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Abstract
Enzyme-constrained genome-scale metabolic
models (ecGEMs) have improved Flux Balance
Analysis (FBA) by incorporating enzyme turnover
numbers (kcats). Since in-vivo kcat data is costly
to obtain and therefore scarce, we present a
novel multi-modal transformer-based approach
with cross-attention to predict kcat values for
Escherichia coli using enzyme amino acid se-
quences and SMILES annotations of reaction sub-
strates. For heteromeric enzymes, we evaluate
multiple subunit kcat aggregation strategies. We
benchmark ecGEMs constructed with these strate-
gies against current state-of-the-art models using
experimental growth rates, 13C fluxes, and en-
zyme abundances, and prior to any calibration
outperform or match existing methods. We also
devise a new calibration method using flux control
coefficients (derivatives of log flux with respect
to log kcat), which we show to be identical to
enzyme cost at the FBA optimum. Using these
coefficients, we identify 8 key kcat values to re-
calibrate using experimental data, subsequently
achieving superior performance to the current
state-of-the-art with 81% fewer calibrations.

1. Introduction
In recent decades, systems biology has progressed signif-
icantly with the development of genome-scale metabolic
models (GEMs; Feist & Palsson 2008; Oberhardt et al. 2009;
Gu et al. 2019). These models describe the interplay be-
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tween genes, metabolites, and reactions in a mathematical
framework that can be solved via Flux Balance Analysis
(FBA; Orth et al. 2010). However, this approach is not
sophisticated enough to capture all the behaviour of real
cells. For example, E. coli exhibits a lower growth rate than
predicted by simple FBA (Mao et al., 2022). One of the
most promising solutions to this challenge has come from
enzyme-constrained models, such as GECKO (Sánchez
et al., 2017; Domenzain et al., 2022; Chen et al., 2024),
sMOMENT/AutoPACMEN (Bekiaris & Klamt, 2020), and
ECMpy (Mao et al., 2022; 2024). These models account
for the fact that a cell has limited chemical resources for
enzyme production, which constrains enzyme abundances
and consequently the flux solution space, leading to more
accurate predictions (Mao et al., 2022; Massaiu et al., 2019).

The quality of any enzyme-constrained model is strongly
dependent on the accuracy of its enzyme turnover rates
(Sánchez et al., 2017; Li et al., 2022). The turnover rate,
kcat, of an enzyme is the number of substrate molecules
catalysed by the enzyme per unit time. The literature can
broadly be divided into two methods for obtaining kcat
values. Firstly, kcats can be retrieved from experimen-
tal databases such as BRENDA (Chang et al., 2021) and
SABIO-RK (Wittig et al., 2018). This is the approach taken
by GECKO, AutoPACMEN, and ECMpy v2. The main
issue with this method is that the kcat coverage in these
databases is incomplete even for well-studied organisms1,
and very sparse or non-existent for less well-studied ones.
Furthermore, measurements of kcat values depend on exper-
imental conditions, leading to non-uniformity between data
from different studies.

With these issues in mind, a second approach uses machine
learning to obtain kcats. Examples of this approach include
Heckmann et al. (2018), used in ECMpy 1.0, and DLKcat
(Li et al., 2022). The former employed various machine
learning approaches, such as linear regression and deep
learning, using features like flux and catalytic site informa-
tion obtained from protein structures. DLKcat is more gen-
eral, as it does not require such features, making it suitable

1Often there are a large number of reactions for which no kcats
are available and one needs to generate these in an ad-hoc fashion.
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for less well-studied organisms. Instead, it requires inputs of
SMILES strings for substrates (processed via a CNN), and
amino acid sequences for enzymes (processed via a GNN).
In the current work, we expand on this approach, presenting
a novel transformer-based method (Vaswani et al., 2023)
that takes SMILES strings and amino acid sequences as
input. We demonstrate that our kcat predictions outperform
the state-of-the-art in terms of accuracy.

We apply our kcat predictor to iML1515, the gold standard
GEM for E. coli (Monk et al., 2017), to construct an enzyme-
constrained GEM (ecGEM). Since existing kcat predictors
(including ours) only support monomeric reactions and the
literature lacks consensus on how to combine subunit kcat
predictions for multimers, we evaluate the effect of multi-
ple aggregation strategies on model performance through
various benchmarks. These benchmarks also demonstrate
that our model performs competitively with state-of-the-art
approaches even before calibration.

