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Abstract
Large Language Models (LLMs) increasingly001
rely on prolonged reasoning chains to solve002
complex tasks. However, this trial-and-error003
approach often leads to high computational004
overhead and error propagation, where early005
mistakes can derail subsequent steps. To006
address these issues, we introduce Meta-007
Reasoner, a framework that dynamically op-008
timizes inference-time reasoning by enabling009
LLMs to “think about how to think.” Draw-010
ing inspiration from human meta-cognition and011
dual-process theory, Meta-Reasoner operates012
as a strategic advisor, decoupling high-level013
guidance from step-by-step generation. It em-014
ploys contextual multi-armed bandits to it-015
eratively evaluate reasoning progress, and se-016
lect optimal strategies (e.g., backtrack, clar-017
ify ambiguity, restart from scratch, or propose018
alternative approaches), and reallocates com-019
putational resources toward the most promis-020
ing paths. Our evaluations on mathematical021
reasoning and puzzles highlight the potential022
of dynamic reasoning chains to overcome in-023
herent challenges in the LLM reasoning pro-024
cess and also show promise in broader ap-025
plications, offering a scalable and adaptable026
solution for reasoning-intensive tasks. Code027
are released at https://anonymous.4open.028
science/r/Meta-reasoner-B476/029

1 Introduction030

o1-like reasoning chains allow Large Language031

Models (LLMs) to “think for an extended period”032

before actually solving a problem. This shows im-033

pressive performance on challenging tasks, such034

as logical problems puzzles (Lei et al., 2024; Yao035

et al., 2023), math questions (Patel et al., 2024;036

Lightman et al., 2023), logical reasoning (Han et al.,037

2024), and science questions (Rein et al., 2023),038

which often pose difficulties for even the most ad-039

vanced models (Gandhi et al., 2024).040

However, the trial-and-error nature of o1-like041

reasoning often incurs substantial computational042

Figure 1: High-level comparison of LRM with o1-like chains
and meta-reasoner.

overhead (Snell et al., 2024; Manvi et al., 2024) 043

and is prone to error propagation where early flaws 044

in a reasoning chain can compound and derail sub- 045

sequent steps (Lei et al., 2024; Yao et al., 2023; 046

Gandhi et al., 2024). While related iterative ap- 047

proaches (Gandhi et al., 2024; Li et al., 2025) have 048

explored techniques like partial revision or back- 049

tracking, they typically address errors in an ad-hoc 050

manner for a narrow span of reasoning steps and 051

lack a systematic way to assess whether an entire 052

line of reasoning remains viable. Thus, models 053

remain vulnerable to getting “stuck” in less promis- 054

ing reasoning trajectories, continuously expend- 055

ing computational resources on unpromising paths 056

rather than recognizing when a major strategic shift 057

is needed. A critical challenge, therefore, is to en- 058

able LLMs to allocate their reasoning budget more 059

effectively, prioritizing promising avenues while 060

adapting—or discarding—ineffective strategies. 061

To overcome these challenges, we propose Meta- 062

Reasoner, a specialized module that operates along- 063

side the LLM to enhance its reasoning capabili- 064

ties. The meta-reasoner serves as an “advisor”, 065

dynamically evaluates the reasoning process, offer- 066

ing high-level guidance and strategic redirection 067

when progress stalls. Unlike the LLM, which fo- 068

cuses on more specific stepwise generation, the 069
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meta-reasoner focuses on a broader perspective and070

