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ABSTRACT

Classical intuitions cast minimizing reverse KL as “mode seeking” and forward
KL as “mass covering”. In KL-regularized reinforcement learning, however, the
regularizer determines both the target distribution’s shape and the divergence being
implicitly minimized, making its role more nuanced than simply inducing generic
mode-seeking or mass-covering behaviour. Specifically, the target distribution is
defined jointly by the reward function, the reference model, the type of regularizer,
and the regularization strength. We show that under common settings—such as
low regularization strength and equal verifiable rewards—both forward and reverse
KL regularization tend to specify target distributions whose mass concentrates on
a single high-reward region. Thus, the objective itself by construction induces
diversity collapse, regardless of the policy optimization algorithm used.
Building on this perspective, we introduce a simple and scalable modification that
rescales rewards to induce target distributions assigning substantial probability
across all high-reward regions. This yields a principled objective that maintains
high solution quality while achieving broad reward-mode coverage. Empirically,
this approach improves post-training diversity and performance for Large Language
Models and Chemical Language Models, and is effective with either forward or
reverse KL regularization, while using either naively fails.

1 INTRODUCTION

Reinforcement Learning (RL) is the predominant method for post-training foundation models
(Ouyang et al., 2022), and the primary way to train generative models in settings where the correct
solution is not known a priori. At its core, this involves solving a regularized RL (contextual bandits)
problem, where a policy is trained to maximize some external reward, while preserving “closeness”
to a base policy (as to e.g. preserve coherence). Output diversity of the policy is crucial. In Large
Language Models (LLMs), it drives engagement for tasks such as creative writing and free-form
conversation. More generally, diversity underlies the generation of new knowledge, enabling the
discovery of novel mathematical solutions (Romera-Paredes et al., 2024), cognitive science models
(Castro et al., 2025), and novel algorithms and software (Surina et al., 2025; Novikov et al., 2025;
Aygün et al., 2025). Furthermore, diversity reflects uncertainty over competing hypotheses, a property
fundamental to scientific discovery (GX-Chen et al., 2025). Finally, diversity plays an important role
during training to drive exploration such that the policy can find and converge to better solutions (Cui
et al., 2025).

Yet, current empirical evidence suggests RL post-training improves quality at the cost of diversity
(Kirk et al., 2023; Cui et al., 2025). As a response, a number of recent works set out to treat this
ailment, with a variety of approaches including explicit diversity rewards (Li et al., 2025), changing
the KL regularization (Wang et al., 2023), selecting diverse data (Lanchantin et al., 2025), and
count-based exploration bonuses (Song et al., 2025).

In this work, we take a step back to diagnose a more fundamental problem: does the objective being
optimized actually have a solution that is diverse? We find that with current set-ups, the answer is
often “no”, even with unlimited compute, high quality data, and perfect optimization. We prove that
under very commonly used settings (such as weak KL regularization with varied rewards, or any KL
regularization if correct answers have the same rewards but vastly different reference policy supports),
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the globally optimal solution is often by construction unimodal. To accomplish this, we analyze
KL-regularized RL through tools from variational inference (VI, Jordan et al. 1999; Ranganath et al.
2014) to find and dissect optimal policies for different choices of KL regularization.

Section 2 provides preliminaries about KL divergences and reminds the reader of the mode-seeking
/ mass-covering behaviour of minimizing reverse / forward KL at suboptimality. Section 3 studies
KL-regularized reward maximization as implicitly minimizing a divergence between the current
policy and a target distribution. Section 4 further analyzes the shape of this target solution. We focus
particularly on how this distribution puts mass over high-reward regions—i.e. multimodality in terms
of reward modes (Definition 3.5). This allows us to understand even if we perfectly minimize any
divergence between the policy and the target distribution, the resulting policy will still be non-diverse
if the target distribution is defined to be unimodal. Finally, Section 5 shows how one can directly
construct the target distribution to cover all high-reward modes. We specify one such distribution
which puts mass over all high-reward regions above a certain threshold, and show this requires only a
small change to current algorithms. Each section is empirically supported with didactic simulations.
Finally, we apply our method out of the box to LLMs and chemical language models and find that it
works for complex, realistic scenarios.

The main contributions can be summarized as follows,

1. We analyze the role of reverse/forward KL regularization in RL as both defining the target
distribution and the implicitly minimized divergence between policy and target.

2. We show the shape of the target distribution is determined by the regularizer, regularization
strength, and relative reward and reference probability magnitudes. This has implications on
how the target distribution puts mass over high-reward regions.

3. We show with typical hyperparameters, the target distribution is often constructed to put
mass over a single high-reward region, making diversity collapse a natural consequence of
correctly solving the regularized RL problem (as currently defined), regardless of algorithm.

4. We derive conditions required for broad reward mode coverage, and use this insight to
construct a simple and theoretically principled RL algorithm (two-line pseudocode, Alg. 1)
that puts uniform mass over all high-reward regions, without any external diversity signals.

2 THE KULLBACK-LEIBLER (KL) DIVERGENCE

5 0 5
0.0

0.2

0.4

0.6

0.8

Re
ve

rs
e 

KL

Step 0

5 0 5
0.0

0.2

0.4

0.6

0.8
Step 70

5 0 5
0.0

0.2

0.4

0.6

0.8
Step 600

5 0 5
0.0

0.2

0.4

0.6

0.8

Fo
rw

ar
d 

KL

Step 0

5 0 5
0.0

0.2

0.4

0.6

0.8
Step 200

5 0 5
0.0

0.2

0.4

0.6

0.8
Step 600

(a) Restrictive (Gaussian) approximation
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(b) Flexible (categorical) approximation

Figure 1: Illustration of how the choice of approximate distribution family affects KL optimization.
With a restrictive approximate distribution (e.g. 1D Gaussian with two parameters), KL exhibits the
typical “mode seeking” and “mass covering” characteristics. This intuition does not necessarily hold
for flexible distributions (e.g. independent categoricals, foundational models).

The Kullback–Leibler (KL) divergence (Kullback & Leibler, 1951) measures the discrepancy between
two probability distributions. In machine learning, it is commonly used in variational inference (VI),
where minimizing the KL divergence enables a tractable variational distribution q to approximate
an intractable posterior p (Jordan et al., 1999; Blei et al., 2017). Following Murphy (2012), we
refer to DKL(q||p) = Eq[log q(y) − log p(y)] as the reverse KL divergence, and DKL(p||q) =
Ep[log p(y) − log q(y)] as the forward KL divergence. Reverse KL is often described as “mode
seeking”, avoiding mass where p is small (Figure 1a, top), while forward KL is often described as
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“mass covering”, putting mass anywhere p has mass (Figure 1a, bottom). These intuitions hold if the
variational family is not sufficiently expressive and we can at best settle on an optimum with > 0 KL
(Bishop & Nasrabadi, 2006; Murphy, 2012). With a flexible family, however, optimizing either KLs
to the global optimum can well-approximate a complex posterior (Figure 1b).

3 KL-REGULARIZED REWARD MAXIMIZATION

KL-regularized reward maximization aims to (i) maximize the expected value of a reward function
R : Y → R, mapping from samples to a scalar outcome (e.g. improve human preference), while (ii)
keeping the policy πθ close to a reference distribution πref (e.g. maintain grammatical coherence).
The objective is J(πθ) = Eπθ(y)[R(y)]− β D

(
πθ, πref

)
, where D(·, ·) denotes a divergence between

the policy and reference distributions. For brevity, we consider the unconditional generation problem
where the policy models distribution πθ(y). The problem is the same in the case of conditional
generation (e.g. question answering), where the objective is simply defined over the conditional
distribution πθ(y|x). We do not deal with the sequential decision making setting—commonly
modelled using Markov Decision Processes (Puterman, 1994)—in this work. Nevertheless, the
non-sequential setting is widely used when training generative models with RL.

In this section, we consider the solution / target distribution of KL-regularized reward maximization,
i.e. the distribution which maximizes the objective. The central question is:

If we perfectly solve the regularized RL problem to its global optimum, what does
the solution (policy) distribution look like?

3.1 SOLUTION OF THE REVERSE KL REGULARIZED OBJECTIVE

The most common KL-regularized policy gradient objective uses the reverse KL divergence,

Jβ(πθ) = Eπθ(y)[R(y)]− β DKL

(
πθ||πref

)
. (1)

A number of previous works have discussed the solution / optimal distribution of this optimization
problem (Korbak et al., 2022; Go et al., 2023; Rafailov et al., 2023; Azar et al., 2024; Zhang &
Ranganath, 2025), which we note again below (see Appendix B.1 for detailed derivations).
Remark 3.1. The optimal solution to the reverse-KL regularized reward maximization problem,
argmaxπθ

Jβ(πθ), is given by the target distribution π∗ = Gβ ,

Gβ(y) =
1

ζ
πref(y) exp

(R(y)

β

)
, (2)

where ζ =
∫
πref(y) exp(R(y)/β) dy is the normalizing constant.