Given the strong dependence of ecGEM performance on
kcat accuracy, calibration in the form of post-processing
is often used to adjust kcat using in vitro data. Generally
enzyme cost is used to select reactions for calibration (Mao
et al., 2022; 2024). We propose a more general alternative
based on perturbative kcat sensitivity analysis, using flux
control coefficients (Kacser, 1973) to identify the most in-
fluential kcat values. Although first disseminated in 1973,
and later republished in 1995 (Kacser et al., 1995), flux
control coefficients and metabolic control analysis have not
been widely adopted for calibrating ecGEMs with FBA.
We demonstrate that flux control coefficients are equiva-
lent to enzyme costs in the case of an optimal FBA solu-
tion obeying enzyme constraints, thus providing the link
between metabolic control analysis and enzyme costs de-
termined through ecFBA solutions. Using our flux-control-
coefficient-based method, we calibrate our ecGEM with
significantly fewer ad-hoc kcat corrections than other meth-
ods. The resulting ecGEM is on par with, or better than than
existing approaches (Mao et al., 2022; 2024; Chen et al.,
2024).

2. kcat Prediction Transformer
This section details the data, architecture, and training pro-
cess used to develop the kcat model. The aim was to create
a model that could predict the kcat value given SMILES
strings of the substrates and amino acids of the enzyme that
catalyses the reaction.

2.1. Model Architecture

At a high level, our model architecture broadly follows the
structure of DLKcat. It consists of three sub-models: two
generate embeddings from substrates (as SMILES strings)

Figure 1. kcat model architecture a) Pre-trained foundation model
to generate molecule features. b) Pre-trained foundation model
to generate protein features. c) 2-way cross-attention model to
predict kcat values

and enzymes (as amino acid sequences), and a third predicts
kcat using these embeddings. Figure 1 shows a schematic
representation. We introduce two major changes from DLK-
cat’s approach: using pre-trained transformer-based models
for embeddings (DLKcat trained a GNN for substrates and
CNN for proteins), and introducing a custom 2-way cross-
attention mechanism in the third sub-model.

Our model requires two inputs. The first is a set of reaction
substrates, each represented as a SMILES string (Weininger,
1988), concatenated into a single string using the non-bond
token ".", and passed to the Chem transformer (Chanda
(2021); Figure 1a) to generate substrate embeddings. The
second input is the enzyme’s amino acid sequence, which is
passed to the ESM transformer (Lin et al., 2023) to produce
protein embeddings. We removed the final projection layer
from the Chem and ESM transformers, instead using their
last hidden layers as input to the third sub-model, as this
model requires embeddings (rather than the SMILES strings
or amino acids output by the projection layer). For an input
sequence of length N the generated embedding will be a
matrix of size (N,E), where E is the fixed sized of the
embedding.

The third sub-model implements a cross-attention mecha-
nism between the substrate and protein embeddings pro-
duced by the Chem and ESM transformers, respectively.
A complication with cross-attention is that it lacks order
invariance, because the query (Q) matrix is derived from
one input while the key (K) and value (V ) matrices are
derived from the other, meaning the directionality of the
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attention (e.g., protein-to-substrate vs. substrate-to-protein)
affects the output. Given that there is no natural “order” be-
tween the a protein and its substrates, the model implements
2-way cross-attention (see Figure 2) which is invariant to
permutations of the substrate and protein embeddings.

Figure 2. 2-way cross-attention model architecture.

Following the cross-attention block in each branch, a to-
ken aggregation step is required to ensure that predictions
are made over the complete sequence of the inputs, rather
than individual tokens. We implemented three aggregation
methods: (1) compute mean aggregation over the token
embedding (2) take the embedding vector of the first token
in the sequence (3) use a fuzzy membership function of
a Gaussian mixture distribution and average memberships
across the token dimension. Methods (1) and (2) produce
an output vector of length E, (3) produces an output matrix
with shape (D,E) where D is the number of 1-D distribu-
tions in the mixture. The choice of method is regarded as a
hyperparameter.

The aggregated outputs from each branch are then concate-
nated and passed to the final projection layer to make the
kcat prediction (see Figure 2). All models were built us-
ing Python 3.9, PyTorch 1.13.1 (Paszke et al., 2019), and
Lightning 2.0.3 (Falcon & The PyTorch Lightning team,
2019).

2.2. Data

To train the kcat model, each data point must include a sub-
strate set represented as SMILES strings, an enzyme given
as an amino acid sequence, and a corresponding measured
kcat value. To obtain training data, measured kcat values
were collected from BRENDA (Chang et al., 2021) and
SABIO-RK (Wittig et al., 2018). For reactions in BRENDA,
substrate SMILES strings were retrieved programmatically
from PubChem (Kim et al., 2024) via chemical name, and
amino acid sequences from Uniprot by accession ID. For
SABIO-RK, substrate SMILES strings were already present,
and amino acid sequences were programmatically retrieved
identically to BRENDA.