evaluates the overall progress and strategy of the071

reasoning process. Meta-Reasoner operates in iter-072

ative rounds: where the LLM first generates partial073

o1-like reasoning chains and provides a “progress074

report” summarizing its reasoning progress so far.075

Based on these reports, the meta-reasoner then pro-076

vides the strategic guidance, such as restarting with077

a different approach, refining existing ideas, or tar-078

geting specific sub-problems. Crucially, the meta-079

reasoner is designed to not interact with the gran-080

ular details of the CoT; instead, it focus on the081

global oversight of the reasoning progress and pro-082

vides dynamic high-level strategies, preventing the083

LLM from getting stuck or wasting resources on084

unproductive lines of inquiry.085

Overall, the main contributions of this paper086

are summarized as follows:087

• We propose a novel meta-reasoning framework088

that operates as a high-level advisor for LLMs,089

enabling them to “think about how to think” by090

dynamically optimizing inference-time reasoning091

strategies.092

• By decoupling global strategy decisions from093

low-level chain-of-thought generation, Meta-094

Reasoner oversees progress through concise095

“progress reports” rather than micromanaging096

each reasoning step. This design mitigates er-097

ror propagation and reduces wasted computation098

on unproductive paths.099

• We evaluate Meta-Reasoner on challenging math-100

ematical and scientific reasoning benchmarks101

(e.g., Game of 24, TheoremQA, and SciBench),102

demonstrating significant improvements in both103

accuracy and efficiency compared to baselines.104

Our results show that the proposed framework105

offers a scalable solution to inference-time rea-106

soning bottlenecks.107

2 Related Works108

Complex Reasoning in LLMs The introduction109

of CoT reasoning has revolutionized how LLMs110

approach problem-solving, allowing them to break111

tasks into intermediate steps (Lee et al., 2025).112

The recent LLMs like o1, o3 from OpenAI and113

Deepseek-v3 from Deepseek have achieved state-114

of-the-art results in diverse domains using CoT-115

like reasoning (Manvi et al., 2024; Li et al., 2025;116

Kudo et al., 2024). However, CoT’s sequential de-117

pendency limits its robustness, as errors in earlier118

steps can cascade through the process (Snell et al., 119

2024) and also when facing complex reasoning 120

tasks, CoT-like reasoning may stuck in the infinite 121

loop of reasoning (Lee et al., 2025). These issues 122

motivate us to propose Meta-Reasoner to assess 123

and adapt the overall reasoning strategy based on 124

the progress of CoT reasoning. Unlike the LLMs, 125

which focuses on more specific each step genera- 126

tion, the meta-reasoner focus on the border perspec- 127

tive and evaluates the overall progress and strategy 128

of the reasoning process. It can provide a global 129

oversight to avoid LLMs getting stuck or wasting 130

resources on unproductive lines of thoughts. 131

Backtracking and Error Correction Address- 132

ing cascading errors in multi-step reasoning re- 133

mains a central challenge. Recent approaches have 134

focused on backtracking and self-verification (Yao 135

et al., 2023; Besta et al., 2023; Gandhi et al., 2024). 136

For instance, Weng et al. (2023) have shown that 137

incorporating a self-verification stage—where the 138

model re-checks its conclusions using the very 139

chain of thought it generated—can dramatically 140

boost performance by catching missteps early. Sim- 141

ilarly, Ling et al. (2023) propose not only generate 142

multiple candidate reasoning chains but also em- 143

ploys a verifier mechanism to identify and back- 144

track on erroneous steps. These techniques go be- 145

yond post-hoc validation by introducing dynamic 146

strategy adjustments during inference (Lightman 147

et al., 2023), thereby reducing the impact of errors 148

propagating through long reasoning chains. Fol- 149

lowing these useful efforts, we initiate our Meta- 150

Reasoner with the instructions like (1) restart from 151

scratch and propose alternative strategies; (2) back- 152

tracking to the point where the error occurred; and 153

(3) continue and provide specific suggestions. The 154

detailed strategy can be found in §4.3. 155

Meta-Cognition & Dual-Process Systems 156

Meta-cognition in human reasoning involves 157

higher-order processes that allow individuals 158

to monitor, evaluate, and adjust their cognitive 159

strategies (Gao et al., 2024; Yoran et al., 2024). 160

This reflective thinking—often seen as System 161

2 processes in dual-process theories (Havrilla 162

et al., 2024)—is vital for tasks that require 163

careful deliberation and error correction (Didolkar 164

et al., 2024). Drawing on these insights, our 165

Meta-Reasoner can be considered analogous to 166

dual-process systems, where LRM for generating 167

CoT steps parallels System 1 and Meta-Reasoner 168

for providing high-level strategic oversight to 169

2



guide or redirect reasoning when needed serves170

as System 2. This separation of responsibilities171

enables the framework to balance efficiency172

with robust problem-solving, where the LRM173

handles routine inferences and the meta-reasoner174

intervenes when high-level strategic adjustments.175

3 Preliminary176

A central challenge in complex reasoning tasks is177

