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ABSTRACT

While tabular data is fundamental to many real-world machine learning (ML) ap-
plications, acquiring high-quality tabular data is usually labor-intensive and ex-
pensive. Limited by the scarcity of observations, tabular datasets often exhibit
critical deficiencies, such as class imbalance, selection bias and low fidelity. To
address these challenges, building on recent advances in Large Language Models
(LLMs), this paper introduces team-then-trim, a framework that synthesizes high-
quality tabular data through a collaborative team of LLMs, followed by a rigorous
data quality control (QC) pipeline. In our framework, tabular data generation is
conceptualized as a manufacturing process: specialized LLMs, guided by domain
knowledge, are tasked with generating different data components sequentially, and
the resulting products, i.e., the synthetic data, are systematically evaluated across
multiple dimensions of QC. Empirical results on both simulated and real-world
datasets demonstrate that our framework outperforms the state-of-the-art methods
in producing high-quality tabular data, highlighting its potential to support down-
stream models when direct data collection is practically infeasible.

1 INTRODUCTION

Machine learning (ML) systems in domains like healthcare (Provost & Murray, 2022), transporta-
tion (Washington et al., 2020), and the social sciences (Aneshensel, 2012) depend heavily on tabular
datasets. According to uniform convergence theorems and generalization bounds in classical statis-
tical learning theory (Feldman & Vondrak, 2018), if we can sample a sufficiently large number of
tabular data points from the underlying space, we can reliably train predictive models that generalize
well and achieve accurate performance. In practice, however, we often have to begin with a tabular
dataset sampled from the true data distribution, which is typically small and may suffer from various
deficiencies, such as bias (Little & Rubin, 2019), imbalance (Thabtah et al., 2020) and noise (Gupta
& Gupta, 2019). For example, in medical studies of diseases such as type-I diabetes, patients may
constitute only a small minority compared to non-patient participants, while all of them are at some
level of risk as indicated by the screening results. Under such data imbalance, downstream mod-
els trained solely on a limited original dataset often struggle to capture the true decision boundary,
leading to biased predictions, poor generalization to minority groups, and reduced robustness(Chen
et al., 2023). If we can generate high-quality data that are plausible under domain constraints and di-
verse enough to cover rare or unseen configurations, the accuracy and robustness of the downstream
models can be improved without costly data collection.

However, traditional data generation methods, such as resampling (e.g., SMOTE (Chawla et al.,
2002)) can only extrapolate from observed samples. While effective within the boundaries of the
original data, they remain constrained in exploration, often reinforcing the same biases and failing
to recover rare or missing subpopulations (Li & Vasconcelos, 2019). Deep generative models, e.g.,
CTGAN, TVAE (Xu et al., 2019), although more expressive, typically demand substantial amounts
of data and struggle in low-data regimes where augmentation is most needed. More recently, Large
Language Models (LLMs) have emerged as a new paradigm for data generation, leveraging broad
world knowledge and few-shot reasoning abilities (Seedat et al., 2023; Patel et al., 2024). How-
ever, a single LLM used in isolation is prone to inconsistencies: it ignores structural dependencies
among features, violates logical constraints, and cannot holistically capture the full complexity of
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Figure 1: An illustration of our team-then-trim framework. The LLM teaming is for structured data
generation and the trimming is for rigorous three-stage QC.

tabular datasets. Further related work is provided in Appendix A. These issues limit their reliability,
especially when tasked with generating multi-faceted records from small seed datasets.

Beyond generation, ensuring the quality of synthetic data is equally critical. LLMs are known to
hallucinate (Bang et al., 2025), introduce implausible entries (Yao et al., 2023), or produce distribu-
tions that deviate from domain requirements (Xu et al., 2024). Existing methods typically focus on
plausibility checks or heuristic filtering (Sousa et al., 2024), but they often overlook deeper dimen-
sions of quality, such as consistency with downstream objectives, fidelity to minority subgroups,
and diversity of coverage. Without a principled quality control (QC) process, synthetic data risks
amplifying noise rather than mitigating it.

To address these two challenges, in this paper, we introduce team-then-trim, a framework that com-
bines teaming for structured data generation with trimming for rigorous three-stage QC. Unlike
monolithic generators, our framework decomposes a dataset into semantically coherent components
and assigns each to a specialized LLM worker with a clearly defined role. Workers operate sequen-
tially, conditioning on previously produced components to preserve inter-feature logic and domain
constraints. Team-then-trim produces data in batches, allowing large volumes of synthetic data to
be created with lower cost and higher efficiency (Citovsky et al., 2021; Ren et al., 2021), while
subjecting each batch to a rigorous QC process. The QC pipeline consists of three stages: (1) a
sanity check validates variable ranges, categorical consistency, and inter-feature dependencies; (2)
objective-related cost assessment, a model-based duel between LLM-generated batches and boot-
strap samples from the original data, keeping low-residual points, and (3) diversity-related moni-
toring with clustering-based coverage checks that admits batches expanding coverage without skew.
Together, these stages transform an initial synthetic pool into a task-aligned, diverse, and constraint-
consistent dataset for downstream learning. The QC pipeline is modular and can be plugged into
any generative approach. To sum up, the contributions of this paper are three-fold:

• We introduce team-then-trim, a novel framework that conceptualizes data augmentation as a prod-
uct manufacturing process, where raw augmented data is initially synthesized in batches through
the collaborative assembly of multiple specialized LLM generators (teaming) and subsequently
refined through a rigorous QC process (trimming), ultimately yielding high-quality tabular data.

• We design a three-stage data QC pipeline to transform the raw synthetic data batches into high-
quality data with only a small set of true data. The pipeline systematically refines data quality
along multiple dimensions including validity, learnability, informativeness, and diversity.
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• We conducted extensive experiments on various simulated and real-world datasets to demonstrate
that our framework can reliably generate tabular data of high quality across diverse evaluation
metrics. Its consistent superiority over state-of-the-art data augmentation methods provides strong
evidence for the utility of LLMs, when coupled with effective QC, in addressing challenging ML
scenarios characterized by data scarcity, imbalance, and noise, etc.

2 TEAM-THEN-TRIM FRAMEWORK

We now describe our team-then-trim framework for generating high-quality tabular data that can
be used by a broad spectrum of downstream predictive models. Consider the tabular data space
X × Y equipped with a probability measure induced by the true data distribution ptrue. Here,
X = X1×· · ·×Xd denotes the d-dimensional feature space where Xj is the j-th feature dimension,
and Y denotes the label space. Our framework starts with a small tabular dataset sampled from
ptrue, denoted by Dori = {(xi, yi)}ni=1, where xi = (xi,1, · · · , xi,d) ∈ X and yi ∈ Y . It aims
to generate an additional set of new data Dgen without explicit knowledge of ptrue and combine it
with the original data Dori to build a new dataset Dnew = Dori

⋃
Dgen, such that a downstream

predictive model y = f(x) trained on this augmented dataset Dnew attains improved generaliza-
tion performance compared to training exclusively on Dori. An overview of the team-then-trim
framework is shown in Fig. 1. We will present details in the following subsections.