This training data has an issue of degeneracy at multiple
levels. The first issue lies in molecular representation: a
single molecule can have multiple valid SMILES strings.
To address this, we standardised all SMILES strings by san-

itizing with RDKit’s (Landrum et al., 2022) SanitizeMol
function, removing isotopes, neutralizing charges, stripping
stereochemistry, and converting to and from InChI to en-
sure tautomerism consistency. The second issue is that a
single reaction can have multiple kcat measurements. To
resolve this, only the maximum kcat is kept per unique
reaction. Two data points are considered the same reac-
tion if, after SMILES standardisation, they have identical
substrates, products, and enzyme. The final degeneracy
involves substrate ordering. Since reactions often have mul-
tiple substrates, their SMILES strings are concatenated be-
fore being input to the model. This introduces ambiguity
in how to choose the order of concatenation. To address
this, the dataset was augmented by including all possible
permutations of substrate SMILES as distinct data points.

Before the final augmentation step, the training data was
filtered to exclude entries with combined substrate SMILES
over 510 tokens or amino acid sequences over 1000 char-
acters, to accommodate the context limit of the Chem and
ESM transformer respectively. To rebalance the data, kcat
values above 5000 were also discarded. This exluded only
1% of entries in the unfiltered dataset, which, despite span-
ning kcat values of 0 − 108, is heavily skewed towards
smaller values.

The final dataset contained 35,499 entries, split into 65%
train, 15% validation, and 20% test. Splitting was done prior
to substrate permutation to avoid information leakage. It is
important to note that, both the data and model architecture
only support reactions catalysed by monomers; predictions
for heteromers or homomultimers are not supported. The
issue of how to deal with multimers will be revisited in
Sections 4 and 3

2.3. Training and evaluation

During training, kcat values are transformed via y =
ln(kcat + 1) to account for the logarithmic distribution of
kcats, and to prevent large values from dominating the loss.
The addition of 1 ensures stability for small or zero values.
As a result, the model also predicts in log-space (ŷ; see
Figure 3), and the loss is computed between y and ŷ. The
predicted value k̂cat is retrieved by applying the inverse
transformation k̂cat = eŷ − 1.

Figure 3. kcat model inference data flow

Hyperparameter tuning was done using a Kubernetes cluster,
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with each hyperparameter set (a single model) trained on
a single Nvidia V100 GPU. Every model was trained on
the same training partition and evaluated on the validation
set at the end of each epoch. The models were trained
using the esm2 t33 650M UR50D model variant for the
ESM transformer, Mean Squared Error (MSE) loss, and the
Adam optimizer (Kingma & Ba, 2017).

The best model, as selected by the minimal validation loss,
used mean token aggregation, a dropout of 0.2, 8 attention
heads in each of the input branches of the cross-attention
sub-model, a fixed learning rate of 10−3, and trained for 26
epochs with early stopping. This model took 24 hours to
train. The selected model was evaluated on the held-out test
partition, with 90% of predicted values being correct within
1 order of magnitude.

3. The Enzyme-Constrained Genome-Scale
Metabolic Model

This section details the process of how our enzyme-
constrained models were constructed. We constructed mod-
els for use with Python 3.10, COBRApy (Ebrahim et al.,
2013).

3.1. Creating an enzyme-constrained model

As a base model, we use iML1515 (Monk et al., 2017),
more specifically, the modified version in ECMpy (Mao
et al., 2022), which corrects some minor known errors in
iML1515. To make this model enzyme constrained, we
follow and extend the approach in Mao et al. (2022).

To ensure that each enzyme-reaction pair has a unique kcat,
we split reversible reactions into separate forward and back-
ward reactions and split isoenzyme-catalysed reactions into
different reactions. Unlike Mao et al. (2022), we add re-
verse reactions to all exchange reactions with a default lower
bound of zero, to allow the intake of metabolites without
requiring negative fluxes.

A GEM becomes an enzyme constraint model if, in addition
to the standard FBA constraints,

maximize vobjective (1)
subject to Sv = 0 (2)
and lowerbound ≤ v ≤ upperbound. (3)

The model also obeys a total enzyme constraint

n∑
i=1

viMWi

σikcat,i
≤ ptotf. (4)

Here, vobjective is the objective flux (usually growth rate),

v is a flux vector with elements vi representing reactions
(each with a lower and upper bound). S is the stoichiometric
matrix, n is the total number of reactions, and MWi, kcat,i,
and σi are the molecular weight, turnover number, and satu-
ration coefficient of the enzyme catalysing a reaction. ptot
and f denote the total protein fraction and the enzyme mass
fraction. Throughout this work, we assume σr,i = 1, con-
sistent with (Mao et al., 2022; Bekiaris & Klamt, 2020).
We set ptot = 0.56 g gDW−1 based on experimental data
(Bremer & Dennis, 2008; Brunk et al., 2016), and compute
f as described in (Mao et al., 2022).2

A downside of the ECMpy approach is its incompatibility
with major metabolic engineering packages like OptKnock
(Burgard et al., 2003). Therefore, we adopt the method
from Bekiaris & Klamt (2020), implementing the enzyme
constraint via a pseudo-metabolite and pseudo-reaction. An
“enzyme pool” pseudo-metabolite is added to each reaction
i with a stoichiometric coefficient of −MWi

kcat,i
. A pseudo-

reaction is then added with this pseudo-metabolite as its
only metabolite with an upper bound of P = ptotf . This is
mathematically equivalent to Equation 4 (Bekiaris & Klamt,
2020). We then solved this system of equations via linear
programming using COBRApy.