choosing the most effective strategy among multi-178

ple valid options. This challenge naturally aligns179

with the contextual multi-armed bandit (MAB)180

framework, which is designed to balance the ex-181

ploration of new strategies with the exploitation of182

strategies known to perform well.183

In this framework, an agent observes a context184

xt that characterizes the current state of the envi-185

ronment at every time step t and selects an arm st186

from a finite set S . Upon selecting arm st, the agent187

receives a reward r(st, xt) that reflects both the188

chosen arm and the context. The primary objective189

of MAB is to maximize the cumulative reward over190

time: R(T ) =
∑T

t=1 r(st, xt). A central challenge191

in the contextual MAB problem is balancing explo-192

ration (trying different arms to gather information193

about their rewards) with exploitation (selecting the194

arm that has yielded high rewards in similar con-195

texts in the past). This balance ensures that while196

the agent leverages known profitable actions, it also197

continues to search for potentially better options.198

This principle is central to our motivation behind199

Meta-Reasoner, which aims to automatically select200

the most efficient strategy to guide the reasoning201

process during inference time.202

A widely used algorithm in the contextual set-203

ting is LinUCB (Li et al., 2012), which models the204

expected reward as a linear function of the context.205

Specifically, for an arm s given context xt, the ex-206

pected reward is modeled as E [r (s, xt)] ≈ x⊤t θs,207

where θs is an unknown parameter vector asso-208

ciated with arm s. To manage uncertainty in its209

estimates, LinUCB maintains for each arm an es-210

timate θ̂s and an associated covariance matrix As.211

The algorithm then selects the arm according to:212

st = argmax
s∈S

[
x⊤t θ̂s + c

√
x⊤t A

−1
s xt

]
, (1)213

where c is a constant that controls the exploration214

level. Here, the term c
√

x⊤t A
−1
s xt serves as a con-215

fidence bound on the reward estimate, encouraging216

the selection of arms with higher uncertainty (i.e.,217

those with less historical data) and thereby facili- 218

tating exploration. By incorporating context into 219

the decision-making process, LinUCB allows the 220

agent to adapt its strategy based on the current state, 221

aligning well with our goal of selecting the most ef- 222

ficient reasoning strategy under varying conditions. 223

4 Methods 224

Based on the intuition to allow the LLMs to focus 225

on their computation on more promising lines, we 226

are motivated by two research questions: (1) How 227

can we enable language models to dynamically al- 228

locate resources during inference to optimize for 229

reasoning and planning? (2) What architecture al- 230

lows for effective separation between the reasoning 231

process in LRM and the meta-level guidance of that 232

process in Meta-reasoner? To address them, we pro- 233

pose a new framework, Meta-Reasoner, to equip 234

the LLMs with the capabilities to “thinking about 235

how to think”. It supervises the reasoning process 236

of the LLMs and provides dynamic strategies to 237

enable the LLMs to focus on more promising rea- 238

soning paths instead of iterative “trial-and-error”. 239

This framework also addresses limitations of the 240

current sequential generation of the reasoning paths 241

which may get stuck in suboptimal trajectories by 242

balancing “higher-order” thinking. 243

The meta-reasoning framework operates itera- 244

tively as shown in Figure 2. At each round t, the 245

reasoning process comprises three steps: (1) CoT 246

generation by the LLM, (2) Progress Reporting to 247

summarize the reasoning progress so far (i.e., this 248

is partly for efficiency, and partly to help the meta- 249

reasoner focus on its main goal of “advising” rather 250

than being distracted by the details in the CoT), 251

and (3) Strategy Generation by the meta-reasoner 252

to optimize subsequent steps. The selection of the 253

strategy is almost exactly corresponds to the well- 254

studied problem of contextual multi-armed bandits 255

learning. Each strategy can be seen as an arm for 256

the bandit, and the reward of each strategy can 257

be evaluated by the progress of LLM reasoning 258

after applying the strategy. We analogy the pro- 259

cess of executing and evaluating each strategy as 260

the act of “pulling” each arm. The overall goal 261

of our meta-reasoner is to find the best arm (i.e., 262

strategy with highest cumulative rewards) with as 263

few pulls as possible. The complete algorithm of 264

Meta-Reasoner is appended in Algorithm 1. 265
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Figure 2: An illustration of the Meta-Reasoner workflow. In each round, the LLM produces a new reasoning step to extend
its CoT reasoning. The CoT is then summarized into a progress report, which provides context for the meta-reasoner. Then
meta-reasoner uses a contextual multi-armed bandit (either using a fixed contextual bandit or dynamic contextual bandit) to
choose a guidance strategy. The selected strategy then guides the next reasoning step generation, to enable strategic redirection,
error correction, and resource optimization. A reward is then computed from the progress report and used to update the bandit
algorithm. The process repeats until the task is complete or the maximum number of rounds is reached.