2.1 RAW DATA GENERATION VIA LLM TEAMING

An assembly line in manufacturing typically breaks down a complex production process into a
sequence of smaller subtasks which are carried out by specialized workers under the coordination of
a task manager. Analogously, the team-then-trim framework employs a team of pretrained LLMs,
where a task manager LLM and multiple worker LLMs collaborate to produce a raw tabular dataset.
Given a data generation task, the task manager LLM, guided by its domain knowledge of the specific
task and analysis of the true data Dori, first decomposes the data structure into multiple components.
It then assigns the subtasks of generating these components to different worker LLMs and organizes
their execution according to a specified topology. The worker LLMs perform their assigned tasks to
generate the components separately, following the instruction given by the task manager LLM in an
assembly-line fashion.

Task manager. Given the original dataset Dori, the task manger LLM Φ is additionally prompted
with the feature dictionary to facilitate the understanding of the task (see Appendix Fig. 6). Based
on its understanding and domain knowledge, it will partition the full feature space X into K disjoint
components, i.e., X = XI1 ×· · · XIK , where XI =

∏
i∈I Xi is the cartesian product of all the single

feature spaces whose indices fall in I . Thus, the partition should satisfy
⋃K

k=1 Ik = {1, . . . , d}
and for ∀k, l = 1, . . . ,K, k ̸= l, Ik ∩ Il = ∅. This partition divides the data generation work-
load into K components, allowing different LLM workers to handle distinct parts of the task.

Hospital

Resources

Sleep

Quality

Age Sex

Recovery

Time

𝑥1 𝑥2

𝑥3

𝑥4 𝑦
Worker 1

Worker 2

Worker 3

Worker 4

Figure 2: An example of task coordination.

Here, each component represents a coherent seman-
tic category, with all the features share some under-
lying semantical characteristics though not necessar-
ily correlated. For example, suppose the objective is
to predict the post-surgery recovery time (outcome)
with four predictors: age, sex, hospital resources and
sleep quality. As Fig. 2 shows, these predictors can
be grouped into three categories, “age” and “sex” as
demographic features, “hospital resources” as an in-
dependent environmental feature, and “sleep qual-
ity” as a feature potentially influenced by both demo-
graphic and environmental factors. Without incorpo-
rating such structural knowledge, the generated data
may overlook the complex dependencies among features and fail to capture their semantically mean-
ingful relationships. In our team-then-trim framework, the task manager LLM fully utilizes such
knowledge to coordinate the generation task. It views the different data components as nodes on a
graph, which results in an activity-on-vertex network (precedence graph (Boffey, 1982)) G = (V,E)
explicitly encoding their relationships where V = {I1, · · · , IK} and E encodes the information of
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the graph links. Thus, the work of the task manager LLM can be expressed as:

G = Φ(P(Dori, c)), (1)

where c is necessary contextual information of the dataset (e.g., variable dictionary) and P denotes
the encoding function that turns the input information into prompts. Through this scheduling, com-
ponents without inter-dependencies can be generated in parallel, whereas those with dependency
constraints should be generated sequentially. With less information required for generating each
component, the overall process is enabled to produce more precise and semantically coherent data.

Specialized workers. Our team-then-trim framework employs a set of LLMs Ψ1, · · · ,ΨK that
act as specialized workers to efficiently and consistently generate the K different data components
defined by the task manager LLM. All the specialized workers follow the task coordination instruc-
tions provided by the task manager to generate data sequentially in the prescribed order. Each worker
receives a prompt containing specific information about the component it is responsible for, along
with all previously generated data components on which its assigned component may depend. The
generated data component can be expressed as follows:

Xk ∼ Ψk(Pk(Dori, ck, G)|
⋃

l∈pa(Ik,G)

Xl), ∀k = 1, · · · ,K, (2)

where Pk is the individual prompt encoding function, pa(Ik, G) denotes the set of parent nodes of
Ik on graph G and ck is the contextual information about the features in the k-th component. Thus,
the parent components, the generation schedule determined by the task manager and original data
with contextual information together constitute the foundation for generating Xk. For example, in
Fig. 2, to generate the data column for the feature “sleep quality”, worker 1 and 2 should gener-
ate the demographic feature component (including “age” and “sex”) and the environmental feature
component (including “hospital resources”) beforehand, as it guarantees that the subsequent gener-
ation of “sleep quality” does not contradict the domain knowledge encoded within the LLM worker.
It is important to note that, due to the stochastic nature of LLMs, the generation process is inher-
ently not deterministic. Consequently, the generated data is not fixed even with identical prompts or
conditions. Once the parent components have been generated by upstream LLM workers under the
coordination of the task manager, the specialized worker proceeds to sample candidate data points
from an underlying, unknown distribution as instructed by the received prompt. Since the features
in the same component semantically belong to the same category, each worker can focus on gener-
ating semantically related concepts, which makes the generation process more efficient and reliable.
Taking advantage of the prior knowledge, contextual understanding, and in-context learning capa-
bilities of LLMs, the generated data is expected to exhibit higher internal consistency and factual
fidelity (Saglam et al., 2025; Kozlowski et al., 2025; Wang et al., 2025) through the teaming of these
workers, which is a notable advantage over a single LLM that handles multiple semantic categories
simultaneously. An example that illustrates such advantage is shown in Appendix E. Finally, when
all these workers finish their generation, we aggregate all the generated components and assemble
them into a full design (unlabeled dataset) through a concatenation function:

Xgen = Concat(X1, · · · ,XK). (3)

An additional LLM worker ΨK+1 takes in the unlabeled dataset and generates labels for the design:

ygen ∼ ΨK+1(Py(Dori, c,X)), (4)

where Py is the prompt encoding function. Here, the labels can be restricted to meaningful values
by encoding the constraints in the contextual information c. For example, for binary labeled data,
the label worker is prompted to only produce values from {0, 1}. But if not required, the worker
is allowed to generate different labels beyond the ones in the given original dataset to encourage
its exploration. With the labels generated, combining all together, we can end up with a complete
dataset Dgen = {Xgen,ygen}.

2.2 DATA QUALITY CONTROL

Given the original dataset Dori with necessary contextual information, a collaborative team of LLM
workers coordinated by an LLM task manager can produce a dataset in an assembly-line fashion,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

similar to manufacturing production. However, even though the generated data may appear plausi-
ble, it can still suffer from quality issues due to LLM hallucination or mistakes (Huang et al., 2025;
Chen et al., 2024b; Liu et al., 2024). Just as physical products require QC to ensure their reliability,
the raw products of the data generation assembly line, namely, the generated data, must also undergo
a quality assurance process to ensure they are readily usable by various downstream applications.
Essentially, it can be extremely hard to manipulate the generation process of the LLM workers given
their black-box nature. Unless we perform full training or fine-tuning with a large amount of ground-
truth data to guide the LLMs, both of which typically incur substantial cost, it is difficult to exert
direct control over the quality of the generated data during the generation phase. Consequently,
quality assurance efforts are preferably concentrated in the post-generation stage, which motivates
the design of our three-stage plug-in QC pipeline.

