

KL-REGULARIZED REINFORCEMENT LEARNING FOR GENERATIVE MODELLING IS DESIGNED TO MODE COLLAPSE

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Classical intuitions cast minimizing reverse KL as “mode seeking” and forward
 014 KL as “mass covering”. In KL-regularized reinforcement learning, however, the
 015 regularizer determines *both* the target distribution’s shape *and* the divergence being
 016 implicitly minimized, making its role more nuanced than simply inducing generic
 017 mode-seeking or mass-covering behaviour. Specifically, the target distribution is
 018 defined jointly by the reward function, the reference model, the type of regularizer,
 019 and the regularization strength. We show that under common settings—such as
 020 low regularization strength and equal verifiable rewards—both forward and reverse
 021 KL regularization tend to specify target distributions whose mass concentrates on
 022 a single high-reward region. Thus, the objective itself *by construction* induces
 023 diversity collapse, regardless of the policy optimization algorithm used.

024 Building on this perspective, we introduce a simple and scalable modification that
 025 rescales rewards to induce target distributions assigning substantial probability
 026 across *all* high-reward regions. This yields a principled objective that maintains
 027 high solution quality while achieving broad reward-mode coverage. Empirically,
 028 this approach improves post-training diversity and performance for Large Language
 029 Models and Chemical Language Models, and is effective with either forward or
 030 reverse KL regularization, while using either naively fails.

1 INTRODUCTION

031 Reinforcement Learning (RL) is the predominant method for post-training foundation models
 032 ([Ouyang et al., 2022](#)), and the primary way to train generative models in settings where the correct
 033 solution is not known *a priori*. At its core, this involves solving a regularized RL (contextual bandits)
 034 problem, where a policy is trained to maximize some external reward, while preserving “closeness”
 035 to a base policy (as to e.g. preserve coherence). Output diversity of the policy is crucial. In Large
 036 Language Models (LLMs), it drives engagement for tasks such as creative writing and free-form
 037 conversation. More generally, diversity underlies the generation of new knowledge, enabling the
 038 discovery of novel mathematical solutions ([Romera-Paredes et al., 2024](#)), cognitive science models
 039 ([Castro et al., 2025](#)), and novel algorithms and software ([Surina et al., 2025](#); [Novikov et al., 2025](#);
 040 [Aygün et al., 2025](#)). Furthermore, diversity reflects uncertainty over competing hypotheses, a property
 041 fundamental to scientific discovery ([GX-Chen et al., 2025](#)). Finally, diversity plays an important role
 042 *during training* to drive exploration such that the policy can find and converge to better solutions ([Cui
 043 et al., 2025](#)).

044 Yet, current empirical evidence suggests RL post-training improves quality at the cost of diversity
 045 ([Kirk et al., 2023](#); [Cui et al., 2025](#)). As a response, a number of recent works set out to treat this
 046 ailment, with a variety of approaches including explicit diversity rewards ([Li et al., 2025](#)), changing
 047 the KL regularization ([Wang et al., 2023](#)), selecting diverse data ([Lanchantin et al., 2025](#)), and
 048 count-based exploration bonuses ([Song et al., 2025](#)).

049 In this work, we take a step back to diagnose a more fundamental problem: *does the objective being
 050 optimized actually have a solution that is diverse?* We find that with current set-ups, the answer is
 051 often “no”, even with unlimited compute, high quality data, and perfect optimization. We prove that
 052 under very commonly used settings (such as weak KL regularization with varied rewards, or *any* KL
 053 regularization if correct answers have the same rewards but vastly different reference policy supports),

054 the globally optimal solution is often *by construction* unimodal. To accomplish this, we analyze
 055 KL-regularized RL through tools from variational inference (VI, [Jordan et al. 1999](#); [Ranganath et al.](#)
 056 [2014](#)) to find and dissect optimal policies for different choices of KL regularization.
 057

058 Section 2 provides preliminaries about KL divergences and reminds the reader of the mode-seeking
 059 / mass-covering behaviour of minimizing reverse / forward KL at suboptimality. Section 3 studies
 060 KL-regularized reward maximization as implicitly minimizing a divergence between the current
 061 policy and a *target distribution*. Section 4 further analyzes the *shape* of this target solution. We focus
 062 particularly on how this distribution puts mass over high-reward regions—i.e. multimodality in terms
 063 of reward modes (Definition 3.5). This allows us to understand even if we perfectly minimize *any*
 064 divergence between the policy and the target distribution, the resulting policy will still be non-diverse
 065 if the *target distribution is defined to be unimodal*. Finally, Section 5 shows how one can directly
 066 construct the target distribution to cover all high-reward modes. We specify one such distribution
 067 which puts mass over all high-reward regions above a certain threshold, and show this requires only a
 068 small change to current algorithms. Each section is empirically supported with didactic simulations.
 069 Finally, we apply our method out of the box to LLMs and chemical language models and find that it
 070 works for complex, realistic scenarios.

071 The main contributions can be summarized as follows,
 072

- 073 1. We analyze the role of reverse/forward KL regularization in RL as *both* defining the target
 074 distribution *and* the implicitly minimized divergence between policy and target.
- 075 2. We show the shape of the target distribution is determined by the regularizer, regularization
 076 strength, and relative reward and reference probability magnitudes. This has implications on
 077 how the target distribution puts mass over high-reward regions.
- 078 3. We show with typical hyperparameters, the target distribution is often constructed to put
 079 mass over a single high-reward region, making diversity collapse a natural consequence of
 080 correctly solving the regularized RL problem (as currently defined), regardless of algorithm.
- 081 4. We derive conditions required for broad reward mode coverage, and use this insight to
 082 construct a simple and theoretically principled RL algorithm (two-line pseudocode, Alg. 1)
 083 that puts uniform mass over *all* high-reward regions, without any external diversity signals.

084 2 THE KULLBACK-LEIBLER (KL) DIVERGENCE

098 Figure 1: Illustration of how the choice of approximate distribution family affects KL optimization.
 099 With a restrictive approximate distribution (e.g. 1D Gaussian with two parameters), KL exhibits the
 100 typical “mode seeking” and “mass covering” characteristics. This intuition does not necessarily hold
 101 for flexible distributions (e.g. independent categoricals, foundational models).

102 The Kullback–Leibler (KL) divergence ([Kullback & Leibler, 1951](#)) measures the discrepancy between
 103 two probability distributions. In machine learning, it is commonly used in variational inference (VI),
 104 where minimizing the KL divergence enables a tractable variational distribution q to approximate
 105 an intractable posterior p ([Jordan et al., 1999](#); [Blei et al., 2017](#)). Following [Murphy \(2012\)](#), we
 106 refer to $D_{KL}(q||p) = \mathbb{E}_q[\log q(y) - \log p(y)]$ as the *reverse KL divergence*, and $D_{KL}(p||q) =$
 107 $\mathbb{E}_p[\log p(y) - \log q(y)]$ as the *forward KL divergence*. Reverse KL is often described as “mode
 108 seeking”, avoiding mass where p is small (Figure 1a, top), while forward KL is often described as

“mass covering”, putting mass anywhere p has mass (Figure 1a, bottom). These intuitions hold if the variational family is not sufficiently expressive and we can at best settle on an optimum with > 0 KL (Bishop & Nasrabadi, 2006; Murphy, 2012). With a flexible family, however, optimizing either KLS to the *global optimum* can well-approximate a complex posterior (Figure 1b).

3 KL-REGULARIZED REWARD MAXIMIZATION

KL-regularized reward maximization aims to (i) maximize the expected value of a reward function $R : \mathcal{Y} \rightarrow \mathbb{R}$, mapping from samples to a scalar outcome (e.g. improve human preference), while (ii) keeping the policy π_θ close to a reference distribution π_{ref} (e.g. maintain grammatical coherence). The objective is $J(\pi_\theta) = \mathbb{E}_{\pi_\theta(y)}[R(y)] - \beta D(\pi_\theta, \pi_{\text{ref}})$, where $D(\cdot, \cdot)$ denotes a divergence between the policy and reference distributions. For brevity, we consider the unconditional generation problem where the policy models distribution $\pi_\theta(y)$. The problem is the same in the case of conditional generation (e.g. question answering), where the objective is simply defined over the conditional distribution $\pi_\theta(y|x)$. *We do not deal with the sequential decision making setting*—commonly modelled using Markov Decision Processes (Puterman, 1994)—in this work. Nevertheless, the non-sequential setting is widely used when training generative models with RL.

In this section, we consider the *solution / target distribution* of KL-regularized reward maximization, i.e. the distribution which maximizes the objective. The central question is:

If we perfectly solve the regularized RL problem to its global optimum, what does the solution (policy) distribution look like?

3.1 SOLUTION OF THE REVERSE KL REGULARIZED OBJECTIVE

The most common KL-regularized policy gradient objective uses the *reverse KL divergence*,

$$J_\beta(\pi_\theta) = \mathbb{E}_{\pi_\theta(y)}[R(y)] - \beta D_{KL}(\pi_\theta || \pi_{\text{ref}}). \quad (1)$$

A number of previous works have discussed the solution / optimal distribution of this optimization problem (Korbak et al., 2022; Go et al., 2023; Rafailov et al., 2023; Azar et al., 2024; Zhang & Ranganath, 2025), which we note again below (see Appendix B.1 for detailed derivations).

Remark 3.1. *The optimal solution to the reverse-KL regularized reward maximization problem, $\arg \max_{\pi_\theta} J_\beta(\pi_\theta)$, is given by the target distribution $\pi^* = G_\beta$,*

$$G_\beta(y) = \frac{1}{\zeta} \pi_{\text{ref}}(y) \exp\left(\frac{R(y)}{\beta}\right), \quad (2)$$

where $\zeta = \int \pi_{\text{ref}}(y) \exp(R(y)/\beta) dy$ is the normalizing constant.

Remark 3.1 tells us the distribution maximizing Equation 1 is $\pi_\theta = G_\beta$. However, it may not be immediately obvious *how* optimizing Equation 1, $\nabla_\theta J_\beta(\pi_\theta)$, moves π_θ toward G_β . We analyze this below (details in Appendix B.2, also see e.g. Zhang & Ranganath (2025)).

Remark 3.2. *The gradient of Equation 1 is a gradient of the reverse KL divergence between the current policy π_θ and the target distribution G_β ,*

$$\nabla_\theta D_{KL}(\pi_\theta || G_\beta) \propto -\nabla_\theta J_\beta(\pi_\theta). \quad (3)$$

Main Takeaway

Maximizing the reverse-KL regularized RL objective J_β (Equation 1) is equivalent to doing distribution matching by minimizing a reverse KL toward the target distribution G_β (Equation 2).

3.2 SOLUTION OF THE FORWARD KL REGULARIZED OBJECTIVE

Alternatively, the reward can be maximized with a forward KL penalty,

$$J_{\text{fwd}}(\pi_\theta) = \mathbb{E}_{\pi_\theta(y)}[R(y)] - \beta D_{KL}(\pi_{\text{ref}} || \pi_\theta). \quad (4)$$

A number of recent works have used forward KL regularization. Some are motivated explicitly by the “mass covering” intuition of the forward KL (Wang et al., 2023), while others—such as GRPO (Shao et al., 2024; Guo et al., 2025a)—may have incidentally estimated the forward KL, despite meaning to use the reverse KL (Tang & Munos, 2025).

162 **Remark 3.3.** Assume optimization with $\beta > 0$, with finite rewards $R_{\max} < \infty$, and there exist
 163 solution(s) where $R(y) = R_{\max}$, $\pi_{\text{ref}}(y) > 0$. The optimal solution to the forward-KL regularized
 164 reward maximization problem, $\arg \max_{\pi_{\theta}} J_{\text{fwd}}$, is given by the distribution:
 165

$$166 \quad G_{\text{fwd}}(y) = \frac{\beta \pi_{\text{ref}}(y)}{\Lambda - R(y)}, \quad \Lambda > \max_y R(y), \quad (5)$$

168 where a unique Λ exists for each β such that G_{fwd} is a valid probability distribution.
 169

170 Notably, Equation 5 is a *completely different* distribution family from the reverse KL case (Equation 2),
 171 and does not have a simple closed form unnormalized solution. It is also worth noting that if higher-
 172 rewarding regions exist outside of π_{ref} 's support, G_{fwd} can place nonzero mass on regions where
 173 $\pi_{\text{ref}}(y) = 0$ and $R(y) = R_{\max}$, with no preference among y 's within this region in terms of density.
 174 See Appendix B.3 for more details.

175 **Remark 3.4.** Assume we are optimizing within the support of π_{ref} , the gradient of Equation 4 is **not**
 176 a forward KL gradient,

$$177 \quad \nabla_{\theta} D_{KL}(h \parallel \pi_{\theta}) \neq -\nabla_{\theta} J_{\text{fwd}}(\pi_{\theta}), \quad (6)$$

178 for **any** target distribution h that is defined independently of π_{θ} , and arbitrary reward functions R .
 179

Proof. Appendix B.4. \square

180 Therefore, while Equation 4 can still be a good objective to optimize, it does not necessarily inherit
 181 exactly the same properties and intuitions as a “forward KL gradient”.

182 What, then, is the gradient of the forward KL $D_{KL}(G_{\beta} \parallel \pi_{\theta})$? It in fact reduces to doing maximum
 183 likelihood (supervised fine-tuning) on trajectories sampled from the target G_{β} (Remark B.2), which
 184 is intractable for generic targets. However, this provides one perspective on algorithms such as STaR
 185 (Zelikman et al., 2022) and RAFT (Dong et al., 2023; Xiong et al., 2025) that filter high-reward
 186 trajectories for maximum likelihood. One can interpret filtering as rejection sampling to approximate
 187 a target distribution (which put high mass over high-reward regions), when reward is bounded and we
 188 know G_{β} up to normalization. More generally, other methods that approximately sample from G_{β} to
 189 minimize divergence include Naesseth et al. (2020); Khalifa et al. (2020).

