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ABSTRACT

It is commonly believed that optimizing the reverse KL divergence result in “mode
seeking”, while optimizing forward KL result in “mass covering”, with the latter
being preferred if the goal is to sample from multiple diverse modes. We show—
mathematically and empirically—that this intuition does not necessarily transfer
well to doing reinforcement learning with reverse/forward KL regularization (e.g.
as commonly used with language models). Instead, the choice of reverse/forward
KL determines the family of target distributions which maximizes the objective,
while mode coverage depends primarily on other factors, such as regularization
strength. Further, we show commonly used settings such as low regularization
strength and equal verifiable rewards tend to specify uni-modal target distributions,
meaning the optimization objective is by construction non-diverse. We leverage
these insights to construct a simple yet principled algorithm, which makes minimal
changes to reward magnitudes, and theoretically prove that it optimizes for a target
distribution which puts high probability over all high-quality sampling modes.
We empirically show this simple modification works to post-train both Large
Language Models and Chemical Language Models to have higher solution quality
and diversity, without external signals of diversity, and works with both forward
and reverse KL when using either naively fails.

1 INTRODUCTION

Reinforcement Learning (RL) is the predominant way for post-training foundation models (Ouyang
et al., 2022), and the only way to train models in settings where the correct solution is not known a
priori. Output diversity in the trained policy is important. Traditionally in chat-bot settings with Large
Language Models (LLMs), diversity drives engagement for tasks such as creative writing and free-
form conversation. Diversity also drives the generation of new knowledge, such as discovering new
mathematical solutions (Romera-Paredes et al., 2024), cognitive science models (Castro et al., 2025),
and novel algorithms and software (Surina et al., 2025; Novikov et al., 2025; Aygiin et al., 2025).
Further, diversity is fundamentally tied to an expression of uncertainty over possible hypotheses for
scientific discovery (GX-Chen et al., 2025).

At its core, the technical problem involves solving a regularized RL problem, where the foundation
model is trained to maximize some external reward, while preserving “closeness” to a base policy
(as to e.g. preserve coherence). Yet, current empirical evidence suggests RL post training improves
quality at the cost of diversity (Kirk et al., 2023; Cui et al., 2025). As a response, a number of recent
works set out to treat this ailment, with a variety of approaches including explicit diversity rewards (Li
et al., 2025), changing the KL regularization (Wang et al., 2023), selecting diverse data (Lanchantin
et al., 2025), and count-based exploration bonuses (Song et al., 2025).

In this work, we take a step back to diagnose a more fundamental problem: does the objective being
optimized actually have a solution that is diverse? We find that with current set-ups, the answer is
often “no”, even with unlimited compute, high quality data, and perfect optimization. We prove that
under very commonly used settings (such as weak KL regularization with varied rewards, or any
regularization using the same reward for all correct answers), the globally optimal solution is often
by construction unimodal.

To see this, we view RL through the lens of approximate inference: by analyzing how the policy
moves toward the solution distribution. Section 2 provides preliminaries about KL divergences.
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Section 3 extends this to the setting of reward maximization with KL regularization, and derive a set
of facts about the gradient and optimal solution of KL-regularized RL objectives (for both reverse and
forward KL). Section 4 more deeply analyzes the shape of this optimal solution, how it is sculpted
by the reward, reference policy, and regularization strength, particularly focusing on implication for
multi-modality. This allows us to understand diversity collapse not as a quirk of post-training, but as
a natural consequence of the RL objective as currently defined. Finally, in Section 5 we move beyond
the current objective and suggest directly constructing the solution distribution to be diverse. We
specify one such distribution which puts mass over all high reward regions above a certain threshold,
and show that this requires only a small change to current algorithms. Each section is empirically
supported with didactic simulations, and we also train LLMs and chemical language models to
demonstrate our method works, out of the box, for complex, realistic scenarios.

The main contributions can be summarized as follows,

1. We show RL with reverse/forward KL-regularization define different families of solution
distributions, with levels of mode coverage depending primarily on regularization strength
and reward shapes, rather than the type of KL (contrary to common intuitions).

2. We show that with typical RL hyperparameters, the solution distribution is often by def-
inition uni-modal, regardless of regularization types, making diversity collapse a natural
consequence of solving the RL problem.

3. We derive conditions required for multi-modal solution distributions, and use this insight to
construct a simple and principled RL algorithm that directly optimizes for multi-modality,
without the need for any external diversity signals.

2 THE KULLBACK-LEIBLER (KL) DIVERGENCE
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Figure 1: Illustration of how the choice of approximate distribution family affects KL optimization.
With a restrictive approximate distribution (e.g. two-parameter Gaussian), KL exhibit the typical
“mode seeking” and “mass covering” characteristics. This intuition does not necessarily hold for
flexible distributions (e.g. independent categoricals, foundational models).

The Kullback—Leibler (KL) divergence (Kullback & Leibler, 1951) measures the discrepancy between
two probability distributions. In machine learning, it is commonly used in variational inference (VI),
where minimizing the KL divergence enables a tractable variational distribution ¢ to approximate
an intractable posterior p (Jordan et al., 1999; Blei et al., 2017). Following Murphy (2012), we
refer to D1 (qllp) = Eq[logq(y) — logp(y)] as the reverse KL divergence, and D (pllg) =
E,[logp(y) — logq(y)] as the forward KL divergence. Reverse KL is often described as “mode
seeking”, avoiding mass where p is small (Figure 1a, top), while forward KL is often described as
“mass covering”, putting mass anywhere p has mass (Figure 1a, bottom). These intuitions hold if the
variational family is not sufficiently expressive and we can at best settle on a local optimum (Bishop
& Nasrabadi, 2006; Murphy, 2012). With a flexible family, however, optimizing either KLs to the
global optimum can well-approximate a complex posterior (Figure 1b).

3 KL-REGULARIZED REWARD MAXIMIZATION

KL-regularized reward maximization aims to (i) maximize a reward function R : Y — R, mapping
from samples to a scalar outcome (e.g. improve human preference), while (ii) keeping the policy
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my close to a reference distribution ¢ (e.g. maintain grammatical coherence). The objective is
J(79) = By (y)[R(y)] — B D (79, Ter), where D(-, -) denotes a divergence between the policy and
reference distributions. For brevity, we consider the unconditional generation problem where the
policy models distribution 7y (y). The problem is the same in the case of conditional generation (e.g.
question answering), where the objective is simply defined over the conditional distribution 7y (y|z).