4.1 Chain-of-Thought (CoT) Generation266

In the first step, the LLM generates a reasoning267

step to extend its CoT reasoning based on the user268

query. Starting with its reasoning history Ct−1 and269

the guidance Gt−1 provided by the meta-reasoner270

in the previous round, the LRM M produces a new271

reasoning step st. This step is then appended to272

the current CoT, forming Ct = Ct−1 ∪ {st}. This273

incremental process allows the LRM to iteratively274

build a structured reasoning path. By keeping track275

of the full reasoning trajectory at each round, the276

model creates a coherent foundation for evaluation277

and further refinement. This process is alike the278

demonstration in o1-like models, which generate279

a long-term thinking process. However, the issue280

of this reasoning is that its more like a process281

of “trial-and-error”, which may waste some of the282

inference costs on unnecessary/useless paths. In283

addition, due to the sequential generation process,284

it may easily get stuck in suboptimal solutions.285

4.2 Progress Reporting286

Once the LRM has updated its CoT, we sum-287

marize the reasoning history Ct into a concise288

progress report Pt. This summary captures the289

key aspects of the reasoning trajectory, such as290

how much progress has been made toward the task291

goal, the consistency of the reasoning, and any292

significant updates so far. The summarization func-293

tion f abstracts the detailed CoT into a simpler,294

more focused representation. This step is designed295

to be both computationally efficient and informa-296

tive, ensuring that the meta-reasoner can focus on297

evaluating high-level progress without being over-298

whelmed by the granular details of every reason-299

ing step. Even this step is more like an engineering300

trick, but we find that it may unlock some of the 301

capabilities of LRM to do “higher-order” think- 302

ing, we find that with more essential information 303

included in the prompt, the LRM will generally 304

produce more insightful, critical strategies which 305

could be more useful for complex reasoning. 306

4.3 Meta-reasoner Strategy Generation 307

In the next step, the meta-reasoner evaluates the 308

progress report Pt and selects proper strategy Gt 309

for LLM reasoning (the complete process can be 310

found in Algorithm 1). We formulate the genera- 311

tion of strategy as a multi-armed bandits problem 312

and consider two settings below: (1) our approach 313

begins with a fixed-strategy formulation, where 314

the meta-reasoner selects from a predefined set of 315

strategies using a contextual bandit algorithm. We 316

then extend this architecture to (2) an advanced 317

setting in which the meta-reasoner is itself an LLM- 318

based agent and can introduce or refine new strate- 319

gies on the fly. In both cases, the meta-reasoner 320

uses the same partial-feedback principle of multi- 321

armed bandits to adaptively choose which strategy 322

to deploy based on a reward function. The reward 323

function evaluates the quality of the given reason- 324

ing progress after applying the meta-reasoner strat- 325

egy. We demonstrate the contextual bandit pair (i.e., 326

diagnosis of the current state from the progress re- 327

port and the corresponding strategy) in Table 1. 328

Progress Evaluation. A central goal of our eval- 329

uation mechanism is to measure how effectively 330

the model’s current reasoning is advancing toward 331

the task objective (e.g., solving a complex prob- 332

lem) while also monitoring computational expendi- 333

ture to encourage efficiency. Concretely, we imple- 334

ment a reward function that tracks both solution 335
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Diagnosis Strategy

Progress is insufficient or the current strategy seems ineffective. Restart from scratch and propose alternative strategies.
There are mistakes in intermediate steps. Backtrack to the point where the error occurred.
The current approach is working well. Continue and provide specific suggestions for the next steps.

Ambiguous or conflicting intermediate results are observed. Pause to clarify and disambiguate the current reasoning, then
reconcile the discrepancies.

The reasoning process appears overly complex or convoluted. Simplify by decomposing the task into smaller, manageable
sub-tasks.

Evidence of error propagation or low confidence in certain
subcomponents.

Perform targeted verification on critical steps and focus on
areas with low confidence.

Repetitive or circular reasoning patterns are detected. Reset to a previously successful checkpoint and explore alter-
native solution paths.

Table 1: Demonstration: Contextual bandit pair (i.e., diagnosis of the current state and corresponding strategy) for guiding the
LLM’s reasoning process. Marked rows are some of the unique strategies generated by Dynamic Contextual Bandits.