Remark 3.1 tells us the distribution maximizing Equation 1 is πθ = Gβ . However, it may not be
immediately obvious how optimizing Equation 1, ∇θ Jβ(πθ), moves πθ toward Gβ . We analyze this
below (details in Appendix B.2, also see e.g. Zhang & Ranganath (2025)).
Remark 3.2. The gradient of Equation 1 is a gradient of the reverse KL divergence between the
current policy πθ and the target distribution Gβ ,

∇θ DKL

(
πθ ||Gβ) ∝ −∇θ Jβ(πθ) . (3)

Main Takeaway

Maximizing the reverse-KL regularized RL objective Jβ (Equation 1) is equivalent to doing
distribution matching by minimizing a reverse KL toward the target distribution Gβ (Equation 2).

3.2 SOLUTION OF THE FORWARD KL REGULARIZED OBJECTIVE

Alternatively, the reward can be maximized with a forward KL penalty,

Jfwd(πθ) = Eπθ(y)[R(y)]− β DKL

(
πref||πθ

)
. (4)

A number of recent works have used forward KL regularization. Some are motivated explicitly by the
“mass covering” intuition of the forward KL (Wang et al., 2023), while others—such as GRPO (Shao
et al., 2024; Guo et al., 2025a)—may have incidentally estimated the forward KL, despite meaning to
use the reverse KL (Tang & Munos, 2025).
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Remark 3.3. Assume optimization with β > 0, with finite rewards Rmax < ∞, and there exist
solution(s) where R(y) = Rmax, πref(y) > 0. The optimal solution to the forward-KL regularized
reward maximization problem, argmaxπθ

Jfwd, is given by the distribution:

Gfwd(y) =
β πref(y)

Λ−R(y)
, Λ > max

y
R(y) , (5)

where a unique Λ exists for each β such that Gfwd is a valid probability distribution.
Notably, Equation 5 is a completely different distribution family from the reverse KL case (Equation 2),
and does not have a simple closed form unnormalized solution. It is also worth noting that if higher-
rewarding regions exist outside of πref’s support, Gfwd can place nonzero mass on regions where
πref(y) = 0 and R(y) = Rmax, with no preference among y’s within this region in terms of density.
See Appendix B.3 for more details.
Remark 3.4. Assume we are optimizing within the support of πref, the gradient of Equation 4 is not
a forward KL gradient,

∇θ DKL

(
h ||πθ) ̸∝ −∇θ Jfwd(πθ) , (6)

for any target distribution h that is defined independently of πθ, and arbitrary reward functions R.

Proof. Appendix B.4.

Therefore, while Equation 4 can still be a good objective to optimize, it does not necessarily inherit
exactly the same properties and intuitions as a “forward KL gradient”.

What, then, is the gradient of the forward KL DKL(Gβ ||πθ)? It in fact reduces to doing maximum
likelihood (supervised fine-tuning) on trajectories sampled from the target Gβ (Remark B.2), which
is intractable for generic targets. However, this provides one perspective on algorithms such as STaR
(Zelikman et al., 2022) and RAFT (Dong et al., 2023; Xiong et al., 2025) that filter high-reward
trajectories for maximum likelihood. One can interpret filtering as rejection sampling to approximate
a target distribution (which put high mass over high-reward regions), when reward is bounded and we
know Gβ up to normalization. More generally, other methods that approximately sample from Gβ to
minimize divergence include Naesseth et al. (2020); Khalifa et al. (2020).

Main Takeaway

Maximizing the forward-KL regularized objective Jfwd (Equation 4) does not yield a forward-KL
gradient, so its behaviour cannot be naively equated to forward-KL optimization.

To summarize: the regularized RL objective implicitly minimizes a divergence between the current
policy πθ and a target distribution G. Different choices of regularizer lead to different target
distributions G. Importantly, the regularizing divergence D(πθ, πref) need not be the same type of
divergence as the one implicitly minimized, D(πθ, G), as is the case for forward-KL regularization.

3.3 BOTH KL REGULARIZATION CAN HAVE MULTIMODAL SOLUTION DISTRIBUTIONS
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Figure 2: Final policy distribution (100-dim categorical) from optimizing a reverse/forward KL
regularized reward maximization objective, given the same reward function, reference policy, across
a range of regularization strengths (β). Both KLs can lead to multimodal solution distributions.
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We briefly note that the target distributions for both the reverse (Equation 2) and forward (Equation 5)
KL regularization can be multimodal. To ground the discussion, we first define a common-sense
notion of “multimodal” in terms of reward modes, which we use for the rest of the paper.
Definition 3.5. A target distribution G for regularized reward maximization is “reward multimodal”
given a high-reward threshold τ if: for any two samples y, y′, R(y) < τ ≤ R(y′) implies G(y) <
G(y′); and for any above-threshold samples R(y) ≥ τ and R(y′) ≥ τ , G(y) ≈ G(y′).
Informally, this means all high-reward samples have a high probability, and sampling from G samples
approximately equally from all high-reward regions.

We show in a didactic example in Figure 2, where given the same reward function containing two
high-reward modes, and a reference policy with support over the first half of the action space,
optimizing the reverse and forward KL objectives lead to a wide variety of solutions that depend on
the regularization coefficient β. Both KLs have settings of β that induce reward multimodal target
distributions. We analyze the properties of the target distribution in the subsequent section, and return
to the Figure 2 example in detail in Section 4.3.

4 ANALYSIS OF KL REGULARIZED OPTIMAL DISTRIBUTION

We have seen in Section 3.3 that both KL-regularized RL objectives can have reward multimodal
solutions, and in Section 2 that optimizing either KL divergence to global optimum will give us
policies that well-approximate the (multimodal) solution. However, the shape of the target distribution
depends on the reward, reference distribution, and regularization strength. This raises the central
question:

Is the globally optimal solution we commonly define in KL-regularized RL actually
reward multimodal (Definition 3.5)?

The central tool we use in this section is a probability ratio between two samples under a distribution.
Intuitively, we want (i) high-reward samples to be much more probable than low-reward samples, and
(ii) similarly high-reward samples to have similar high probabilities. Unless otherwise stated, we
focus our analysis on the solution of the reverse-KL regularized objective (Equation 2), both for its
clean form and because it is the most common way KL-regularized RL is formulated.
Proposition 4.1. The (log) probability ratio between any two samples, y1, y2, under the optimal
solution distribution for reverse-KL regularized RL, Gβ , can be written in closed form,

log
Gβ(y1)

Gβ(y2)
= log

πref(y1)

πref(y2)
+

1

β

(
R(y1)−R(y2)

)
. (7)

Proof. Because normalization constant ζ cancel out in ratios. See Appendix B.6.

Proposition 4.1 gives us a generic and closed-form way of analyzing how likely one sample is relative
to another in the optimal solution, using only πref and the reward function R, for any reverse-KL
regularized reward maximization objective. This gives us a number of consequential insights.

4.1 WITH EQUAL SUPPORTS, SMALL REWARD CHANGE DRIVES LARGE PROBABILITY CHANGE

Remark 4.2. For any two samples y1 and y2, if πref(y1) = πref(y2), their probability ratio is:

Gβ(y1)

Gβ(y2)
= exp

(R(y1)−R(y2)

β

)
. (8)

exp
𝚫𝑹
𝛽

𝚫𝑹

Figure 3: With equal πref, linear difference in rewards
(∆R) lead to exponential difference in probabilities

We first consider the continuous reward func-
tion setting where samples have small differ-
ences in rewards. This is common for set-
tings such as alignment (reward model) and
drug discovery (e.g. binding affinity). If two
samples have the same probability under the
reference distribution πref (“equal support”),
the difference in their final log probabilities is
simply the difference in their rewards, scaled
by 1/β. Smaller β exaggerates the difference
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between relative probabilities. Note a linear difference in rewards result in an exponential difference
in probabilities: for a 0.1 difference in rewards, and a commonly used β = 1e-3, the higher reward
sample is pushed to be 2.6 × 1043 times more likely in the solution distribution. This issue is
identically present for entropy-only regularization (see Fig. 7 for effect of β on relative probabilities).
This suggests for commonly used hyperparameters, the solution is highly concentrated around the
max reward mode(s).

We see in Figure 3 a didactic experiment that verifies this theory. At low regularization strength (β),
the optimized policy πθ∗ mode collapses onto the highest reward action. At high β, policy achieves
better (still not perfect) coverage over high-reward answers, at the cost of having more mass on low
reward actions (more details and results in Appendix C.1).

4.2 WITH EQUAL REWARDS, SOLUTION NEVER PREFERS LOWER-SUPPORT SAMPLES

15×

15×

Figure 4: With equal rewards, RL does
not change answers’ relative probs.