Main Takeaway

Maximizing the forward-KL regularized objective J_{fwd} (Equation 4) does not yield a forward-KL
 gradient, so its behaviour cannot be naively equated to forward-KL optimization.

To summarize: the regularized RL objective implicitly minimizes a divergence between the current
 policy π_{θ} and a target distribution G . Different choices of regularizer lead to different target
 distributions G . Importantly, the regularizing divergence $D(\pi_{\theta}, \pi_{\text{ref}})$ need *not* be the same type of
 divergence as the one implicitly minimized, $D(\pi_{\theta}, G)$, as is the case for forward-KL regularization.

3.3 BOTH KL REGULARIZATION CAN HAVE MULTIMODAL SOLUTION DISTRIBUTIONS

Figure 2: Final policy distribution (100-dim categorical) from optimizing a reverse/forward KL regularized reward maximization objective, given the same reward function, reference policy, across a range of regularization strengths (β). Both KLs can lead to multimodal solution distributions.

We briefly note that the target distributions for both the reverse (Equation 2) and forward (Equation 5) KL regularization *can* be multimodal. To ground the discussion, we first define a common-sense notion of “multimodal” in terms of reward modes, which we use for the rest of the paper.

Definition 3.5. A target distribution G for regularized reward maximization is “**reward multimodal**” given a high-reward threshold τ if: for any two samples $y, y', R(y) < \tau \leq R(y')$ implies $G(y) < G(y')$; and for any above-threshold samples $R(y) \geq \tau$ and $R(y') \geq \tau$, $G(y) \approx G(y')$.

Informally, this means all high-reward samples have a high probability, and sampling from G samples approximately equally from *all* high-reward regions.

We show in a didactic example in Figure 2, where given the same reward function containing two high-reward modes, and a reference policy with support over the first half of the action space, optimizing the reverse and forward KL objectives lead to a wide variety of solutions that depend on the regularization coefficient β . Both KLS have settings of β that induce *reward multimodal* target distributions. We analyze the properties of the target distribution in the subsequent section, and return to the Figure 2 example in detail in Section 4.3.

4 ANALYSIS OF KL REGULARIZED OPTIMAL DISTRIBUTION

We have seen in Section 3.3 that both KL-regularized RL objectives can have *reward multimodal* solutions, and in Section 2 that optimizing either KL divergence to global optimum will give us policies that well-approximate the (multimodal) solution. However, the shape of the target distribution depends on the reward, reference distribution, and regularization strength. This raises the central question:

Is the globally optimal solution we commonly define in KL-regularized RL actually reward multimodal (Definition 3.5)?

The central tool we use in this section is a *probability ratio* between two samples under a distribution. Intuitively, we want (i) high-reward samples to be much more probable than low-reward samples, and (ii) similarly high-reward samples to have similar high probabilities. Unless otherwise stated, we focus our analysis on the solution of the reverse-KL regularized objective (Equation 2), both for its clean form and because it is the most common way KL-regularized RL is formulated.

Proposition 4.1. *The (log) probability ratio between any two samples, y_1, y_2 , under the optimal solution distribution for reverse-KL regularized RL, G_β , can be written in closed form,*

$$\log \frac{G_\beta(y_1)}{G_\beta(y_2)} = \log \frac{\pi_{\text{ref}}(y_1)}{\pi_{\text{ref}}(y_2)} + \frac{1}{\beta} (R(y_1) - R(y_2)). \quad (7)$$

Proof. Because normalization constant ζ cancel out in ratios. See Appendix B.6. \square

Proposition 4.1 gives us a generic and closed-form way of analyzing how likely one sample is relative to another in the *optimal solution*, using *only* π_{ref} and the reward function R , for *any* reverse-KL regularized reward maximization objective. This gives us a number of consequential insights.

4.1 WITH EQUAL SUPPORTS, SMALL REWARD CHANGE DRIVES LARGE PROBABILITY CHANGE

Remark 4.2. *For any two samples y_1 and y_2 , if $\pi_{\text{ref}}(y_1) = \pi_{\text{ref}}(y_2)$, their probability ratio is:*

$$\frac{G_\beta(y_1)}{G_\beta(y_2)} = \exp \left(\frac{R(y_1) - R(y_2)}{\beta} \right). \quad (8)$$

We first consider the continuous reward function setting where samples have small differences in rewards. This is common for settings such as alignment (reward model) and drug discovery (e.g. binding affinity). If two samples have the *same* probability under the reference distribution π_{ref} (“equal support”), the difference in their final log probabilities is simply the difference in their rewards, scaled by $1/\beta$. Smaller β exaggerates the difference

Figure 3: With equal π_{ref} , linear difference in rewards (ΔR) lead to exponential difference in probabilities

270 between relative probabilities. Note a *linear* difference in rewards result in an *exponential* difference
 271 in probabilities: for a 0.1 difference in rewards, and a commonly used $\beta = 1e-3$, the higher reward
 272 sample is pushed to be 2.6×10^{43} times more likely in the solution distribution. This issue is
 273 identically present for entropy-only regularization (see Fig. 7 for effect of β on relative probabilities).
 274 This suggests for commonly used hyperparameters, the solution is highly concentrated around the
 275 max reward mode(s).

276 We see in Figure 3 a didactic experiment that verifies this theory. At low regularization strength (β),
 277 the optimized policy π_{θ^*} mode collapses onto the highest reward action. At high β , policy achieves
 278 better (still not perfect) coverage over high-reward answers, at the cost of having more mass on low
 279 reward actions (more details and results in Appendix C.1).

280 4.2 WITH EQUAL REWARDS, SOLUTION NEVER PREFERENCES LOWER-SUPPORT SAMPLES

281 We now consider the case where the correct solutions all
 282 have *equal* reward. This is a standard set-up for RL with
 283 verifiable reward (e.g. math), where a correct answer is
 284 given a reward of 1, and incorrect answers given 0.

285 **Remark 4.3.** *For any two samples with the same reward,
 286 $R(y_1) = R(y_2)$, their probability ratio is:*

$$287 \frac{G_\beta(y_1)}{G_\beta(y_2)} = \frac{\pi_{\text{ref}}(y_1)}{\pi_{\text{ref}}(y_2)}. \quad (9)$$

288 In words, the correct answers' probability ratio in the optimal
 289 solution is simply their probability ratio in the reference
 290 distribution π_{ref} . This ratio is *independent* of the regularization strength β . In other words, by
 291 construction, KL-regularized RL with equal rewards *never promotes a low-support answer*.¹ Figure 4
 292 demonstrates this point empirically: the final policy *never* favours the equally correct low-support
 293 mode (additional results in Appendix C.1). This is not an issue with exploration; we will see in the
 294 subsequent section that with a small change in reward one can optimize for a distribution that equally
 295 weights or even prefers the lower-support solution.

296 Main Takeaway

301 RL with *any* KL-regularization does not increase the relative probability of lower-support samples
 302 to high-support ones, as long as their rewards are the same. Lowering the KL regularization
 303 strength β has *no effect* on up-weighting low-support samples in the optimal solution.

304 We additionally corroborate in Appendix C.4 that in practice for LLMs, the shape of the reference distribution and reward function does result in highly skewed target distribution G_β , per Proposition 4.1,
 305 Remark 4.2, and Remark 4.3.

306 4.3 FOR UNEQUAL REWARDS *and* SUPPORTS, REGULARIZATION STRENGTH DETERMINES 307 MODE COVERAGE

308 When two trajectories have different rewards and different probabilities under the reference policy, a
 309 unique setting of β will induce the two to have the same probability in the target distribution.

310 **Remark 4.4.** *Two samples have the same probability in the target distribution if,*

$$311 R(y_2) - R(y_1) = \beta(\log \pi_{\text{ref}}(y_1) - \log \pi_{\text{ref}}(y_2)). \quad (10)$$

312 This condition allows us to predict, given only the reward and reference policy, when two samples will
 313 have the same probabilities in the solution to the RL problem. As an example, we know in Figure 2
 314 that the two high-reward modes have rewards 0.75 and 1.0, and reference policy probabilities of
 315 $\log \pi_{\text{ref}}(y_1) \approx -4.05$ and $\log \pi_{\text{ref}}(y_2) \approx -5.95$, respectively. This allows us to predict the setting of
 316 β which will “flip” the target distribution’s preference from the high-support mode to the low-support
 317 mode to be $(1 - 0.75)/(-4.05 + 5.95) \approx 0.132$. Indeed, we see in Figure 2 for the reverse KL
 318 case, the preference between the two modes switch as we move from $\beta = 0.15$ to $\beta = 0.10$. This
 319 is the true role of the regularization coefficient β : it is a knob that decides between picking higher
 320 rewarding, low-support solutions, vs. lower rewarding, high-support solutions.

321 ¹This observation is true for both reverse and forward-KL regularized RL.

322 Figure 4: With equal rewards, RL does
 323 not change answers' relative probs.

324 **5 DIRECTLY OPTIMIZING A REWARD MULTIMODAL TARGET**
 325

326 Having identified the various failure cases of the KL-regularized RL objective (Section 4), and the
 327 role of regularization in balancing reward differences (Section 4.3), we now turn to the question:

328 *Can we construct an objective that, when optimized, naturally give rise to a reward
 329 multimodal target distribution?*

330 Indeed, Remark 4.4 already provides the equality condition required to achieve this. We derive a
 331 simple procedure which will ensure we are optimizing for a solution that puts *equal* probabilities on
 332 all high-quality samples (per Definition 3.5), using the augmented reward function,

$$333 \quad \bar{R}(y) = \begin{cases} R(y) & \text{if } R(y) < \tau, \\ 334 \quad R(z) + \beta(\log \pi_{\text{ref}}(z) - \log \pi_{\text{ref}}(y)) & \text{if } R(y) \geq \tau, \end{cases} \quad (11)$$

335 where $\tau \leq \max_y R(y)$ is some threshold for “goodness”, and z is a fixed “anchor” sample chosen
 336 from the set of high-quality samples. We can pick it to be $z = \arg \max_y \pi_{\text{ref}}(y)$ where $R(y) \geq \tau$.
 337 Because we are choosing the “anchor” to be from a high-reward mode, we colloquially refer to this
 338 as “*mode anchoring*”, and the method as **Mode Anchored Reward Augmentation (MARA)**. See
 339 Algorithm 1 for pseudocode with minimal changes (an alternative that augments reward and π_{ref} is
 340 outlined in Algorithm 2, which is equivalent to Alg.1 when using reverse KL regularization).

341 **Algorithm 1** Mode Anchored Reward Augmentation (MARA), within a sampled batch.
 342 Changes from a standard RL algorithm are in blue.

343 1: Given: initial policy π_θ , reference distribution π_{ref} , reward function R , regularization coefficient
 344 β , threshold of good answers $\tau \in \mathbb{R}$, $\tau \leq \max_y R(y)$, and trajectory batch $\{y_i\}_{i=1}^N \sim \pi_\theta$.
 345 2: **Pick anchor trajectory:** $z = \arg \max_{y_i} \pi_{\text{ref}}(y_i)$, s.t. $R(y_i) \geq \tau$
 346 3: **for** each y_i in batch **do**
 347 4: **if** $R(y_i) \geq \tau$ **then**
 348 5: **Augment:** $\bar{r}_i = R(z) + \beta(\log \pi_{\text{ref}}(z) - \log \pi_{\text{ref}}(y_i))$
 349 6: **else**
 350 7: **Keep same:** $\bar{r}_i = R(y_i)$
 351 8: **end if**
 352 9: **end for**
 353 10: Optimize policy parameters θ using augmented rewards $\{\bar{r}_i\}_{i=1}^N$.

369 Figure 5: MARA stays close to the reference policy in low-reward areas, and puts high, uniform mass
 370 over all high-reward areas.

371 Intuitively, the augmented reward function constructs a new *target distribution* with *uniform* high
 372 density over regions of high reward, and stays close to the reference π_{ref} in regions of low reward (see
 373 Remark B.3 for an analysis of the shape of the MARA target distribution). We see in the Figure 5 that
 374 vanilla KL-regularized RL result in a policy that heavily favours the left (on-support) mode, regardless
 375 of the choice of β or KL. On the other hand, using MARA results in solutions that put *equal* high
 376 mass over *all* high quality samples, for both KLS. Note that in cases where the reward function range
 377 is known, one can directly set threshold τ as a constant. If not, one can set τ on a per-batch basis by
 e.g. taking an upper percentile of sampled rewards (as we do below for non-verifiable LLM tasks).

378

6 EMPIRICAL VALIDATIONS

380 We evaluate MARA as a drop-in method in a variety of post-training tasks. While our theory has
 381 mainly been about the final optimal solution RL achieves, we empirically investigate whether training,
 382 even if stopped early, can still benefit from a more diverse global optimum. To do this, we evaluate
 383 MARA in (i) verifiable LLM task with multiple answers, (ii) non-verifiable task with reward models,
 384 and (iii) chemical language model task for drug discovery, where mode collapse is detrimental.