progress (e.g., partial correctness, compliance with336

constraints) and resource usage (e.g., the number337

of reasoning steps). In principle, any suitable eval-338

uator can be employed, including LLM-based ver-339

ification or external scoring scripts. In our setup,340

we leverage an LLM as evaluator (with prompt341

referred at Figure 5- 8) to verify the reasoning342

progress. We adjust the implementation to output a343

cumulative score which will be further leveraged344

to update the MAB algorithms.345

Fixed Contextual Bandit. In the basic version346

of our framework, the meta-reasoner is modeled347

as a single contextual bandit that selects from a348

fixed, finite set of K strategies. These strategies349

may include instructions such as “continue and pro-350

vide specific suggestions”, “restart from scratch”,351

“backtrack to the point where the error occurred”,352

or “propose alternative methods or perspectives to353

consider”. At each round, the LRM produces a354

progress report summarizing its partial reasoning,355

the meta-reasoner transforms this progress report356

into a feature vector xt using a language model and357

applies a contextual bandit algorithm (e.g., Lin-358

UCB (Li et al., 2012)) to select the best next strat-359

egy at. The LLM then executes that strategy and360

we collect the reward rt for at based on the reward361

function. Through iterative MAB algorithm updat-362

ing, the model learns to select a proper strategy363

based on the context from recent progress report.364

Dynamic Contextual Bandit. The basic frame-365

work assumes a static set of arms (strategies). In366

practice, the meta-reasoner may also be an LLM,367

capable of inventing new approaches over time.368

To accommodate dynamic strategies, we allow the369

meta-reasoner to propose or refine new strategies at370

round t, which generates an expanding collection371

of actions, A1 ⊆ · · · ⊆ At. Each newly proposed372

strategy becomes an arm in the contextual bandit.373

To encourage at least some exploration on this new 374

arm, we initialize each arm with a blank or weak 375

prior in bandit’s parameters. 376

By explicitly separating low-level content gener- 377

ation (handled by the LLM) from high-level strat- 378

egy decisions (governed by the meta-reasoner’s 379

bandit), the system can effectively avoid getting 380

stuck or wasting excessive resources on poor so- 381

lution paths. In domains where a predefined set 382

of strategies is sufficient, the fixed-arm formula- 383

tion can simplify the method deployment. While 384

in more open-ended domains where novel tactics 385

may emerge, dynamic-arm extensions give meta- 386

reasoner more freedom to evolve. 387

5 Experiments 388

In this section, we first introduce the experiment 389

settings including the dataset, baselines, and the 390

backbone models. We then present the main results 391

of Meta-Reasoner with some other analysis from 392

perspectives like efficiency, rewards accumulation, 393

and qualitatively assess meta-reasoner output. 394

5.1 Experiments Setup 395

Datasets. We consider the tasks requiring com- 396

plex reasoning and the proper solutions natu- 397

rally composed of long reasoning steps. We 398

evaluate Meta-Reasoner on several challenging 399

datasets: the 24-point game proposed by Yao 400

et al. (2023), college-level scientific problem from 401

SciBench (Wang et al., 2024) and theorem-driven 402

math question in TheoremQA (Chen et al., 2023). 403

For the SciBench, we only consider the math- 404

related subset for testing which covers the diff, stat, 405

and calc (the detailed clarification of each subset 406

collection can be found in Wang et al. (2024) and 407

we provide the demonstration for each subset in 408

Figure 9). For the TheormQA, we consider the 409

mathematics subset that involves logical reason- 410
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Method Diff(%) Stat(%) Calc(%)

Phi-4 + CoT 17.42 28.42 32.93
Llama-3.1-instruct + CoT 33.14 49.72 54.18
Gemini-Exp-1206 + CoT 36.32 56.73 59.24
Gemini-Exp-1206 + SC-CoT 38.73 59.12 64.11
GPT-4o-mini + CoT 33.12 55.71 58.10
GPT-4o-mini + SC-CoT 37.33 56.67 63.81
GPT-4o-mini + MCR 40.12 58.21 67.42

GPT-4o-mini + MACM (Lei et al., 2024) 54.78 67.13 65.77
GPT-4o + MACM (Lei et al., 2024) 61.42 78.32 76.72
GPT-4o-mini + Meta-Reasoner (our work) 60.32 73.64 80.23
GPT-4o + Meta-Reasoner (our work) 67.14 83.29 84.17

Table 2: Accuracy (%) comparison of different methods on
the math-related subset of the SciBench dataset. Each column
refers to the problem subset defined in Wang et al. (2024).