In our pipeline, to further refine the raw data generated by the LLM assembly line in Section 2.1,
QC is performed in a batch-wise manner, trimming or discarding data as necessary. Compared to
checking the quality of a single data point, the use of the batch setting has multiple advantages, such
as reducing cost, improving efficiency, etc. (Citovsky et al., 2021; Ren et al., 2021). Moreover,
batches inherently provide richer collective information than isolated samples, which enables more
effective and informative quality inspection at the batch level (Kirsch et al., 2019). Assume the batch
size is nb. The core idea of our QC process is: each time t a small fixed-size dataset Dt is generated
from the LLM assembly line as a batch, its quality is rigorously evaluated. If the batch meets the
predefined quality requirements, it is polished by trimming the unsatisfied samples in the batch and
integrated into the existing dataset D (initially Dori) to construct a new set; otherwise, the full batch
is discarded. This iterative generation-and-evaluation cycle continues until sufficient data has been
admitted. For the evaluation, we ensure the batch quality from three complementary aspects: 1)
Sanity check. The batch is examined on its variables to filter out apparently invalid or impossible
data samples. 2) Objective-related cost assessment. Low-quality data is identified and rejected based
on the batch’s total cost related to the learning objective of a specific model. 3) Diversity inspection.
The batch is further checked to ensure sufficient coverage in the full data space.

Sanity check. To ensure the samples in the batch Dt is valid, we perform sanity check based on
the types and values of features together with necessary relation constraints. For continuous features
indexed by S1 = {k1, · · · , km}, their values in all the samples of Dt should be within a reasonable
range, which can be characterized a disjunction of linear inequalities Ω = Ω1 ∨ · · · ∨ Ωm where Ωi

denotes a boundary inequality over the feature of the form li ≤ x ≤ ui. For categorical features
indexed by S2 = {1, · · · , d}\S1, we ensure their values fall in the allowable categories C1, · · · , Cnl

for any feature indexed by l ∈ S2. By introducing dummy variables x·,l,1, · · · , x·,l,nl
∈ {0, 1}

where x·,l,j = I[x·,l ∈ Cj ],∀j = 1, · · · , nl denotes the indicator of whether feature x·,l belongs to
a category Cj , we impose the categorical constraint

∑nl

j=1 x·,l,j = 1. Futhermore, strict relationship
among features can be expressed in a similar disjunction of inequalities of the form

∑
l∈S1

wlx·,l +∑
l∈S2

∑nl

j=1 wl,jx·,l,j + b ≥ 0 where w represents the coefficients. As a result, all requirements
on feature values and their interdependence can ultimately be formulated as a unified set of logical
and linear constraints. Thus, sanity check is reduced to a constraint satisfaction problem and any
sample that does not satisfy the predefined constraints are discarded. In practice, thanks to the
prior knowledge of LLMs, the generated batch typically satisfies these constraints most of the time.
Nevertheless, this check remains indispensable for preventing trivial errors in the generated batch
and eliminating semantically meaningless data that could compromise downstream tasks.

Objective-related cost assessment. Even if a data batch that passes sanity check, its utility for
downstream tasks is not guaranteed, as it may still suffer from issues such as bias, imbalance, noise,
etc. Since the generated data ultimately serves a predictive model, additional efforts are needed to
ensure models trained on it can achieve high predictive accuracy. Thus, we focus on model-based
prediction and evaluate the potential learning objective-related cost. We assume the access to the
downstream model y = f(x). To facilitate the assessment, we perform bootstrapping from the
original set Dori to obtain a dataset Bt of the same size as the generated batch Dt, i.e., nb. We
combine two sets as D̃t = Dt

⋃
Bt and make predictions for all the samples in D̃t with the model

f . Thus, for any sample xi in D̃t with label yi, we have the objective-related cost of a sample for
classification tasks:

ri = 1− pf (yi|xi) (5)
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where pf is the predicted probability score given by model f . On the one hand, to build a high-
quality batch of size nb, we aim to minimize the prediction cost. On the other hand, excessive
cost minimization for the model on a small dataset may cause overfitting and potentially degrade
the model’s generalization performance. Instead of pursuing either extreme, we select the 50% of
the 2nb samples in between to build an updated batch. We sort the costs in Eq. (5) and build an
empirical distribution of the costs as F . Denote F−1(β) ≜ inf{e : F (e) ≥ β} as the β-quantile of
{ri}2nb

i=1. For a specific β ∈ (0, 0.5), we select the samples indexed by J = {i1, · · · , inb
} from D̃t

such that for ∀i ∈ J , we have
ri ∈ [F−1(β), F−1(β + 0.5)] (6)

These selected samples build a refined dataset Dt = {(xi, yi)}i∈J , which can be further compared
with the bootstrap set Bt. We consider the different effects of combining this refined set and the
bootstrap set into the existing dataset D, which gives two sets: D1

gen = D
⋃
Dt and D2

gen =
D

⋃
Bt. Following Mehta et al. (2022); Smith et al. (2023), for any dataset D′, the total information

gain (IG) of combining D′ with D can be calculated by

IG(D′) = H(D
⋃

D′)−H(D) (7)

where H(·) is the entropy function. Thus, we can calculate the information gain of the two sets as
IG(D1

gen) and IG(D2
gen), and compute their gap as ∆ = IG(D1

gen)− IG(D2
gen), which measures

the marginal information gain from the generated data batch Dt over the original data batchBt . We
only keep the batch of generated data when it gives us enough information, i.e., ∆ is greater than a
threshold τ . Thus, if ∆ > τ , we merge the updated batch Dt into the existing dataset D, otherwise
we discard it.

Diversity inspection. Beyond validity and objective alignment, it is crucial to ensure that the
generated data enhances (at least maintains) the diversity of Dori, especially for underrepresented
subpopulations. We uncover the underlying structure of Dori by performing clustering. The optimal
number of clusters is determined by maximizing the average silhouette score of all the data points
in Dori. Here, the silhouette score s(xi) of a data point xi can be computed by

s(xi) =
zcoh(xi)− zsep(xi)

max{zcoh(xi), zsep(xi)}
(8)

where zcoh represents the average distance between xi and all other data points within the same
cluster and zsep smallest average distance between xi and all points in the nearest different clus-
ter. After partitioning Dori into these clusters, we train a multi-class classifier (i.e., an MLP) using
the cluster assignments as labels. This classifier effectively learns to map any data point from the
feature space to one of the identified data-space regions. If the batch of generated data Dt passes
the objective-related cost assessment, we use this trained classifier to predict the cluster for each
sample in the batch. To quantify the batch’s contribution to overall diversity, we measure the change
in the entropy of the cluster label distribution. A batch Dt is accepted only if the percentage en-
tropy improvement of the combined dataset (Dori ∪Dt) over the original dataset (Dori) exceeds a
predefined threshold. This criterion ensures that accepted batches either populate underrepresented
clusters or are sufficiently varied to distribute across multiple clusters, thereby expanding coverage
without introducing significant skew.