In this section, we consider the solution / target distribution of KL-regularization reward
maximization—i.e. the distribution which maximizes the objective. The central question is:

If we perfectly solve the RL problem to its global optimum, what does the solution
(policy) distribution look like?
3.1 SOLUTION OF THE REVERSE KLL REGULARIZED OBJECTIVE

The most common KL-regularized policy gradient objective uses the reverse KL divergence,

J3(m9) = By (i) [R(y)] — B D (o | et - 1)

A number previous works have discussed the solution / optimal distribution of this optimization
problem (Korbak et al., 2022; Go et al., 2023; Rafailov et al., 2023), which we note again below.

Remark 3.1. The optimal solution to the reverse-KL regularized reward maximization problem,
arg maxn, Jg(mg), is given by the solution distribution ™ = Gpg,

_ 1 R(y)
Gs(y) = Emef(y) exp (7) : @
where ¢ = [ m(y) exp(RW)/8) dy is the normalizing constant.
Proof. Appendix B.1. O

Remark 3.1 tells us the solution distribution maximizing Equation 1 is mg = G 3. However, it may
not be immediately obvious how the gradient of Equation 1, Vg Jg(mp), moves my toward G 5. We
analyze this to understand the behaviour of optimizing Equation 1.

Remark 3.2. The gradient of Equation I is a gradient of the reverse KL divergence between the
current policy Ty and the target distribution G g,

Vo Dk (mo || Gp) ox =V Ja(mg) . 3)
Proof. Appendix B.2. O

Main Takeaway

Maximizing the reverse-KL regularized RL objective Jg (Equation 1) is equivalent to doing
distribution matching by minimizing a reverse KL toward the target distribution G 3 (Equation 2).

3.2 SOLUTION OF THE FORWARD KL REGULARIZED OBJECTIVE

Alternatively, we can regularized the reward maximizaztion with a forward KL penalty,

Jiwa(79) = By () [R(Y)] — B DL (et 0) - 4)

A number of recent works have used forward KL regularization. Some are motivated explicitly by the
“mass covering” intuition of the forward KL (Wang et al., 2023), while others—such as GRPO (Shao
et al., 2024; Guo et al., 2025a)—may have incidentally estimated the forward KL, despite meaning to
use the reverse KL (Tang & Munos, 2025).

Remark 3.3. Assume the solution has the same support as T, the optimal solution to the forward-KL
regularized reward maximization problem, arg maxy, Ju.q, is given by the distribution:

B Tre(y)
G =—= A> R(y), 5
maly) = R() max R(y) ®
where A needs to be solved for each (3 such that Gy is a valid probability distribution.
Proof. Appendix B.3. O
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Notably, Equation 5 is a completely different distribution family from the reverse KL case (Equation 2),
and does not have a closed form solution.

Remark 3.4. The gradient of Equation 4 is not a forward KL gradient,

Vo Dir(h||m9) ¢ =V Jpa(mo) 6)
for any distribution h that is defined independent of Ty, and arbitrary reward functions R.
Proof. Appendix B.4. [

Therefore, while Equation 4 can still be a good objective to optimize, it does not necessarily inherit the
same properties as a “forward KL gradient” (e.g. intuition about “mass seeking” at sub-optimality).

What is the gradient of the forward KL Dk 1,(Gg||mg), then? This in fact amount to doing maximum
likelihood / supervised fine-tuning on trajectories sampled from the target Gz (Remark B.1), which is
intractable. However, this provides a perspective on algorithms such as STaR (Zelikman et al., 2022)
and RAFT (Dong et al., 2023; Xiong et al., 2025) that filter high-reward trajectories for maximum
likelihood. One can interpret filtering as approximating a target distribution (which put high mass
over high-reward regions), to then optimize a forward KL towards.

Main Takeaway

Maximizing the forward-KL regularized objective Jryg (Equation 4) does not yield a forward-KL
gradient, so its behaviour cannot be naively equated to forward-KL optimization.

3.3 BOTH KL REGULARIZATION CAN HAVE MULTIMODAL SOLUTION DISTRIBUTIONS
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Figure 2: Final policy distribution from optimizing a reverse/forward KL regularized reward maxi-
mization objective, given the same reward function, reference policy, across a range of regularization
strengths (/3). Note that both KLs can lead to multi-modal solution distributions.

It is worth briefly noting that the solution distributions for both the reverse (Equation 2) and forward
(Equation 5) KL regularization can be multi-modal. To ground the discussion, we first define a
common-sense notion of “multi-modal” which we will use for the rest of the paper.

Definition 3.5. (Informal) A solution distribution for KL-regularized reward maximization is “multi-
modal” if all high-reward samples have high probability.

We show this in a didactic example in Figure 2, where given the same reward function containing
two high-reward modes, and a reference policy with support over the first half of the token space,
optimizing the reverse and forward KL objectives lead to a wide variety of solutions that depend
on the regularization coefficient 8. Both KLs have settings of 3 that induce multi-modal solution
distributions. We analyze the properties of the target distribution in the subsequent section, and return
to the Figure 2 example in detail in Section 4.3.

4 ANALYSIS OF KLL REGULARIZED OPTIMAL DISTRIBUTION

We have seen in Section 3.3 that both KL-regularized RL objectives can have multi-modal solutions,
and in Section 2 that optimizing either KL divergence to global optimum will give us policies that
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well-approximate the (multi-modal) solution. However, the shape of the solution distribution depend
on the reward, reference distribution, and regularization strength. This begs the central question:

Is the globally optimal solution we commonly define when we do KL-regularized
RL actually multi-modal (Definition 3.5)?

The central tools we use in this section is a probability ratio between two samples under a distribution.
Intuitively, we want (i) high-reward samples to be much more probable than low-reward samples, and
(ii) similarly high-reward samples to have similar high probabilities. Unless otherwise stated, we
focus our analysis on the solution of the reverse-KL regularized objective (Equation 2), both for its
clean form and because it is the most common way KL-regularized RL is formulated.

Proposition 4.1. The (log) probability ratio between any two samples, y1, Yo, under the optimal
solution distribution for reverse-KL regularized RL, G 3, can be written in closed form,

Gs(y1) Tref(y1) | 1
log = log — + f(R y1) — R(yo ) . @)
Gp(y2) Wref‘(yQ) B (v1) (v2)
Proof. Because normalization constant { cancel out in ratios. See Appendix B.6. O

This let us exactly compute how likely one sample is relative to another in the optimal solution, using
only mr and the reward function R. There are a number of consequential insights about this solution.

