4	1.0	0.6	0.6	3.7	5.3	23.1
Urdu		70 million L1	33.3	8.8	22.7	22.7	5.5	2.6	7.4	14.9	20.4	32.2
Kashmiri (Arabic script)		7 million	14.2	6.4	4.9	3.0	2.3	1.1	1.2	3.8	4.3	10.3
Kashmiri (Devanagari script)		11.3	5.1	3.9	3.0	3.4	2.0	1.2	4.0	3.5	8.1	
Central Kurdish	Romance	6 million	19.3	5.9	8.1	2.2	1.1	0.6	1.1	3.3	4.1	19.7
Dari		10-12 million	37.0	10.1	27.7	29.7	12.6	4.6	17.5	24.2	28.4	36.8
Northern Kurdish		15 million	19.3	14.5	6.3	13.2	3.2	1.2	1.4	3.9	4.0	15.5
Southern Pashto		20 million	29.0	9.0	12.2	17.3	2.9	1.1	3.6	7.0	5.8	19.9
Tajik		8.9 million	30.9	11.4	6.1	4.2	2.2	1.0	1.7	5.4	3.7	23.1
Western Persian	Slavic (East)	55 million	34.8	15.6	27.8	29.7	12.6	3.7	17.5	24.6	28.4	35.8
Catalan		4 million	46.4	43.2	39.6	42.3	33.1	25.0	32.8	38.9	40.6	46.6
French		80+ million (L1)	45.2	42.9	39.9	42.6	41.6	37.3	38.2	41.3	42.1	45.5
Friulian		600,000	33.7	28.2	19.3	20.1	14.8	5.0	12.2	17.5	16.9	31.8
Galician		2.4 million	41.4	37.0	33.5	36.7	33.8	24.2	30.9	34.6	36.0	40.5
Italian		65 million	32.9	31.2	29.8	31.8	30.6	27.4	27.6	30.5	31.4	34.2
Ligurian		500,000	35.1	28.3	20.3	22.6	19.2	7.0	13.1	21.0	20.7	33.7
Lombard		3.5 million (est.)	35.8	25.9	19.6	22.4	16.1	5.9	10.4	18.8	19.2	32.2
Occitan		2 million	52.1	46.1	38.5	40.5	31.6	11.3	25.8	35.9	34.4	47.7
Portuguese		230 million	49.8	47.3	44.1	46.7	45.0	41.5	42.0	45.1	46.1	49.9
Romanian	Slavic (South)	24 million	43.1	40.0	36.9	37.9	27.5	15.9	29.4	34.8	38.6	43.9
Sardinian		1 million	34.4	31.2	22.0	21.6	15.6	6.1	11.8	19.1	20.7	35.7
Spanish		483 million L1	30.9	28.4	27.0	29.7	28.5	23.8	26.2	27.9	29.3	31.1
Venetian		2 million	40.0	34.7	27.0	31.7	23.9	6.6	18.6	28.3	28.8	40.5
Asturian		400,000	39.8	37.5	32.9	34.7	29.2	14.9	26.0	29.7	33.1	40.1
Sicilian		4.7 million	35.5	28.9	21.7	24.4	15.3	3.8	11.4	19.1	20.1	34.4
Belarusian		6.5 million	20.8	16.5	13.1	17.4	4.7	2.6	6.3	11.7	15.3	20.2
Russian		150 million (L1)	35.9	33.0	30.5	33.2	26.6	24.3	28.7	31.5	32.4	35.9
Ukrainian		35 million	39.7	36.2	31.2	35.3	22.1	21.6	24.7	31.1	34.3	39.9
Bosnian		3 million	42.5	38.1	32.0	37.1	22.5	12.2	23.9	31.9	33.6	42.2
Bulgarian	Slavic (West)	8 million	40.9	37.3	33.2	35.6	22.2	17.9	25.5	31.9	35.2	41.3
Croatian		5.6 million	37.7	34.9	31.3	33.4	20.4	12.0	22.3	29.0	30.7	37.8