3 EXPERIMENTS AND RESULTS

We conduct a comprehensive evaluation of team-then-trim across both simulated studies and real-
world applications. In the simulated setting, we recreate common deficiencies in tabular datasets,
including imbalance, incompleteness, and noise. For data scarcity, we consider low-data regimes in
experiments. For real-world datasets, we examine both the downstream utility of ML models and
multiple dimensions of data quality to assess the broader impact of our framework.

3.1 SETUP

We employ Llama 3.3 70B Instruct as the backbone LLM for data generation. To validate that our
conclusions hold across model families, we also run experiments using Grok 4.1 Fast in the data-
imbalance and data-incompleteness settings. For downstream evaluation, we consider: Logistic
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Regression, SVM, MLP, and Random Forest. We compare our framework, team-then-trim, against
established baselines, including CLLM (Seedat et al., 2024), TVAE (Xu et al., 2019), CTGAN (Xu
et al., 2019), and SMOTE (Chawla et al., 2002). For all reported results, except the baseline that
uses only Dori, the training data consists of the original dataset Dori combined with the generated
data produced by team-then-trim or by the baselines. For ablation, we include results from team-
then-trim without the QC stage. In the simulated setting, we construct two datasets: (1) a diabetes
prediction dataset (Rauba et al., 2024), and (2) a travel behavior dataset (Zhu et al., 2020). For real-
world experiments, we adopt datasets: Drug from the UCI repository (Fehrman et al., 2017) and
COMPAS from OpenML (Angwin et al., 2016). All reported results are averaged over 10 random
seeds corresponding to 10 train-test splits and 4 downstream models. More experimental details are
in Appendix C.

3.2 SIMULATED STUDIES

Table 1: Average AUC (%) when the label in the
dataset is imbalanced.

Method LLM Backbone LR MR HR

Dori - 63.92 59.16 64.24
SMOTE - 68.99 58.73 68.66
TVAE - 68.79 60.75 65.22

CTGAN - 67.30 59.61 67.00
CLLM Grok 4.1 Fast 64.29 54.72 66.87
CLLM Llama 3.3 64.43 57.15 65.79

Team-then-Trim
(w/o QC)

Grok 4.1 Fast 65.89 56.64 75.90

Team-then-Trim Grok 4.1 Fast 66.04 56.67 76.45
Team-then-Trim

(w/o QC)
Llama 3.3 65.57 57.16 76.34

Team-then-Trim Llama 3.3 71.55 62.03 76.98

Data imbalance. In the diabetes dataset, we
simulate three levels of risk groups, i.e., low
risk (LR), moderate risk (MR), and high risk
(HR), with a 7:2:1 ratio to create label im-
balance. The size of Dori is 10, following
this imbalanced ratio. Table 1 reports the av-
erage AUC of different methods. Our team-
then-trim framework achieves the strongest and
most consistent gains across all groups. With-
out QC, team-then-trim already enhances AUC
in HR group substantially by 12.1% over mod-
els trained on Dori, highlighting the benefit of
LLM-teamed generation in covering rare sub-
populations. The consistently superior AUC
across classes indicates that our framework
with QC is particularly effective in addressing
label imbalance in tabular data.

Table 2: Average AUC (%) when the dataset is
incomplete in a subpopulation.

Method LLM Backbone LR MR HR

Dori - 58.59 48.69 /
SMOTE - 64.70 48.52 /
TVAE - 62.81 49.85 /

CTGAN - 65.14 49.87 /
CLLM Grok 4.1 Fast 82.58 48.99 53.68
CLLM Llama 3.3 63.68 54.47 50.49

Team-then-Trim
(w/o QC)

Grok 4.1 Fast 82.44 51.70 56.50

Team-then-Trim Grok 4.1 Fast 82.98 52.59 58.13
Team-then-Trim

(w/o QC)
Llama 3.3 64.76 52.30 62.34

Team-then-Trim Llama 3.3 71.16 52.26 64.67

Data incompleteness. To simulate real-
world incompleteness, we construct Dori

with LR:MR:HR = 8:2:0, such that the HR
group constitutes a missing subpopulation in
the training data. The size of Dori is set to
10. The test set retains the distribution with
LR:MR:HR = 7:2:1. Table 2 presents average
AUC under this setting. Classical generation
baselines completely fail to recover the missing
HR subgroup. Although CLLM leverages the
LLM for generation and attains relatively high
AUC in the MR group, it generalizes poorly to
the HR group, indicating that without explicit
LLM teaming and rigorous QC, the generated
samples are often noisy or misaligned. By
contrast, team-then-trim demonstrates strong
performance of 14.18% gain over CLLM in the
HR group.

Data noise. To simulate data noise, we encode the outcome variables in both datasets as binary
indicators. Larger flip ratios of the true labels correspond to higher levels of label corruption, thereby
creating increasingly noisy datasets. In the diabetes dataset, at a low noise level (flip ratio = 0.2,
shown in Fig. 3a), team-then-trim outperforms all models when the number of original samples is
small. As the number of original samples increases, the clean data alone already yields high AUC
due to the mild noise. As noise increases to 0.3 (shown in Fig. 3b) and 0.4 (shown in Fig. 3c), team-
then-trim sustains stable gains. This demonstrates the framework’s robustness to label corruption
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(a) Flip ratio is 0.2. (b) Flip ratio is 0.3. (c) Flip ratio is 0.4.

Figure 3: Average AUC across different sizes of Dori under flip ratios of {0.2, 0.3, 0.4} on Diabetes
dataset.

even under moderate to severe noise. Additional performance metrics on diabetes data are presented
in Appendix Table 7 and t-SNE visualizations are in Appendix Fig. 9.

Table 3 shows the average AUC under no flip, flip ratios of 0.3, and 0.4 on the TravelBehavior
dataset, with 60 original samples. The observed trends mirror those in the diabetes dataset. Overall,
team-then-trim enhances downstream utility across noisy settings in both datasets, with particularly
strong gains under higher noise levels, highlighting its effectiveness as a generative framework for
challenging real-world tabular data.

(a) White female, 25-34. (b) White male, 18-24.

Figure 4: Average AUC for two demographic groups on Drug
dataset.

Table 3: Average AUC (%) un-
der flip ratios of {0, 0.3, 0.4} on
TravelBehavior Dataset.