We now consider the case where the correct solutions all
have equal reward. This is a standard set-up for RL with
verifiable reward (e.g. math), where a correct answer is
given a reward of 1, and incorrect answers given 0.
Remark 4.3. For any two samples with the same reward,
R(y1) = R(y2), their probability ratio is:

Gβ(y1)

Gβ(y2)
=

πref(y1)

πref(y2)
. (9)

In words, the correct answers’ probability ratio in the optimal
solution is simply their probability ratio in the reference
distribution πref. This ratio is independent of the regularization strength β. In other words, by
construction, KL-regularized RL with equal rewards never promotes a low-support answer.1 Figure 4
demonstrates this point empirically: the final policy never favours the equally correct low-support
mode (additional results in Appendix C.1). This is not an issue with exploration; we will see in the
subsequent section that with a small change in reward one can optimize for a distribution that equally
weights or even prefers the lower-support solution.

Main Takeaway

RL with any KL-regularization does not increase the relative probability of lower-support samples
to high-support ones, as long as their rewards are the same. Lowering the KL regularization
strength β has no effect on up-weighting low-support samples in the optimal solution.

We additionally corroborate in Appendix C.4 that in practice for LLMs, the shape of the reference dis-
tribution and reward function does result in highly skewed target distribution Gβ , per Proposition 4.1,
Remark 4.2, and Remark 4.3.

4.3 FOR UNEQUAL REWARDS and SUPPORTS, REGULARIZATION STRENGTH DETERMINES
MODE COVERAGE

When two trajectories have different rewards and different probabilities under the reference policy, a
unique setting of β will induce the two to have the same probability in the target distribution.
Remark 4.4. Two samples have the same probability in the target distribution if,

R(y2)−R(y1) = β
(
log πref(y1)− log πref(y2)

)
. (10)

This condition allows us to predict, given only the reward and reference policy, when two samples will
have the same probabilities in the solution to the RL problem. As an example, we know in Figure 2
that the two high-reward modes have rewards 0.75 and 1.0, and reference policy probabilities of
log πref(y1) ≈ −4.05 and log πref(y2) ≈ −5.95, respectively. This allows us to predict the setting of
β which will “flip” the target distribution’s preference from the high-support mode to the low-support
mode to be (1 − 0.75)/(−4.05 + 5.95) ≈ 0.132. Indeed, we see in Figure 2 for the reverse KL
case, the preference between the two modes switch as we move from β = 0.15 to β = 0.10. This
is the true role of the regularization coefficient β: it is a knob that decides between picking higher
rewarding, low-support solutions, vs. lower rewarding, high-support solutions.

1This observation is true for both reverse and forward-KL regularized RL.
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5 DIRECTLY OPTIMIZING A REWARD MULTIMODAL TARGET

Having identified the various failure cases of the KL-regularized RL objective (Section 4), and the
role of regularization in balancing reward differences (Section 4.3), we now turn to the question:

Can we construct an objective that, when optimized, naturally give rise to a reward
multimodal target distribution?

Indeed, Remark 4.4 already provides the equality condition required to achieve this. We derive a
simple procedure which will ensure we are optimizing for a solution that puts equal probabilities on
all high-quality samples (per Definition 3.5), using the augmented reward function,

R̄(y) =

{
R(y) if R(y) < τ,

R(z) + β
(
log πref(z)− log πref(y)

)
if R(y) ≥ τ,

(11)

where τ ≤ maxy R(y) is some threshold for “goodness”, and z is a fixed “anchor” sample chosen
from the set of high-quality samples. We can pick it to be z = argmaxy πref(y) where R(y) ≥ τ .
Because we are choosing the “anchor” to be from a high-reward mode, we colloquially refer to this
as “mode anchoring”, and the method as Mode Anchored Reward Augmentation (MARA). See
Algorithm 1 for pseudocode with minimal changes (an alternative that augments reward and πref is
outlined in Algorithm 2, which is equivalent to Alg.1 when using reverse KL regularization).

Algorithm 1 Mode Anchored Reward Augmentation (MARA), within a sampled batch.
Changes from a standard RL algorithm are in blue.

1: Given: initial policy πθ, reference distribution πref, reward function R, regularization coefficient
β, threshold of good answers τ ∈ R, τ ≤ maxy R(y), and trajectory batch {yi}Ni=1 ∼ πθ.

2: Pick anchor trajectory: z = argmaxyi
πref(yi), s.t. R(yi) ≥ τ

3: for each yi in batch do
4: if R(yi) ≥ τ then
5: Augment: r̄i = R(z) + β

(
log πref(z)− log πref(yi)

)
6: else
7: Keep same: r̄i = R(yi)
8: end if
9: end for

10: Optimize policy parameters θ using augmented rewards {r̄i}Ni=1.

Reverse
KL

Forward
KL

Vanilla RL MARA

Figure 5: MARA stays close to the reference policy in low-reward areas, and puts high, uniform mass
over all high-reward areas.

Intuitively, the augmented reward function constructs a new target distribution with uniform high
density over regions of high reward, and stays close to the reference πref in regions of low reward (see
Remark B.3 for an analysis of the shape of the MARA target distribution). We see in the Figure 5 that
vanilla KL-regularized RL result in a policy that heavily favours the left (on-support) mode, regardless
of the choice of β or KL. On the other hand, using MARA results in solutions that put equal high
mass over all high quality samples, for both KLs. Note that in cases where the reward function range
is known, one can directly set threshold τ as a constant. If not, one can set τ on a per-batch basis by
e.g. taking an upper percentile of sampled rewards (as we do below for non-verifiable LLM tasks).
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6 EMPIRICAL VALIDATIONS

We evaluate MARA as a drop-in method in a variety of post-training tasks. While our theory has
mainly been about the final optimal solution RL achieves, we empirically investigate whether training,
even if stopped early, can still benefit from a more diverse global optimum. To do this, we evaluate
MARA in (i) verifiable LLM task with multiple answers, (ii) non-verifiable task with reward models,
and (iii) chemical language model task for drug discovery, where mode collapse is detrimental.

6.1 VERIFIABLE 1-2 TASK FOR LLM

We train an LM (Qwen2.5-3B) to generate uniform random integers that are either 1 or 2. It gets a
reward of 1.0 for correct (producing “1” or “2” in XML), and 0.0 otherwise (details in Appendix C.2).
Most runs are able to optimize the reward well and achieve a reward of approximately 1 (Figure 6a,
right). Figure 6a (left) shows the number of correctly formatted 1’s the LM generates over the course
of training. We see that for naive KL regularization (grey), across a range of β’s and seeds, all but one
run collapse into generating only a single answer as a result of RL, and most collapse into generating
1’s, which has higher likelihood under the base policy. MARA (blue), on the other hand, is able
to preserve the diversity in the correct answers, with many runs learning to generate 1’s and 2’s
with near uniform probability, while still learning to generate with the correct format (Figure 6a,
middle). Further, the Pareto front of model checkpoints at different points in training shows that
for both reverse and forward KL regularization, MARA is able to match vanilla training in terms of
correctness, while exceeding vanilla training in terms of generation diversity.
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Figure 6: Performance on verifiable task with multiple solutions, against both reverse & forward KL.
MARA (blue) is compared against baseline GRPO (grey) at different β’s (KL coef).

6.2 CREATIVE QUESTION ANSWERING FOR CHAT LLM

We test MARA in a non-verifiable alignment task. We train Qwen3-1.7B on a subset of WildChat
text (Zhao et al., 2024), using a parametric reward model (Skywork-Reward-V2-Qwen3-4B).
We evaluate the model on a curated test set (Zhang et al., 2025) and report both the training reward
(In dist Reward), and test set reward from a different reward model (Out dist Reward,
using Skywork-Reward-Gemma-2-27B-v0.2). We also report diversity metrics in terms
of n-grams (Ngrams), semantic embeddings (Semantic Div), and “distinct functional classes”
(Mean Distinct). See Appendix C.3 for more details. Here, MARA is used as a drop-in
replacement in an RLOO style algorithm (Ranganath, 2017; Kool et al., 2020; Ahmadian et al., 2024).
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As the reward function range is not known beforehand, we set τ on a per-batch basis as the 90th
percentile reward of each batch (we ablate this in Appendix Table 5 to find that lowering the percentile
decreases performance slightly, but nevertheless remains competitive). We compare against regular RL
training, and a number of diversity-promoting baselines including entropy regularization (Entropy),
rewarding the unlikely (Unlikely, He et al. 2025), best-of-N training (BoN Training, Tang
et al. 2025), and weight ensembling (Ensemble, Dang et al. 2025). We see MARA out-performs all
baselines in terms of out-of-distribution rewards, and all-but-one diversity metrics (Table 1).

Model
In-dist.

Reward (↑)
Out-dist.