385

6.1 VERIFIABLE 1-2 TASK FOR LLM

387 We train an LM (Qwen2.5-3B) to generate uniform random integers that are either 1 or 2. It gets a
 388 reward of 1.0 for correct (producing “1” or “2” in XML), and 0.0 otherwise (details in Appendix C.2).
 389 Most runs are able to optimize the reward well and achieve a reward of approximately 1 (Figure 6a,
 390 right). Figure 6a (left) shows the number of correctly formatted 1’s the LM generates over the course
 391 of training. We see that for naive KL regularization (grey), across a range of β ’s and seeds, all but one
 392 run collapse into generating only a single answer as a result of RL, and most collapse into generating
 393 1’s, which has higher likelihood under the base policy. MARA (blue), on the other hand, is able
 394 to preserve the diversity in the correct answers, with many runs learning to generate 1’s and 2’s
 395 with near uniform probability, while still learning to generate with the correct format (Figure 6a,
 396 middle). Further, the Pareto front of model checkpoints at different points in training shows that
 397 for both reverse and forward KL regularization, MARA is able to match vanilla training in terms of
 398 correctness, while exceeding vanilla training in terms of generation diversity.

Figure 6: Performance on verifiable task with multiple solutions, against both reverse & forward KL. MARA (blue) is compared against baseline GRPO (grey) at different β ’s (KL coef).

6.2 CREATIVE QUESTION ANSWERING FOR CHAT LLM

We test MARA in a non-verifiable alignment task. We train Qwen3-1.7B on a subset of WildChat text (Zhao et al., 2024), using a parametric reward model (Skywork-Reward-V2-Qwen3-4B). We evaluate the model on a curated test set (Zhang et al., 2025) and report both the training reward (In dist Reward), and test set reward from a different reward model (Out dist Reward, using Skywork-Reward-Gemma-2-27B-v0.2). We also report diversity metrics in terms of n-grams (Ngrams), semantic embeddings (Semantic Div), and “distinct functional classes” (Mean Distinct). See Appendix C.3 for more details. Here, MARA is used as a drop-in replacement in an RLOO style algorithm (Ranganath, 2017; Kool et al., 2020; Ahmadian et al., 2024).

As the reward function range is not known beforehand, we set τ on a per-batch basis as the 90th percentile reward of each batch (we ablate this in Appendix Table 5 to find that lowering the percentile decreases performance slightly, but nevertheless remains competitive). We compare against regular RL training, and a number of diversity-promoting baselines including entropy regularization (Entropy), rewarding the unlikely (Unlikely, He et al. 2025), best-of-N training (BoN Training, Tang et al. 2025), and weight ensembling (Ensemble, Dang et al. 2025). We see MARA out-performs all baselines in terms of out-of-distribution rewards, and all-but-one diversity metrics (Table 1).

Model	In-dist. Reward (\uparrow)	Out-dist. Reward (\uparrow)	Ngrams EAD (\uparrow)	Semantic Div (\uparrow)	Mean Distinct (\uparrow)
Base Model	10.94	1.166 ± 0.076	0.413 ± 0.015	0.220 ± 0.009	4.01 ± 0.254
GRPO	14.80	1.317 ± 0.102	0.497 ± 0.014	0.193 ± 0.009	3.96 ± 0.249
RLOO	15.56	1.280 ± 0.100	0.514 ± 0.014	0.192 ± 0.008	3.88 ± 0.243
Entropy	1.44	0.786 ± 0.073	0.267 ± 0.009	0.228 ± 0.009	3.45 ± 0.193
Unlikely	10.04	1.381 ± 0.114	0.532 ± 0.015	0.191 ± 0.008	4.24 ± 0.239
BoN Training	16.88	0.596 ± 0.055	0.541 ± 0.010	0.162 ± 0.008	2.29 ± 0.173
Ensemble	—	1.143 ± 0.086	0.438 ± 0.014	0.211 ± 0.010	4.19 ± 0.269
MARA (rev)	15.42	1.451 ± 0.103	0.543 ± 0.014	0.186 ± 0.008	4.14 ± 0.233
MARA (fwd)	15.33	1.604 ± 0.113	0.568 ± 0.012	0.193 ± 0.009	4.62 ± 0.258

Table 1: Performance on non-verifiable creative task. Mean \pm bootstrap SEM.

6.3 DRUG DISCOVERY WITH CHEMICAL LANGUAGE MODELS

Finally, we apply MARA to a distinctively different domain where diversity and quality is crucial: drug discovery. Chemical language models (CLMs) have seen success in discovering molecules in clinical trials. We adapt two realistic reward functions from Guo et al. (2025b): SYNTH and ALL-AMIDE that jointly reward binding potency and synthesizability. The core CLM optimization problem is also a regularized RL problem: maximize expected reward, while staying close to a pretrained “prior” model to ensure chemical validity. Unlike the traditional RL setting, CLMs are evaluated based on their ability to generate *unique* molecules (Yield) given a *fixed* number of reward function evaluations (which are expensive simulations and/or experiments), making diversity an essential quality for any performant CLMs. The REINVENT algorithm (Olivecrona et al., 2017; Guo & Schwaller, 2024b) is a state-of-the-art RL-based method on standard benchmarks (Gao et al., 2022). It optimizes the following objective,

$$\mathcal{L}(\theta) = - \left[\log \pi_\theta(y) - (\log \pi_{\text{ref}}(y) + \sigma R(y)) \right]^2, \quad y \sim \pi_\theta. \quad (12)$$

which is equivalent to KL-regularized reward maximization. We apply MARA as a *drop-in replacement* to its rewards. Additional evaluation details are in Appendix C.5.

Table 2 shows MARA consistently results in higher average Yield (number of *unique* high-reward molecules discovered), and lower OB100 (efficiency in finding high-reward molecules, measured by reward function calls). The screening level (Screen) is the reward threshold above which we accept discovered molecules. Setting MARA’s τ equal to the screening level always results in the highest yield, consistent with MARA’s target distribution having uniform density in areas where $R(y) > \tau$. Going further, we also assess “global” diversity (which MARA does not explicitly optimize for) in terms of IntDiv1 and #Circles. Both define more macroscopic differences based on molecular sub-structures. We find MARA is competitive with the baseline here. Overall, we see MARA further boosts REINVENT’s optimization efficiency, while maintaining diversity.

7 CONCLUSION

In this work, we provide an in-depth understanding of the KL-regularized RL objective, particularly in terms of its diversity. We summarize the main take-aways below.

- Studying the divergence being *implicitly minimized* between the policy and target distribution, $D(\pi_\theta, G)$, is more meaningful for understanding optimization behaviour than studying the divergence of the regularizer, $D(\pi_\theta, \pi_{\text{ref}})$, alone.

Screen	Algorithm	Yield (\uparrow)	OB100 (\downarrow)	IntDiv1 (\uparrow)	Circles (\uparrow)
0.80	REINVENT	6569 ± 186	1042 ± 66	0.766 ± 0.011	67 ± 3
	MARA ($\tau=0.80$)	6834 ± 78	1015 ± 55	0.761 ± 0.009	59 ± 8
	MARA ($\tau=0.85$)	6584 ± 231	1042 ± 66	0.761 ± 0.008	72 ± 6
0.85	REINVENT	1614 ± 407	4114 ± 109	0.701 ± 0.018	7 ± 1
	MARA ($\tau=0.80$)	1796 ± 210	3654 ± 272	0.716 ± 0.015	6 ± 1
	MARA ($\tau=0.85$)	2196 ± 394	4010 ± 297	0.703 ± 0.011	7 ± 1

(a) SYNTH task

Screen	Algorithm	Yield (\uparrow)	OB100 (\downarrow)	IntDiv1 (\uparrow)	Circles (\uparrow)
0.80	REINVENT	5433 ± 184	1427 ± 63	0.768 ± 0.012	35 ± 1
	MARA ($\tau=0.80$)	5635 ± 249	1407 ± 123	0.766 ± 0.008	36 ± 3
	MARA ($\tau=0.85$)	5502 ± 309	1426 ± 63	0.769 ± 0.006	34 ± 3
0.85	REINVENT	1098 ± 88	4360 ± 257	0.721 ± 0.016	8 ± 1
	MARA ($\tau=0.80$)	1235 ± 130	3943 ± 303	0.733 ± 0.009	8 ± 1
	MARA ($\tau=0.85$)	1438 ± 126	4230 ± 401	0.725 ± 0.008	8 ± 1

(b) ALL-AMIDE task

Table 2: Results for different tasks and screening levels (Screen, higher meaning more strict) for two challenging drug discovery tasks. Error bars (\pm) denote standard deviation over 5 independent seeds. Bold indicates if the performance is statistically significantly better than the alternative method for that screening level (one-sided student’s t-test, $p < 0.05$).

- The regularizer, β , and reward function together define the *target distribution* which π_θ optimizes towards. Forward and reverse KL regularizers define different target distributions.
- For common hyperparameters and reward functions used in practice, the target distribution is often *defined to be unimodal*. Thus, perfectly solving the regularized RL objective yields non-diverse optimal policy distributions.
- This diversity loss can be fixed by instead defining multimodal target distributions, such as through dynamically augmenting the reward via MARA.

There are a number of exciting future directions to improve MARA. For one, MARA requires setting τ (the reward threshold above which the target distribution puts uniform probability mass). The choice of τ is obvious in some settings (Section 6.1 & 6.3), but is a hyperparameter in settings with unbounded reward functions and unknown a priori thresholds (Section 6.2). We found that setting batch-specific τ helps, but better approaches may be possible. It should be noted that setting an *overly high* τ is harmless: if no samples meet the τ threshold, the MARA mechanism does not kick in, and learning reduces to standard RL.

Further, MARA shapes the target distribution to have multimodality, but does not guarantee faster convergence to the target. Having general algorithms to more efficiently reach the target, *or* to guarantee distributional properties (e.g. multimodality) at sub-optimality, would be of general importance and complement MARA’s target distribution. Further, MARA introduces *one* such target distribution which places uniform mass at regions where $R(y) \geq \tau$. This may not be an optimal choice for all tasks, and considering alternative mode-preserving target distributions can be interesting future work. All in all, we emphasize that regularized RL—as commonly used for generative model training—is inherently a distribution matching problem and should be viewed as such. Rather than relying on intuitions (e.g. about regularizers), we should directly specify distributions with properties we wish to have as the target of policy optimization.

REPRODUCIBILITY STATEMENT

We use open-source, publicly available libraries for all experimental code. Didactic experiments are constructed in PyTorch (Paszke et al., 2019). Reinforcement learning on LLM training is done using the nano-aha-moment (Kazemnejad et al., 2025) and verl (<https://github.com>)

540 [volcengine/ver1](https://github.com/volcengine/ver1)) github repos. Chemical language model experiments use the official `saturn`
 541 github repo ([Guo & Schwaller, 2024b](#)). We provide detailed experimental information in [Appendix C](#).
 542 Pseudo-code is provided in [Algorithm 1](#) and [Algorithm 2](#).
 543

544 REFERENCES

546 Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos Garea, Matthieu
 547 Geist, and Olivier Bachem. On-policy distillation of language models: Learning from self-
 548 generated mistakes. In *The twelfth international conference on learning representations*, 2024.

549 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
 550 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning
 551 from human feedback in llms. *arXiv preprint arXiv:2402.14740*, 2024.

553 Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast, accurate,
 554 and reliable molecular docking with quickvina 2. *Bioinformatics*, 31(13):2214–2216, 2015.

555 Eser Aygün, Anastasiya Belyaeva, Gheorghe Comanici, Marc Coram, Hao Cui, Jake Garrison, Renee
 556 Johnston Anton Kast, Cory Y McLean, Peter Norgaard, Zahra Shamsi, et al. An ai system to help
 557 scientists write expert-level empirical software. *arXiv preprint arXiv:2509.06503*, 2025.

559 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
 560 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
 561 human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp.
 562 4447–4455. PMLR, 2024.

563 G Richard Bickerton, Gaia V Paolini, Jérémie Besnard, Sorel Muresan, and Andrew L Hopkins.
 564 Quantifying the chemical beauty of drugs. *Nature chemistry*, 4(2):90–98, 2012.

565 Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, volume 4.
 566 Springer, 2006.

568 Esben Jannik Bjerrum. Smiles enumeration as data augmentation for neural network modeling of
 569 molecules. *arXiv preprint arXiv:1703.07076*, 2017.

571 David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
 572 *Journal of the American statistical Association*, 112(518):859–877, 2017.

573 Dean G Brown and Jonas Bostrom. Analysis of past and present synthetic methodologies on medicinal
 574 chemistry: where have all the new reactions gone? miniperspective. *Journal of medicinal chemistry*,
 575 59(10):4443–4458, 2016.

576 Pablo Samuel Castro, Nenad Tomasev, Ankit Anand, Navodita Sharma, Rishika Mohanta, Aparna
 577 Dev, Kuba Perlin, Siddhant Jain, Kyle Levin, Noémi Éltető, et al. Discovering symbolic cognitive
 578 models from human and animal behavior. *bioRxiv*, pp. 2025–02, 2025.

580 Binghong Chen, Chengtao Li, Hanjun Dai, and Le Song. Retro*: learning retrosynthetic planning
 581 with neural guided a* search. In *International conference on machine learning*, pp. 1608–1616.
 582 PMLR, 2020.

583 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and Furu
 584 Wei. Reasoning with exploration: An entropy perspective. *arXiv preprint arXiv:2506.14758*, 2025.

585 John Joon Young Chung, Vishakh Padmakumar, Melissa Roemmele, Yuqian Sun, and Max Kreminski.
 586 Modifying large language model post-training for diverse creative writing. *arXiv preprint
 587 arXiv:2503.17126*, 2025.

589 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
 590 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
 591 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.

593 Xingyu Dang, Christina Baek, Kaiyue Wen, Zico Kolter, and Aditi Raghunathan. Weight ensembling
 594 improves reasoning in language models. *arXiv preprint arXiv:2504.10478*, 2025.