3.2. Annotations

To obtain the information we needed to implement the en-
zyme constraint (i.e. MWi and kcat,i), we added addi-
tional reaction and metabolite annotations to our model.
Amino acid sequences for reactions were obtained from
the BiGG database, and SMILES strings for metabolites
from MetaNetX. Deprecated MetaNetX annotations were
manually updated using PubChem for some metabolites.
Molecular weights and subunit information for genes were
gathered from UniProt. As transport reactions require spe-
cial treatment when setting kcat values (see Section 3.3),
we also annotated all transport reactions in the model. Ap-
pendix A provides more detail about the annotation process.

3.3. Determining kcat values

Using these annotations, we passed amino acid sequences
and SMILES strings for each non-transport reaction in our
ecGEM to the kcat predictor from Section 2. We did this for
each enzyme subunit in the relevant reactions individually,
predicting a kcat value for each subunit. As monomers
have only one subunit, this will be the final kcat value. For
multimeric reactions, i.e. those with multiple subunits, we
came up with a strategy detailed below.

Our kcat predictor does not produce meaningful predic-

2This treatment of ptot and f assumes constant protein mass
for enzyme production across different conditions (e.g., media), a
simplification which may not hold true in real-life scenarios.
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Figure 4. kcat model performance. a) log-log scatter plot showing measured kcat vs predicted k̂cat. Spearman’s rank correlation
coefficient rs = 0.757 for our model, compared to rs = 0.720 for DLKcat. b) Comparison of the error in model predictions between our
model and DLKcat. At each point on the x-axis, the curves show the proportion of test set predictions with the same cumulative error or
less. Our model makes notably fewer predictions that have large errors.

tions for transport reactions, as these are heavily under-
represented in the training data. The BRENDA database
contains kcat values for only 31 out of 97 transport reac-
tions in EC class 7 “Translocases”. The literature does
not describe a principled method for handling transport
kcats. Therefore, we follow the common convention to use
kcat = 234, 000h−1 (Corrao et al., 2024; Heckmann et al.,
2018). Appendix B provides further details on the exact
heuristics we used.

Reaction statistics and a brief discussion of these are pro-
vided in Table 3 and Appendix C. Our kcat coverage is
extensive - out of 5338 reactions with genes (the required
input for our ML model), 5323 have a kcat value.

3.3.1. CALCULATING kcat FOR MULTIMERIC ENZYMES

The literature on how to handle the choice of combining
enzyme turnover rates for homomultimers and heteromers
is sparse, and there is no clear consensus. ECMpy uses the
kcat with min(

kcat,ij

MWij
, j ∈ m), where m is the number of

proteins in the complex (Mao et al., 2022), and DLKcat
uses the maximum predicted kcat value (Li et al., 2022). No
rigorous derivation is given to explain why these heuristics
were chosen.

However, rigorous handling of multimeric enzymes is cru-
cial, as a non-neglicible portion of reactions are multimeric.
In eciML1515, 46.5% of the 6191 reactions are homomulti-
meric, 32.5% are monomeric, 7% are heteromeric, and 14%
are non-enzymatic (see Table 3). We address the calculation
of kcat for homomultimers and heteromultimers by evalu-
ating models using various methods. For homomultimers
comprised of n subunits, we calculate kcat for the multimer

as n × kcat for the monomer3. For heteromers, we com-
bine the kcat value for each of the monomer/homomultimer
present in the complex:

kcat = agg(kcat,A, kcat,B , ...) (5)

where agg is the minimum, maximum, average, or aver-
age weighted by the number of subunits. We produce one
ecGEM for each aggregation method.

3.3.2. kcat CALIBRATION TARGETS VIA FLUX CONTROL
COEFFICIENTS

It is inevitable that some kcats are inaccurate due to machine
learning errors or issues in handling multimers and transport
reactions. To improve our enzyme-constrained model, we
aim to select reactions for experimental calibration.