Method No Flip 0.3 0.4
Dori 98.55 60.61 50.02

SMOTE 98.54 58.95 51.03
TVAE 96.62 57.80 49.11

CTGAN 91.40 58.91 49.26
CLLM 97.73 62.05 53.14

Team-then-Trim
(w/o QC) 98.08 62.49 53.02

Team-then-Trim 98.24 63.44 53.38

3.3 REAL-WORLD DATA

3.3.1 DOWNSTREAM UTILITY

Table 4: Average downstream utility (%)
across different sizes of Dori (10 to 200)
on COMPAS dataset.

Method Accuracy AUC F1 Recall
Dori 60.89 64.12 58.69 60.00

SMOTE 60.77 64.86 58.43 60.20
TVAE 60.81 64.32 58.63 60.62

CTGAN 60.54 64.61 58.23 60.25
CLLM 61.70 65.54 59.26 60.90

Team-then-Trim
(w/o QC) 61.32 66.82 61.46 66.87

Team-then-Trim 62.05 67.29 61.84 66.11

To assess model performance across diverse popula-
tions, we partition the Drug dataset into two subgroup
datasets Drug-A and Drug-B based on their demo-
graphic features (age, gender, and ethnicity). Fig. 4a
corresponds to the subgroup whose age is between 25
and 34, female, and White, while Fig. 4b focuses on
White male with age between 18 and 24. Across both
groups, team-then-trim outperforms baseline methods,
particularly in low- and medium-data regimes. For
the 18-24 male subgroup, team-then-trim delivers the
highest AUC across all sample sizes from 10 to 250.
The larger improvement of team-then-trim in the 18-
24 male subgroup is attributed to the binary label im-
balance, where 74.07% of samples are labeled as 1,
compared to 63.11% in the 25-34 female subgroup.
Overall, our method enhances model utility in both balanced and imbalanced settings.
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Table 5: Average data quality (%) across different sizes of Dori on real-world data.

Dataset Method Detection α-Precision β-Recall

DRUG-A

SMOTE 65.71 53.97 35.50
TVAE 65.59 53.89 35.73

CTGAN 64.60 54.01 35.77
CLLM 63.27 58.12 37.25

Team-then-Trim (w/o QC) 63.00 87.38 42.62
Team-then-Trim 56.68 88.76 48.45

DRUG-B

SMOTE 66.30 51.20 34.01
TVAE 65.99 51.12 33.34

CTGAN 66.15 51.23 33.25
CLLM 63.67 56.53 35.47

Team-then-Trim (w/o QC) 64.91 89.70 44.40
Team-then-Trim 57.81 90.96 49.29

COMPAS

SMOTE 52.91 88.47 46.52
TVAE 51.37 89.94 50.32

CTGAN 51.12 91.23 51.03
CLLM 50.26 91.58 48.63

Team-then-Trim (w/o QC) 52.29 87.65 47.55
Team-then-Trim 49.17 91.11 51.29

Table 4 provides a summary of downstream utility across varying sizes of Dori on COMPAS dataset.
Team-then-trim achieves the best overall performance across all four metrics. Notably, the ablation
team-then-trim w/o QC also shows competitive improvements (e.g., recall of 66.87%), confirming
that LLM teaming alone provides value. Also, the full QC pipeline consistently yields higher accu-
racy, AUC and F1 scores, demonstrating that rigorous trimming enhances the informativeness and
task-alignment of generated samples. Detailed results on the average AUC of four ML models are
shown in Appendix Fig. 10.

3.3.2 DATA QUALITY

We evaluate the quality of generated data using three metrics: detection (Liu et al., 2023), α-
precision (Alaa et al., 2022), and β-recall (Alaa et al., 2022). Detection measures whether synthetic
data can be distinguished from real data, with lower scores indicating higher similarity (thus better
quality). α-precision quantifies the fidelity of generated samples, while β-recall captures their diver-
sity. More descriptions on evaluation metrics are provided in the Appendix C. Table 5 shows the data
quality of different generation methods on the DRUG-A (subgroup in Fig. 4a), DRUG-B (subgroup
in Fig. 4b), and COMPAS datasets. Team-then-trim consistently outperforms baseline methods
except α-precision in the COMPAS dataset. This is because α-precision emphasizes high-fidelity
reconstruction of the densest regions of the real distribution, whereas our framework intentionally
trades a small amount of local fidelity for improved coverage and objective alignment. The QC
pipeline is designed to admit batches that increase information gain and expand cluster-level diver-
sity, which naturally encourages exploration beyond the tight, high-probability core modes favored
by α-precision. COMPAS is a dataset with well-documented fairness issues (Wang et al., 2019),
which means its real distribution is highly concentrated and exhibits limited feature variability. Our
diversity-oriented trimming can slightly pull samples away from the exact support of the majority
mode, yielding marginally lower α-precision. However, this trade-off is beneficial for downstream
learning, as reflected in consistently stronger β-recall, detection scores, and predictive performance.
These results demonstrate that team-then-trim generates synthetic data that are simultaneously in-
distinguishable from real data, faithful to the real distribution, and diverse enough to cover rare or
missing modes. The consistent improvements across heterogeneous datasets reinforce the effective-
ness of LLM teaming coupled with rigorous QC in producing high-quality tabular data.

4 CONCLUSION

In this work, we introduced team-then-trim, a novel assembly-line framework for tabular data gener-
ation that leverages the complementary strengths of LLMs and a principled QC pipeline. By decom-
posing generation into specialized LLM teams and rigorously trimming outputs through three-stage
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checks, our approach systematically transforms raw generations into high-quality synthetic datasets.
Extensive experiments across simulated deficiencies, including imbalance, incompleteness, noise
and scarcity, and real-world applications demonstrate that team-then-trim consistently outperforms
state-of-the-art generation methods. Notably, the framework not only improves downstream utility
across diverse classifiers but also achieves superior fidelity, diversity, and indistinguishability from
real data. These results highlight the potential of structured LLM teaming, coupled with rigorous
data QC, to bridge critical gaps in learning scenarios with data deficiencies.

ETHICS AND REPRODUCIBILITY STATEMENT

Ethics Statement. This work focuses on developing a framework for generating synthetic tab-
ular data to address common deficiencies such as imbalance, incompleteness, noise and scarcity
in datasets. All datasets used in this paper are either simulated or publicly available datasets. No
private, personally identifiable, or otherwise sensitive data were used. We adhered to responsible
research practices throughout this work.