4.1 WITH EQUAL SUPPORTS, SMALL REWARD DIFFERENCES LEAD TO LARGE PROBABILITY

DIFFERENCES

Remark 4.2. For any two samples y1 and ys, if Tef(y1) = Trep(y2), their probability ratio is:

Gp(yr) 1
og = = (R — R2) - ®)

Gsly2) B

In words, for two samples that have the same probability under the reference Gp(y1) / Galy2)

distribution (“equal support”), the difference in their final log probabilities is 02— §Z¢0%

simply the difference in their rewards, scaled by 1/5. Smaller 3 exaggerates "] #=01

10% ) B=10

the difference between relative probabilities. Note a linear difference inre- ., |
wards result in an exponential difference in probabilities: for a 0.1 difference 10|
in rewards, and a commonly used 8 = le-3, the higher reward sample is 10
2.6 x 103 times more likely in the solution distribution (Figure 3). This sug- o0 02 o4
gests for commonly used hyperparameter settings, the solution distribuiton o

is highly concentrated around its mode.

Figure 3

To build additional intuition and empirically validate the theory, we use a didactic example where we
optimize a categorical distribution using KL regularized RL (details in Appendix C.1). We observe in
Figure 4 that regularization strength 3 controls the difference in rewards, and below some threshold
of regularization the solution policy becomes uni-modal.

4.2 WITH EQUAL REWARDS, SOLUTION never PREFERS OFF-SUPPORT SAMPLES

We now analyze the case where the correct solutions all have equal reward. This is a common set-up
for the case of RL with verifiable reward (e.g. math), where a correct answer is usually given a reward
of 1, and incorrect answers given reward of 0.

Remark 4.3. For any two samples with the same reward, R(y1) = R(y2), their probability ratio is:

log S8WL _ 10 Tref(Y1) ©)
Gp(y2) Trer(y2)
In words, their relative probabilities in the solution is simply the relative probabilities in the reference
distribution, and do not depend on the KL-regularization strength 3." In other words, with identical
rewards, RL only changes the relative probability between answers with different rewards, but not
between on- and off-support correct answers. The RL with equal verifiable reward objective by
construction discourages off-support answers.

We empirically verify this prediction in Figure 5. We see that the final policy distribution never
favours the (equally correct) off-support mode. This is not an issue with exploration: we will see in
the subsequent section and Figure 2 that with a small change in reward we can indeed optimize for a
distribution that equally weights or even prefers the off-support solution.

'This is the case for both reverse and forward-KL regularized RL.
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Figure 4: Final policy distribution after KL-regularized RL, where high reward regions have equal
support. Here, regularization strength 3 controls the difference in probability between differently
rewarding regions, with a moderately low /3 concentrating all mass on the highest reward mode.
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Figure 5: Final policy distribution after KL-regularized RL, with equal rewards for all correct answers.
Off-support (yet equally correct) answers are never preferred over on-support answers.

Main Takeaway

KL-regularized RL does not increase the probability of off-support samples relative to on-support
ones as long as their rewards are the same. Lowering the KL regularization strength /3 has no
effect on up-weighting off-support samples.

4.3 FOR UNEQUAL REWARDS and SUPPORTS, REGULARIZATION STRENGTH DETERMINES
MODE COVERAGE

When two trajectories have different rewards and different probabilities under the reference policy, a
unique setting of S will induce the two to have the same probability in the solution distribution.

Remark 4.4. Two samples have the same probability in the target distribution if,
R(y2) = R(y1) = B(10g Trf(y1) — 108 Tres(y2)) - (10)

This condition allow us to predict, given only the reward and reference policy, when two samples will
have the same probabilities in the solution to the RL problem. As an example, we know in Figure 2
that the two high-reward modes have rewards 0.75 and 1.0, and reference policy probabilities of
log mrer(y1) = —4.05 and log mer(y2) = —5.95, respectively. This allows us to predict the setting of
£ which will “flip” the solution distribution’s preference from the on-support mode to the off-support
mode to be (1 — 0.75)/(—4.05 + 5.95) ~ 0.132. Indeed, we see in Figure 2 for the reverse KL
case, the preference between the two modes switch as we move from 5 = 0.15 to 8 = 0.10. This
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is the true role of the regularization coefficient 3: it is a knob that decides between picking higher
rewarding, off-support solutions, vs. lower rewarding, on-support solutions.

5 DIRECTLY OPTIMIZING A MULTI-MODAL TARGET

Having identified the various failure cases of the KL-regularized RL objective (Section 4), and the
role of regularization in balancing reward differences (Section 4.3), we now turn to the question:

Can we construct an objective such that when optimized, naturally give rise to a
multi-modal solution distribution?

Indeed, Remark 4.4 already provides the equality condition required to achieve this. We derive a
simple procedure which will ensure we are optimizing for a solution that puts equal probabilities on
all high-quality samples (per Definition 3.5), using the augmented reward function,

- {R(y) if R(y) <, an
R(z) + B(log mer(z) — log mer(y)) if R(y) > 7,

where 7 < max, R(y) is some threshold for “goodness”, and z is a fixed “anchor” sample chosen
from the set of high-quality samples. We can pick it to be z = arg max, m.(y) where R(y) > 7.
Because we are choosing the “anchor” to be from a high-reward mode, we colloquially refer to this as
“mode anchoring”, and the method as Mode Anchored Reward Augmentation (MARA, Algorithm 1).
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Figure 6: MARA stays close to the reference policy in low-reward areas, and puts high, uniform mass
over all high-reward areas.

Intuitively, the augmented reward function constructs a new target distribution with uniform high
density over regions of high reward, and stays close to the reference 7 in regions of low reward
(see Remark B.2 for formal proof). We see in the Figure 6 that vanilla KL-regularized RL result in a
policy that heavily favours the left (on-support) mode, regardless of the choice of 5 or KL. On the
other hand, using MARA result in solutions that put equal high mass over all high quality samples,
for both KLs. Note that to setting threshold 7 does require a priori knowledge of the reward range. In
the case where this is not possible, we can set it in a per-batch basis by e.g. taking an upper percentile
of the sampled reward.

6 EMPIRICAL VALIDATIONS

We now evaluate MARA as a drop-in method in a variety of post-training tasks. While our theory are
mainly about the final solution, we empirically investigate whether training, even if stopped early,
can still benefit from a more diverse global optimum. We evaluate MARA in (i) verifiable LLM task
with multiple answers, (ii) non-verifiable task with reward models, and (iii) chemical language model
task for drug discovery, where mode collapse is detrimental.