To understand which kcat values most influence our
ecGEM’s predictions, we quantified the sensitivity of target
flux to individual enzyme turnover rates. Sensitivity is the
magnitude of the derivative ∂vT

∂kcat,i
, where vT is the target

flux and i is the enzyme-reaction pair. For each pair, we
use FBA to solve for a target flux (e.g., biomass), apply a
small perturbation δk̄cat to k̄cat,i (where k̄cat,i =

kcat,i

MWi
),

and re-solve the FBA model to compute the derivative as
the ratio of flux change to δk̄cat. Finally, we rescale the
derivative to obtain a dimensionless quantity:

3There is a question around whether the true turnover rate
would be higher than this, since evolutionarily speaking, the mean
reason for forming a multimer would be to reduce the reaction’s
activation energy, but addressing this issue is beyond the scope of
our work.
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Cvt
kcat,i

=
δvT

δk̄cat,i
· k̄kcat,i

vT
. (6)

Cvt
kcat,i indicates the relative change in target flux when the

kcat of the ith reaction changes, known in metabolic control
analysis as the flux control coefficient (Kacser, 1973; Kacser
et al., 1995). A high flux control coefficient means the target
flux is highly sensitive to that reaction. This analysis there-
fore identifies reactions that bottleneck the target flux. High
Cvt

kcat,i genes highlight the most efficient improvements to a
metabolic model’s predictive power from lab measurements.
When measuring kcat in vivo, this informs where to invest
lab effort to manually calibrate and improve the model. This
is useful for metabolic engineering, guiding the choice of
proteins/enzymes to improve through protein engineering or
identifying genes for upregulation via promoter engineering.
Additionally, it benefits general model accuracy. The top N
kcat values from this analysis indicate the enzymes that best
explain variance in model performance. This reduces the
problem space from over 6,000 reactions to tens or hundreds.
Combined with tools like metabolic flux visualizations (Fig-
ure 6, and 7), this helps identify key pathways that enhance
model accuracy or target flux.

To our knowledge, perturbative kcat analysis using flux con-
trol coefficients has not been previously applied to ecGEM
calibration in the literature. ECMpy v2 (Mao et al., 2024)
provide a related approach, but they iteratively calibrate
based on enzyme cost ( viMWi

σikcat,i
). Notably, for an optimised

ecGEM, the flux control coefficient is mathematically equiv-
alent to enzyme cost. A detailed proof and further discussion
are provided in Appendix E. A key advantage of using flux
control coefficients is their generality: they will inform us
of flux bottlenecks even when additional constraints are
introduced to the model.

4. Results
4.1. Computing benchmarks

We captured the performance of our ecGEMs using a se-
lection of benchmarks outlined below, and compared our
models with reference models from the literature. Optimi-
sation was performed via pFBA (Lewis et al., 2010) with
CPLEX.

• Glucose growth rate. This benchmark compares the
model growth rate on a glucose substrate to the exper-
imental value (0.66 h−1 (Adadi et al., 2012)). It is
given as a signed percentage difference.

• Flux comparison to measured 13C fluxes (RMSE).
This benchmark compares model fluxes to measured
13C fluxes (Okahashi et al., 2014) via the Root Mean

Squared Error (RMSE). We sum isoenzyme-catalysed
reactions and subtract reverse fluxes.

• Growth rate on different substrates. This benchmark
compares the simulated growth rate on 24 different
carbon sources to existing experimental measurements
(Adadi et al., 2012), again using the RMSE.

• Enzyme abundances. This benchmark compares pre-
dicted enzyme abundances in our model to enzyme
abundances from Corrao et al. (2024), via the root
mean squared logarithmic error (RMSLE). Further de-
tail about this abundance analysis is provided in Ap-
pendix F.

4.2. Models to evaluate

We produced four uncalibrated versions of eciML1515 (min,
max, avg, wavg), one for each kcat aggregation method from
Section 3.3.1. We also create min 4 clbr and min 8 clbr,
which are the min model where four or eight reactions are
calibrated respectively (see Section 4.5 for more detail).

We benchmark against several state-of-the-art enzyme-
constrained models from the literature (Mao et al., 2022;
2024). More detail on the specifics of these models can be
found in Appendix G

• ECMpy ML is the ECMpy v1 model without any
kcat calibration; it uses machine learning-derived kcat
values from (Heckmann et al., 2018).

• ECMpy expmnt is the ECMpy v2 model without cal-
ibration, made up of experimental kcat values from
BRENDA and SABIO-RK. An average kcat is used
for reactions not in the databases.

• ECMpy DLKcat was created via the DLKcat pipeline
in ECMpy v2. This pipeline produced NaNs for 15%
of kcats due to SMILES retrieval issues; we left those
reactions unconstrained. Note therefore that results
for this model reflect the combined ECMpy+DLKcat
performance rather than DLKcat alone.

• ECMpy ML clbr is ECMpy ML after calibration,
where 14 reactions with high enzyme cost were up-
dated using experimental kcats from BRENDA and
SABIO-RK.