Reproducibility Statement. Detailed instructions for dataset access, simulation parameters, pre-
processing steps and methods implementation are provided in Section 3 and Appendix C. Our code
will be released publicly upon acceptance.
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A RELATED WORK

Tabular Data Generation. Synthetic tabular data generation has evolved from statistical methods
to deep generative models (Chawla et al., 2002; Xu et al., 2019; Goyal & Mahmoud, 2024; Dankar
& Ibrahim, 2021). GOGGLE (Liu et al., 2023) learns an explicit relational structure among columns
and jointly trains a message-passing VAE, enabling better modeling of sparse, heterogeneous de-
pendencies in tabular data. TabDiff (Shi et al., 2024) proposes a unified mixed-type diffusion model
that jointly handles numerical and categorical columns in continuous time, with feature-wise learn-
able noise schedules and a transformer denoiser. LLMs represent a paradigm shift, leveraging vast
pre-trained knowledge to generate data for scenarios absent in the original dataset (Tang et al., 2023;
Patel et al., 2024; Shimabucoro et al., 2024). CLLM (Seedat et al., 2024) leverages a frozen LLM
to generate tabular samples in ultra-low-data settings and then curates them via learning-dynamics
signals. DataEnvGym (Khan et al., 2024) introduces a modular teacher-student testbed where data
generation agents plan and synthesize training data in a feedback loop to improve a student model,
framing generation as sequential decision-making. Goyal & Mahmoud (2025) present a practical
platform that fine-tunes LLMs and integrates differential privacy to generate datasets while pre-
serving sensitive information. Yang et al. (2024) define table similarity via realistic analyst-style
transformations and introduces an LLM-driven pipeline that generates large-scale pairs of similar
tables to train and evaluate table-level embeddings. However, single LLM can hallucinate unseen
categories, violate hard constraints and struggle to capture complex conditional distributions. Our
framework, team-then-trim, addresses these gaps by decomposing generation into a manufactur-
ing assembly line and integrating a rigorous three-stage QC pipeline to ensure the final dataset is
plausible and task-aligned.

Data Quality Control. QC for synthetic data has matured from ad-hoc checks to systematic, scal-
able pipelines that validate schemas and repair errors (Baur et al., 2020; Tamm & Nikiforova, 2025;
Alaa et al., 2022). Schelter et al. (2018) supports incremental metric computation on growing
datasets, and adds ML-assisted predictability and anomaly detection to automate large-scale data
quality verification. Building on this work, Schelter et al. (2019) propose a differential extension
that represents data-quality metrics as algebraic states with commutative-monoid properties, en-
abling incremental, partition-aware verification without rescanning previously processed data. Re-
cent advances increasingly emphasize QC for LLM-generated data (Chen et al., 2024a; Hu et al.,
2025). Sousa et al. (2024) apply a human protocol to deduplicate, filter out-of-scope samples before
using the curated set from LLMs and underscore the need for human validation. Wang et al. (2023)
introduce a model-agnostic, differential privacy-preserving post-processing method that reweights
a synthetic dataset via information projection so that selected utility measures, e.g., moments, cor-
relations, match noisy targets from the real data. LLM-TabLogic (Long et al., 2025) uses LLM
prompting to infer and compress inter-column logical relationships and then conditions a latent
diffusion generator on these constraints, producing synthetic tables that better preserve logical con-
sistency while maintaining strong fidelity and privacy. CROWDSELECT (Li et al., 2025) aggregates
multiple LLMs’ responses and reward scores to compute three metrics with diversity clustering and
multi-metric normalization to select synthetic instruction data. However, these methods remain
pointwise and model-agnostic, and do not guarantee that admitted samples are useful for the down-
stream task or that they cover rare modes. Our framework, team-then-trim, addresses these gaps
by coupling a manufacturing-style assembly line with a three-stage QC that is explicitly task-linked
and batch-level.

B PROMPT EXAMPLES

We provide prompt examples of the LLM task manager in Fig. 6, along with one of its assigned
roles, the LLM Demographic and Lifestyle Synthesizer, in Fig. 7, and a subsequent role, the LLM
Glucose Regulation Simulator, in Fig. 8. In the prompts, we provide detailed task instructions along
with the definitions of all features to help LLMs clearly understand the assignment and generation
tasks.
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Age
Physical
Activity

BMI
Blood

Pressure
Cholesterol HbA1c

Fasting
Glucose

Insulin y

32 2 24 109 222 5.26 104 8 1

38 2 30 94 129 5.5 85 27 2

56 5 20 127 153 4.87 115 15 1

44 4 16 93 163 5.15 130 94 3

…

Figure 5: Examples of original data in Diabetes dataset.

C EXPERIMENTAL DETAILS

Datasets simulation. In the simulated studies, the features of the Diabetes dataset and their co-
efficients are generated following the distributions in Rauba et al. (2024), with label probabilities
computed using the sigmoid function. Figure 5 shows examples of original data in the simulated
Diabetes. The dataset includes eight features and one outcome label y. For the TravelBehavior
dataset, features are simulated according to the distributions in Feng et al. (2020); Lin et al. (2024),
and ground-truth labels are assigned using their proposed Latent Decision Threshold model. The
simulated TravelBehavior dataset consists of four features and one binary outcome label. In both
datasets, we construct a test set of 500 samples, while the size of the original training data varies
from 10 to 100, increasing in steps of 10. Unless otherwise specified, the data generation adheres to
the aforementioned distributions. We use symmetric label flipping in all noise experiments. Specif-
ically, for a given flip ratio, we uniformly sample a subset of data points without conditioning on
class and randomly flip their labels. Thus, every class is equally likely to be corrupted, and no class
receives preferential or targeted noise.

Real-world datasets. For the real-world applications, the Drug dataset from the UCI repository
(Fehrman et al., 2017) is partitioned by age, gender, and ethnicity, and we only retain subgroups with
more than 250 observations to ensure sufficient training and test data. After partition, the dataset
consists of 24 features and one binary label outcome. For each subgroup, 100 samples are held out
as the test set, with the remainder used for training after stratifying by label distribution. In the
COMPAS dataset from OpenML (Angwin et al., 2016), the number of training data varies across
experiments with balanced labels, and 500 samples are reserved for testing. The COMPAS dataset
consists of 13 features and one binary label outcome.

Data generation. Considering plausibility of evaluation and the token limits, we generate 10 data
points in each batch for Diabetes and Drug datasets, and 20 data points in each batch for the Trav-
elBehavior and COMPAS datasets. In the data imbalance and incompleteness experiments, the
number of generated batches before trimming is fixed at 10. In all other experiments with varying
original data, it is set equal to the size of the original dataset; for example, with 10 original samples,
one batch is generated. No additional batches are added after trimming. This design ensures that the
amount of synthetic data scales proportionally with the available data, preventing over-generation.

QC. In step 2 objective-related cost assessment of QC pipeline, to calculate the threshold, we run
1000 times to obtain the mean and standard deviation. The coefficient of standard deviation ranging
from 0 to 3 is selected by 5-fold cross validation. In step 3 diversity-related monitoring, we choose
the number of clusters from {3, 4, 5} to maximize the silhouette scores. The entropy improvement
threshold is set as 30%.