594 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
 595 Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
 596 foundation model alignment. *arXiv preprint arXiv:2304.06767*, 2023.

597

598 Yuanqi Du, Arian R Jamasb, Jeff Guo, Tianfan Fu, Charles Harris, Yingheng Wang, Chenru Duan,
 599 Pietro Liò, Philippe Schwaller, and Tom L Blundell. Machine learning-aided generative molecular
 600 design. *Nature Machine Intelligence*, pp. 1–16, 2024.

601 Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: a benchmark
 602 for practical molecular optimization. *Advances in neural information processing systems*, 35:
 603 21342–21357, 2022.

604

605 I. M. Gelfand and S. V. Fomin. *Calculus of Variations*. Selected Russian Publications in the
 606 Mathematical Sciences. Prentice-Hall, Englewood Cliffs, N.J., 1963. Revised English edition.

607

608 Dongyoung Go, Tomasz Korbak, Germán Kruszewski, Jos Rozen, Nahyeon Ryu, and Marc Dymet-
 609 man. Aligning language models with preferences through f-divergence minimization. *arXiv*
 610 *preprint arXiv:2302.08215*, 2023.

611 Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis Antonoglou,
 612 and Rémi Munos. Monte-carlo tree search as regularized policy optimization. In *International
 613 Conference on Machine Learning*, pp. 3769–3778. PMLR, 2020.

614

615 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Peiyi Wang, Qihao Zhu, Runxin Xu, Ruoyu
 616 Zhang, Shirong Ma, Xiao Bi, et al. Deepseek-r1 incentivizes reasoning in llms through reinforce-
 617 ment learning. *Nature*, 645(8081):633–638, 2025a.

618 Jeff Guo and Philippe Schwaller. Augmented memory: Sample-efficient generative molecular design
 619 with reinforcement learning. *JACS Au*, 2024a.

620

621 Jeff Guo and Philippe Schwaller. Saturn: Sample-efficient generative molecular design using memory
 622 manipulation. *arXiv preprint arXiv:2405.17066*, 2024b.

623

624 Jeff Guo, Víctor Sabanza-Gil, Zlatko Jončev, Jeremy S Luterbacher, and Philippe Schwaller. Gen-
 625 erative molecular design with steerable and granular synthesizability control. *arXiv preprint
 626 arXiv:2505.08774*, 2025b.

627

628 Anthony GX-Chen, Dongyan Lin, Mandana Samiei, Doina Precup, Blake Aaron Richards, Rob
 629 Fergus, and Kenneth Marino. Language agents mirror human causal reasoning biases. how can we
 help them think like scientists? In *Second Conference on Language Modeling*, 2025.

630

631 Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
 632 deep energy-based policies. In *International conference on machine learning*, pp. 1352–1361.
 633 PMLR, 2017.

634

635 Jubayer Ibn Hamid, Ifdita Hasan Orney, Ellen Xu, Chelsea Finn, and Dorsa Sadigh. Polychromic
 636 objectives for reinforcement learning. *arXiv preprint arXiv:2509.25424*, 2025.

637

638 Andre He, Daniel Fried, and Sean Welleck. Rewarding the unlikely: Lifting grp beyond distribution
 639 sharpening. *arXiv preprint arXiv:2506.02355*, 2025.

640

641 Aspen K Hopkins, Alex Renda, and Michael Carbin. Can LLMs generate random numbers? evaluat-
 642 ing LLM sampling in controlled domains. In *ICML 2023 Workshop: Sampling and Optimization
 643 in Discrete Space*, 2023. URL <https://openreview.net/forum?id=Vhh1K9LjVI>.

644

645 Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
 646 and Nikolay Malkin. Amortizing intractable inference in large language models. *arXiv preprint
 647 arXiv:2310.04363*, 2023.

648

649 Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
 650 dan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
 651 mechanism. *arXiv preprint arXiv:2412.01951*, 2024.

648 Shiyu Huang, Hang Su, Jun Zhu, and Ting Chen. Svqn: Sequential variational soft q-learning
 649 networks. In *International Conference on Learning Representations*, 2019.
 650

651 Mete Ismayilzada, Antonio Laverghetta Jr, Simone A Luchini, Reet Patel, Antoine Bosselut, Lonneke
 652 van der Plas, and Roger Beaty. Creative preference optimization. *arXiv preprint arXiv:2505.14442*,
 653 2025.

654 Yash Jhaveri, Harley Wiltzer, Patrick Shafto, Marc G Bellemare, and David Meger. Conver-
 655 gence theorems for entropy-regularized and distributional reinforcement learning. *arXiv preprint*
 656 *arXiv:2510.08526*, 2025.

657

658 Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to
 659 variational methods for graphical models. *Machine learning*, 37(2):183–233, 1999.

660

661 Amirhossein Kazemnejad, Milad Aghajohari, Alessandro Sordoni, Aaron Courville, and Siva Reddy.
 662 Nano aha! moment: Single file "rl for llm" library. <https://github.com/McGill-NLP/nano-aha-moment>, 2025. GitHub repository.

663

664 Peter W Kenny. Hydrogen-bond donors in drug design. *Journal of medicinal chemistry*, 65(21):
 665 14261–14275, 2022.

666

667 Muhammad Khalifa, Hady Elsahar, and Marc Dymetman. A distributional approach to controlled
 668 text generation. *arXiv preprint arXiv:2012.11635*, 2020.

669

670 Robert Kirk, Ishita Mediratta, Christoforos Nalpantis, Jelena Luketina, Eric Hambro, Edward
 671 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
 672 diversity. *arXiv preprint arXiv:2310.06452*, 2023.

673

674 Wouter Kool, Herke van Hoof, and Max Welling. Estimating gradients for discrete random variables
 675 by sampling without replacement. *arXiv preprint arXiv:2002.06043*, 2020.

676

677 Tomasz Korbak, Hady Elsahar, Germán Kruszewski, and Marc Dymetman. On reinforcement
 678 learning and distribution matching for fine-tuning language models with no catastrophic forgetting.
Advances in Neural Information Processing Systems, 35:16203–16220, 2022.

679

680 Solomon Kullback and Richard A Leibler. On information and sufficiency. *The annals of mathemati-
 681 cal statistics*, 22(1):79–86, 1951.

682

683 Oh Joon Kwon, Daiki E Matsunaga, and Kee-Eung Kim. Gdpo: Learning to directly align language
 684 models with diversity using gflownets. *arXiv preprint arXiv:2410.15096*, 2024.

685

686 Jack Lanchantin, Angelica Chen, Shehzaad Dhuliawala, Ping Yu, Jason Weston, Sainbayar
 687 Sukhbaatar, and Ilia Kulikov. Diverse preference optimization. *arXiv preprint arXiv:2501.18101*,
 688 2025.

689

690 Tianjian Li, Yiming Zhang, Ping Yu, Swarnadeep Saha, Daniel Khashabi, Jason Weston, Jack Lan-
 691 chantin, and Tianlu Wang. Jointly reinforcing diversity and quality in language model generations.
arXiv preprint arXiv:2509.02534, 2025.

692

693 Siyang Liu, Sahand Sabour, Yinhe Zheng, Pei Ke, Xiaoyan Zhu, and Minlie Huang. Rethinking and
 694 refining the distinct metric. *arXiv preprint arXiv:2202.13587*, 2022.

695

696 Mark F Mabanglo, Keith S Wong, Marim M Barghash, Elisa Leung, Stephanie HW Chuang, Afshan
 697 Ardalan, Emily M Majaesic, Cassandra J Wong, Shen Zhang, Henk Lang, et al. Potent clpp
 698 agonists with anticancer properties bind with improved structural complementarity and alter the
 699 mitochondrial n-terminome. *Structure*, 31(2):185–200, 2023.

700

701 Krzysztof Maziarsz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp
 702 Seidl, and Marwin HS Segler. Re-evaluating retrosynthesis algorithms with syntheseus. *Faraday
 703 Discussions*, 256:568–586, 2025.

704

705 Kevin P Murphy. *Machine learning: a probabilistic perspective*. MIT press, 2012.

702 Christian Naesseth, Fredrik Lindsten, and David Blei. Markovian score climbing: Variational
 703 inference with $\text{kl}(\text{p} \parallel \text{q})$. *Advances in Neural Information Processing Systems*, 33:15499–15510,
 704 2020.

705 Alexander Novikov, Ngn V, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
 706 ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphae-
 707 volve: A coding agent for scientific and algorithmic discovery. *arXiv preprint arXiv:2506.13131*,
 708 2025.

709 Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
 710 design through deep reinforcement learning. *Journal of cheminformatics*, 9:1–14, 2017.

711 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 712 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 713 instructions with human feedback. *Advances in neural information processing systems*, 35:27730–
 714 27744, 2022.

715 Laura O’Mahony, Leo Grinsztajn, Hailey Schoelkopf, and Stella Biderman. Attributing mode
 716 collapse in the fine-tuning of large language models. In *ICLR 2024 Workshop on Mathematical
 717 and Empirical Understanding of Foundation Models*, volume 2, 2024.

718 Sven Michael Papidoch, Andreas Burger, Varinia Bernales, and Aln Aspuru-Guzik. The elephant
 719 in the lab: Synthesizability in generative small-molecule design. *ChemRxiv*, 2025.

720 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 721 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 722 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 723 2019.

724 Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov, Oktai
 725 Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy, Mark
 726 Veselov, et al. Molecular sets (moses): a benchmarking platform for molecular generation models.
 727 *Frontiers in pharmacology*, 11:565644, 2020.

728 Martin L Puterman. Markov decision processes: Discrete stochastic dynamic programming, 1994.

729 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and
 730 Chelsea Finn. Direct Preference Optimization: Your Language Model is Secretly a Re-
 731 ward Model. *Advances in Neural Information Processing Systems*, 36:53728–53741, De-
 732 cember 2023. URL https://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html.

733 Rajesh Ranganath. *Black Box variational inference: Scalable, generic Bayesian computation and its
 734 applications*. PhD thesis, Princeton University, 2017.

735 Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In *Artificial
 736 intelligence and statistics*, pp. 814–822. PMLR, 2014.

737 Christian P Robert, George Casella, and George Casella. *Monte Carlo statistical methods*, volume 2.
 738 Springer, 1999.

739 Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
 740 M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
 741 Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
 742 *Nature*, 625(7995):468–475, 2024.

743 Mikoaj Sacha, Mikoaj Baz, Piotr Byrski, Pawel Dabrowski-Tumanski, Mikoaj Chrominski, Rafa
 744 Loska, Pawel Wodarczyk-Pruszyński, and Stanisaw Jastrzebski. Molecule edit graph atten-
 745 tion network: modeling chemical reactions as sequences of graph edits. *Journal of Chemical
 746 Information and Modeling*, 61(7):3273–3284, 2021.

747 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 748 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
 749 ical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

756 Alexander Shypula, Shuo Li, Botong Zhang, Vishakh Padmakumar, Kayo Yin, and Osbert Bastani.
 757 Evaluating the diversity and quality of llm generated content. *arXiv preprint arXiv:2504.12522*,
 758 2025.

759 Yuda Song, Julia Kempe, and Remi Munos. Outcome-based exploration for llm reasoning. *arXiv*
 760 *preprint arXiv:2509.06941*, 2025.

762 Megan Stanley and Marwin Segler. Fake it until you make it? generative de novo design and virtual
 763 screening of synthesizable molecules. *Current Opinion in Structural Biology*, 82:102658, 2023.

765 Anja Surina, Amin Mansouri, Lars Quaedvlieg, Amal Seddas, Maryna Viazovska, Emmanuel Abbe,
 766 and Caglar Gulcehre. Algorithm discovery with llms: Evolutionary search meets reinforcement
 767 learning. *arXiv preprint arXiv:2504.05108*, 2025.

768 Shidi Tang, Ji Ding, Xiangyu Zhu, Zheng Wang, Haitao Zhao, and Jiansheng Wu. Vina-gpu 2.1:
 769 towards further optimizing docking speed and precision of autodock vina and its derivatives.
 770 *IEEE/ACM Transactions on Computational Biology and Bioinformatics*, 2024.

772 Yunhao Tang and Rémi Munos. On a few pitfalls in kl divergence gradient estimation for rl. *arXiv*
 773 *preprint arXiv:2506.09477*, 2025.

774 Yunhao Tang, Kunhao Zheng, Gabriel Synnaeve, and Rémi Munos. Optimizing language models for
 775 inference time objectives using reinforcement learning. *arXiv preprint arXiv:2503.19595*, 2025.

777 Daniil Tiapkin, Nikita Morozov, Alexey Naumov, and Dmitry P Vetrov. Generative flow networks
 778 as entropy-regularized rl. In *International Conference on Artificial Intelligence and Statistics*, pp.
 779 4213–4221. PMLR, 2024.

780 Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking with
 781 a new scoring function, efficient optimization, and multithreading. *Journal of computational*
 782 *chemistry*, 31(2):455–461, 2010.

784 Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl: Gen-
 785 eralizing direct preference optimization with diverse divergence constraints. *arXiv preprint*
 786 *arXiv:2309.16240*, 2023.

787 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 788 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 789 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025.

791 David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
 792 ogy and encoding rules. *Journal of chemical information and computer sciences*, 28(1):31–36,
 793 1988.

794 Peter West and Christopher Potts. Base models beat aligned models at randomness and creativity.
 795 *arXiv preprint arXiv:2505.00047*, 2025.

797 Yutong Xie, Ziqiao Xu, Jiaqi Ma, and Qiaozhu Mei. How much space has been explored? measur-
 798 ing the chemical space covered by databases and machine-generated molecules. In *Proc. 11th*
 799 *International Conference on Learning Representations*, 2023.