• ECMpy expmnt clbr is ECMpy expmnt after the v2
calibration process, which consists 50 rounds of iter-
atively replacing high enzyme cost reactions with the
largest available experimental value from BRENDA or
SABIO-RK.
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4.3. Our kcat predictor creates more accurate
predictions of metabolism

We first run the benchmarking on all the uncalibrated models.
The results are shown in Table 1. Without any calibration,
the performance of our models is generally superior to the
benchmark models. Our models are the highest scoring in
terms of glucose growth, 13C, and substrate RMSE. The only
area where a model from the literature is superior is for the
abundance analysis, where ECMpy ML takes the top spot.
The fact that our models are overall the best performing
on most benchmarks suggests that our kcat estimates are
superior to the current state-of-the-art, and would provide a
better basis for an ecGEM prior to any calibration.

Note also that overall, our ecGEMs outperform the
ECMpy DLKcat model. This confirms that the improved
performance of our kcat predictor over DLKcat as noted
in Figure 4 also translates to measurable improvements in
model performance at the ecGEM scale.

4.4. Uncovering sensitivity to modelling of heteromers

Our ecGEM performance also varies substantially depend-
ing on the method we use for aggregating kcat predictions
for heteromers, and other than the fact that the min model
generally performs worst, there is no one method that is
clearly superior to the others. This is an important finding,
as it shows that the choice of aggregation strategy can have
a considerable impact on ecGEM quality. As described in
Section 3.3.1, the current literature lacks a cohesive and
considered approach to this decision. However, our results
imply that it is an important factor for ecGEM performance.
We therefore strongly recommend more research into this
issue in order for machine learning kcats to reach their full
potential.

4.5. Model improvement with fewer calibrations

As our min model had the worst growth rate error on glucose
(57.2%), we selected this model for calibration. Using our
method from Section 3.3.2, we computed the flux control
coefficients Cvt

kcat,i
(see Figure 8) to identify the top 10

most sensitive reactions as calibration targets to improve
(See Table 4). Ideally, we would have been able to measure
kcat for these 10 reactions in vivo, but we did not have the
required laboratory resources. Instead, consistent with Mao
et al. (2022; 2024), we replaced the kcat value with the
highest reported kcat from BRENDA (Chang et al., 2021)
and SABIO-RK (Wittig et al., 2018) via the EC number(s).

To quantify how many reactions we would need to adjust to
achieve improvements in ecGEM performance, we created
ecGEMs with between 1 and 10 kcat values calibrated, and
computed their glucose growth rate error values. Figure 5
shows the improvement in glucose growth rate error when

Table 1. Benchmarking results of uncalibrated ecGEMs against
experimental data from the literature for growth rates, 13C fluxes,
and enzyme abundances. A description of how these metrics
were computed can be found in Section 4.1. Glucose growth is
given as a signed percentage difference between simulated and
experimental growth rate. These models have not undergone any
kcat calibration, see Section 4.2 and Appendix G for details on
how these models were obtained. The best performing result for
each benchmark is indicated in bold.

ecGEM
Glucose
growth
% error

13C
RMSE

Various
substrate
growth
RMSE

Abundance
RMSLE
glucose
×10−3

min -57.2 6.18 0.31 6.67
max 29.4 2.47 0.31 6.50
avg 12.3 2.70 0.22 4.58
wavg -14.3 9.17 0.13 6.16
ECMpy ML -44.2 4.12 0.20 3.41
ECMpy exp -73.7 4.42 0.34 6.93
ECMpy DLKcat -45.4 5.13 0.24 6.45

Table 2. Benchmarking results of calibrated ecGEMs against ex-
perimental data from the literature for growth rates, 13C fluxes,
and enzyme abundances. A description of how these metrics were
computed can be found in Section 4.1. Glucose growth is given
as a percentage difference between simulated and experimental
growth rate. These models have been optimised with kcat calibra-
tion, see Section 4.2 for details on how the ECMpy models were
obtained, and Section 4.5 for the creation of the min 4 clbr and
min 8 clbr models. The best performing result for each benchmark
is indicated in bold.

ecGEM
Num

reactions
calibrated

Glucose
growth
% error

13C
RMSE

Various
substrate
growth
RMSE

Abundance
RMSLE
glucose
×10−3

min 4 clbr 4 -15.2 3.40 0.15 8.06
min 8 clbr 8 -13.5 2.90 0.16 8.26
ECMpy exp clbr 43 -24.3 5.05 0.15 13.21
ECMpy ML clbr 14 -15.2 4.47 0.14 3.82

successive kcat values (ranked by kcat sensitivity) are ad-
justed cumulatively. Substantial improvements are made
with just 4 reactions adjusted, and the improvement plateaus
after just 8. We compare these two models (min 4 clbr and
min 8 clbr) to similar models from the literature in Table 2.