Reward (↑)
Ngrams
EAD (↑)

Semantic
Div (↑)

Mean
Distinct (↑)

Base Model 10.94 1.166 ±0.076 0.413 ±0.015 0.220 ±0.009 4.01 ±0.254

GRPO 14.80 1.317 ±0.102 0.497 ±0.014 0.193 ±0.009 3.96 ±0.249

RLOO 15.56 1.280 ±0.100 0.514 ±0.014 0.192 ±0.008 3.88 ±0.243

Entropy 1.44 0.786 ±0.073 0.267 ±0.009 0.228 ±0.009 3.45 ±0.193

Unlikely 10.04 1.381 ±0.114 0.532 ±0.015 0.191 ±0.008 4.24 ±0.239

BoN Training 16.88 0.596 ±0.055 0.541 ±0.010 0.162 ±0.008 2.29 ±0.173

Ensemble – 1.143 ±0.086 0.438 ±0.014 0.211 ±0.010 4.19 ±0.269

MARA (rev) 15.42 1.451 ±0.103 0.543 ±0.014 0.186 ±0.008 4.14 ±0.233

MARA (fwd) 15.33 1.604 ±0.113 0.568 ±0.012 0.193 ±0.009 4.62 ±0.258

Table 1: Performance on non-verifiable creative task. Mean ± bootstrap SEM.

6.3 DRUG DISCOVERY WITH CHEMICAL LANGUAGE MODELS

Finally, we apply MARA to a distinctively different domain where diversity and quality is crucial:
drug discovery. Chemical language models (CLMs) have seen success in discovering molecules
in clinical trials. We adapt two realistic reward functions from Guo et al. (2025b): SYNTH and
ALL-AMIDE that jointly reward binding potency and synthesizability. The core CLM optimization
problem is also a regularized RL problem: maximize expected reward, while staying close to a
pretrained “prior” model to ensure chemical validity. Unlike the traditional RL setting, CLMs are
evaluated based on their ability to generate unique molecules (Yield) given a fixed number of
reward function evaluations (which are expensive simulations and/or experiments), making diversity
an essential quality for any performant CLMs. The REINVENT algorithm (Olivecrona et al., 2017;
Guo & Schwaller, 2024b) is a state-of-the-art RL-based method on standard benchmarks (Gao et al.,
2022). It optimizes the following objective,

L(θ) = −
[
log πθ(y)−

(
log πref(y) + σR(y)

)]2
, y ∼ πθ . (12)

which is equivalent to KL-regularized reward maximization. We apply MARA as a drop-in replace-
ment to its rewards. Additional evaluation details are in Appendix C.5.

Table 2 shows MARA consistently results in higher average Yield (number of unique high-reward
molecules discovered), and lower OB100 (efficiency in finding high-reward molecules, measured by
reward function calls). The screening level (Screen) is the reward threshold above which we accept
discovered molecules. Setting MARA’s τ equal to the screening level always results in the highest
yield, consistent with MARA’s target distribution having uniform density in areas where R(y) > τ .
Going further, we also assess “global” diversity (which MARA does not explicitly optimize for) in
terms of IntDiv1 and #Circles. Both define more macroscopic differences based on molecular
sub-structures. We find MARA is competitive with the baseline here. Overall, we see MARA further
boosts REINVENT’s optimization efficiency, while maintaining diversity.

7 CONCLUSION

In this work, we provide an in-depth understanding of the KL-regularized RL objective, particularly
in terms of its diversity. We summarize the main take-aways below.

• Studying the divergence being implicitly minimized between the policy and target distribu-
tion, D(πθ, G), is more meaningful for understanding optimization behaviour than studying
the divergence of the regularizer, D(πθ, πref), alone.
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Screen Algorithm Yield (↑) OB100 (↓) IntDiv1 (↑) Circles (↑)
0.80 REINVENT 6569± 186 1042± 66 0.766± 0.011 67± 3

MARA (τ=0.80) 6834± 78 1015± 55 0.761± 0.009 59± 8
MARA (τ=0.85) 6584± 231 1042± 66 0.761± 0.008 72± 6

0.85 REINVENT 1614± 407 4114± 109 0.701± 0.018 7± 1
MARA (τ=0.80) 1796± 210 3654± 272 0.716± 0.015 6± 1
MARA (τ=0.85) 2196± 394 4010± 297 0.703± 0.011 7± 1

(a) SYNTH task

Screen Algorithm Yield (↑) OB100 (↓) IntDiv1 (↑) Circles (↑)
0.80 REINVENT 5433± 184 1427± 63 0.768± 0.012 35± 1

MARA (τ=0.80) 5635± 249 1407± 123 0.766± 0.008 36± 3
MARA (τ=0.85) 5502± 309 1426± 63 0.769± 0.006 34± 3

0.85 REINVENT 1098± 88 4360± 257 0.721± 0.016 8± 1
MARA (τ=0.80) 1235± 130 3943± 303 0.733± 0.009 8± 1
MARA (τ=0.85) 1438± 126 4230± 401 0.725± 0.008 8± 1

(b) ALL-AMIDE task

Table 2: Results for different tasks and screening levels (Screen, higher meaning more strict) for
two challenging drug discovery tasks. Error bars (±) denote standard deviation over 5 independent
seeds. Bold indicates if the performance is statistically significantly better than the alternative method
for that screening level (one-sided student’s t-test, p < 0.05).

• The regularizer, β, and reward function together define the target distribution which πθ

optimizes towards. Forward and reverse KL regularizers define different target distributions.

• For common hyperparameters and reward functions used in practice, the target distribution
is often defined to be unimodal. Thus, perfectly solving the regularized RL objective yields
non-diverse optimal policy distributions.

• This diversity loss can be fixed by instead defining multimodal target distributions, such as
through dynamically augmenting the reward via MARA.

There are a number of exciting future directions to improve MARA. For one, MARA requires setting
τ (the reward threshold above which the target distribution puts uniform probability mass). The
choice of τ is obvious in some settings (Section 6.1 & 6.3), but is a hyperparamter in settings with
unbounded reward functions and unknown a priori thresholds (Section 6.2). We found that setting
batch-specific τ helps, but better approaches may be possible. It should be noted that setting an overly
high τ is harmless: if no samples meet the τ threshold, the MARA mechanism does not kick in, and
learning reduces to standard RL.

Further, MARA shapes the target distribution to have multimodality, but does not guarantee faster
convergence to the target. Having general algorithms to more efficiently reach the target, or to
guarantee distributional properties (e.g. multimodality) at sub-optimality, would be of general
importance and complement MARA’s target distribution. Further, MARA introduces one such target
distribution which places uniform mass at regions where R(y) ≥ τ . This may not be an optimal
choice for all tasks, and considering alternative mode-preserving target distributions can be interesting
future work. All in all, we emphasize that regularized RL—as commonly used for generative model
training—is inherently a distribution matching problem and should be viewed as such. Rather than
relying on intuitions (e.g. about regularizers), we should directly specify distributions with properties
we wish to have as the target of policy optimization.

REPRODUCIBILITY STATEMENT

We use open-source, publicly available libraries for all experimental code. Didactic experiments
are constructed in PyTorch (Paszke et al., 2019). Reinforcement learning on LLM training is done
using the nano-aha-moment (Kazemnejad et al., 2025) and verl (https://github.com/
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volcengine/verl) github repos. Chemical language model experiments use the official saturn
github repo (Guo & Schwaller, 2024b). We provide detailed experimental information in Appendix C.
Pseudo-code is provided in Algorithm 1 and Algorithm 2.
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A RELATED WORK

Entropy collapse in RL There is a growing line of empirical works observing RL training collapses
the diversity in generation output of the resulting post-trained policy (Kirk et al., 2023; Huang et al.,
2024; O’Mahony et al., 2024; Cui et al., 2025; Yang & Holtzman, 2025; Yun et al., 2025; Shypula
et al., 2025; West & Potts, 2025; Zhao et al., 2025; Dang et al., 2025; Song et al., 2025), such as
in formats (Zhao et al., 2025), random generation and creativity (West & Potts, 2025), as well as
exploration and reasoning (Cui et al., 2025; Dang et al., 2025; Song et al., 2025). The observations
have mostly been empirical.

A few attempts have been made to theoretically understand entropy collapse. Cui et al. (2025)
analyzes what per-step policy gradient (approximately) does to the entropy of a tabular softmax
policy, and finds that entropy decreases if there is a strong a strong positive correlation between the
action probabilities and corresponding advantage values. Dang et al. (2025) analyzes a special case
of multi-arm bandits with K equally good arms and a bad arm, and finds that the optimal probabilities
correspond to the re-normalized reference probabilities of just the good arms. We note this is a special
case of our Remark 4.3.

Generally speaking, entropy preservation via regularization is often referred to as “max entropy RL”,
with numerous seminal and ongoing works (Ziebart et al., 2008; Haarnoja et al., 2017; Huang et al.,
2019). Our analysis contributes to further understanding of this setting by shedding light on the
multimodality of the target distribution when doing entropy regularization.

Training for diversity A number of attempts have been made to empirically address entropy
collapse. Wang et al. (2023) generalizes the DPO objective (Rafailov et al., 2023) from reverse-KL
regularized to a more general class of f -divergence regularizers, with the key motivation being that
reverse-KL can be mode-seeking, therefore reduce diversity. We argue in this work that the full story
is more nuanced and is better analyzed through the target distribution. Cui et al. (2025) proposes
to directly regularize the update of high-covariance tokens. Cheng et al. (2025) incorporates an
entropy term in the advantage to encourage better reasoning. Wang et al. (2025) show that focusing
gradient updates on a minority of high-entropy “forking” tokens can improve reasoning. He et al.
(2025) proposes a rank-based “unlikeliness” reward, where more likely samples (under current policy)
receives a larger multiplicative penalty to the reward. Similarly, Yao et al. (2025) uses token entropy
to encourage diversity. Song et al. (2025) proposes a count-based exploration bonus that more highly
rewards less frequently seen outcomes (in previous samples), and Hamid et al. (2025) proposes a
similar batch-wise reward. Dang et al. (2025) found that combining weights of earlier and later
checkpoints can improve pass@k performance—one specific measure of diversity.