ing for our testing. We follow the experimental411

setup in MACM (Lei et al., 2024) to conduct the412

corresponding analysis on these datasets.413

Baselines. We consider several established414

prompting methods as baselines as follows:415

• Chain-of-thought (CoT) (Wei et al., 2022): A416

prompting technique that encourages models to417

generate intermediate reasoning steps to enhance418

problem-solving capabilities.419

• Self-Consistent Chain of Thought (SC-420

CoT) (Wang et al., 2022): An extension of421

CoT that improves reasoning consistency422

by generating multiple reasoning chains and423

selecting the most consistent answer.424

• Multi-Chain Reasoning (MCR) (Yoran et al.,425

2024): enhances SC-CoT by having another426

LLM to assess and integrate content among the427

sampled reasoning chains to generate the final428

consistent answer.429

• Tree of Thoughts (ToT) (Yao et al., 2023): A430

method that explores multiple reasoning paths in431

a tree structure, allowing the model to consider432

various possibilities before arriving at a conclu-433

sion by tree search algorithms.434

• Reflexion (Shinn et al., 2024): A framework that435

enables models to reflect on their reasoning pro-436

cess, iteratively refining their answers based on437

feedback.438

• MACM (Lei et al., 2024): A multi-agent system439

to refine the reasoning based on iterative condi-440

tion mining.441

Backbone Models. We consider both LLMs and442

the recent LRMs for our experiments. For the443

LLMs, we consider the closed-source models like444

GPT-4o, GPT-4o-mini (between Nov 2025 to Jan445

2025) from OpenAI, and open-sourced models446

Method Accuracy (%)

GPT-4o-mini + CoT (Yao et al., 2023) 4
GPT-4o-mini + SC-CoT (Yao et al., 2023) 9
GPT-4o-mini + IO (best of 100) (Yao et al., 2023) 33
GPT-4o-mini + CoT (best of 100) (Yao et al., 2023) 49
Gemini-Exp-1206 + IO (best of 100) (Yao et al., 2023) 38
Gemini-Exp-1206 + CoT (best of 100) (Yao et al., 2023) 60

GPT-4o-mini + ToT (b = 1) (Yao et al., 2023) 45
GPT-4o-mini+ ToT (b = 5) (Yao et al., 2023) 74
GPT-4o-mini + Reflexion (Shinn et al., 2024) 53
GPT-4o-mini + MACM (Lei et al., 2024) 80
GPT-4o-mini + Meta-Reasoner (our work) 89
GPT-4o + Meta-Reasoner (our work) 92
Gemini-Exp-1206 + Meta-Reasoner (our work) 94

o1-mini + IO 89
o1-preview + IO 93

Table 3: Accuracy(%) comparison of different prompting
methods on 24-points game. b: Search breadth.

Method Accuracy (%)

GPT-4o-mini + CoT 39.46
Gemini-Exp-1206 + CoT 43.12

GPT-4o-mini + Reflexion (Shinn et al., 2024) 74.32
GPT-4 Turbo + MACM (Lei et al., 2024) 79.41
GPT-4o-mini + Meta-Reasoner (our work) 84.13
Gemini-Exp-1206 + Meta-Reasoner (our work) 86.32

Table 4: Accuracy(%) comparison of different prompting
methods on TheoremQA (Chen et al., 2023).

like meta-llama-3.1-8B-instruct from Meta, phi- 447

4 from Microsoft and gemini-experimental-1206 448

from Google. For the LRMs, we consider the 449

closed-source models like o1, o1-mini (In case we 450

cannot break down the generation of o1 models 451

through APIs, we cannot properly inject our meta- 452

reasoner with o1-series models; we only provide 453

the IO results for references), and open-sourced 454

models like QwQ-32B-preview from QWen and 455

Deepseek-v3 from Deepseek-AI. For the feature ex- 456

traction mentioned in §4.3, we use text-embedding- 457

3-small from OpenAI as the embedding model. 458

To ensure the reproducibility of the experiments, 459

we set temperature = 0.7 and top_p = 1.0 for 460

all models. We use the API service from OpenAI1 461

and OpenRouter2 for our experiments which host 462

detailed snapshots of the utilized model versions. 463

5.2 Main Results 464

We compare the accuracy of different prompt- 465

ing methods across different backbone models on 466

SciBench (as shown in Table 2), 24-points game 467

(as shown in Table 3) and TheoremQA (as shown 468

in Table 4). We found that basic prompting strate- 469

gies, such as CoT and SC-CoT, show limited ef- 470

1https://openai.com/
2https://openrouter.ai/
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Model Variant Game-of-24(%) TheoremQA(%)

GPT-4o-mini

Full Method 89 84.13
w/o Progress Report 85 79.42
w/o MAB (direct arm selection) 82 80.74
w/o MAB (CoT) 4 39.46

Gemini-Exp-1206

Full Method 94 86.32
w/o Progress Report 91 81.78
w/o MAB (direct arm selection) 87 82.14
w/o MAB (CoT) 11 43.12

Table 5: Ablation study of Meta-Reasoner. Direct arm se-
lection refers to prompting LLM to directly select a strategy
based on recent progress report.