Calibration substantially improves our min model across
most metrics — adjusting just four reactions yields compa-
rable performance to ECMpy ML clbr, which calibrated 14
kcats. Increasing the number of calibrated reactions to eight
leads to the lowest growth rate error among all calibrated
models, in fewer calibrations than the benchmark models.
This model achieves an reduction in glucose growth-rate
error from -57.2% to -13.5% (Figure 5) and RMSE on 13C
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flux data from 6.18 to 2.90 (Tables 1, 2). The significant
reduction in growth rate error only occurs when calibrated
kcat values are applied cumulatively4, not separately, as
shown in see Figure 5.

We identify ATPS4rpp num2 as a major biomass flux bot-
tleneck - calibrating its kcat reduces the glucose growth
rate error by 40%. Our predicted kcat differs from the ex-
perimental value in BRENDA by two orders of magnitude
(Table 4). The reaction is catalysed by an eight-subunit
enzyme complex (Moore et al., 2024). Our kcat predictor,
trained only on monomers, outputs values spanning four
orders of magnitude, and for heteromers, our simple aggre-
gation method is highly sensitive to outliers. Notably, 18 of
the top 100 reactions ranked by Cvtkcat, i are heteromeric
(Figure 9). This is a substantial amount, given that only
7% of all reactions in our ecGEM are heteromeric (Table
3). For all multimers combined (including homomultimers),
81 top 100 reactions are multimeric, compared to 54% of
all ecGEM reactions, Together, all these observations high-
light the need for a kcat predictor that can directly estimate
turnover numbers for heteromeric complexes, and multimers
in general.

Our calibration targets for the min model partially overlap
with ECMpy v1 (Mao et al., 2022), sharing two round 1
enzyme usage corrections and one round 2 13C flux correc-
tion. However, we need just 4 calibrations (Figure 5) to
reduce glucose growth rate error to 15% whereas ECMpy
v1 uses 14 and ECMpy v2 uses 43. Given that our method is
mathematically equivalent to theirs (as shown in Appendix
E), the fact that we need fewer calibrations implies that our
initial kcat estimates must be more accurate, highlighting
the accuracy of our machine learning predictor.

5. Conclusion
Using the novel transformer-based kcat predictor introduced
in this work, we produced an enzyme constrained genome
scale model which outperforms the current state-of-the-art
for ecGEMs that have not been calibrated using lab data.
Furthermore, with our kcat sensitivity analysis, we have
devised a rigorous way to identify which kcats would benefit
the most from calibration with lab data. When applied to
the min model, our worst performing uncalibrated model,
this process makes our model competitive with the best
calibrated models in the literature, but by calibrating 81%
fewer kcat values. Thus, our findings add to the growing
body of evidence (Li et al., 2022; Heckmann et al., 2018)
that machine learning for predicting turnover numbers is a
core part of future systems biology.

However, to produce optimal machine learning kcats, we

4We only perturb a single kcat at a time, as combinations of
perturbations would lead to combinatorial explosions.
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Figure 5. Calibrated min model with reactions calibrated separately
and cumulatively (left to right). Red highlighting corresponds to
ECMpy v1 round 1 enzyme abundance corrections, Blue highlight-
ing corresponds to ECMpy v1 round 2 13C corrections.

have found that it is important to have a well founded
method for estimating kcats for multimers. This is cur-
rently an under-explored area of study, and different research
groups adopt different methods without a clear justification.
Our findings show that ecGEM performance can vary signif-
icantly depending on the method used for aggregating kcat
values for heteromeric enzymes, and this choice therefore
warrants further research. We emphasise that any machine
learning predictor for enzyme turnover rates for heteromers
and homomultimers needs to be more advanced than the
currently available methods. It is likely that a single uniform
aggregation method across all reactions in a given model
is too simplistic. The function of subunits and the way in
which they combine to form an enzyme complex varies sig-
nificantly from enzyme to enzyme, and it seems biologically
likely that the optimal aggregation method might differ per
enzyme and therefore require a more complex method than
a simple max, min, avg, or wavg operation. Multimeric
reactions make up 81 of the top 100 most senstive reactions
(Figure 9), so getting these kcats right is crucial.