6.1 VERIFIABLE 1-2 TASK FOR LLM

We train an LM (Qwen2 .5 3B) to generate uniform random integer that is either 1 or 2. It gets a
reward of 1.0 for correct (producing “1” or “2” in XML), and 0.0 otherwise (details in Appendix C.2).
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Most runs are able to optimize the reward well and get a reward of ~ 1 (Figure 7a, right). Figure 7a
(left) shows the number of correctly formatted 1’s the LM generates over the course of training.
We see that for naive KL regularization (grey), across a range of 5’s and seeds, all but one run
collapse into generating only a single answer as a result of RL, and most collapse into generating
1’s, which has higher likelihood under the base policy. MARA (blue), on the other hand, is able to
preserve the diversity in the correct answers, with many runs learning to generate 1’s and 2’s with
near uniform probability, while still correctly learning to generate with the correct format (Figure 7a,
middle). Further, the Pareto front of model checkpoints at different points in training shows that
for both reverse and forward KL regularization, MARA is able to match vanilla training in terms of
correctness, while exceeding vanilla training in terms of generation diversity.
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Figure 7: Performance on verifiable task with multiple solutions, against both reverse & forward KL

6.2 CREATIVE QUESTION ANSWERING FOR CHAT LLM

We test MARA in a non-verifiable alignment task. We train Qwen3-1. 7B on a subset of WildChat
text (Zhao et al., 2024), using a parametric reward model (Skywork—-Reward-V2-Qwen3-4B).
We evaluate the model on a curated test set (Zhang et al., 2025) and report both the training reward
(In dist Reward), and test set reward from a different reward model (Out dist Reward).
We also report diversity metrics in terms of n-grams (Ngrams), semantic embeddings (Semantic
Div), and “distinct functional classes” (Mean Distinct). Details in Appendix C.3. Here, MARA
is used as a drop-in replacement in an RLOO style algorithm (Ahmadian et al., 2024). We observe that
MARA out-performs both GRPO and RLOO in terms of out-of-distribution rewards, and all-but-one
diversity metrics (Table 1).

6.3 DRUG DISCOVERY WITH CHEMICAL LANGUAGE MODELS

Finally, we apply MARA to a distinctively different domain where diversity and quality is crucial:
drug discovery. Chemical language models (CLMs) have seen success in discovering molecules
in clinical trials. We adpat two realistic reward functions from Guo et al. (2025b): SYNTH and
ALL-AMIDE that jointly reward binding potency and synthesizability. The core CLM optimization
problem is also a regularized RL problem: maximize reward, while staying close to a pretrained
“prior” model to ensure chemical validity. Unlike the traditional RL setting, CLMs are evaluated based
on their ability to generate unique molecules given a fixed number of reward function evaluations
(which are expensive simulations and/or experiments), making diversity an essential quality for any
performant CLMs. The REINVENT algorithm (Olivecrona et al., 2017; Guo & Schwaller, 2024b) is
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In-dist. Out-dist. Ngrams Semantic Mean
Model Reward () Reward (1) EAD (1) Div (1) Distinct (1)
Base Model 10.94 1.166 +0.076  0.413 +0.015 0.220 +0.009 4.01 +0.254
GRPO 14.80 1.317 +0.102  0.497 +0.014  0.193 +0009  3.96 +0.249
RLOO 15.56 1.280 +to0.100 0.514 +oo14 0.192 +0.008  3.88 +0.243
MARA (rev) 15.42 1.451 +0.103  0.543 +0.014 0.186 +0.008  4.14 +0.233

MARA (fwd) 15.33 1.604 +0.113  0.568 +to.012  0.193 +0.009  4.62 +0.258

Table 1: Performance on non-verifiable creative task. Mean + bootstrap SEM.

a state-of-the-art RL-based method on standard benchmarks (Gao et al., 2022). We apply MARA as
a drop-in replacement to its rewards. Evaluation details are in Appendix C.4.

Table 2 shows MARA consistently results in higher average Yield and lower OB100, indicating
that it finds many unique high-reward molecules, and more efficiently with less reward function calls.
Going further, we also assess “global” diversity (which MARA does not explicitly optimize for) in
terms of IntDiv1 and #Circles. Both define more macroscopic differences based on molecular
sub-structures. We fine MARA is competitive with the baseline here. Overall, we see MARA further
boosts REINVENT’s optimization efficiency, while maintaining diversity.

Threshold Algorithm Yield (1) OB100 ({) IntDiv1 (1) Circles (1)

0.80 REINVENT 6569 4 186 1042 4 66 0.766 + 0.011 67+ 3
MARA 6834 + 78 1015 4+ 55 0.761 4+ 0.009 59+ 8
0.85 REINVENT 1614 407 41144109 0.701 +0.018 7T+1
MARA 1796 & 210 3654 +£272 0.716 & 0.015 6£1
(a) SYNTH task
Threshold Algorithm Yield (1) OB100 ({) IntDiv1 (1) Circles (1)
0.80 REINVENT 5433 + 184 1427 + 63 0.768 4+ 0.012 35+1
MARA 5635 + 249 1407 £ 123  0.766 £ 0.008 36 +3
0.85 REINVENT 1098 + 88 4360 += 257 0.721 £0.016 8+1
MARA 1235+ 130 3943 +303 0.733 +0.009 8+1

(b) ALL-AMIDE task

Table 2: Results for different tasks and evaluation reward thresholds for two challenging drug
discovery tasks. Error bars (4-) denote standard deviation over 5 independent seeds. Bold indicates
if the performance is statistically significantly better than the alternative method for that threshold
(one-sided student’s t-test, p < 0.05).

7 CONCLUSION

Over the past decade, the lesson of Artificial Intelligence has been that simple, flexible objectives
combined with scale, are the recipe to continued progress. In this work, we provide an in-depth
understanding of the KL-regularized RL objective, particularly in terms of its diversity. This opens
up a number of exciting future directions: a deeper analysis into the properties of the forward KL
regularized gradient, better gradients that optimizes the MARA objective, and even a wider class
of solution distributions. All in all, we emphasize that regularized RL is inherently a distribution
matching problem, and more thoughts should go into defining a good distribution to match to.

REPRODUCIBILITY STATEMENT

We use open-source, publicly available libraries for all experimental code. Didactic experiments
are constructed in PyTorch (Paszke et al., 2019). Reinforcement learning on LLM training is done
using the nano-aha-moment (Kazemnejad et al., 2025) and verl (https://github.com/
volcengine/verl) github repos. Chemical language model experiments use the official saturn
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github repo (Guo & Schwaller, 2024b). We provide detailed experimental information in Appendix C.
Pseudo-code is provided in Algorithm | and Algorithm 2.
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A RELATED WORK

Training for diversity Wang et al. (2023) generalizes the DPO objective (Rafailov et al., 2023)
from reverse-KL regularized to a more general class of f-divergence regularizers, with the key
motivation being that reverse-KL can be mode-seeking, therefore reduce diversity. They do not
explore the effect of reward function or regularization coefficient 3, which our work examines.
Diverse DPO Lanchantin et al. (2025) and variants (Chung et al., 2025; Ismayilzada et al., 2025)
encourage diversity in preference learning by selecting diverse positives/negatives. Most closely
related to our reward augmentation approach is He et al. (2025), which uses a rank based “unlikeliness
reward” by ranking the in-batch samples based on their likelihood under the current policy, and
penalize the most likely samples. Similarly related is Li et al. (2025), which use an external model to
evaluate diversity (via a semantic classifier) and use the diversity metric to modify the reward. We do
not require an external model to evaluate diversity.