Macedonian		2 million	42.0	37.7	30.7	36.1	16.0	7.9	21.3	30.3	32.0	41.7
Serbian		6.5 million	43.3	39.7	33.0	36.9	15.7	7.7	21.1	30.6	34.4	42.8
Slovenian		2.1 million	35.9	30.9	26.5	29.2	17.0	9.3	17.2	24.5	28.4	35.4
Czech	Georgian	10.5 million	40.2	37.8	34.2	35.5	24.6	23.1	27.2	33.8	35.1	40.4
Polish		38 million	30.1	27.5	25.3	26.6	19.9	14.1	21.9	25.2	27.0	30.5
Silesian		<1 million	36.1	27.4	22.5	21.9	13.0	6.0	13.5	20.7	21.7	35.2
Slovak		5.2 million	39.7	34.6	30.1	34.2	20.5	14.6	23.6	30.5	33.6	39.3
Japanese		125 million	26.5	23.2	20.5	21.9	17.8	16.6	18.9	22.4	21.7	26.3
Georgian	Korean	4 million	27.5	20.3	11.3	21.5	3.2	1.4	3.0	7.0	12.1	24.4
Korean		81 million	29.3	25.1	21.1	24.4	13.9	16.5	19.4	23.8	20.9	29.0
Basque		N/A	750,000	30.1	24.7	15.3	23.6	4.9	1.6	2.8	6.2	15.3
Halk Mongolian	Eastern Mongolic	3 million	28.1	8.9	4.4	12.1	1.6	0.9	1.2	4.3	3.5	17.6
Wolof	Atlantic	10 million	10.2	5.7	3.9	2.9	4.4	1.4	2.0	5.0	3.5	6.7

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Nigerian Fulfulde	Atlantic-Fula	14 million	6.8	4.1	2.5	2.5	3.9	1.6	1.3	3.5	2.6	5.3
Bemba		4 million	10.4	6.1	4.3	3.9	5.5	2.1	1.8	4.5	5.1	9.9
Chokwe		1.3 million	5.7	3.5	2.9	1.9	4.0	1.6	1.5	3.1	3.2	5.0
Ganda		7 million	15.0	7.1	4.5	3.0	4.6	1.7	1.9	4.1	4.2	10.1
Kamba		4 million	7.6	5.8	4.3	2.9	4.9	1.6	1.5	4.2	3.4	6.9
Kikongo		7 million	8.8	4.4	3.2	2.6	4.4	1.7	1.4	4.4	3.5	6.0
Kikuyu		8 million	8.2	5.7	3.3	3.2	4.8	1.9	1.3	3.8	3.8	6.5
Kimbundu		3 million	6.0	3.3	2.6	2.3	3.6	1.4	1.2	3.5	3.4	5.5
Kinyarwanda		12 million	27.7	11.3	4.6	3.5	4.1	1.2	1.4	3.8	4.6	17.9
Lingala		8-10 million	16.0	5.8	4.2	3.9	4.9	1.5	1.9	4.7	3.7	7.8
Luba-Kasai		6.5 million	7.7	3.8	2.7	2.9	4.1	2.0	1.8	4.4	3.9	6.8
Northern Sotho		5 million	27.9	9.9	5.4	3.6	4.7	1.8	1.3	5.0	4.4	18.0
Nyanja		12 million	21.9	8.7	4.4	3.8	4.7	1.5	2.3	5.4	6.1	15.3
Rundi		9 million	18.0	6.8	3.6	2.4	3.2	1.4	1.3	3.4	3.1	10.3
Shona		11 million	23.7	8.7	4.6	3.4	4.9	1.7	1.5	5.3	5.4	17.7
Southern Sotho		5.6 million	29.0	9.3	5.0	3.3	5.0	1.6	1.2	4.9	4.4	18.5
Swahili		16 million L1	43.1	35.0	28.8	23.8	8.5	1.5	3.4	9.2	29.5	42.3
Swati		2.5 million	18.2	7.3	4.2	3.3	4.0	1.7	1.6	4.6	3.6	14.1
Tsonga		3 million	18.6	7.3	4.3	3.0	4.7	1.7	1.7	4.1	3.5	9.9