Models. All the downstream models are implemented by scikit-learn (Pedregosa et al., 2011). All
the experiments are run on Apple M3 Pro. We use SynthCity (Qian et al., 2023) to implement the
baseline methods and to evaluate the α-precision and β-recall, except for CLLM, which follows
the implementation details in Seedat et al. (2024). The detection score is computed following the
procedure in Liu et al. (2023).
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Prompt Example for LLM Task Manager

You are a Task Manager in a diabetes research system, overseeing the assignment of roles to various Large 
Language Models (LLMs). Each LLM is to be assigned a specific role, such as "Alternative Designer" or "Simulated 
User," to augment distinct aspects of dataset concerning individual health condition. The dataset includes 
individual features with their meanings provided and the outcome label is y, the diabetes indicator .

Task: Assign appropriate roles to LLMs and organize them into a sequence that facilitates collaborative 
augmentation of the dataset. This sequence should reflect the logical relationships and dependencies between the 
roles to maximize the efficiency and effectiveness of data augmentation. 

Features and Their Meanings:
HbA1c: Hemoglobin A1c levels
FastingGlucose: Fasting glucose levels
Age: Age
BMI: Body Mass Index
BloodPressure: Blood pressure
Cholesterol: Cholesterol levels
Insulin: Insulin levels 
PhysicalActivity: Physical activity levels
y: Diabetes indicator (0 = No diabetes, 1 = Diabetes)

Output Requirements: Generate a structured JSON detailing the role assignments and the sequence of 
augmentation. You are encouraged to create new roles or modify existing ones as necessary. Ensure that each 
feature is managed by one specific role. Also, organize the roles in a sequence ("Relationship") where the output of 
one role feeds into the next, facilitating seamless data augmentation. Here is the required JSON structure:
{"Roles": 
{"Role1": {"Name": "Role name", "Features": "Features it needs to augment"}, 
"Role2": {"Name": "Role name", "Features": "Features it needs to augment"}, 
"Role3": {"Name": "Role name", "Features": "Features it needs to augment"}, 
"Role4": {"Name": "Role name", "Features": "Features it needs to augment"}}, 
"Relationship": 
{"Order 1": "Which LLM should first augment features?", 
"Order 2": "Which LLM should secondly augment features?", 
"Order 3": "Which LLM should thirdly augment features?", 
"Order 4": "Which LLM should lastly augment features?"}}. 

Figure 6: Prompt example of task manager LLM.
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Prompt Example for LLM Demographic and Lifestyle Synthesizer 

You are a Demographic and Lifestyle Synthesizer in diabetes research system. Your task is to thoughtfully and 
realistically generate 10 novel individuals. Please think step by step and incorporate patterns learned from real-
world users. You need to generate diverse and plausible combinations of the following features: "Age", and 
"PhysicalActivity". You are provided with 10 representative examples of real users, which include both these 
features and additional ones known to be associated with decision making. Use these examples to infer realistic 
feature relationships, but do not copy them directly. 

Features and Their Meanings: 
Age: Age
PhysicalActivity: Physical activity levels
BMI: Body Mass Index
BloodPressure: systolic blood pressure
Cholesterol: Cholesterol levels
HbA1c: Hemoglobin A1c levels
FastingGlucose: Fasting glucose levels
Insulin: Insulin levels 
y: Diabetes indicator (0 = No diabetes, 1 = Diabetes)

Example data:
{example_data_text}

Output Requirements: The output should be a markdown code snippet formatted in the following schema, 
including the leading and trailing "json" and "```":
```json
{{
“Age": string,
"PhysicalActivity": string.
}}

Figure 7: Prompt example of an assigned role by the LLM, i.e., demographic and lifestyle synthe-
sizer.

Evaluation metrics. We use various evaluation metrics to capture different aspects of downstream
predictive performance and quality of generated data. AUC measures the probability that a randomly
chosen positive sample receives a higher predicted score than a randomly chosen negative sample.
AUC is threshold-independent and particularly informative in imbalanced settings, which is why it
serves as one of our primary metrics. Accuracy provides a holistic overview of performance but
may be less informative under label imbalance. Recall measures the fraction of positive samples
that are correctly identified. F1-score balances the trade-off between precision and recall and serves
as a compact summary of classifier performance when neither error mode is dominant.

D ADDITIONAL RESULTS

LLM workers. Task manager LLM assigns different roles for different datasets. For diabetes
dataset, the LLM roles are Demographic and Lifestyle Synthesizer, Glucose Regulation Simulator,
Cardiometabolic Generator, and Diabetes Expert. For TravelBehavior dataset, the LLM roles are
Alternative Designer, Incentive Allocator, and Decision Predictor. For Drug dataset, the LLM roles
are Demographic Profiler, Personality Synthesizer, Drug Usage Generator, and Nicotine Propensity
Estimator. For COMPAS dataset, the LLM roles are Demographic Profile Designer, Juvenile History
Synthesizer, Criminal Record Analyst and Recidivism Outcome Evaluator.

Data incompleteness. We visualize the t-SNE embeddings of the MR and HR groups in Fig. 9
given the training set missing the HR subgroup on diabetes data. In both groups, the team-then-trim
samples closely intermingle with the test samples, indicating that the generated data preserves the
manifold structure of the real-world distribution. This alignment reflects the ability of our LLM-
teamed generation, followed by QC, to enrich existing but underrepresented or even missing sub-
populations with high fidelity. The results show that, unlike classical baselines, team-then-trim can
generalize beyond observed data to reconstruct missing modes in the distribution. This capability
enables downstream models to achieve strong performance on previously unseen subgroups.
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Prompt Example for LLM Glucose Regulation Simulator 

You are a Glucose Regulation Simulator in a diabetes research system. Your task is to thoughtfully and realistically 
generate 10 novel individuals given their features Age and PhysicalActivity. Please think step by step and incorporate 
patterns learned from real-world users. You need to generate diverse and plausible combinations of the following 
features: "HbA1c", "FastingGlucose", and "Insulin”. You are provided with 10 representative examples of real users, 
which include both these features and additional ones known to be associated with decision making. Use these 
examples to infer realistic feature relationships, but do not copy them directly

Features and Their Meanings: 
Age: Age
PhysicalActivity: Physical activity levels
BMI: Body Mass Index
BloodPressure: systolic blood pressure
Cholesterol: Cholesterol levels
HbA1c: Hemoglobin A1c levels
FastingGlucose: Fasting glucose levels
Insulin: Insulin levels 
y: Diabetes indicator (0 = No diabetes, 1 = Diabetes)

Example data:
{example_data_text}

Output Requirements: The output should be a markdown code snippet formatted in the following schema, 
including the leading and trailing "json" and "```":
```json
{
{“Age": 23,
"PhysicalActivity": 4,
"HbA1c”: string, 
"FastingGlucose”: string, 
"Insulin”: string.
},
{“Age": 47,
"PhysicalActivity": 2,
"HbA1c”: string, 
"FastingGlucose”: string, 
"Insulin”: string.
},
…
}

Figure 8: Prompt example of an assigned role by the LLM, i.e., glucose regulation simulator, fol-
lowing LLM demographic and lifestyle synthesizer.