More distantly, Dang et al. (2025) found that combining weights of earlier and later checkpoints can
improve pass @k performance—a loose measure of diversity (albeit over both correct and incorrect
answers). GFlowNets also provide diversity-seeking policies that sample proportionally to reward,
albeit they use different algorithms than the KL-regularized policy gradient which is the most
commonly used algorithm for LM post-training (Hu et al., 2023; Tiapkin et al., 2024).

Entropy and reasoning in RL. We can view mode collapse in solutions as a collapse in the entropy
of the trajectory distribution. This is related (but not identical) to token entropy. A growing line of
empirical work do tie together entropy, exploration, and reasoning in LLMs. Cui et al. (2025) notes
entropy collapses during RL. Cheng et al. (2025) incorporates an entropy term in the advantage to
encourage better reasoning. Wang et al. (2025) show that focusing gradient updates on a minority of
high-entropy tokens (“forking tokens”) can improve reasoning.

B MATHEMATICAL DERIVATIONS

B.1 TARGET DISTRIBUTION OF REVERSE-KL REWARD MAXIMIZATION

Proof of Remark 3.1 We want to find the distribution which maximizes the objective from
equation 1,

argrr}%x Jg(ﬂ'e) = argn}%x Eﬂ.g(y) [R(y)] — BDKL (ﬂ'@”ﬂ'ref) (12)

We can re-write Equation | by re-arranging terms, note for notation brevity we denote gg(y) =

et (Y) €Xp (%),

Ja(m6) = By (o) [R(y)] — B Dic (o e (13)
— Ery( [R(y) = B(log mo(y) — log mar(v)) | (14)
= —BEnr,w) :log mo(y) — (Réy) +log mef(y))} 7 (15)
= —BEnr,(y) :log 7o (y) — log Trer () exp (%)} , (16)
= —BEq,) | 108 mo(y) — log gs(y) + log ¢ — log | a7)
= —BEr, (| logma(y) — 1og Gs(y)] + Blog (. (18)
= —BDx1(ml|Gs ) + Blog( . (19)

It is easy to see that the above is maximized when D 1, (g||G3) = 0, which is when the policy is
the target distribution, mp = Gg.
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B.2 GRADIENT OF REVERSE-KL REWARD MAXIMIZATION

Proof of Remark 3.2 From Appendix B.1, we have the identity,

—%Jﬁm) — Dicr,(m9]|G) — log (.

We can easily show that the gradient is,
1
Va( - Bjﬁ(m)> = Vg Dk (ml||Gs) — Vglog(,

= V@ DKL(ﬂ'gHGg) .
In other words, they are the same up to constant — /3,
V@Jﬁ(ﬂ'e) = _BVODKL(WHHGB) .

B.3 TARGET DISTRIBUTION OF FORWARD-KL REWARD MAXIMIZATION

We are interested in finding the distribution 79 = Gyg Which maximizes the following,

Jiwa(79) = By () [R(W)] — B Dicr (et 70) -
We first simplify the expression to include only terms that depend on 7,

arg max Jrwa(mg) = arg max Er, [R(y)] — B Dk L (el |Ta)

71'ref(y) ﬂ-l'ef(y)
o) )

= arg max / o (y) B(y) — B meet(y) [log Trer(y) — log mo(y) | dy ,

=argmaxE,, [R(y) -5
T

= arg max / mo(y) R(y) + B mrer(y) log mo(y) dy -
Define the maximization objective subject to constraint [ 7(y) dy = 1 as a Lagrangian,
LofmiA = [ 7R+ Brusty) o n(w) dy + A ([ 7(w)dy —1)
— [ 7R + Arly) + Brusly) log m(w) dy ~ A

‘We want to take the Gateaux derivative,

b

d
dLj[m A = %ﬁ][ﬂ- +ep; )
e=0

First solve,

digCJ[w+Ew;A]:%/( (y) +eo(y)) R(y) + A(w(y) + ep(y))
+ B ety IOg(ﬂy +ep(y)) dy,
o ref(y) ()

-/ w(y)[R(yHHﬂ reld)ay.

d
d—E/jJ[ﬂ +ep; A

e=0
The functional derivative is therefore,

Tret ()

m(y)

o
S=Lalm A = R(y) + A+ 5
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To find the opimum 7* which gives 4/de £ ;[m + p; A] = 0 for all ¢, the fundamental lemma of the
calculus of variations tells us it would imply 9/sx L ;[m; A\] = 0. Solving for this,

R(y) + A+ 67::22(5)) -0, (37)
* o IBWref(y)

=71 (y) = Z(Ra) + N (38)

= 1 (y) = Aﬂiriz(g) ) define A = — A for notational convenience . (39)

where a unique value of A satisfies [ 7*(y) dy = 1 and 7*(y) > 0 for all y.

Note Grill et al. (2020), Appendix B.3 arrives at a similar solution for the setting of discrete action
spaces (i.e. my can be parameterized by a vector).

B.4 GRADIENT OF FORWARD-KL REGULARIZED REWARD MAXIMIZATION

Proof of Remark 3.4 We want to know if optimizing the forward-KL regularized RL objective is
equivalent to optimizing a forward KL divergence. In other words, we are interested in whether the
following gradient,

Vo Jiwa(ma) = Vo By ) [R(9)] = B Dicr (mutllmo) | (40)

is a gradient of a forward KL between 7y and some target distribution A that is independent of 7y.
Suppose h exists, it follows that the functional derivative of these two objectives must be equivalent
up to proportionality,

)

o
Ewad(W) X gDKL(h”W) y (41)

where both are subject to constraint [ 7 (y) dy = 1.