Tswana		5 million	19.5	7.5	4.4	2.7	4.2	1.6	1.0	4.1	4.1	12.9
Tumbuka		2 million	11.7	6.2	3.7	3.2	4.3	1.5	1.4	4.1	4.4	8.6
Umbundu		6 million	5.5	3.0	2.7	2.2	3.6	1.3	1.0	3.1	3.0	5.0
Xhosa		8.2 million	31.8	10.5	5.4	4.6	5.1	1.5	1.6	5.6	6.8	25.0
Zulu		12 million	33.4	11.1	4.6	3.2	4.2	1.5	1.4	4.7	5.1	24.7
Fon	Gbe	1.7 million	3.7	2.4	1.7	1.4	2.8	1.2	0.9	2.3	2.2	3.5
Ewe		7 million	5.1	2.9	2.5	2.1	3.3	1.3	0.8	2.4	2.2	4.3
Kabiye	Gur	1.2 million	3.8	3.1	1.9	1.6	2.7	1.2	0.5	2.2	2.2	4.5
Mossi		7.5 million	4.5	2.7	2.3	2.4	3.3	1.1	1.4	3.0	2.9	4.5
Akan	Kwa	11 million	13.4	7.5	5.0	3.6	5.9	2.2	1.5	5.2	5.3	10.4
Twi		17 million	14.6	9.0	5.4	3.4	5.8	2.3	1.6	5.4	5.6	11.8
Bambara	Mande	14 million	5.8	3.0	2.6	2.4	3.9	1.1	1.0	3.7	3.0	5.0
Dyula		3 million	4.2	2.0	1.6	1.8	3.0	1.0	0.8	2.6	2.6	3.6
Igbo	Volta-Niger	27 million	24.0	14.2	5.7	1.6	3.5	1.6	0.9	3.7	5.7	17.6
Yoruba		28 million	17.3	8.6	3.9	2.8	3.5	1.2	1.7	4.4	3.4	11.0
Sango	Creolized Ubangian	400,000 L1	4.7	3.0	2.3	2.4	3.6	1.1	1.4	3.3	2.7	4.1
Luo	Nilotic	4.2 million	6.3	3.6	3.3	2.9	3.9	1.6	1.7	3.9	3.2	5.3
Nuer		1.4 million	3.4	2.0	1.8	1.1	2.2	0.9	0.6	1.7	1.8	3.0
Southwestern Dinka		2 million	6.1	5.0	3.8	3.5	5.0	2.0	1.8	4.0	4.5	6.0
Central Kanuri (Arabic script)	Saharan	4 million	2.2	1.1	0.7	0.6	0.9	0.6	0.3	1.3	0.5	1.4
Central Kanuri (Latin script)		4 million	5.9	3.1	2.8	2.9	4.9	2.3	1.2	4.0	2.6	5.3
Ayacucho Quechua	Quechua	1 million	6.3	5.6	3.7	2.7	4.3	2.0	1.2	3.6	3.4	5.5
Chinese (Simplified)		920 million	28.8	25.4	23.9	24.8	19.8	19.7	24.5	26.4	24.5	28.6
Chinese (Traditional)		31 million	27.4	23.8	21.8	23.4	17.3	16.5	22.5	25.0	22.0	27.3
Yue Chinese		60 million	29.6	14.8	23.5	25.7	19.6	15.7	24.6	26.7	23.6	29.5
Burmese		33 million	21.5	12.1	2.1	14.3	1.3	0.9	1.3	4.2	4.0	17.7
Dzongkha		700,000	0.8	1.5	0.1	0.0	0.1	0.1	0.0	0.3	0.1	1.6
Jingpho		900,000	4.0	2.5	1.8	1.8	2.7	1.4	0.9	2.5	2.3	3.9
Meitei (Bengali script)		1.8 million	4.4	1.9	1.8	1.0	0.8	0.7	0.3	1.8	0.9	4.1
Mizo		900,000	9.3	8.6	6.8	5.2	5.9	3.1	2.7	5.4	8.3	14.2
Standard Tibetan		1.2 million	1.9	3.5	0.4	0.1	0.6	0.5	0.3	0.7	0.5	3.8
Shan	Southwestern Tai	3 million	4.0	6.0	1.7	1.1	2.4	1.7	0.7	1.6	3.2	5.1
Lao	Tai	7.5 million	20.1	10.3	2.2	2.1	3.5	2.5	1.8	6.3	3.7	17.8