A number of works attempt to directly optimize for diversity. This relies on the existence of additional
information that tells us if two samples are different and by how much. In this vein, diverse DPO
Lanchantin et al. (2025) and variants (Chung et al., 2025; Ismayilzada et al., 2025) encourage diversity
in preference learning by selecting diverse positives/negatives. Similarly related is Li et al. (2025),
which use an external model to evaluate diversity (via a semantic classifier) and use the diversity
metric to modify the reward. Hamid et al. (2025) proposes to optimize a batch-level objective that is
modified by a diversity function. We do not require an external model to evaluate diversity.

In the unregularized setting, Jhaveri et al. (2025) optimizes for an unregularized policy with specific
distributional properties. More distantly, GFlowNets also provide diversity-seeking policies that are
specifically designed to sample proportionally to reward, albeit they use different algorithms than the
KL-regularized policy gradient which is the most commonly used algorithm for LM post-training
(Hu et al., 2023; Kwon et al., 2024; Tiapkin et al., 2024).

B MATHEMATICAL DERIVATIONS

B.1 TARGET DISTRIBUTION OF REVERSE-KL REWARD MAXIMIZATION

Proof of Remark 3.1 We provide a proof for the maximizer of the generalized reverse-KL and
entropy regularized reward maximization objective,

Jβ,η(πθ) = Eπθ(y)[R(y)]− β DKL

(
πθ||πref

)
+ ηH(πθ) . (13)
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The solution argmaxπθ
Jβ,η has the un-normalized form,

Gβ,η(y) ∝ gβ,η(y) = πref(y)
β

β+η exp
( R(y)

β + η

)
. (14)

Proof.

Jβ,η(πθ) = Eπθ(y)

[
R(y)− β

(
log πθ(y)− log πref(y)

)
− η log πθ(y)

]
, (15)

= −(β + η)Eπθ(y)

[
log πθ(y)−

( R(y)

β + η
+

β

β + η
log πref(y)

)]
, (16)

= −(β + η)Eπθ(y)

[
log πθ(y)− log πref(y)

β
β+η exp

( R(y)

β + η

)]
, (17)

= −(β + η)Eπθ(y)

[
log πθ(y)− logGβ,η(y)

]
+ (β + η) log ζβ,η , (18)

= −(β + η)DKL

(
πθ||Gβ,η

)
+ (β + η) log ζβ,η , (19)

where ζβ,η =
∫
gβ,η(y) dy. One can see that the above is maximized when DKL

(
πθ||Gβ,η

)
= 0,

which occurs when πθ = Gβ,η .

Intuitively, one can see the entropy regularizer η as playing the role of “tempering” the reference
distribution πref (larger η drives πref to become more uniform), while both β and η lower the reward’s
effect on the target distribution. For the KL-only case (η = 0), the target distribution becomes,

Gβ(y) ∝ πref(y) exp
(R(y)

β

)
, (20)

which is the stated result in Remark 3.1. In the entropy-only case (β = 0), the solution is,

Gη(y) ∝ exp
(R(y)

η

)
. (21)

All in all, both coefficients play a role in parameterizing the shape of the optimal distribution for the
regularized RL problem.

B.2 GRADIENT OF REVERSE-KL REWARD MAXIMIZATION

Proof of Remark 3.2 From Appendix B.1, we have the identity,

− 1

β
Jβ(πθ) = DKL

(
πθ||Gβ

)
− log ζ . (22)

We can easily show that the gradient is,

∇θ

(
− 1

β
Jβ(πθ)

)
= ∇θ DKL

(
πθ||Gβ

)
−∇θ log ζ , (23)

= ∇θ DKL

(
πθ||Gβ

)
. (24)

In other words, they are the same up to constant −β,

∇θJβ(πθ) = −β∇θDKL

(
πθ||Gβ

)
. (25)

B.3 TARGET DISTRIBUTION OF FORWARD-KL REWARD MAXIMIZATION

We are interested in finding the distribution πθ = Gfwd which maximizes,

Jfwd(πθ) = Eπθ(y)[R(y)]− β DKL

(
πref||πθ

)
. (26)

Note we can simplify the expression to only terms that depend on πθ,

argmax
πθ

Jfwd(πθ) = argmax
πθ

Eπθ

[
R(y)

]
− β DKL

(
πref||πθ

)
, (27)

= argmax
πθ

∫
πθ(y)R(y) + β πref(y) log πθ(y) dy + const . (28)
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Remark B.1. Assuming the reward is finite and has maximum value Rmax. If any on-support
answer(s) have R(y) = Rmax, y ∈ supp(πref), the optimal distribution maximizing Jfwd will put zero
mass outside of supp(πref).
Proof. Let M be the set of on-support, max reward answers: M if R(y) = Rmax, and M ⊆
supp(πref). We can generically write any distribution π that puts non-zero mass outside of supp(πref)
as,

Jfwd(π) = C +

∫
M

π(y)Rmax + β πref(y) log π(y) dy +

∫
y/∈supp(πref)

π(y)R(y) dy , (29)

where C captures the contribution to the objective from the remaining y ∈ supp(πref), y /∈ M. Note
the forward KL penalty for y /∈ supp(πref) is zero. We show we can always construct an alternative
distribution, π′, with mass only inside of supp(πref) and has strictly higher Jfwd. We write,

Jfwd(π
′) = C +

∫
M

(
π(y) + α(y)

)
Rmax + β πref(y) log

(
πθ(y) + α(y)

)
dy , (30)

where α is a function that redistributes the mass outside of supp(πref) across M; α(y) > 0,∫
y/∈supp(πref)

π(y) dy =
∫
M

α(y) dy.

First, we note the reward contribution do not decrease from π (left hand side) to π′ (right hand side),∫
M

π(y)Rmax dy +

∫
y/∈supp(πref)

π(y)R(y) dy ≤
∫
M

π(y)Rmax dy +

∫
M

α(y)Rmax dy , (31)

since
∫
y/∈supp(πref)

π(y) dy =
∫
M

α(y) dy and R(y) ≤ Rmax.

Second, note the (simplified) KL contribution is strictly larger in π′ (right hand side),∫
M

πref(y) log π(y) dy <

∫
M

πref(y) log
(
π(y) + α(y)

)
dy , (32)

since log is a strictly increasing function, and α(y) > 0. Therefore, we have established that,

Jfwd(π) < Jfwd(π
′) . (33)

That is, there always exists a more optimal solution with support solely inside of supp(πref).

Proof of Remark 3.3 Assume the reward R is finite and some samples from within supp(πref) has
R(y) = Rmax. We optimize with β > 0 over the restricted feasible set Π, πθ ∈ Π, where π(y) > 0
almost everywhere on supp(πref) to avoid dividing by zeros.

We write the maximization objective subject to constraints
∫
π(y) dy = 1, π(y) ≥ 0 for all y,

LJ [π;λ] =

∫
π(y)R(y) + βπref(y) log π(y) dy + λ

( ∫
π(y) dy − 1

)
+

∫
µ(y)π(y) dy , (34)

=

∫
π(y)R(y) + λπ(y) + βπref(y) log π(y) + µ(y)π(y) dy − λ , (35)

where at the optimal solution, µ(y) ≥ 0 and µ(y)π(y) = 0.