We have established from Equation 36 that the functional derivative of Jryg subject to constraint
[ m(y)dy =1is,

d N

— LT N = R(y) + ,BW ci(9) + A (42)
om m(y)

To find the functional derivative of the forward-KL, we first write down the forward KL objective
subject to constraint,

Li[m, N = Dy (hl||r) + )\’(/w(y) dy—1), (43)
— [ hu)toghty) ~ (g)tog () dy + [ Na(w)dy - X @)
= /Xﬂ(y) — h(y)logm(y) dy + {/h(y) log h(y) dy — X} ; (45)
where the right-hand bracket is independent of 7. The Gateaux derivative is,
d d
Lrlm+ep N = — / N (m(y) +ep(y)) — hly)log (m(y) +ep(y)) dy,  (46)
h(y)e(y)
= [ No(y) — —222_ gy (47)
Jrew - i
d / ,_ hy)
—_ = — 4
Foxtmreex) = [y - Z8a @8)
The functional derivative of the forward KL with respect to the right-hand term is therefore,
4 ’ , hly)
— =N - —x. 4
571' ‘CK[Wv )\ } >\ ﬂ_(y) ( 9)
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Assuming the functional derivative of the two objectives are proportional to each other, we can solve
for the target distribution h(y),

é 1)
N — (—) =a {R(y) + ﬁmef(y) + )\} , for some constant o, (51)
m(y) m(y)
= h(y) = (X = ad = aR(y) )w(y) - afmuly). (52)

Observe one cannot write h(y) independently of 7(y), other than in trivial cases (e.g. if R(y) is
constant such that A\’ — a\ — aR(y) = 0). Thus, for general reward functions R, optimizing the
forward-KL does not produce a forward KL gradient toward any distribution that can be expressed
independently of 7.

B.5 GRADIENT OF THE FORWARD KL

Remark B.1. The gradient of the forward KL divergence between policy mg and target G g is,

Ve DKL(GB||7T0) = _EGH [V@ logﬁe(y)] . (53)
Proof.
Vo D1 (Gpllmo) = VoEc, [log Gs(y) —logm(y)] , (54)
= EGﬂ [V@(logGB(y logﬂ'g )] (55)
= 7EGB [Vg log o (y)] (56)
O

We see that optimizing the forward KL gradient amounts to doing maximum likelihood / supervised
fine-tuning on trajectories sampled from the target distribution Gg, as is also mentioned in some
previous works (Agarwal et al., 2024). This is generally intractable as it requires sampling from
G 3. Nevertheless, estimating expectation under a distribution known only up to normalization (i.e.
Eg, [[]) is well-studied in Monte-Carlo methods (Robert et al., 1999), and it is conceivable that a
number of methods there would prove helpful here.

B.6 PROBABILITY RATIO UNDER OPTIMAL TARGET DISTRIBUTION

Proof of Proposition 4.1 For any two samples, y; and y», their probability ratio under the target
distribution is given by,
Go(y) _gs(y1) ¢ _ 95(y1)
= = ; (57
Gps(y2) ¢ g5(y2)  9s(y2)
which only require the unnormalized likelihood as the normalization constant ¢ cancel out. Expanding
the terms, we can write the log likeilhood ratio in closed form,

g gg E‘Z;; = log Tref(y1) exp (%) — log e (y2) exp (R(Bm)) 7 (58)
71'ref(yl) 1
=log 0+ 3 (R(n) — R(w2)) (59)

B.7 SOLUTION DISTRIBUTION AFTER REWARD AUGMENTATION

Remark B.2. Optimizing the reverse-KL regularized RL objective with the augmented reward
function R yields the following solution distribution, which puts uniformly high mass over all samples
above reward threshold R(y) > ,

)) ifR(y) <7
)) ifR(y) > 7

_ 71—ref(y) exp (
Gp(y) o

(60)

Tref(2) €xp (
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Algorithm 1 Mode Anchored Reward Augmentation (MARA) within a sampled batch

1: Given: initial policy 7y, reference distribution 7, reward function R, regularization coefficient
B, threshold of good answers 7 € R, 7 < max,, R(y), and trajectory batch {y; }}¥ | ~ 7.

2: Pick anchor trajectory: z = arg maxy, Tef(y;), s.t. R(y;) > 7
3: for each y; in batch do

4: if R(y;) > 7 then

5: Augment: 7; = R(2) 4 (log mer(2) — log mer(ys))

6: else

7: Keep same: 7; = R(y;)

8: endif

9: end for

0:

s

Optimize policy parameters § using augmented rewards {7; } Y, .

Proof. We have established already in Appendix B.1 that the solution distribution of reward maxi-
mization with reverse KL regularization is,

Gp(y) o mer(y) exp (%) . (61)

Plug in the augmented reward function,

_ R(y) if R(y) <,
R(y) = { ) (62)
R(z2) + 6( log mref(2) — log ﬂ'ref(y)) if R(y) >,
which gives us the augmented solution distribution,
- R
Ga(w) o mat)exp (T2). (©)

In the R(y) < 7 case, R(y) = R(y), and there is no change to the (unnormalized) likelihood. In the
R(y) > 7 case,

g ey xp (L) = logmaty) + R0, (64)
= log met(y) + % (R(z) + B(log Tet(2) — log M(y))) (65
- Rg) 1 1og Ter(y) + 10g Tret(2) — log mrer(y) (66)
_ Rg*) + log Ter(2) - 67)
Therefore we see in the R(y) > 7 case we have,
Tret () €Xp (Réy)) = Trer(2) exp (Réz)) . (68)
O]

This formally shows the target will have uniformly high density proportional to 7.(2) exp(£(2)/3)
for all samples if their original reward R(y) is above threshold 7. If we pick z to be likely under 7ref,
e.g. z = arg max, Trf(y), we can also show these samples will have the highest probabilities in the
solution distribution.

B.8 GRADIENT OF REWARD-AUGMENTED OPTIMIZATION
We also note the MARA gradient estimator for an “above threshold” sample y; (i.e. R(y;) >

7), when using reverse-KL regularization, can be equivalently constructed as using the anchor
sample’s reference policy probability m.r(z) in lieu of the actual reference probability mf(y;) when
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constructing the KL gradient estimator. To see this precisely, we know the gradient of the expected
reward to be,

Vo Er, [R(y)] = Ex, [R(y) Vologmo(y)] , (69)
and gradient of the reverse-KL regularizer to be,
VoDgkr (7r9 | \Wref) =E., [(log 7o(y) — log mer(y)) Vo log g (y)] . (70)

Denote the reward-augmented objective as Jg(mg) = R(y) — BD k1 (mg||met), Where R(y) =
R(z)+ (log mref(z) —log mer(y)) and z is the “anchor”. The gradient estimator of K; for an “above
threshold” sample, y;, R(y;) > 7, can be written as,

= _ (B o (Ys) )

K; = (R(yz) — Blog Wref(yi))ve log 7o (yi) , (71)
o 7Tref(z) Uy (yi)
= (R(z) + Blog " — Blo Wref(yi))Vg log o (yi) , (72)
= (R(Z) — Blog ;rif?;)))ve log 7o (y:) - (73)

Intuitively, as the anchor is chosen to have high 7, i.€. Tef(2) > Tret(y; ), this can be interpreted as
selectively reducing the KL regularization for high-rewarding samples. Mechanistically, this also
suggest an alternative implementation which produces the same gradient when using reverse-KL
regularization (Algorithm 2).