(a) MR group. (b) HR group.

Figure 9: t-SNE plots of MR and HR groups when the dataset is incomplete.
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Table 6: Average AUC (%) with 95% CI when the label in the dataset is imbalanced on simulated
Diabetes dataset.

Methods LR MR HR
Dori 0.64 ± 0.15 0.59 ± 0.14 0.64 ± 0.04

CLLM 0.64 ± 0.12 0.57 ± 0.10 0.66 ± 0.16

Team-then-Trim (w/o QC) 0.66 ± 0.11 0.57 ± 0.09 0.76 ± 0.09
Team-then-Trim (after QC Step 1) 0.66 ± 0.11 0.57 ± 0.09 0.76 ± 0.09
Team-then-Trim (after QC Step 2) 0.68 ± 0.14 0.59 ± 0.12 0.76 ± 0.10

Team-then-Trim 0.72 ± 0.19 0.62 ± 0.17 0.77 ± 0.11

Analysis of QC steps. Table 6 shows that each QC stage incrementally improves AUC under the
data-imbalance setting of simulated Diabetes dataset. The LLM teaming output (w/o QC) already
enhances HR performance by expanding coverage of rare cases, but offers limited gains for LR and
MR due to noisy or misaligned samples. Sanity check (Step 1) yields no change, consistent with the
fact that LLM teaming rarely violates basic constraints. Objective-related cost assessment (Step 2)
produces the first clear improvement by removing samples with poor predictive alignment, which
increases AUC in both LR and MR. Diversity-related monitoring (Step 3) delivers the final boost
by admitting only batches that enhance cluster-level coverage. Together, the three stages refine raw
generations into data that is simultaneously valid, task-aligned, and diverse, yielding the highest
AUC across all groups. The confidence intervals (CIs) become slightly wider after QC because
the trimming process reduces the number of retained samples and increases the variability across
random seeds.

Data noise. Table 7 reports the average performance on the diabetes dataset under varying levels
of label noise, with flip ratios of 0.2, 0.3, and 0.4. Under moderate and high label corruption, both
team-then-trim and its ablation without QC sustain strong performance across the metrics, delivering
the most consistent improvements. The gains over Dori and all baselines highlight the effectiveness
of combining LLM teaming with rigorous trimming in filtering out mislabeled or uninformative
samples. At a low noise level (flip ratio = 0.2), all methods achieve relatively high AUC, F1 scores
and recall, reflecting the mild corruption. Team-then-trim achieves the best AUC of 81.42% and
competitive F1 and recall. This indicates that even when data are only lightly corrupted, our frame-
work provides additional robustness without overfitting to mislabeled samples.

Computational costs of LLM-based data generation. To contextualize the computational costs
of our framework, we examine the token usage and runtime of each LLM component during data
generation under the diabetes data-imbalance setting. Because the QC stage relies on lightweight
procedures and small models relative to our data size, its computational overhead is negligible com-
pared with the cost of LLM-based generation. The final generated dataset has a dimensionality of
10 rows × 9 columns. As shown in Table 8, team-then-trim incurs moderately higher token con-
sumption and runtime than CLLM; however, the framework remains cost-efficient given its substan-
tially stronger downstream utility. Specifically, Table 1 shows that team-then-trim improves AUC
by 7.12% in the LR group, 4.88% in the MR group, and 11.19% in the HR group compared with
CLLM. These gains highlight that structured LLM teaming does not introduce prohibitive overhead
and, in fact, achieves a highly favorable cost–benefit tradeoff in data-deficiency regimes.

Model utility. Fig. 10 presents the average AUC of four ML models trained on the augmented
COMPAS dataset across varying sizes of original data from 10 to 200. Across all models, team-then-
trim outperforms baseline approaches under most sizes of original data. Importantly, while classical
baselines occasionally achieve moderate gains, their improvements are inconsistent and often fall
short of the stability achieved by team-then-trim. These trends indicate that the coordinated LLM-
teaming plus trimming pipeline enhances model utility in ways that benefit a broad spectrum of
downstream learners.
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Table 7: Average performance (%) across different sizes of Dori (from 10 to 100) when data is noisy
in the diabetes data.

Flip Ratio Method AUC F1 Recall

0.2

Dori 79.00 73.26 75.13
SMOTE 78.73 70.81 75.90
TVAE 77.47 72.32 75.35

CTGAN 75.38 72.99 74.07
CLLM 77.99 68.70 68.91

Team-then-Trim w/o QC 80.83 71.10 72.39
Team-then-Trim 81.42 72.62 74.84

0.3

Dori 64.42 64.66 67.41
SMOTE 69.77 63.03 69.57
TVAE 63.67 64.76 70.21

CTGAN 66.44 62.87 68.65
CLLM 69.96 61.16 61.88

Team-then-Trim w/o QC 70.99 63.41 65.69
Team-then-Trim 71.84 64.78 67.69

0.4

Dori 59.18 58.34 58.91
SMOTE 62.66 59.17 59.53
TVAE 61.52 56.72 57.82

CTGAN 57.40 54.20 55.23
CLLM 63.86 60.64 49.73

Team-then-Trim w/o QC 66.61 58.12 58.48
Team-then-Trim 65.94 58.95 59.76

(a) Logistic regression. (b) SVM.

(c) Random forest. (d) MLP.

Figure 10: Average AUC of four ML models across original data from 10 to 200 on COMPAS
dataset.
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Table 8: Token usage and runtime cost of LLM-based data generation under the Diabetes (Imbal-
anced) setting.

Method Components Tokens (Input) Tokens (Output) Time (s)
CLLM – 771 872 6.56

Team-then-Trim
LLM Worker 1 832 387 4.83
LLM Worker 2 1831 887 6.08
LLM Worker 3 2457 1483 7.16
LLM Worker 4 2533 1507 7.46

E EXAMPLE: THE ADVANTAGE OF LLM TEAMING

Fig. 11 presents generated data examples from a single LLM and from LLM teaming on COMPAS
dataset. The feature “juv fel count” denotes the number of juvenile felonies of a defendant, while
“priors count” represents the total number of prior criminal records. By definition, “priors count”
should always be greater than or equal to “juv fel count”. As shown in Fig. 11a, data generated by
a single LLM fails to respect this rule, whereas in Fig. 11b, our proposed LLM teaming framework
successfully produces data that adheres to such basic consistency constraints.

(a) Single LLM. (b) LLM teaming.

Figure 11: Comparison of generated data on COMPAS from a single LLM and the proposed LLM
teaming framework.

F LLM USAGE

We employ LLMs to generate tabular data as part of our framework. Beyond this, all written content
in this paper is authored by us. After completing the draft, we use LLMs to assist with grammar
checking.
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