We take the Gateaux derivative in any perturbation direction φ(y),
∫
φ(y) dy = 0, π(y)+ εφ(y) > 0,

dLJ [π;λ] =
d

dε
LJ [π + εφ;λ]

∣∣∣∣
ε=0

, (36)

Defining 0 log 0 = 0 per convention. We first solve,
d

dε
LJ [π + εφ;λ] =

d

dε

∫ (
π(y) + εφ(y)

)
R(y) + λ

(
π(y) + εφ(y)

)
+ β πref(y) log

(
π(y) + εφ(y)

)
+ µ(y)

(
π(y) + εφ(y)

)
dy , (37)

=

∫
φ(y)R(y) + λφ(y) + β

πref(y)φ(y)

π(y) + εφ(y)
+ µ(y)φ(y) dy , (38)

=

∫
φ(y)

[
R(y) + λ+ β

πref(y)

π(y) + εφ(y)
+ µ(y)

]
dy . (39)
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d

dε
LJ [π + εφ;λ]

∣∣∣∣
ε=0

=

∫
φ(y)

[
R(y) + λ+ β

πref(y)

π(y)
+ µ(y)

]
dy . (40)

Define the functional derivative to be,
δ

δπ
LJ [π;λ] = R(y) + λ+ β

πref(y)

π(y)
+ µ(y) (41)

To find the optimum π∗ which gives d/dεLJ [π + εφ;λ] = 0 for all φ, the fundamental lemma of the
calculus of variations (Gelfand & Fomin (1963), Lemma 1) tells us it would imply δ/δπLJ [π;λ] = 0.
Solving for this,

R(y) + λ+ β
πref(y)

π∗(y)
+ µ(y) = 0 , (42)

⇒ π∗(y) =
βπref(y)

−λ−R(y)− µ(y)
, (43)

⇒ π∗(y) =
βπref(y)

Λ−
(
R(y) + µ(y)

) , define Λ = −λ . (44)

Per our assumption that some max reward samples are within supp(πref), Remark B.1 states π∗(y) = 0
for all y /∈ supp(πref). We can thus ignore the πref(y) = 0 regions. Further observe πref(y) > 0
implies π∗(y) > 0, thus µ(y) = 0 (per π(y)µ(y) = 0). The optimal distribution is therefore,

Gfwd(y) =
βπref(y)

Λ−R(y)
, Λ > Rmax , (45)

where Λ is the unique solution to
∫
βπref(y)/(Λ−R(y)) dy = 1. To see this solution exists, observe

as Λ → Rmax, Gfwd at this point goes to infinity. On the other hand, as Λ → ∞, all Gfwd ∗ (y) → 0.
By continuity, some Λ exists between Rmax and ∞ which satisfy normalization to 1.

Note Grill et al. (2020), Appendix B.3 arrives at a similar solution for the setting of discrete action
spaces (i.e. πθ is a vector).

When does Gfwd have mass outside of supp(πref)? Interestingly, when regularizing with the
forward KL, there are cases where the optimal distribution Gfwd puts probability density on regions
outside of the support of πref. First, note that when πref(y) = 0, the KL penalty is zero. We can use
this to solve for a simplified version of Equation 42,

R(y) + λ+ µ(y) = 0 , (46)
⇒ Λ = R(y) + µ(y) , Λ = −λ . (47)

This implies a few possible scenarios for regions where πref(y) = 0,

• If R(y) < Λ, then µ(y) > 0, implying π(y) = 0 to respect µ(y)π(y) = 0,
• If R(y) = Λ, then µ(y) = 0, meaning π(y) can be positive,
• R(y) > Λ is impossible, as µ(y) ≥ 0.

Denote Rin
max = maxy∈supp(πref) R(y) as the on-support max reward, and Rout

max = maxy/∈supp(πref) R(y)
as the off-support max reward. Per Remark B.1, Gfwd will never leave the support of πref as long
as Rin

max ≥ Rout
max. We therefore consider the case where better samples can be found outside of

supp(πref), Rout
max > Rin

max.

Denote an integral over πref as,

Z(c) =

∫
supp(πref)

βπref(y)

c−R(y)
dy . (48)

Now consider the off-support set with constant max rewards: M′ = {y /∈ supp(πref) : R(y) =
Rout

max}. Recall this set has higher reward than anything within the support of πref, Rout
max > Rin

max. If
Z(Rout

max) < 1, Λ < Rout
max violates impossibility of R(y) > Λ above, while Λ > Rout

max implies no
mass can be placed off support, without normalization on-support (Z(Λ) < 1). Thus, the only valid
solution is Λ = Rout

max, with the leftover 1− Z(Rout
max) probability mass allocated to M′. On the other

hand, if Z(Rout
max) ≥ 1, it implies some Λ ≥ Rout

max exists which normalizes the on-support distribution
and no mass is placed off πref’s support.
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B.4 GRADIENT OF FORWARD-KL REGULARIZED REWARD MAXIMIZATION

Proof of Remark 3.4 We want to know if optimizing the forward-KL regularized RL objective
within the support of πref is equivalent to optimizing a forward KL divergence. In other words, we
are interested in whether the following gradient,

∇θ Jfwd(πθ) = ∇θ

[
Eπθ(y)[R(y)]− β DKL

(
πref||πθ

)]
, (49)

is a gradient of a forward KL between πθ and some target distribution h that is independent of πθ.
We prove by contradiction. Suppose h exists, it follows that the functional derivative of these two
objectives must be equivalent up to proportionality,

δ

δπ
Jfwd(π) ∝

δ

δπ
DKL

(
h||π

)
, (50)

where both are subject to constraint
∫
π(y) dy = 1.

We have established from Equation 41 that the functional derivative of Jfwd subject to constraint∫
π(y) dy = 1 is,

δ

δπ
LJ [π;λ] = R(y) + β

πref(y)

π(y)
+ λ . (51)

To find the functional derivative of the forward-KL, we first write down the forward KL objective
subject to constraint,

LK [π, λ′] = DKL

(
h||π

)
+ λ′( ∫ π(y) dy − 1

)
, (52)

=

∫
h(y) log h(y)− h(y) log π(y) dy +

∫
λ′π(y) dy − λ′ , (53)

=

∫
λ′ π(y)− h(y) log π(y) dy +

[ ∫
h(y) log h(y) dy − λ′

]
, (54)

where the right-hand bracket is independent of π. The Gateaux derivative is,

d

dε
LK [π + εφ, λ′] =

d

dε

∫
λ′(π(y) + εφ(y)

)
− h(y) log

(
π(y) + εφ(y)

)
dy , (55)

=

∫
λ′φ(y)− h(y)φ(y)

π(y) + εφ(y)
dy . (56)

d

dε
LK [π + εφ, λ′]

∣∣∣∣
ε=0

=

∫
φ(y)

[
λ′ − h(y)

π(y)

]
dy (57)

The functional derivative of the forward KL with respect to the right-hand term is therefore,

δ

δπ
LK [π, λ′] = λ′ − h(y)

π(y)
. (58)

Assuming the functional derivative of the two objectives are proportional to each other, we can solve
for the target distribution h(y),

δ

δπ
LK [π, λ′] ∝ δ

δπ
LJ [π, λ] , (59)

⇒ λ′ − h(y)

π(y)
= α

[
R(y) + β

πref(y)

π(y)
+ λ

]
, for some constant α , (60)

⇒ h(y) =
(
λ′ − αλ− αR(y)

)
π(y)− αβπref(y) . (61)

Observe one cannot write h(y) independently of π(y), other than in trivial cases (e.g. if R(y)
is constant such that const − R(y) = 0). Thus, for general reward functions R, optimizing the
forward-KL does not produce a forward KL gradient toward any distribution that can be expressed
independently of πθ.
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B.5 GRADIENT OF THE FORWARD KL

Remark B.2. The gradient of the forward KL divergence between policy πθ and target Gβ is,

∇θ DKL

(
Gβ ||πθ

)
= −EGβ

[
∇θ log πθ(y)

]
. (62)

Proof.

∇θ DKL

(
Gβ ||πθ

)
= ∇θEGβ

[
logGβ(y)− log πθ(y)

]
, (63)

= EGβ

[
∇θ

(
logGβ(y)− log πθ(y)

)]
, (64)

= −EGβ

[
∇θ log πθ(y)

]
. (65)

We see that optimizing the forward KL gradient amounts to doing maximum likelihood / supervised
fine-tuning on trajectories sampled from the target distribution Gβ , as is also mentioned in some
previous works (Agarwal et al., 2024). This is generally intractable as it requires sampling from
Gβ . Nevertheless, estimating expectation under a distribution known only up to normalization (i.e.
EGβ

[·]) is well-studied in Monte-Carlo methods (Robert et al., 1999), and it is conceivable that a
number of methods there would prove helpful here.

B.6 PROBABILITY RATIO UNDER OPTIMAL TARGET DISTRIBUTION

Proof of Proposition 4.1 For any two samples, y1 and y2, their probability ratio under the target
distribution is given by,

Gβ(y1)

Gβ(y2)
=

gβ(y1)

ζ

ζ

gβ(y2)
=

gβ(y1)

gβ(y2)
, (66)

which only require the unnormalized likelihood as the normalization constant ζ cancel out. Expanding
the terms, we can write the log likeilhood ratio in closed form,

log
Gβ(y1)

Gβ(y2)
= log πref(y1) exp

(R(y1)

β

)
− log πref(y2) exp

(R(y2)

β

)
, (67)

= log
πref(y1)

πref(y2)
+

1

β

(
R(y1)−R(y2)

)
. (68)

B.7 TARGET DISTRIBUTION AFTER REWARD AUGMENTATION

Remark B.3. Optimizing the reverse-KL regularized RL objective with the augmented reward
function R̄ yields the following target distribution, which puts uniformly high mass over all samples
above reward threshold R(y) ≥ τ ,

Ḡβ(y) ∝

πref(y) exp
(

R(y)
β

)
if R(y) < τ,

πref(z) exp
(

R(z)
β

)
if R(y) ≥ τ.