800 Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
 801 Zhang, Caiming Xiong, and Hanze Dong. A minimalist approach to llm reasoning: from rejection
 802 sampling to reinforce. *arXiv preprint arXiv:2504.11343*, 2025.

804 Chenghao Yang and Ari Holtzman. How alignment shrinks the generative horizon. *arXiv preprint*
 805 *arXiv:2506.17871*, 2025.

806 Jian Yao, Ran Cheng, Xingyu Wu, Jibin Wu, and Kay Chen Tan. Diversity-aware policy optimization
 807 for large language model reasoning. *arXiv preprint arXiv:2505.23433*, 2025.

809 Longfei Yun, Chenyang An, Zilong Wang, Letian Peng, and Jingbo Shang. The price of format:
 810 Diversity collapse in llms. *arXiv preprint arXiv:2505.18949*, 2025.

810 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
811 reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.
812

813 Lily H Zhang and Rajesh Ranganath. Preference learning made easy: Everything should be understood
814 through win rate. *arXiv preprint arXiv:2502.10505*, 2025.
815

816 Yiming Zhang, Harshita Diddee, Susan Holm, Hanchen Liu, Xinyue Liu, Vinay Samuel, Barry Wang,
817 and Daphne Ippolito. Noveltybench: Evaluating language models for humanlike diversity. *arXiv*
818 *preprint arXiv:2504.05228*, 2025.
819

820 Rosie Zhao, Alexandru Meterez, Sham Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran Malach.
821 Echo chamber: RL post-training amplifies behaviors learned in pretraining. *arXiv preprint*
822 *arXiv:2504.07912*, 2025.
823

824 Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat:
825 1m chatGPT interaction logs in the wild. In *The Twelfth International Conference on Learning*
826 *Representations*, 2024. URL <https://openreview.net/forum?id=B18u7ZRlbM>.
827

828 Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
829 reinforcement learning. In *Aaai*, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.
830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A RELATED WORK
865

866 **Entropy collapse in RL** There is a growing line of empirical works observing RL training collapses
867 the diversity in generation output of the resulting post-trained policy (Kirk et al., 2023; Huang et al.,
868 2024; O’Mahony et al., 2024; Cui et al., 2025; Yang & Holtzman, 2025; Yun et al., 2025; Shypula
869 et al., 2025; West & Potts, 2025; Zhao et al., 2025; Dang et al., 2025; Song et al., 2025), such as
870 in formats (Zhao et al., 2025), random generation and creativity (West & Potts, 2025), as well as
871 exploration and reasoning (Cui et al., 2025; Dang et al., 2025; Song et al., 2025). The observations
872 have mostly been empirical.

873 A few attempts have been made to theoretically understand entropy collapse. Cui et al. (2025)
874 analyzes what per-step policy gradient (approximately) does to the entropy of a tabular softmax
875 policy, and finds that entropy decreases if there is a strong positive correlation between the
876 action probabilities and corresponding advantage values. Dang et al. (2025) analyzes a special case
877 of multi-arm bandits with K equally good arms and a bad arm, and finds that the optimal probabilities
878 correspond to the re-normalized reference probabilities of just the good arms. We note this is a special
879 case of our Remark 4.3.

880 Generally speaking, entropy preservation via regularization is often referred to as “max entropy RL”,
881 with numerous seminal and ongoing works (Ziebart et al., 2008; Haarnoja et al., 2017; Huang et al.,
882 2019). Our analysis contributes to further understanding of this setting by shedding light on the
883 multimodality of the target distribution when doing entropy regularization.

884 **Training for diversity** A number of attempts have been made to empirically address entropy
885 collapse. Wang et al. (2023) generalizes the DPO objective (Rafailov et al., 2023) from reverse-KL
886 regularized to a more general class of f -divergence regularizers, with the key motivation being that
887 reverse-KL can be mode-seeking, therefore reduce diversity. We argue in this work that the full story
888 is more nuanced and is better analyzed through the *target distribution*. Cui et al. (2025) proposes
889 to directly regularize the update of high-covariance tokens. Cheng et al. (2025) incorporates an
890 entropy term in the advantage to encourage better reasoning. Wang et al. (2025) show that focusing
891 gradient updates on a minority of high-entropy “forking” tokens can improve reasoning. He et al.
892 (2025) proposes a rank-based “unlikeness” reward, where more likely samples (under current policy)
893 receives a larger multiplicative penalty to the reward. Similarly, Yao et al. (2025) uses token entropy
894 to encourage diversity. Song et al. (2025) proposes a count-based exploration bonus that more highly
895 rewards less frequently seen outcomes (in previous samples), and Hamid et al. (2025) proposes a
896 similar batch-wise reward. Dang et al. (2025) found that combining weights of earlier and later
897 checkpoints can improve pass@k performance—one specific measure of diversity.

898 A number of works attempt to directly optimize for diversity. This relies on the existence of additional
899 information that tells us if two samples are different and by how much. In this vein, diverse DPO
900 Lanchantin et al. (2025) and variants (Chung et al., 2025; Ismayilzada et al., 2025) encourage diversity
901 in preference learning by selecting diverse positives/negatives. Similarly related is Li et al. (2025),
902 which use an external model to evaluate diversity (via a semantic classifier) and use the diversity
903 metric to modify the reward. Hamid et al. (2025) proposes to optimize a batch-level objective that is
904 modified by a diversity function. We do not require an external model to evaluate diversity.

905 In the unregularized setting, Jhaveri et al. (2025) optimizes for an unregularized policy with specific
906 distributional properties. More distantly, GFlowNets also provide diversity-seeking policies that are
907 specifically designed to sample proportionally to reward, albeit they use different algorithms than the
908 KL-regularized policy gradient which is the most commonly used algorithm for LM post-training
909 (Hu et al., 2023; Kwon et al., 2024; Tiapkin et al., 2024).

910
911 B MATHEMATICAL DERIVATIONS
912913 B.1 TARGET DISTRIBUTION OF REVERSE-KL REWARD MAXIMIZATION
914

915 **Proof of Remark 3.1** We provide a proof for the maximizer of the generalized reverse-KL and
916 entropy regularized reward maximization objective,

$$J_{\beta, \eta}(\pi_\theta) = \mathbb{E}_{\pi_\theta(y)}[R(y)] - \beta D_{KL}(\pi_\theta || \pi_{\text{ref}}) + \eta H(\pi_\theta). \quad (13)$$

918 The solution $\arg \max_{\pi_\theta} J_{\beta, \eta}$ has the un-normalized form,
 919

$$920 \quad 921 \quad 922 \quad 923 \quad 924 \quad 925 \quad 926 \quad 927 \quad 928 \quad 929 \quad 930 \quad 931 \quad 932 \quad 933 \quad 934 \quad 935 \quad 936 \quad 937 \quad 938 \quad 939 \quad 940 \quad 941 \quad 942 \quad 943 \quad 944 \quad 945 \quad 946 \quad 947 \quad 948 \quad 949 \quad 950 \quad 951 \quad 952 \quad 953 \quad 954 \quad 955 \quad 956 \quad 957 \quad 958 \quad 959 \quad 960 \quad 961 \quad 962 \quad 963 \quad 964 \quad 965 \quad 966 \quad 967 \quad 968 \quad 969 \quad 970 \quad 971 \quad 972 \quad 973 \quad 974 \quad 975 \quad 976 \quad 977 \quad 978 \quad 979 \quad 980 \quad 981 \quad 982 \quad 983 \quad 984 \quad 985 \quad 986 \quad 987 \quad 988 \quad 989 \quad 990 \quad 991 \quad 992 \quad 993 \quad 994 \quad 995 \quad 996 \quad 997 \quad 998 \quad 999 \quad 1000$$

$$G_{\beta, \eta}(y) \propto g_{\beta, \eta}(y) = \pi_{\text{ref}}(y)^{\frac{\beta}{\beta + \eta}} \exp\left(\frac{R(y)}{\beta + \eta}\right). \quad (14)$$

Proof.

$$J_{\beta, \eta}(\pi_\theta) = \mathbb{E}_{\pi_\theta(y)} \left[R(y) - \beta (\log \pi_\theta(y) - \log \pi_{\text{ref}}(y)) - \eta \log \pi_\theta(y) \right], \quad (15)$$

$$= -(\beta + \eta) \mathbb{E}_{\pi_\theta(y)} \left[\log \pi_\theta(y) - \left(\frac{R(y)}{\beta + \eta} + \frac{\beta}{\beta + \eta} \log \pi_{\text{ref}}(y) \right) \right], \quad (16)$$

$$= -(\beta + \eta) \mathbb{E}_{\pi_\theta(y)} \left[\log \pi_\theta(y) - \log \pi_{\text{ref}}(y)^{\frac{\beta}{\beta + \eta}} \exp\left(\frac{R(y)}{\beta + \eta}\right) \right], \quad (17)$$

$$= -(\beta + \eta) \mathbb{E}_{\pi_\theta(y)} \left[\log \pi_\theta(y) - \log G_{\beta, \eta}(y) \right] + (\beta + \eta) \log \zeta_{\beta, \eta}, \quad (18)$$

$$= -(\beta + \eta) D_{KL}(\pi_\theta || G_{\beta, \eta}) + (\beta + \eta) \log \zeta_{\beta, \eta}, \quad (19)$$

where $\zeta_{\beta, \eta} = \int g_{\beta, \eta}(y) dy$. One can see that the above is maximized when $D_{KL}(\pi_\theta || G_{\beta, \eta}) = 0$, which occurs when $\pi_\theta = G_{\beta, \eta}$. \square

Intuitively, one can see the entropy regularizer η as playing the role of “tempering” the reference distribution π_{ref} (larger η drives π_{ref} to become more uniform), while both β and η lower the reward’s effect on the target distribution. For the **KL-only case** ($\eta = 0$), the target distribution becomes,

$$G_\beta(y) \propto \pi_{\text{ref}}(y) \exp\left(\frac{R(y)}{\beta}\right), \quad (20)$$

which is the stated result in Remark 3.1. In the **entropy-only case** ($\beta = 0$), the solution is,

$$G_\eta(y) \propto \exp\left(\frac{R(y)}{\eta}\right). \quad (21)$$

All in all, both coefficients play a role in parameterizing the *shape* of the optimal distribution for the regularized RL problem.

B.2 GRADIENT OF REVERSE-KL REWARD MAXIMIZATION

Proof of Remark 3.2 From Appendix B.1, we have the identity,

$$-\frac{1}{\beta} J_\beta(\pi_\theta) = D_{KL}(\pi_\theta || G_\beta) - \log \zeta. \quad (22)$$

We can easily show that the gradient is,

$$\nabla_\theta \left(-\frac{1}{\beta} J_\beta(\pi_\theta) \right) = \nabla_\theta D_{KL}(\pi_\theta || G_\beta) - \nabla_\theta \log \zeta, \quad (23)$$

$$= \nabla_\theta D_{KL}(\pi_\theta || G_\beta). \quad (24)$$

In other words, they are the same up to constant $-\beta$,

$$\nabla_\theta J_\beta(\pi_\theta) = -\beta \nabla_\theta D_{KL}(\pi_\theta || G_\beta). \quad (25)$$

B.3 TARGET DISTRIBUTION OF FORWARD-KL REWARD MAXIMIZATION

We are interested in finding the distribution $\pi_\theta = G_{\text{fwd}}$ which maximizes,

$$J_{\text{fwd}}(\pi_\theta) = \mathbb{E}_{\pi_\theta(y)} [R(y)] - \beta D_{KL}(\pi_{\text{ref}} || \pi_\theta). \quad (26)$$

Note we can simplify the expression to only terms that depend on π_θ ,

$$\arg \max_{\pi_\theta} J_{\text{fwd}}(\pi_\theta) = \arg \max_{\pi_\theta} \mathbb{E}_{\pi_\theta} [R(y)] - \beta D_{KL}(\pi_{\text{ref}} || \pi_\theta), \quad (27)$$

$$= \arg \max_{\pi_\theta} \int \pi_\theta(y) R(y) + \beta \pi_{\text{ref}}(y) \log \pi_\theta(y) dy + \text{const.} \quad (28)$$

Remark B.1. Assuming the reward is finite and has maximum value R_{\max} . If any on-support answer(s) have $R(y) = R_{\max}$, $y \in \text{supp}(\pi_{\text{ref}})$, the optimal distribution maximizing J_{fwd} will put zero mass outside of $\text{supp}(\pi_{\text{ref}})$.

Proof. Let \mathbf{M} be the set of on-support, max reward answers: \mathbf{M} if $R(y) = R_{\max}$, and $\mathbf{M} \subseteq \text{supp}(\pi_{\text{ref}})$. We can generically write any distribution π that puts non-zero mass outside of $\text{supp}(\pi_{\text{ref}})$ as,

$$J_{\text{fwd}}(\pi) = C + \int_{\mathbf{M}} \pi(y) R_{\max} + \beta \pi_{\text{ref}}(y) \log \pi(y) dy + \int_{y \notin \text{supp}(\pi_{\text{ref}})} \pi(y) R(y) dy, \quad (29)$$

where C captures the contribution to the objective from the remaining $y \in \text{supp}(\pi_{\text{ref}})$, $y \notin \mathbf{M}$. Note the forward KL penalty for $y \notin \text{supp}(\pi_{\text{ref}})$ is zero. We show we can always construct an alternative distribution, π' , with mass only inside of $\text{supp}(\pi_{\text{ref}})$ and has strictly higher J_{fwd} . We write,

$$J_{\text{fwd}}(\pi') = C + \int_{\mathbf{M}} (\pi(y) + \alpha(y)) R_{\max} + \beta \pi_{\text{ref}}(y) \log (\pi_{\theta}(y) + \alpha(y)) dy, \quad (30)$$

where α is a function that redistributes the mass outside of $\text{supp}(\pi_{\text{ref}})$ across \mathbf{M} ; $\alpha(y) > 0$, $\int_{y \notin \text{supp}(\pi_{\text{ref}})} \pi(y) dy = \int_{\mathbf{M}} \alpha(y) dy$.