Bandit Type Game-of-24(%) #US TheoremQA(%) #US

Fixed (K=3) 65 3 72.34 3
Fixed (K=5) 72 5 79.17 5

Dynamic 89 14 84.13 21

Table 6: Fixed vs. Dynamic Bandit Variants over
GPT-4o-mini. #US: Number of Unique Strategies.

fectiveness, achieving only 4% and 9% accuracy471

on 24-point games, respectively. Incorporating IO472

strategy with “Best of 100” samples improves ac-473

curacy to 33%, but it remains far behind advanced474

methods. Strategies like ToT illustrate the impor-475

tance of exploring broader reasoning paths, with476

accuracy increasing from 45% to 74% as the search477

breadth expands from 1 to 5. Advanced iterative478

methods, such as Reflexion (53%) and MACM479

(80%), further demonstrate the value of refined rea-480

soning frameworks. Our proposed Meta-Reasoner481

outperforms these approaches, achieving 89% ac-482

curacy with GPT-4o-mini and 92% with GPT-4o,483

showcasing its ability to dynamically guide reason-484

ing, correct errors, and focus resources effectively.485

Compared to specialized models like o1-mini, our486

method equipped with much cheaper and gener-487

alized models like GPT-4o-mini delivers compa-488

rable performance, demonstrating its adaptability489

and scalability. Overall, the Meta-Reasoner frame-490

work provides a compatible approach to improving491

reasoning-intensive tasks, combining high accuracy492

with dynamic and efficient problem-solving strate-493

gies. The results on SciBench and TheoremQA494

also demonstrate similar findings and show that495

Meta-Reasoner generally achieves better perfor-496

mance compared to the baselines and the results497

are consistent across different models.498

5.3 Ablation Study499

In this section, we conduct an ablation study to500

analyze each component contribution of Meta-501

Reasoner. In specific, we consider the following502

setup: (1) w/o progress report: we replace the503

progress reporting process with directly consider-504

ing the entire CoT history without summarization;505

Figure 3: The trade-off between accuracy and normalized
inference costs across different models and methods on 24-
point games. We use gpt-4o-mini as the backend model
for all the prompting methods. For each method, key hyper-
parameters (e.g., N in Best of N, or tree size in ToT) are tuned
to yield a baseline (lower point) and an extended (upper point)
configuration, with dashed lines connecting these bounds.

(2) w/o MAB: instead of using MAB to select the 506

proper strategy, we directly leverage an LLM to the 507

decision making to provide the proper strategy for 508

LRM reasoning. In Table 5, we show that when re- 509

moving progress reporting (“w/o Progress Report”), 510

the overall performance moderately degrades and 511

we hypothesize it is due to the concise intermediate 512

summarizations can help the Meta-reasoner only 513

consider the high-level strategy instead of being 514

confused with too much details of the reasoning 515

process. We also find that removing the MAB 516

brings a more pronounced effect, especially when 517

strategy selection falls back to a direct chain-of- 518

thought approach (“w/o MAB (CoT)”). It verifies 519

the effect of our meta-reasoner module to help the 520

model stay on track for getting an optimal solution. 521

In Table 6, we compare fixed and dynamic bandit 522

variants on the game of 24 and theoremQA. We find 523

that using a fixed set of strategies (e.g., K = 3 and 524

K = 5) yields lower performance compared to the 525

dynamic approach which adaptively explores more 526

strategies (shown by larger unique strategies). The 527

results highlight the benefit of flexibly allocating 528

diverse reasoning strategies using LLM in-context 529

learning capabilities. 530

5.4 Analysis 531

Effectiveness of Meta-reasoner. In Figure 4, we 532

demonstrate the cumulative rewards across itera- 533

tions to analyze the effectiveness of the our meta- 534

reasoner module. We compare our MAB-based 535

method with a baseline which directly prompts an 536

LLM to select an arm (“strategy”). We refer to 537

this baseline method as Baseline (Direct Arm Selec- 538

7



Figure 4: Cumulative reward of different settings across iteration. We compare our method using LinUCB with baseline (direct
arm selection), and random search methods across two tasks—Game of 24 (top row) and TheoremQA (bottom row) using
GPT-40-mini (left) and Gemini-Exp-1206 (right).