(69)

Proof. We have established already in Appendix B.1 that the target distribution of reward maximiza-
tion with reverse KL regularization is,

Gβ(y) ∝ πref(y) exp
(R(y)

β

)
. (70)

Plug in the augmented reward function,

R̄(y) =

{
R(y) if R(y) < τ,

R(z) + β
(
log πref(z)− log πref(y)

)
if R(y) ≥ τ,

(71)

which gives us the augmented target distribution,

Ḡβ(y) ∝ πref(y) exp
( R̄(y)

β

)
. (72)
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In the R(y) < τ case, R̄(y) = R(y), and there is no change to the (unnormalized) likelihood. In the
R(y) ≥ τ case,

log πref(y) exp
( R̄(y)

β

)
= log πref(y) +

1

β
R̄(y) , (73)

= log πref(y) +
1

β

(
R(z) + β

(
log πref(z)− log πref(y)

))
, (74)

=
R(z)

β
+ log πref(y) + log πref(z)− log πref(y) (75)

=
R(z)

β
+ log πref(z) . (76)

Therefore we see in the R(y) ≥ τ case we have,

πref(y) exp
( R̄(y)

β

)
= πref(z) exp

(R(z)

β

)
. (77)

This formally shows the target will have uniformly high density proportional to πref(z) exp(R(z)/β)
for all samples if their original reward R(y) is above threshold τ . If we pick z to be likely under πref,
e.g. z = argmaxy πref(y), we can also see these samples will have the highest probabilities in the
target distribution.

B.8 GRADIENT OF REWARD-AUGMENTED OPTIMIZATION

We also note the MARA gradient estimator for an “above threshold” sample yi (i.e. R(yi) ≥
τ ), when using reverse-KL regularization, can be equivalently constructed as using the anchor
sample’s reference policy probability πref(z) in lieu of the actual reference probability πref(yi) when
constructing the KL gradient estimator. To see this precisely, we know the gradient of the expected
reward to be,

∇θ Eπθ

[
R(y)

]
= Eπθ

[
R(y)∇θ log πθ(y)

]
, (78)

and gradient of the reverse-KL regularizer to be,
∇θ DKL

(
πθ||πref

)
= Eπθ

[
(log πθ(y)− log πref(y))∇θ log πθ(y)

]
. (79)

Denote the reward-augmented objective as J̄β(πθ) = R̄(y) − βDKL(πθ||πref), where R̄(y) =
R(z)+β

(
log πref(z)− log πref(y)

)
and z is the “anchor”. The gradient estimator of K̄i for an “above

threshold” sample, yi, R(yi) ≥ τ , can be written as,

K̄i =
(
R̄(yi)− β log

πθ(yi)

πref(yi)

)
∇θ log πθ(yi) , (80)

=
(
R(z) + β log

πref(z)

πref(yi)
− β log

πθ(yi)

πref(yi)

)
∇θ log πθ(yi) , (81)

=
(
R(z)− β log

πθ(yi)

πref(z)

)
∇θ log πθ(yi) . (82)

Intuitively, as the anchor is chosen to have high πref, i.e. πref(z) > πref(yi), this can be interpreted as
selectively reducing the KL regularization for high-rewarding samples. Mechanistically, this also
suggest an alternative implementation which produces the same gradient when using reverse-KL
regularization (Algorithm 2).

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 DIDACTIC EXPERIMENTS

We construct our didactic experiment as a vector of size 100 (akin to a output space with 100 tokens).
We initialize a categorical distribution over this output space whose logits are all 0’s (i.e. uniform
distribution over all tokens). Given some reward function and reference distribution defined over this
space, we optimize this categorical distribution with the KL-regularized policy gradient for 3000
gradient steps in PyTorch with Adam optimizer, with learning rate 5e-3 and batch size 32.
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Algorithm 2 Mode Anchored Reward Augmentation, alternative implementation. The gradient of
this algorithm is equivalent to Algorithm 1 when using reverse-KL regularization.

1: Given: initial policy πθ, reference distribution πref, reward function R, regularization coefficient
β, threshold of good answers τ ∈ R, τ ≤ maxy R(y), and trajectory batch {yi}Ni=1 ∼ πθ.

2: Pick anchor trajectory: z = argmaxyi
πref(yi), s.t. R(yi) ≥ τ

3: for each yi in batch do
4: if R(yi) ≥ τ then
5: Augment: reward r̄i = R(z), reference prob p̄i = πref(z)
6: else
7: Keep same: reward r̄i = R(yi), reference prob p̄i = πref(yi)
8: end if
9: end for

10: Optimize policy parameters θ using augmented rewards {r̄i}Ni=1 and augmented reference policy
probabilities {p̄i}Ni=1

0.0 0.2 0.4
R(y1) R(y2)

104

1011

1018

1025

1032

1039

G (y1) / G (y2)
 = 0.005
 = 0.01
 = 0.1
 = 1.0

Figure 7: Effect of reward difference (∆R, x-axis) and reverse-KL regularization strength (hue) on
the relative probabilities between two samples in the optimal policy distribution (y-axis)

C.2 THE 1-2 TASK

We ask the LM to generate a uniform random integer that is either 1 or 2 (Hopkins et al., 2023),
as illustrated in Figure 9. We run for a range of KL coefficients (β) and multiple random seeds.
Figure 10 shows the training run for just vanilla RL, without MARA.
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Figure 8: Final policy distribution after KL-regularized RL, with equal rewards for all correct answers.
Low-support (yet equally correct) answers are never preferred over high-support answers.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Prompt

Uniformly randomly generate
an integer that is either 1 or
2. Respond strictly in this
format: <think>Your internal
reasoning</think><answer>1 or
2</answer>

Example Generation

Let me decide
randomly.
<think></think><answer>1
</answer><|endoftext|>

Figure 9: The 1-2 task to test output distribution of LMs.
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Figure 10: Training outcomes using vanilla RL. (Left, Middle) Policy’s empirical distribution over
valid answers for runs that reached high rewards (counts binned over 8 consecutive training batches),
across a range of regularization coefficients (β). Right Diversity of the valid answers over the course
of training, measured as the entropy of the Bernoulli distribution over answers of 1’s and 2’s.

C.3 CREATIVE QUESTION ANSWERING TASK

We detail the training settings in Table 3, and evaluation settings in Table 4. We follow the evaluation
procedures outlined in both Kirk et al. (2023) and Zhang et al. (2025). The specific evaluation metrics
are defined as follows.

• In Dist Reward: training reward, on training set, using training reward model

• Out Dist Reward: evaluation reward on held-out set, using evaluation reward model

• Ngram EAD: Expectation-adjusted Distinct N-gram, proposed in Liu et al. (2022). We
follow (Kirk et al., 2023) and average EAD for n = 1, ..., 5

• Semantic Div: semantic embedding diversity as measured by averaged cosine distance,
using embedding model all-MiniLM-L6-v2.

• Mean Distinct: Estimates a notion of “# of distinct concepts”, as introduced in Zhang
et al. (2025).

We run additional baselines for the effect of the batch level threshold to set τ in Table 5.

C.4 EVIDENCE FOR UNIMODAL TARGET DISTRIBUTIONS IN LMS

We show additional evidence in existing LLMs settings, the shape of the reference distribution and
reward function leads to highly skewed target distributions.

First, we draw 8192 samples from Qwen2.5-3B using prompt for the 1-2 task (Appendix C.2). We
filter for correct answers (R(y) = 1), leaving 2944 samples (35.9% correct). We see in Figure 11a
the distribution of “1” and “2”, with 1 being over-represented, pointing to a skew in the base reference
distribution favouring "1", despite the model being prompted to uniformly randomly generate an
integer.
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Hyperparameter Value
Actor Model Qwen3-1.7B
Reward Model Skywork-Reward-V2-Qwen3-4B
Training Dataset Wildchat 10k English
Train Batch Size 128
Mini-Batch Size 64
Max Prompt Length 512
Max Response Length 2048
Learning Rate 1× 10−6

Entropy Coefficient 0
Rollout n (per prompt) 5
Gradient Checkpointing Enabled
Epochs 3

Table 3: Creative QA Training Setting

Hyperparameter Value
Evaluation Reward Model Skywork-Reward-Gemma-2-27B-v0.2
Dataset NoveltyBench curated
Num Generations / Prompt 10
Max Tokens 4000
Temperature 1.0
Enable Thinking (qwen) False

Table 4: Creative QA Evaluation Setting

For creative QA (Appendix C.3), we draw 1024 samples from Qwen3-1.7B using a single question
in WildChat text. We evaluate the responses using Skywork-Reward-V2-Qwen3-4B (reward
mean: 12.33, min: −5.125, max: 18.38), and filter for answers above the 95th percentile (R = 16.37).
This leaves 52 samples (reward mean: 17.0, min: 16.38, max: 18.38). We see in Figure 11b that
among these high-reward answers, log πref(y) has a difference of up to 7.76, corresponding to a
probability ratio of 2345× under Gβ (Remark 4.3).