First, we note the reward contribution do not decrease from π (left hand side) to π' (right hand side),

$$\int_{\mathbf{M}} \pi(y) R_{\max} dy + \int_{y \notin \text{supp}(\pi_{\text{ref}})} \pi(y) R(y) dy \leq \int_{\mathbf{M}} \pi(y) R_{\max} dy + \int_{\mathbf{M}} \alpha(y) R_{\max} dy, \quad (31)$$

since $\int_{y \notin \text{supp}(\pi_{\text{ref}})} \pi(y) dy = \int_{\mathbf{M}} \alpha(y) dy$ and $R(y) \leq R_{\max}$.

Second, note the (simplified) KL contribution is strictly larger in π' (right hand side),

$$\int_{\mathbf{M}} \pi_{\text{ref}}(y) \log \pi(y) dy < \int_{\mathbf{M}} \pi_{\text{ref}}(y) \log (\pi(y) + \alpha(y)) dy, \quad (32)$$

since \log is a strictly increasing function, and $\alpha(y) > 0$. Therefore, we have established that,

$$J_{\text{fwd}}(\pi) < J_{\text{fwd}}(\pi'). \quad (33)$$

That is, there always exists a more optimal solution with support solely inside of $\text{supp}(\pi_{\text{ref}})$. \square

Proof of Remark 3.3 Assume the reward R is finite and some samples from within $\text{supp}(\pi_{\text{ref}})$ has $R(y) = R_{\max}$. We optimize with $\beta > 0$ over the restricted feasible set Π , $\pi_{\theta} \in \Pi$, where $\pi(y) > 0$ almost everywhere on $\text{supp}(\pi_{\text{ref}})$ to avoid dividing by zeros.

We write the maximization objective subject to constraints $\int \pi(y) dy = 1$, $\pi(y) \geq 0$ for all y ,

$$\mathcal{L}_J[\pi; \lambda] = \int \pi(y) R(y) + \beta \pi_{\text{ref}}(y) \log \pi(y) dy + \lambda \left(\int \pi(y) dy - 1 \right) + \int \mu(y) \pi(y) dy, \quad (34)$$

$$= \int \pi(y) R(y) + \lambda \pi(y) + \beta \pi_{\text{ref}}(y) \log \pi(y) + \mu(y) \pi(y) dy - \lambda, \quad (35)$$

where at the optimal solution, $\mu(y) \geq 0$ and $\mu(y) \pi(y) = 0$.

We take the Gateaux derivative in any perturbation direction $\varphi(y)$, $\int \varphi(y) dy = 0$, $\pi(y) + \varepsilon \varphi(y) > 0$,

$$d \mathcal{L}_J[\pi; \lambda] = \frac{d}{d\varepsilon} \mathcal{L}_J[\pi + \varepsilon \varphi; \lambda] \Big|_{\varepsilon=0}, \quad (36)$$

Defining $0 \log 0 = 0$ per convention. We first solve,

$$\begin{aligned} \frac{d}{d\varepsilon} \mathcal{L}_J[\pi + \varepsilon \varphi; \lambda] &= \frac{d}{d\varepsilon} \int (\pi(y) + \varepsilon \varphi(y)) R(y) + \lambda(\pi(y) + \varepsilon \varphi(y)) \\ &\quad + \beta \pi_{\text{ref}}(y) \log (\pi(y) + \varepsilon \varphi(y)) \\ &\quad + \mu(y)(\pi(y) + \varepsilon \varphi(y)) dy, \end{aligned} \quad (37)$$

$$= \int \varphi(y) R(y) + \lambda \varphi(y) + \beta \frac{\pi_{\text{ref}}(y) \varphi(y)}{\pi(y) + \varepsilon \varphi(y)} + \mu(y) \varphi(y) dy, \quad (38)$$

$$= \int \varphi(y) \left[R(y) + \lambda + \beta \frac{\pi_{\text{ref}}(y)}{\pi(y) + \varepsilon \varphi(y)} + \mu(y) \right] dy. \quad (39)$$

$$\frac{d}{d\varepsilon} \mathcal{L}_J[\pi + \varepsilon\varphi; \lambda] \Big|_{\varepsilon=0} = \int \varphi(y) \left[R(y) + \lambda + \beta \frac{\pi_{\text{ref}}(y)}{\pi(y)} + \mu(y) \right] dy. \quad (40)$$

Define the functional derivative to be,

$$\frac{\delta}{\delta\pi} \mathcal{L}_J[\pi; \lambda] = R(y) + \lambda + \beta \frac{\pi_{\text{ref}}(y)}{\pi(y)} + \mu(y) \quad (41)$$

To find the optimum π^* which gives $d/d\varepsilon \mathcal{L}_J[\pi + \varepsilon\varphi; \lambda] = 0$ for all φ , the fundamental lemma of the calculus of variations (Gelfand & Fomin (1963), Lemma 1) tells us it would imply $\delta/\delta\pi \mathcal{L}_J[\pi; \lambda] = 0$. Solving for this,

$$R(y) + \lambda + \beta \frac{\pi_{\text{ref}}(y)}{\pi^*(y)} + \mu(y) = 0, \quad (42)$$

$$\Rightarrow \pi^*(y) = \frac{\beta\pi_{\text{ref}}(y)}{-\lambda - R(y) - \mu(y)}, \quad (43)$$

$$\Rightarrow \pi^*(y) = \frac{\beta\pi_{\text{ref}}(y)}{\Lambda - (R(y) + \mu(y))}, \quad \text{define } \Lambda = -\lambda. \quad (44)$$

Per our assumption that some max reward samples are within $\text{supp}(\pi_{\text{ref}})$, Remark B.1 states $\pi^*(y) = 0$ for all $y \notin \text{supp}(\pi_{\text{ref}})$. We can thus ignore the $\pi_{\text{ref}}(y) = 0$ regions. Further observe $\pi_{\text{ref}}(y) > 0$ implies $\pi^*(y) > 0$, thus $\mu(y) = 0$ (per $\pi(y)\mu(y) = 0$). The optimal distribution is therefore,

$$G_{\text{fwd}}(y) = \frac{\beta\pi_{\text{ref}}(y)}{\Lambda - R(y)}, \quad \Lambda > R_{\text{max}}, \quad (45)$$

where Λ is the unique solution to $\int \beta\pi_{\text{ref}}(y)/(\Lambda - R(y)) dy = 1$. To see this solution exists, observe as $\Lambda \rightarrow R_{\text{max}}$, G_{fwd} at this point goes to infinity. On the other hand, as $\Lambda \rightarrow \infty$, all $G_{\text{fwd}} * (y) \rightarrow 0$. By continuity, some Λ exists between R_{max} and ∞ which satisfy normalization to 1.

Note Grill et al. (2020), Appendix B.3 arrives at a similar solution for the setting of discrete action spaces (i.e. π_θ is a vector).

When does G_{fwd} have mass outside of $\text{supp}(\pi_{\text{ref}})$? Interestingly, when regularizing with the forward KL, there are cases where the optimal distribution G_{fwd} puts probability density on regions outside of the support of π_{ref} . First, note that when $\pi_{\text{ref}}(y) = 0$, the KL penalty is zero. We can use this to solve for a simplified version of Equation 42,

$$R(y) + \lambda + \mu(y) = 0, \quad (46)$$

$$\Rightarrow \Lambda = R(y) + \mu(y), \quad \Lambda = -\lambda. \quad (47)$$

This implies a few possible scenarios for regions where $\pi_{\text{ref}}(y) = 0$,

- If $R(y) < \Lambda$, then $\mu(y) > 0$, implying $\pi(y) = 0$ to respect $\mu(y)\pi(y) = 0$,
- If $R(y) = \Lambda$, then $\mu(y) = 0$, meaning $\pi(y)$ can be positive,
- $R(y) > \Lambda$ is impossible, as $\mu(y) \geq 0$.

Denote $R_{\text{max}}^{\text{in}} = \max_{y \in \text{supp}(\pi_{\text{ref}})} R(y)$ as the on-support max reward, and $R_{\text{max}}^{\text{out}} = \max_{y \notin \text{supp}(\pi_{\text{ref}})} R(y)$ as the off-support max reward. Per Remark B.1, G_{fwd} will never leave the support of π_{ref} as long as $R_{\text{max}}^{\text{in}} \geq R_{\text{max}}^{\text{out}}$. We therefore consider the case where better samples can be found outside of $\text{supp}(\pi_{\text{ref}})$, $R_{\text{max}}^{\text{out}} > R_{\text{max}}^{\text{in}}$.

Denote an integral over π_{ref} as,

$$Z(c) = \int_{\text{supp}(\pi_{\text{ref}})} \frac{\beta\pi_{\text{ref}}(y)}{c - R(y)} dy. \quad (48)$$

Now consider the off-support set with constant max rewards: $M' = \{y \notin \text{supp}(\pi_{\text{ref}}) : R(y) = R_{\text{max}}^{\text{out}}\}$. Recall this set has higher reward than anything within the support of π_{ref} , $R_{\text{max}}^{\text{out}} > R_{\text{max}}^{\text{in}}$. If $Z(R_{\text{max}}^{\text{out}}) < 1$, $\Lambda < R_{\text{max}}^{\text{out}}$ violates impossibility of $R(y) > \Lambda$ above, while $\Lambda > R_{\text{max}}^{\text{out}}$ implies no mass can be placed off support, without normalization on-support ($Z(\Lambda) < 1$). Thus, the only valid solution is $\Lambda = R_{\text{max}}^{\text{out}}$, with the leftover $1 - Z(R_{\text{max}}^{\text{out}})$ probability mass allocated to M' . On the other hand, if $Z(R_{\text{max}}^{\text{out}}) \geq 1$, it implies some $\Lambda \geq R_{\text{max}}^{\text{out}}$ exists which normalizes the on-support distribution and no mass is placed off π_{ref} 's support.

1080 B.4 GRADIENT OF FORWARD-KL REGULARIZED REWARD MAXIMIZATION
10811082 **Proof of Remark 3.4** We want to know if optimizing the forward-KL *regularized* RL objective
1083 within the support of π_{ref} is equivalent to optimizing a forward KL divergence. In other words, we
1084 are interested in whether the following gradient,

1085
$$\nabla_{\theta} J_{\text{fwd}}(\pi_{\theta}) = \nabla_{\theta} \left[\mathbb{E}_{\pi_{\theta}(y)}[R(y)] - \beta D_{KL}(\pi_{\text{ref}} || \pi_{\theta}) \right], \quad (49)$$

1086

1087 is a gradient of a forward KL between π_{θ} and *some* target distribution h that is independent of π_{θ} .
1088 We prove by contradiction. Suppose h exists, it follows that the functional derivative of these two
1089 objectives must be equivalent up to proportionality,
1090

1091
$$\frac{\delta}{\delta \pi} J_{\text{fwd}}(\pi) \propto \frac{\delta}{\delta \pi} D_{KL}(h || \pi), \quad (50)$$

1092

1093 where both are subject to constraint $\int \pi(y) dy = 1$.
10941095 We have established from Equation 41 that the functional derivative of J_{fwd} subject to constraint
1096 $\int \pi(y) dy = 1$ is,

1097
$$\frac{\delta}{\delta \pi} \mathcal{L}_J[\pi; \lambda] = R(y) + \beta \frac{\pi_{\text{ref}}(y)}{\pi(y)} + \lambda. \quad (51)$$

1098

1099 To find the functional derivative of the forward-KL, we first write down the forward KL objective
1100 subject to constraint,

1101
$$\mathcal{L}_K[\pi, \lambda'] = D_{KL}(h || \pi) + \lambda' \left(\int \pi(y) dy - 1 \right), \quad (52)$$

1102

1103
$$= \int h(y) \log h(y) - h(y) \log \pi(y) dy + \int \lambda' \pi(y) dy - \lambda', \quad (53)$$

1104

1105
$$= \int \lambda' \pi(y) - h(y) \log \pi(y) dy + \left[\int h(y) \log h(y) dy - \lambda' \right], \quad (54)$$

1106

1107 where the right-hand bracket is independent of π . The Gateaux derivative is,
1108

1109
$$\frac{d}{d\varepsilon} \mathcal{L}_K[\pi + \varepsilon\varphi, \lambda'] = \frac{d}{d\varepsilon} \int \lambda'(\pi(y) + \varepsilon\varphi(y)) - h(y) \log(\pi(y) + \varepsilon\varphi(y)) dy, \quad (55)$$

1110

1111
$$= \int \lambda' \varphi(y) - \frac{h(y)\varphi(y)}{\pi(y) + \varepsilon\varphi(y)} dy. \quad (56)$$

1112

1113
$$\frac{d}{d\varepsilon} \mathcal{L}_K[\pi + \varepsilon\varphi, \lambda'] \Big|_{\varepsilon=0} = \int \varphi(y) \left[\lambda' - \frac{h(y)}{\pi(y)} \right] dy \quad (57)$$

1114

1115 The functional derivative of the forward KL with respect to the right-hand term is therefore,
1116

1117
$$\frac{\delta}{\delta \pi} \mathcal{L}_K[\pi, \lambda'] = \lambda' - \frac{h(y)}{\pi(y)}. \quad (58)$$