Algorithm 2 Mode Anchored Reward Augmentation, alternative implementation

1: Given: initial policy 7y, reference distribution ¢, reward function R, regularization coefficient
B, threshold of good answers 7 € R, 7 < max,, R(y), and trajectory batch {y; }}¥.; ~ 7.

2: Pick anchor trajectory: z = arg max,, Tref(y;), s.t. R(y;) > 7

3: for each y; in batch do

4:  if R(y;) > 7 then

5: Augment: reward 7; = R(z), reference prob p; = mrer(2)

6: else

7: Keep same: reward 7; = R(y;), reference prob p; = mrer(y;)
8: endif

9: end for

0:

—

Optimize policy parameters 6 using augmented rewards {7; };_, and augmented reference policy

probabilities {p; }¥

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 DIDACTIC EXPERIMENTS

We construct our didactic experiment as a vector of size 100 (akin to a “token space” with 100 tokens).
We initialize a categorical distribution over this token space whose logits are all 0’s (i.e. uniform
distribution over all tokens). Given some reward function and reference distribution defined over this
space, we optimize this categorical distribution with the KL-regularized policy gradient for 3000
gradient steps in PyTorch with Adam optimizer, with learning rate 5e-3 and batch size 32.

C.2 THE 1-2 TASK
We ask the LM to generate a uniform random integer that is either 1 or 2 (Hopkins et al., 2023), as

illustrated in Figure 8. We run for a range of KL coefficients (/) and multiple random seeds. Figure 9
shows the training run for just vanilla RL, without MARA.

C.3 CREATIVE QUESTION ANSWERING TASK
We detail the training settings in Table 3, and evaluation settings in Table 4. We follow the evaluation

procedures outlined in both Kirk et al. (2023) and Zhang et al. (2025). The specific evaluation metrics
are defined as follows.
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Uniformly randomly generate

an integer that is either 1 or Let me decide

2. Respond strictly in this randomly.

format: <think>Your internal <think></think><answer>
reasoning</think><answer>1 or </answer><|endoftext |>
2</answer>

Figure 8: The 1-2 task to test output distribution of LMs.

One Counts (binned) Two Counts (binned) Valid Answers Diversity

Entropy

T T T T T T T T T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Step Step Step

—— Reverse KL Regularization Forward KL Regularization

Figure 9: Training outcomes using vanilla RL. (Left, Middle) Policy’s empirical distribution over
valid answers for runs that reached high rewards (counts binned over 8§ consecutive training batches),
across a range of regularization coefficients (/3). Right Diversity of the valid answers over the course
of training, measured as the entropy of the Bernoulli distribution over answers of 1’s and 2’s.

* In Dist Reward: training reward, on training set, using training reward model
* Out Dist Reward: evaluation reward on held-out set, using evaluation reward model

* Ngram EAD: Expectation-adjusted Distinct N-gram, proposed in Liu et al. (2022). We
follow (Kirk et al., 2023) and average EAD forn =1,...,5

* Semantic Div: semantic embedding diversity as measured by averaged cosine distance,
using embedding model a11-MiniILM-L6-v2.

* Mean Distinct: Estimates a notion of “# of distinct concepts”, as introduced in Zhang
et al. (2025).

C.4 DRUG DISCOVERY

Chemical language models (CLMs) that generate molecules in string-based formats, e.g., a SMILES
string (Weininger, 1988), have been experimentally validated with numerous generated molecules
in clinical trials (Du et al., 2024). Recently, the field has focused on addressing “synthesizability”,
i.e., can generated molecules actually be synthesized in the lab? (Stanley & Segler, 2023; Papidocha
et al., 2025). Accordingly, we adapt two reward functions from Guo et al. (2025b): SYNTH and
SYNTH-ALL-AMIDE that jointly reward binding potency and synthesizability. REINVENT (Olive-
crona et al., 2017) is a state-of-the-art RL-based CLM on standard benchmarks (Gao et al., 2022).
The recent Saturn CLM (Guo & Schwaller, 2024b) notably improves optimization efficiency by using
data augmentation (Bjerrum, 2017; Guo & Schwaller, 2024a), but continues to use REINVENT s RL
algorithm.

In the drug discovery experiments adapted from Guo et al. (2025b), the reward functions are comprised
of numerous individual optimization objectives, and defines a multi-parameter optimization task.
Concretely, these objectives are:

1. Minimize the molecular docking score using QuickVina2-GPU (Trott & Olson, 2010; Al-
hossary et al., 2015; Tang et al., 2024). Docking simulates binding of molecules to a target
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Hyperparameter Value

Actor Model Qwen3-1.7B

Reward Model Skywork—Reward-V2-Qwen3-4B
Training Dataset Wildchat 10k English

Train Batch Size 128

Mini-Batch Size 64

Max Prompt Length 512

Max Response Length 2048

Learning Rate 1x10°

Entropy Coefficient 0

Rollout n (per prompt) 5
Gradient Checkpointing  Enabled
Epochs 3

Table 3: Creative QA Training Setting

Hyperparameter Value

Evaluation Reward Model = Skywork-Reward-Gemma-2-27B-v0.2
Dataset NoveltyBench curated

Num Generations / Prompt 10

Max Tokens 4000

Temperature 1.0

Enable Thinking (qwen) False

Table 4: Creative QA Evaluation Setting

protein and predicts a crude binding affinity value. Docking was performed against the
ATP-dependent Clp protease proteolytic subunit (ClpP) Mabanglo et al. (2023).

2. Maximize the quantitative estimate of drug-likeness (QED) (Bickerton et al., 2012), which is
itself comprised of various physico-chemical properties, e.g., molecular weight. Maximizing
QED can prevent generated molecules from being too large and lipophilic.

3. Constrain the number of hydrogen-bond donors (HBDs): HBDs < 4. This can improve
absorption, Distribution, metabolism, and excretion (ADME) properties (Kenny, 2022) of
the generated molecules.