tion), with the prompt in Figure 5- 8. The results539

show that MAB-based Meta-Reasoner (using Lin-540

UCB (Li et al., 2012)) consistently outperforms541

both direct LLM decision-making (the baseline)542

and random search across two distinct tasks (Game543

of 24 and TheoremQA) and under two model scales544

(GPT-40-mini and Gemini-Exp-1206). While di-545

rect LLM usage may yield reasonable initial per-546

formance and random search incurs minimal setup547

cost, neither approach systematically balances ex-548

ploration and exploitation. In contrast, the MAB549

updating strategy leverages feedback from previous550

iterations to adaptively refine its action selection551

(e.g., choosing a proper strategy based on the CoT552

reasoning), steadily increasing cumulative rewards.553

Inference Efficiency. In Figure 3, we compare the554

inference costs across different models and various555

prompting strategies. Basic models, like GPT-4o-556

mini and GPT-4o, show lower accuracy and mini-557

mal inference cost, occupying the lower-left corner558

of the plot. As methods become more advanced,559

such as ToT and MACM, accuracy improves signif-560

icantly but at the expense of higher inference costs.561

Our proposed method stands out by achieving a562

strong balance between high accuracy and mod-563

erate inference cost, outperforming methods like564

MACM, which delivers lower accuracy at higher565

costs. While proprietary models like o1-mini and566

o1-preview achieve slightly higher accuracy, they567

incur the highest inference costs, highlighting their568

reliance on more computational resources. Meta-569

Reasoner demonstrates competitive performance570

with a cost-effective approach making it a scalable 571

and efficient solution for reasoning-intensive tasks. 572

6 Conclusion 573

In this work, we introduce Meta-Reasoner, a meta- 574

reasoning framework designed to enhance the rea- 575

soning capabilities of LRMs and optimize the 576

inference-time reasoning efficiency. By operat- 577

ing as an “advisor”, meta-reasoner dynamically 578

evaluates the reasoning process and provides high- 579

level strategic guidance, addressing key limitations 580

of o1-like reasoning chains, such as compound- 581

ing errors and inefficiency in inference computing. 582

Unlike conventional reasoning approaches, Meta- 583

Reasoner focuses on global oversight rather than 584

granular step-by-step processes, enabling LRMs 585

to avoid unproductive lines of thought and better 586

allocate computational resources. The experiments 587

highlight the potential of dynamic reasoning chains 588

to overcome inherent challenges in the LLM rea- 589

soning process and also show promise in broader 590

applications, offering a scalable and adaptable so- 591

lution for reasoning-intensive tasks. 592

Limitations 593

Our proposed Meta-Reasoner framework, while ef- 594

fective at improving inference-time reasoning, has 595

a few key limitations that may affect its applicabil- 596

ity. First, it relies on a carefully designed reward 597

function to guide strategy selection: if the reward 598

signal does not accurately reflect correctness or 599

progress, the meta-reasoner may persist with in- 600

8



correct strategies. This challenge becomes more601

pronounced when the tasks involve subjective or602

complex objectives that are hard to quantify auto-603

matically (such as creative writing, complex theo-604

rem proving). Second, while dynamically adding605

or refining strategies expands the meta-reasoner’s606

flexibility, it can also introduce instability. Overly607

complex or poorly specified new strategies may cre-608

ate confusion rather than enhance problem-solving.609

Careful vetting or domain-specific constraints may610

be needed in future version to prevent the system611

from drifting into ineffective approaches.612
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Figure 5: Prompt Demonstration (Page-1)
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Figure 6: Prompt Demonstration (Page-2)
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Figure 7: Prompt Demonstration (Page-3)
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Figure 8: Prompt Demonstration (Page-4)

Algorithm 1 Meta-Reasoner: Meta-Reasoning with Contextual Multi-Armed Bandits

Require: LRM M , bandit B, initial strategy set A1, maximum rounds T
Ensure: Final answer Afinal

1: C0 ← ∅; B.Initialize(A1)
2: G0 ← default strategy
3: for t = 1 to T do
4: if t > 1 then
5: Pt−1 ← f(Ct−1) // Summarize the existing CoT
6: xt−1 ← FeatureExtract(Pt−1) // Extract features for context
7: (Optional): At ← At−1 ∪ {new strategies} // Update strategy set dynamically
8: at−1 ← argmaxa∈At ScoreB(xt−1, a) // Select strategy using bandit
9: Gt ← at−1 // Set current guidance

10: else
11: Gt ← G0 // Use default guidance for the first iteration
12: end if
13: st ←M(Ct−1, Gt) // Generate new CoT with integrated guidance
14: Ct ← Ct−1 ∪ {st} // Append new reasoning step to the CoT
15: rt ← ComputeReward(Ct) // Compute reward based on the updated CoT
16: if t > 1 then
17: B.Update(xt−1, at−1, rt) // Update bandit with observed feedback
18: end if
19: if termination condition met then
20: break
21: end if
22: end for
23: Afinal ← ExtractAnswer(Ct)
24: return Afinal

Figure 9: Task example demonstrated in Wang et al. (2024) regarding calc, stat and diff mentioned in Table 2.
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