1118

1119 Assuming the functional derivative of the two objectives are proportional to each other, we can solve
1120 for the target distribution $h(y)$,
1121

1122
$$\frac{\delta}{\delta \pi} \mathcal{L}_K[\pi, \lambda'] \propto \frac{\delta}{\delta \pi} \mathcal{L}_J[\pi, \lambda], \quad (59)$$

1123

1124
$$\Rightarrow \lambda' - \frac{h(y)}{\pi(y)} = \alpha \left[R(y) + \beta \frac{\pi_{\text{ref}}(y)}{\pi(y)} + \lambda \right], \quad \text{for some constant } \alpha, \quad (60)$$

1125

1126
$$\Rightarrow h(y) = (\lambda' - \alpha\lambda - \alpha R(y))\pi(y) - \alpha\beta\pi_{\text{ref}}(y). \quad (61)$$

1127

1128 Observe one cannot write $h(y)$ independently of $\pi(y)$, other than in trivial cases (e.g. if $R(y)$
1129 is constant such that $\text{const} - R(y) = 0$). Thus, for general reward functions R , optimizing the
1130 forward-KL does not produce a forward KL gradient toward any distribution that can be expressed
1131 independently of π_{θ} .
1132

1134 B.5 GRADIENT OF THE FORWARD KL
11351136 **Remark B.2.** *The gradient of the forward KL divergence between policy π_θ and target G_β is,*

1137
$$\nabla_\theta D_{KL}(G_\beta || \pi_\theta) = -\mathbb{E}_{G_\beta} [\nabla_\theta \log \pi_\theta(y)]. \quad (62)$$

1138

1139 *Proof.*

1140
$$\nabla_\theta D_{KL}(G_\beta || \pi_\theta) = \nabla_\theta \mathbb{E}_{G_\beta} [\log G_\beta(y) - \log \pi_\theta(y)], \quad (63)$$

1141

1142
$$= \mathbb{E}_{G_\beta} [\nabla_\theta (\log G_\beta(y) - \log \pi_\theta(y))], \quad (64)$$

1143

1144
$$= -\mathbb{E}_{G_\beta} [\nabla_\theta \log \pi_\theta(y)]. \quad (65)$$

1145

□
11461147 We see that optimizing the forward KL gradient amounts to doing maximum likelihood / supervised
1148 fine-tuning on trajectories sampled from the target distribution G_β , as is also mentioned in some
1149 previous works (Agarwal et al., 2024). This is generally intractable as it requires sampling from
1150 G_β . Nevertheless, estimating expectation under a distribution known only up to normalization (i.e.
1151 $\mathbb{E}_{G_\beta}[\cdot]$) is well-studied in Monte-Carlo methods (Robert et al., 1999), and it is conceivable that a
1152 number of methods there would prove helpful here.
1153

1154 B.6 PROBABILITY RATIO UNDER OPTIMAL TARGET DISTRIBUTION

1155 **Proof of Proposition 4.1** For any two samples, y_1 and y_2 , their probability ratio under the target
1156 distribution is given by,

1157
$$\frac{G_\beta(y_1)}{G_\beta(y_2)} = \frac{g_\beta(y_1)}{\zeta} \frac{\zeta}{g_\beta(y_2)} = \frac{g_\beta(y_1)}{g_\beta(y_2)}, \quad (66)$$

1158

1159 which only require the unnormalized likelihood as the normalization constant ζ cancel out. Expanding
1160 the terms, we can write the log likelihood ratio in closed form,
1161

1162
$$\log \frac{G_\beta(y_1)}{G_\beta(y_2)} = \log \pi_{\text{ref}}(y_1) \exp\left(\frac{R(y_1)}{\beta}\right) - \log \pi_{\text{ref}}(y_2) \exp\left(\frac{R(y_2)}{\beta}\right), \quad (67)$$

1163

1164
$$= \log \frac{\pi_{\text{ref}}(y_1)}{\pi_{\text{ref}}(y_2)} + \frac{1}{\beta} (R(y_1) - R(y_2)). \quad (68)$$

1165

1166 B.7 TARGET DISTRIBUTION AFTER REWARD AUGMENTATION

1167 **Remark B.3.** *Optimizing the reverse-KL regularized RL objective with the augmented reward
1168 function \bar{R} yields the following target distribution, which puts uniformly high mass over all samples
1169 above reward threshold $R(y) \geq \tau$,*

1170
$$\bar{G}_\beta(y) \propto \begin{cases} \pi_{\text{ref}}(y) \exp\left(\frac{R(y)}{\beta}\right) & \text{if } R(y) < \tau, \\ \pi_{\text{ref}}(z) \exp\left(\frac{R(z)}{\beta}\right) & \text{if } R(y) \geq \tau. \end{cases} \quad (69)$$

1171

1172 *Proof.* We have established already in Appendix B.1 that the target distribution of reward maximiza-
1173 tion with reverse KL regularization is,
1174

1175
$$G_\beta(y) \propto \pi_{\text{ref}}(y) \exp\left(\frac{R(y)}{\beta}\right). \quad (70)$$

1176

1177 Plug in the augmented reward function,
1178

1179
$$\bar{R}(y) = \begin{cases} R(y) & \text{if } R(y) < \tau, \\ R(z) + \beta(\log \pi_{\text{ref}}(z) - \log \pi_{\text{ref}}(y)) & \text{if } R(y) \geq \tau, \end{cases} \quad (71)$$

1180

1181 which gives us the augmented target distribution,
1182

1183
$$\bar{G}_\beta(y) \propto \pi_{\text{ref}}(y) \exp\left(\frac{\bar{R}(y)}{\beta}\right). \quad (72)$$

1184

1188 In the $R(y) < \tau$ case, $\bar{R}(y) = R(y)$, and there is no change to the (unnormalized) likelihood. In the
 1189 $R(y) \geq \tau$ case,

$$1191 \log \pi_{\text{ref}}(y) \exp\left(\frac{\bar{R}(y)}{\beta}\right) = \log \pi_{\text{ref}}(y) + \frac{1}{\beta} \bar{R}(y), \quad (73)$$

$$1193 = \log \pi_{\text{ref}}(y) + \frac{1}{\beta} \left(R(z) + \beta (\log \pi_{\text{ref}}(z) - \log \pi_{\text{ref}}(y)) \right), \quad (74)$$

$$1195 = \frac{R(z)}{\beta} + \log \pi_{\text{ref}}(y) + \log \pi_{\text{ref}}(z) - \log \pi_{\text{ref}}(y) \quad (75)$$

$$1197 = \frac{R(z)}{\beta} + \log \pi_{\text{ref}}(z). \quad (76)$$

1199 Therefore we see in the $R(y) \geq \tau$ case we have,

$$1201 \pi_{\text{ref}}(y) \exp\left(\frac{\bar{R}(y)}{\beta}\right) = \pi_{\text{ref}}(z) \exp\left(\frac{R(z)}{\beta}\right). \quad (77)$$

□

1204 This formally shows the target will have uniformly high density proportional to $\pi_{\text{ref}}(z) \exp(R(z)/\beta)$
 1205 for all samples if their original reward $R(y)$ is above threshold τ . If we pick z to be likely under π_{ref} ,
 1206 e.g. $z = \arg \max_y \pi_{\text{ref}}(y)$, we can also see these samples will have the highest probabilities in the
 1207 target distribution.

1209 B.8 GRADIENT OF REWARD-AUGMENTED OPTIMIZATION

1211 We also note the MARA gradient estimator for an “above threshold” sample y_i (i.e. $R(y_i) \geq \tau$), when using reverse-KL regularization, can be equivalently constructed as using the anchor
 1212 sample’s reference policy probability $\pi_{\text{ref}}(z)$ in lieu of the actual reference probability $\pi_{\text{ref}}(y_i)$ when
 1213 constructing the KL gradient estimator. To see this precisely, we know the gradient of the expected
 1214 reward to be,

$$1216 \nabla_{\theta} \mathbb{E}_{\pi_{\theta}} [R(y)] = \mathbb{E}_{\pi_{\theta}} [R(y) \nabla_{\theta} \log \pi_{\theta}(y)], \quad (78)$$

1217 and gradient of the reverse-KL regularizer to be,

$$1218 \nabla_{\theta} D_{KL}(\pi_{\theta} || \pi_{\text{ref}}) = \mathbb{E}_{\pi_{\theta}} [(\log \pi_{\theta}(y) - \log \pi_{\text{ref}}(y)) \nabla_{\theta} \log \pi_{\theta}(y)]. \quad (79)$$

1219 Denote the reward-augmented objective as $\bar{J}_{\beta}(\pi_{\theta}) = \bar{R}(y) - \beta D_{KL}(\pi_{\theta} || \pi_{\text{ref}})$, where $\bar{R}(y) =$
 1220 $R(z) + \beta (\log \pi_{\text{ref}}(z) - \log \pi_{\text{ref}}(y))$ and z is the “anchor”. The gradient estimator of \bar{K}_i for an “above
 1221 threshold” sample, y_i , $R(y_i) \geq \tau$, can be written as,

$$1223 \bar{K}_i = \left(\bar{R}(y_i) - \beta \log \frac{\pi_{\theta}(y_i)}{\pi_{\text{ref}}(y_i)} \right) \nabla_{\theta} \log \pi_{\theta}(y_i), \quad (80)$$

$$1225 = \left(R(z) + \beta \log \frac{\pi_{\text{ref}}(z)}{\pi_{\text{ref}}(y_i)} - \beta \log \frac{\pi_{\theta}(y_i)}{\pi_{\text{ref}}(y_i)} \right) \nabla_{\theta} \log \pi_{\theta}(y_i), \quad (81)$$

$$1227 = \left(R(z) - \beta \log \frac{\pi_{\theta}(y_i)}{\pi_{\text{ref}}(z)} \right) \nabla_{\theta} \log \pi_{\theta}(y_i). \quad (82)$$

1229 Intuitively, as the anchor is chosen to have high π_{ref} , i.e. $\pi_{\text{ref}}(z) > \pi_{\text{ref}}(y_i)$, this can be interpreted as
 1230 selectively reducing the KL regularization for high-rewarding samples. Mechanistically, this also
 1231 suggest an alternative implementation which produces the same gradient when using reverse-KL
 1232 regularization (Algorithm 2).

1234 C ADDITIONAL EXPERIMENTAL DETAILS

1236 C.1 DIDACTIC EXPERIMENTS

1238 We construct our didactic experiment as a vector of size 100 (akin to a output space with 100 tokens).
 1239 We initialize a categorical distribution over this output space whose logits are all 0’s (i.e. uniform
 1240 distribution over all tokens). Given some reward function and reference distribution defined over this
 1241 space, we optimize this categorical distribution with the KL-regularized policy gradient for 3000
 gradient steps in PyTorch with Adam optimizer, with learning rate 5e-3 and batch size 32.

1242
1243 **Algorithm 2** Mode Anchored Reward Augmentation, alternative implementation. The gradient of
1244 this algorithm is equivalent to Algorithm 1 when using reverse-KL regularization.

1245 1: Given: initial policy π_θ , reference distribution π_{ref} , reward function R , regularization coefficient
1246 β , threshold of good answers $\tau \in \mathbb{R}$, $\tau \leq \max_y R(y)$, and trajectory batch $\{y_i\}_{i=1}^N \sim \pi_\theta$.
1247 2: **Pick anchor trajectory:** $z = \arg \max_{y_i} \pi_{\text{ref}}(y_i)$, s.t. $R(y_i) \geq \tau$
1248 3: **for** each y_i in batch **do**
1249 4: **if** $R(y_i) \geq \tau$ **then**
1250 5: **Augment:** reward $\bar{r}_i = R(z)$, reference prob $\bar{p}_i = \pi_{\text{ref}}(z)$
1251 6: **else**
1252 7: Keep same: reward $\bar{r}_i = R(y_i)$, reference prob $\bar{p}_i = \pi_{\text{ref}}(y_i)$
1253 8: **end if**
1254 9: **end for**
1255 10: Optimize policy parameters θ using augmented rewards $\{\bar{r}_i\}_{i=1}^N$ and augmented reference policy
1256 probabilities $\{\bar{p}_i\}_{i=1}^N$

1269 Figure 7: Effect of reward difference (ΔR , x-axis) and reverse-KL regularization strength (hue) on
1270 the relative probabilities between two samples in the optimal policy distribution (y-axis)
1271

1272 C.2 THE 1-2 TASK

1273 We ask the LM to generate a uniform random integer that is either 1 or 2 (Hopkins et al., 2023),
1274 as illustrated in Figure 9. We run for a range of KL coefficients (β) and multiple random seeds.
1275 Figure 10 shows the training run for just vanilla RL, without MARA.
1276

1296 Figure 8: Final policy distribution after KL-regularized RL, with equal rewards for all correct answers.
1297 Low-support (yet equally correct) answers are never preferred over high-support answers.

1296	Prompt	Example Generation
1297	1298 Uniformly randomly generate 1299 an integer that is either 1 or 1300 2. Respond strictly in this 1301 format: <think>Your internal 1302 reasoning</think><answer>1 or 1303 2</answer>	1297 Let me decide randomly. <think></think><answer>1 </answer>< endoftext >

Figure 9: The 1-2 task to test output distribution of LMs.

Figure 10: Training outcomes using vanilla RL. **(Left, Middle)** Policy’s empirical distribution over valid answers for runs that reached high rewards (counts binned over 8 consecutive training batches), across a range of regularization coefficients (β). **Right** Diversity of the valid answers over the course of training, measured as the entropy of the Bernoulli distribution over answers of 1’s and 2’s.