We then estimate the probability ratio taking into account both the reference probability and the
reward (Proposition 4.1). We use the same 1024 samples and compute their unnormalized likelihood
Gβ , πref(y) exp(R(y)/β), with β = 0.01. We take the top 16 most likely samples and calculate their
relative probabilities with respect to the 16th most likely sample, such that the lowest probability
ratio is 1×. We observe in Figure 11c that amongst the sampled responses, the most probable sample
(R = 18.4, log πref(y) = −5.91) is 2× 1049 times more likely under the target distribution Gβ than
the 16th most likely sample (R = 17.3, log πref(y) = −7.09), despite having only slightly higher
rewards and reference probabilities.

Model
Out-dist

Reward (↑)
EAD
(↑)

Semantic
Div (↑)

Distinct
(↑)

MARA (rev, 0.90) 1.451 ±0.103 0.543 ±0.014 0.186 ±0.008 4.14 ±0.233

MARA (fwd, 0.90) 1.604 ±0.113 0.568 ±0.012 0.193 ±0.009 4.62 ±0.258

MARA (rev, 0.75) 1.498 ±0.117 0.547 ±0.013 0.183 ±0.008 4.41 ±0.262

MARA (fwd, 0.75) 1.325 ±0.097 0.508 ±0.014 0.196 ±0.009 4.07 ±0.243

Table 5: Ablation of batch-level threshold for τ , set at either 90th percentile (0.90) or 70th percentile
(0.75). Mean ± bootstrap SEM.
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Figure 11: Evidence for highly skewed target distributions Gβ in LLM tasks

C.5 DRUG DISCOVERY

Chemical language models (CLMs) that generate molecules in string-based formats, e.g., a SMILES
string (Weininger, 1988), have been experimentally validated with numerous generated molecules
in clinical trials (Du et al., 2024). Recently, the field has focused on addressing “synthesizability”,
i.e., can generated molecules actually be synthesized in the lab? (Stanley & Segler, 2023; Papidocha
et al., 2025). Accordingly, we adapt two reward functions from Guo et al. (2025b): SYNTH and
SYNTH-ALL-AMIDE that jointly reward binding potency and synthesizability. REINVENT (Olive-
crona et al., 2017) is a state-of-the-art RL-based CLM on standard benchmarks (Gao et al., 2022).
The recent Saturn CLM (Guo & Schwaller, 2024b) notably improves optimization efficiency by using
data augmentation (Bjerrum, 2017; Guo & Schwaller, 2024a), but continues to use REINVENT’s RL
algorithm.

In the drug discovery experiments adapted from Guo et al. (2025b), the reward functions are comprised
of numerous individual optimization objectives, and defines a multi-parameter optimization task.
Concretely, these objectives are:

1. Minimize the molecular docking score using QuickVina2-GPU (Trott & Olson, 2010; Al-
hossary et al., 2015; Tang et al., 2024). Docking simulates binding of molecules to a target
protein and predicts a crude binding affinity value. Docking was performed against the
ATP-dependent Clp protease proteolytic subunit (ClpP) Mabanglo et al. (2023).

2. Maximize the quantitative estimate of drug-likeness (QED) (Bickerton et al., 2012), which is
itself comprised of various physico-chemical properties, e.g., molecular weight. Maximizing
QED can prevent generated molecules from being too large and lipophilic.

3. Constrain the number of hydrogen-bond donors (HBDs): HBDs < 4. This can improve
absorption, Distribution, metabolism, and excretion (ADME) properties (Kenny, 2022) of
the generated molecules.

4. Satisfy the ”Synthesizability” constraint. Synthesizability is quantified by using a ret-
rosynthesis model on each generated molecule. Retrosynthesis models predict a plausible
synthesis route to synthesize a target molecule using commercially available precursors.
The precursors set is from the eMolecules catalogue extracted from Chen et al. (2020).
Retrosynthesis models typically start with a ”single-step” model which predicts precur-
sors given a target molecule. Since molecules may require multiple steps to synthesize,
”Multi-step Retrosynthesis” commonly couples a search algorithm with single-step models
to iteratively decompose a target molecule. In this work, we use the MEGAN (Sacha et al.,
2021) single-step model with the Retro* (Chen et al., 2020) search algorithm using the
Syntheseus (Maziarz et al., 2025) package. Finally, a molecule is considered synthesizable
if the retrosynthesis model successfully proposes a synthesis route.

Both the SYNTH and SYNTH-ALL-AMIDE reward functions are comprised of the above objectives.
The only difference is that in the SYNTH-ALL-AMIDE case, a molecule is only considered synthe-
sizable if all the chemical reactions involved to synthesize it are ”amide coupling reactions”. Amide
couplings are one of the most common reactions performed in the pharmaceutical industry (Brown
& Bostrom, 2016), and is generally a robust, widely compatible reaction. Subsequently, the reward
function is defined as a product of each individual component above. Given a molecule, x:
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Table 6: Results at Threshold = 0.8 (↑ larger is better; ↓ smaller is better). "SYNTH" and "AMIDE"
denote the SYNTH and SYNTH-ALL-AMIDE reward functions, respectively.

Task Algorithm Sigma Gen Yield OB100 IntDiv1 Circles
(↑) (↓) (↑) (↑)

SYNTH REINVENT 128 6569± 186 1042± 66 0.766± 0.011 67± 3
256 6618± 93 1080± 89 0.756± 0.012 57± 8
512 6746± 161 1067± 74 0.752± 0.016 55± 5

MARA 128 6834± 78 1015± 55 0.761± 0.009 59± 8
256 6750± 139 1068± 50 0.760± 0.012 60± 4
512 6793± 267 1065± 49 0.751± 0.015 60± 1

AMIDE REINVENT 128 5433± 184 1427± 63 0.768± 0.012 35± 1
256 5544± 172 1406± 59 0.768± 0.009 34± 5
512 5334± 165 1445± 111 0.776± 0.008 33± 4

MARA 128 5635± 249 1407± 123 0.766± 0.008 36± 3
256 5353± 114 1393± 42 0.769± 0.009 33± 4
512 5377± 152 1343± 77 0.763± 0.008 31± 3

R(x) = DS(x)×QED(x)×HBD(x)× Syntheseus(x) ∈ [0, 1] (83)

where “DS” is docking score. The HBD and Syntheseus objectives are binary, i.e., 1 if satisfied
and 0 otherwise. QED ∈ [0, 1] and is used as is. The QuickVina2-GPU docking score is reward
shaped using a reverse sigmoid function following Guo et al. (2025b) and gives higher reward to
lower docking scores, as desired.

Our goal in this section is to investigate the potential for MARA to be a drop-in replacement for
the REINVENT (Olivecrona et al., 2017) RL-based algorithm for molecular design. REINVENT is
amongst the most performant molecular design algorithms (Gao et al., 2022) and the Saturn model
(Guo & Schwaller, 2024b) adapts this algorithm and leverages data augmentation (Bjerrum, 2017;
Guo & Schwaller, 2024a) to further improve optimization efficiency.

We evaluate all models with a fixed budget of 10,000 reward function evaluations, which is standard
in benchmarks. We contrast the algorithms’ performance on molecular design metrics that measure
optimization efficiency and diversity. Yield is the number of unique molecules above a reward
threshold. OB100 is the number of reward evaluations required to generate 100 molecules above the
same threshold. IntDiv1 (Polykovskiy et al., 2020) and #Circles (Xie et al., 2023) are diversity
metrics based on molecular sub-structure based features, and measure intra-set similarity and sphere
packing, respectively.

Tables 6 and 7 show the optimization results for the SYNTH and SYNTH-ALL-AMIDE reward
functions at the 0.80 and 0.85 screening thresholds, respectively. MARA is trained with τ = 0.80 in
both. In general, MARA matches or outperforms REINVENT particularly for the more challenging
SYNTH-ALL-AMIDE reward function. In this environment, MARA can find more high-reward
molecules (Yield) and using less reward evaluations (OB100) than REINVENT.
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Table 7: Results at Threshold = 0.85 (↑ larger is better; ↓ smaller is better). "SYNTH" and "AMIDE"
denote the SYNTH and SYNTH-ALL-AMIDE reward functions, respectively.

Task Algorithm Sigma Gen Yield OB100 IntDiv1 Circles
(↑) (↓) (↑) (↑)

SYNTH REINVENT 128 1614± 407 4114± 109 0.701± 0.018 7± 1
256 1552± 242 3940± 371 0.699± 0.030 6± 1
512 1484± 45 3717± 201 0.701± 0.026 6± 1

MARA 128 1796± 210 3654± 272 0.716± 0.015 6± 1
256 1530± 126 3957± 335 0.705± 0.014 8± 1
512 1550± 347 4016± 234 0.689± 0.024 6± 1

AMIDE REINVENT 128 1098± 88 4360± 257 0.721± 0.016 8± 1
256 1488± 280 4290± 141 0.725± 0.021 8± 1
512 1054± 152 4620± 438 0.739± 0.009 8± 0

MARA 128 1235± 130 3943± 303 0.733± 0.009 8± 1
256 1404± 261 4079± 172 0.730± 0.010 7± 1
512 1341± 86 3930± 400 0.723± 0.004 7± 1
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