4. Satisfy the ”Synthesizability” constraint. Synthesizability is quantified by using a ret-
rosynthesis model on each generated molecule. Retrosynthesis models predict a plausible
synthesis route to synthesize a target molecule using commercially available precursors.
The precursors set is from the eMolecules catalogue extracted from Chen et al. (2020).
Retrosynthesis models typically start with a single-step” model which predicts precur-
sors given a target molecule. Since molecules may require multiple steps to synthesize,
“Multi-step Retrosynthesis” commonly couples a search algorithm with single-step models
to iteratively decompose a target molecule. In this work, we use the MEGAN (Sacha et al.,
2021) single-step model with the Retro* (Chen et al., 2020) search algorithm using the
Syntheseus (Maziarz et al., 2025) package. Finally, a molecule is considered synthesizable
if the retrosynthesis model successfully proposes a synthesis route.

Both the SYNTH and SYNTH-ALL-AMIDE reward functions are comprised of the above objectives.
The only difference is that in the SYNTH-ALL-AMIDE case, a molecule is only considered synthe-
sizable if all the chemical reactions involved to synthesize it are ”amide coupling reactions”. Amide
couplings are one of the most common reactions performed in the pharmaceutical industry (Brown
& Bostrom, 2016), and is generally a robust, widely compatible reaction. Subsequently, the reward
function is defined as a product of each individual component above. Given a molecule, x:

R(z) = DS(x) x QED(x) x HBD(x) x Syntheseus(x) € [0,1] (74)
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Table 5: Results at Threshold = 0.8 (1 larger is better; | smaller is better). "SYNTH" and "AMIDE"
denote the SYNTH and SYNTH-ALL-AMIDE reward functions, respectively.

Task Algorithm Sigma  Gen Yield 0B100 IntDivl Circles
) () ) )

SYNTH REINVENT 128 6569 £ 186 1042+66 0.766 £0.011 67=£3
256 661893 108089 0.756 £0.012 57£8

512 6746 £161 106774 0.7524+0.016 55=£5

MARA 128 6834+ 78 101555 0.761+0.009 59+8

256  6750£139 1068 £50 0.760 £0.012 60 £4

512 6793 £267 1065+49 0.751+0.015 60+1

AMIDE REINVENT 128 0433 £ 184 1427 £63 0.768£0.012 35+£1
256 0544 £ 172 1406 £59 0.768 =0.009 34=£5

512 5334 £ 165 1445+111 0.776 £0.008 33+4

MARA 128 5635 £249 1407123 0.766 £0.008 36 £3

256 5353 £114 1393 +42 0.769+£0.009 33*+4

512 5377 £152 1343+ 77 0.763+0.008 31=£3

where "DS” is docking score. The HBD and Syntheseus objectives are binary, i.e., 1 if satisfied
and 0 otherwise. QED € [0, 1] and is used as is. The QuickVina2-GPU docking score is reward
shaped using a reverse sigmoid function following Guo et al. (2025b) and gives higher reward to
lower docking scores, as desired.

Our goal in this section is to investigate the potential for MARA to be a drop-in replacement for
the REINVENT (Olivecrona et al., 2017) RL-based algorithm for molecular design. REINVENT is
amongst the most performant molecular design algorithms (Gao et al., 2022) and the Saturn model
(Guo & Schwaller, 2024b) adapts this algorithm and leverages data augmentation (Bjerrum, 2017;
Guo & Schwaller, 2024a) to further improve optimization efficiency.

We evaluate all models with a fixed budget of 10,000 reward function evaluations, which is standard
in benchmarks. We contrast the algorithms’ performance on molecular design metrics that measure
optimization efficiency and diversity. Yield is the number of unique molecules above a reward
threshold. OB100 is the number of reward evaluations required to generate 100 molecules above the
same threshold. IntDiv1 (Polykovskiy et al., 2020) and #Circles (Xie et al., 2023) are diversity
metrics based on molecular sub-structure based features, and measure intra-set similarity and sphere
packing, respectively.

Tables 5 and 6 show the optimization results for the SYNTH and SYNTH-ALL-AMIDE reward func-
tions at the 0.80 and 0.85 reward thresholds, respectively. In general, MARA matches or outperforms
REINVENT particularly for the more challenging SYNTH-ALL-AMIDE reward function. In this en-
vironment, MARA can find more high reward molecules (Yield) and using less reward evaluations
(OB100) than REINVENT.
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Table 6: Results at Threshold = 0.85 (T larger is better; | smaller is better). "SYNTH" and "AMIDE"
denote the SYNTH and SYNTH-ALL-AMIDE reward functions, respectively.

Task Algorithm Sigma  Gen Yield 0B100 IntDivl Circles
) @) (M M

SYNTH REINVENT 128 1614 407 4114+109 0.701£0.018 7=£1
256 1552 +£242 3940+ 371 0.699+£0.030 6=£1

512 1484 £45 3717+201 0.701+£0.026 6=*1

MARA 128 1796 £210 3654 +272 0.716£0.015 6=*1

256 1530 £126 3957 £335 0.7056+£0.014 8+£1

512 1550 =347 4016 £234 0.689£0.024 6=*1

AMIDE REINVENT 128 1098 £88 4360 £257 0.721£0.016 8=*1
256 1488 £280 4290+ 141 0.725+0.021 8+£1

512 1054 £ 152 4620 £438 0.739£0.009 8=£0

MARA 128 1235 £130 3943 £303 0.733+£0.009 8+£1

256 1404 £261 4079+£172 0.730+£0.010 7+£1

512 1341 £86 3930 £400 0.723£0.004 7=£1

24



	Introduction
	The Kullback-Leibler (KL) Divergence
	KL-Regularized Reward Maximization
	Solution of the Reverse KL Regularized Objective
	Solution of the Forward KL Regularized Objective
	Both KL Regularization Can Have Multimodal Solution Distributions

	Analysis of KL Regularized Optimal Distribution
	With equal supports, small reward differences lead to large probability differences
	With equal rewards, solution never prefers off-support samples
	For unequal rewards and supports, regularization strength determines mode coverage

	Directly Optimizing a Multi-Modal Target
	Empirical Validations
	Verifiable 1-2 Task for LLM
	Creative Question Answering for Chat LLM
	Drug Discovery with Chemical Language Models

	Conclusion
	Related Work
	Mathematical Derivations
	Target Distribution of Reverse-KL Reward Maximization
	Gradient of Reverse-KL Reward Maximization
	Target Distribution of Forward-KL Reward Maximization
	Gradient of Forward-KL Regularized Reward Maximization
	Gradient of the forward KL
	Probability Ratio Under Optimal Target Distribution
	Solution distribution after reward augmentation
	Gradient of reward-augmented optimization

	Additional Experimental Details
	Didactic Experiments
	The 1-2 Task
	Creative Question Answering Task
	Drug Discovery