C.3 CREATIVE QUESTION ANSWERING TASK

We detail the training settings in Table 3, and evaluation settings in Table 4. We follow the evaluation procedures outlined in both [Kirk et al. \(2023\)](#) and [Zhang et al. \(2025\)](#). The specific evaluation metrics are defined as follows.

- In Dist Reward: training reward, on training set, using training reward model
- Out Dist Reward: evaluation reward on held-out set, using evaluation reward model
- Ngram EAD: Expectation-adjusted Distinct N-gram, proposed in [Liu et al. \(2022\)](#). We follow [\(Kirk et al., 2023\)](#) and average EAD for $n = 1, \dots, 5$
- Semantic Div: semantic embedding diversity as measured by averaged cosine distance, using embedding model `all-MiniLM-L6-v2`.
- Mean Distinct: Estimates a notion of “# of distinct concepts”, as introduced in [Zhang et al. \(2025\)](#).

We run additional baselines for the effect of the batch level threshold to set τ in Table 5.

C.4 EVIDENCE FOR UNIMODAL TARGET DISTRIBUTIONS IN LMs

We show additional evidence in existing LLMs settings, the shape of the reference distribution and reward function leads to highly skewed target distributions.

First, we draw 8192 samples from *Qwen2.5-3B* using prompt for the 1-2 task (Appendix C.2). We filter for correct answers ($R(y) = 1$), leaving 2944 samples (35.9% correct). We see in Figure 11a the distribution of “1” and “2”, with 1 being over-represented, pointing to a skew in the base reference distribution favouring “1”, despite the model being prompted to uniformly randomly generate an integer.

1350	Hyperparameter	Value
1351	Actor Model	Qwen3-1.7B
1352	Reward Model	Skywork-Reward-V2-Qwen3-4B
1353	Training Dataset	Wildchat 10k English
1354	Train Batch Size	128
1355	Mini-Batch Size	64
1356	Max Prompt Length	512
1357	Max Response Length	2048
1358	Learning Rate	1×10^{-6}
1359	Entropy Coefficient	0
1360	Rollout n (per prompt)	5
1361	Gradient Checkpointing	Enabled
1362	Epochs	3

Table 3: Creative QA Training Setting

1367	Hyperparameter	Value
1368	Evaluation Reward Model	Skywork-Reward-Gemma-2-27B-v0.2
1369	Dataset	NoveltyBench curated
1370	Num Generations / Prompt	10
1371	Max Tokens	4000
1372	Temperature	1.0
1373	Enable Thinking (qwen)	False

Table 4: Creative QA Evaluation Setting

1379 For creative QA (Appendix C.3), we draw 1024 samples from Qwen3-1.7B using a single question
 1380 in WildChat text. We evaluate the responses using Skywork-Reward-V2-Qwen3-4B (reward
 1381 mean: 12.33, min: -5.125, max: 18.38), and filter for answers above the 95th percentile ($R = 16.37$).
 1382 This leaves 52 samples (reward mean: 17.0, min: 16.38, max: 18.38). We see in Figure 11b that
 1383 among these high-reward answers, $\log \pi_{\text{ref}}(y)$ has a difference of up to 7.76, corresponding to a
 1384 probability ratio of $2345 \times$ under G_β (Remark 4.3).

1385 We then estimate the probability ratio taking into account both the reference probability and the
 1386 reward (Proposition 4.1). We use the same 1024 samples and compute their unnormalized likelihood
 1387 $G_\beta, \pi_{\text{ref}}(y) \exp(R(y)/\beta)$, with $\beta = 0.01$. We take the top 16 most likely samples and calculate their
 1388 relative probabilities *with respect to the 16th most likely sample*, such that the lowest probability
 1389 ratio is 1 \times . We observe in Figure 11c that amongst the sampled responses, the most probable sample
 1390 ($R = 18.4, \log \pi_{\text{ref}}(y) = -5.91$) is 2×10^{49} times more likely under the target distribution G_β than
 1391 the 16th most likely sample ($R = 17.3, \log \pi_{\text{ref}}(y) = -7.09$), despite having only slightly higher
 1392 rewards and reference probabilities.

1395	Model	Out-dist Reward (\uparrow)	EAD (\uparrow)	Semantic Div (\uparrow)	Distinct (\uparrow)
1396	MARA (rev, 0.90)	1.451 ± 0.103	0.543 ± 0.014	0.186 ± 0.008	4.14 ± 0.233
1397	MARA (fwd, 0.90)	1.604 ± 0.113	0.568 ± 0.012	0.193 ± 0.009	4.62 ± 0.258
1398	MARA (rev, 0.75)	1.498 ± 0.117	0.547 ± 0.013	0.183 ± 0.008	4.41 ± 0.262
1399	MARA (fwd, 0.75)	1.325 ± 0.097	0.508 ± 0.014	0.196 ± 0.009	4.07 ± 0.243

Table 5: Ablation of batch-level threshold for τ , set at either 90th percentile (0.90) or 70th percentile (0.75). Mean \pm bootstrap SEM.

Figure 11: Evidence for highly skewed target distributions G_β in LLM tasks

C.5 DRUG DISCOVERY

Chemical language models (CLMs) that generate molecules in string-based formats, e.g., a SMILES string (Weininger, 1988), have been experimentally validated with numerous generated molecules in clinical trials (Du et al., 2024). Recently, the field has focused on addressing “synthesizability”, i.e., can generated molecules actually be synthesized in the lab? (Stanley & Segler, 2023; Papidocha et al., 2025). Accordingly, we adapt two reward functions from Guo et al. (2025b): SYNTH and SYNTH-ALL-AMIDE that jointly reward binding potency and synthesizability. REINVENT (Olivcrona et al., 2017) is a state-of-the-art RL-based CLM on standard benchmarks (Gao et al., 2022). The recent Saturn CLM (Guo & Schwaller, 2024b) notably improves optimization efficiency by using data augmentation (Bjerrum, 2017; Guo & Schwaller, 2024a), but continues to use REINVENT’s RL algorithm.

In the drug discovery experiments adapted from Guo et al. (2025b), the reward functions are comprised of numerous individual optimization objectives, and defines a multi-parameter optimization task. Concretely, these objectives are:

1. *Minimize* the molecular docking score using QuickVina2-GPU (Trott & Olson, 2010; Al-hossary et al., 2015; Tang et al., 2024). Docking simulates binding of molecules to a target protein and predicts a crude binding affinity value. Docking was performed against the ATP-dependent Clp protease proteolytic subunit (ClpP) Mabanglo et al. (2023).
2. *Maximize* the quantitative estimate of drug-likeness (QED) (Bickerton et al., 2012), which is itself comprised of various physico-chemical properties, e.g., molecular weight. Maximizing QED can prevent generated molecules from being too large and lipophilic.
3. *Constrain* the number of hydrogen-bond donors (HBDs): HBDs < 4. This can improve absorption, Distribution, metabolism, and excretion (ADME) properties (Kenny, 2022) of the generated molecules.
4. *Satisfy* the “Synthesizability” constraint. Synthesizability is quantified by using a retrosynthesis model on each generated molecule. Retrosynthesis models predict a plausible synthesis route to synthesize a target molecule using commercially available precursors. The precursors set is from the eMolecules catalogue extracted from Chen et al. (2020). Retrosynthesis models typically start with a “single-step” model which predicts precursors given a target molecule. Since molecules may require multiple steps to synthesize, “Multi-step Retrosynthesis” commonly couples a search algorithm with single-step models to iteratively decompose a target molecule. In this work, we use the MEGAN (Sacha et al., 2021) single-step model with the Retro* (Chen et al., 2020) search algorithm using the Syntheseus (Maziarz et al., 2025) package. Finally, a molecule is considered synthesizable if the retrosynthesis model successfully proposes a synthesis route.

Both the SYNTH and SYNTH-ALL-AMIDE reward functions are comprised of the above objectives. The only difference is that in the SYNTH-ALL-AMIDE case, a molecule is *only* considered synthesizable if all the chemical reactions involved to synthesize it are “amide coupling reactions”. Amide couplings are one of the most common reactions performed in the pharmaceutical industry (Brown & Bostrom, 2016), and is generally a robust, widely compatible reaction. Subsequently, the reward function is defined as a product of each individual component above. Given a molecule, x :

1458 Table 6: Results at Threshold = 0.8 (\uparrow larger is better; \downarrow smaller is better). "SYNTH" and "AMIDE"
 1459 denote the SYNTH and SYNTH-ALL-AMIDE reward functions, respectively.

1461	Task	Algorithm	Sigma	Gen Yield	OB100	IntDiv1	Circles
1462				(\uparrow)	(\downarrow)	(\uparrow)	(\uparrow)
1463	SYNTH	REINVENT	128	6569 ± 186	1042 ± 66	0.766 ± 0.011	67 ± 3
			256	6618 ± 93	1080 ± 89	0.756 ± 0.012	57 ± 8
			512	6746 ± 161	1067 ± 74	0.752 ± 0.016	55 ± 5
1466		MARA	128	6834 ± 78	1015 ± 55	0.761 ± 0.009	59 ± 8
			256	6750 ± 139	1068 ± 50	0.760 ± 0.012	60 ± 4
			512	6793 ± 267	1065 ± 49	0.751 ± 0.015	60 ± 1
1469	AMIDE	REINVENT	128	5433 ± 184	1427 ± 63	0.768 ± 0.012	35 ± 1
			256	5544 ± 172	1406 ± 59	0.768 ± 0.009	34 ± 5
			512	5334 ± 165	1445 ± 111	0.776 ± 0.008	33 ± 4
1472		MARA	128	5635 ± 249	1407 ± 123	0.766 ± 0.008	36 ± 3
			256	5353 ± 114	1393 ± 42	0.769 ± 0.009	33 ± 4
			512	5377 ± 152	1343 ± 77	0.763 ± 0.008	31 ± 3

$$1478 \quad R(x) = DS(x) \times QED(x) \times HBD(x) \times Syntheseus(x) \in [0, 1] \quad (83)$$

1479 where "DS" is docking score. The HBD and Syntheseus objectives are binary, i.e., 1 if satisfied
 1480 and 0 otherwise. QED $\in [0, 1]$ and is used as is. The QuickVina2-GPU docking score is reward
 1481 shaped using a reverse sigmoid function following [Guo et al. \(2025b\)](#) and gives higher reward to
 1482 lower docking scores, as desired.

1483 Our goal in this section is to investigate the potential for MARA to be a *drop-in replacement* for
 1484 the REINVENT [Olivecrona et al., 2017](#) RL-based algorithm for molecular design. REINVENT is
 1485 amongst the most performant molecular design algorithms [Gao et al., 2022](#) and the Saturn model
 1486 [Guo & Schwaller, 2024b](#)) adapts this algorithm and leverages data augmentation [\(Bjerrum, 2017;](#)
 1487 [Guo & Schwaller, 2024a](#)) to further improve optimization efficiency.

1489 We evaluate all models with a fixed budget of 10,000 reward function evaluations, which is standard
 1490 in benchmarks. We contrast the algorithms' performance on molecular design metrics that measure
 1491 optimization efficiency and diversity. Yield is the number of *unique* molecules above a reward
 1492 threshold. OB100 is the number of reward evaluations required to generate 100 molecules above the
 1493 same threshold. IntDiv1 [\(Polykovskiy et al., 2020\)](#) and #Circles [\(Xie et al., 2023\)](#) are diversity
 1494 metrics based on molecular sub-structure based features, and measure intra-set similarity and sphere
 1495 packing, respectively.

1496 Tables 6 and 7 show the optimization results for the SYNTH and SYNTH-ALL-AMIDE reward
 1497 functions at the 0.80 and 0.85 screening thresholds, respectively. MARA is trained with $\tau = 0.80$ in
 1498 both. In general, MARA matches or outperforms REINVENT particularly for the more challenging
 1499 SYNTH-ALL-AMIDE reward function. In this environment, MARA can find more high-reward
 1500 molecules (Yield) and using less reward evaluations (OB100) than REINVENT.

1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531 Table 7: Results at Threshold = 0.85 (\uparrow larger is better; \downarrow smaller is better). "SYNTH" and "AMIDE"
 1532 denote the SYNTH and SYNTH-ALL-AMIDE reward functions, respectively.

1533

Task	Algorithm	Sigma	Gen Yield (\uparrow)	OB100 (\downarrow)	IntDiv1 (\uparrow)	Circles (\uparrow)
SYNTH	REINVENT	128	1614 \pm 407	4114 \pm 109	0.701 \pm 0.018	7 \pm 1
		256	1552 \pm 242	3940 \pm 371	0.699 \pm 0.030	6 \pm 1
		512	1484 \pm 45	3717 \pm 201	0.701 \pm 0.026	6 \pm 1
	MARA	128	1796 \pm 210	3654 \pm 272	0.716 \pm 0.015	6 \pm 1
		256	1530 \pm 126	3957 \pm 335	0.705 \pm 0.014	8 \pm 1
		512	1550 \pm 347	4016 \pm 234	0.689 \pm 0.024	6 \pm 1
AMIDE	REINVENT	128	1098 \pm 88	4360 \pm 257	0.721 \pm 0.016	8 \pm 1
		256	1488 \pm 280	4290 \pm 141	0.725 \pm 0.021	8 \pm 1
		512	1054 \pm 152	4620 \pm 438	0.739 \pm 0.009	8 \pm 0
	MARA	128	1235 \pm 130	3943 \pm 303	0.733 \pm 0.009	8 \pm 1
		256	1404 \pm 261	4079 \pm 172	0.730 \pm 0.010	7 \pm 1
		512	1341 \pm 86	3930 \pm 400	0.723 \pm 0.004	7 \pm 1

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565