Thai		36 million	29.6	21.0	23.6	23.0	11.4	10.6	20.1	25.1	23.7	30.6
Guarani	Tupi-Guarani	6-7 million	16.1	8.9	5.6	4.3	5.6	1.8	2.0	5.5	5.7	10.4
Northern Uzbek	Karluk	27 million	32.2	21.5	14.0	21.0	3.3	1.0	3.7	8.7	12.0	28.5
Uyghur		10 million	20.3	7.3	4.4	3.0	0.8	0.4	0.6	2.9	1.5	11.0
Bashkir		1.2 million	27.4	16.3	7.9	10.2	3.5	1.2	2.6	6.0	8.7	23.1
Crimean Tatar		300,000	24.6	16.9	11.7	13.8	5.6	2.4	4.9	9.7	11.3	23.0
Kazakh	Kipchak	13 million	33.8	19.6	11.6	20.9	3.1	1.5	4.5	9.3	12.3	28.6
Kyrgyz		4.5 million	22.6	11.1	7.6	13.9	2.5	1.1	3.1	6.4	6.6	17.9
Tatar		5 million	29.1	13.9	10.2	19.1	3.5	1.4	3.0	7.2	8.8	23.3
North Azerbaijani		9-10 million	22.8	13.2	13.9	17.2	5.0	2.5	5.0	10.3	13.3	21.7
South Azerbaijani		15-20 million	14.7	5.4	5.6	8.9	2.3	0.9	1.3	3.7	5.5	14.4
Turkish		75 million	37.9	33.4	27.3	28.9	12.8	9.3	18.5	26.0	28.4	37.9
Turkmen		7 million	29.2	15.5	8.7	6.7	3.2	1.6	2.1	5.6	5.9	21.3
Estonian	Finnic	1.1 million	38.2	31.3	23.2	28.7	6.2	2.4	8.9	17.5	26.6	36.6
Finnish		5.4 million	35.0	30.5	26.0	28.5	12.2	10.0	11.8	19.6	26.6	34.0
Hungarian	Ugric	13 million	35.5	31.7	28.4	29.3	13.8	11.5	11.3	19.6	28.3	35.5

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474

Table 10: Performance testing after SFT on Corresponding Validation Dataset (#1000 samples)

Language Pair	Methods	spBLEU	ChrF++	Jaccard	LLMaaJ
As-En	BM	8.75	22.72	0.16	0.64
	DN	9.00	23.03	0.16	0.65
	DL	8.87	23.04	0.16	0.59
	DG	9.43	23.69	0.16	0.62
En-As	BM	2.27	10.84	0.03	0.37
	DN	8.75	22.72	0.16	0.64
	DL	8.09	29.03	0.18	0.61
	DG	8.07	29.23	0.18	0.65
Kh-En	BM	0.63	14.66	0.06	0.05
	DN	NA	NA	NA	NA
	DL	2.79	18.66	0.10	0.10
	DG	4.81	23.43	0.14	0.30
En-Kh	BM	0.22	0.50	0.00	0.00
	DN	NA	NA	NA	NA
	DL	4.81	16.95	0.15	0.17
	DG	11.58	29.19	0.23	0.51
Uk-En	BM	22.50	41.35	0.30	0.72
	DN	25.34	44.06	0.33	0.77
	DL	25.29	44.08	0.33	0.76
	DG	24.81	43.76	0.32	0.78
En-Uk	BM	13.57	30.19	0.15	0.60
	DN	17.87	34.83	0.18	0.70
	DL	17.97	34.83	0.19	0.69
	DG	18.10	34.97	0.19	0.72
En-Lb	BM	6.46	26.78	0.12	0.36
	DN	37.98	55.41	0.37	0.82
	DL	40.71	59.02	0.44	0.87
	DG	44.58	59.73	0.45	0.87
Lb-En	BM	26.31	45.98	0.33	0.58
	DN	42.78	59.33	0.48	0.82
	DL	54.64	70.98	0.57	0.82
	DG	59.88	74.97	0.63	0.90

1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511