Therefore, to imbibe as much biological context as possi-
ble, an improved future kcat predictor should be trained
on a dataset that includes many more examples of reac-
tions catalysed by homomultimers and heteromers and have
an architecture that supports multimeric inputs. A second
direction of improvement would center around enhanced ca-
pabilities for dealing with transport and exchange reactions.
To do this, the model would have to encounter a substantial
number of these reactions during training.
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However, no matter how advanced the method for estimating
kcat, that there will be inaccuracies in estimates/predictions,
whether from deep learning or otherwise. So, in order to
refine an ecGEM, there needs to be a rigorous calibration
method used. We have shown that the method of calibration
via per-reaction enzyme cost calculations is mathematically
equivalent to calculating the flux control coefficient per reac-
tion. Furthermore, we don’t expect this equivalence to hold
when additional constraints are added to the optimisation.
However our method of calculating the flux control coeffi-
cient through perturbing individual kcat will generalise to
any ecGEM.
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A. ecGEM Annotations
In order to obtain the information we need to implement the enzyme constraint (i.e. MWi and kcat,i), we add additional
reaction and metabolite annotations to our model file. We extracted amino acid sequence annotations from the BiGG (King
et al., 2015) database to annotate reactions. We annotated metabolites with SMILES strings extracted from the MetaNetX
database (Moretti et al., 2020; 2015; Ganter et al., 2013; Bernard et al., 2012). It must be noted that a lot of the pre-existing
MetaNetX annotations are deprecated for both the ECMpy eciML1515 model and the BiGG database, such as prbatp c
(MNXM1351). For the majority of metabolites, this wasn’t an issue, since the deprecated reference had syntactically correct
SMILES annotations associated. However, for other reactions, such as octapb c (MNXM147531), we had to manually
fill these in using the canonical SMILES from PubChem (Kim et al., 2024). We did this for 139 out of 1877 metabolites.
Finally, we used UniProt (Consortium, 2022) to obtain molecular weights and subunit information associated with the genes
in E. coli. Together, these three annotation sets were required to predict kcats: the first two for the machine learning model
input, and the last for the aggregation stage for multimer/heteromer kcat prediction.

Given the necessity for special treatment of kcat values for transport reactions (see Section 3.3), we also annotated all
transport reactions in the model according to their classification in (Heckmann et al., 2020). We discovered that some
transport reactions were not in this list, so we decided to add an annotation of “Transport, uncategorised” to all reactions that
have either “transport” or “exchange” in the name and that do not have either a gene reaction rule of “s0001” (spontaneous
reactions) or “” (empty gene5). The latter two types were not annotated as transport reactions in our model.

B. Transport Reactions
Because our kcat predictor cannot predict transport reactions well (due to the fact that they are vastly underrepresented in
the training data), and there is no principled method for handling transport turnover numbers, we followed the common
convention to use kcat = 234, 000h−1 (Corrao et al., 2024; Heckmann et al., 2018). This choice is somewhat arbitrary, and
we recommend future research to find a more rigorous treatment. The precise heuristics we used are the following:

• For all transport reactions that are annotated as a transport reaction but are not porins, e.g. SUCptspp, we set
kcat = 234, 000 h−1.

• For transport reactions with one pore, e.g. ACtex gene b1377 (ompN), we also set kcat = 234, 000 h−1.

• For transport reactions with N pores e.g. ACtex gene b0241 (phoE), we set kcat = N × 234, 000 h−1 (N = 3 for
phoE).

• For spontaneous reactions with gene s0001 or reactions without genes, we do not set kcat, which means these reactions
are unconstrained.

5Some reactions are missing an associated gene in the underlying iML1515 model. Some of these reactions are COBRA boundary
reactions of the exchange (EX ) type and are essentially spontaneous reactions, but not all of them. To be on the safe side, all such
reactions were not annotated, and did not receive a kcat value in our model (see Appendix B.
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C. ecGEM metrics
Table 3 shows the reaction statistics for our model. kcat coverage in our ecGEM is extensive; we have kcat values for 5323
out of 5338 reactions for which the required input information (genes) is available. For 7 of the 15 missing reactions, the
model output a kcat of 0. The remaining 8 reactions have too long substrate SMILES strings, exceeding the ML model’s
512 substrate token limit. These 15 reactions (only 0.2% of all reactions) were left unconstrained. The rest are constrained
by either our ML kcats or the transport values in Appendix B.

In terms of subunits, the largest group consists of homomultimers, which make up 47% of all reactions. 7% of reactions are
heteromeric, for which the choice of multimer aggregation described in Section 3.3.1 affects the kcat value, it is important to
note that this is a non-negligible number.

Table 3. Reaction statistics for eciML1515

Metric Value % of Total

Total reactions 6190 -
Total reactions with genes 5338 86%
Coverage of kcat incl transport 5323 86%
Missing kcat 15 0.2 %
ML kcat 2360 38%
Exchange reactions (EX ) 662 11%
Spontaneous reactions (s0001) 64 1%
Transport reactions 2963 48%
Porin reactions 2186 35%
Monomers 2020 33%
Homomultimers 2883 47%
Heteromultimers 435 7%

D. Flux visualisations
Figures 6 and 7 show flux visualisations for the min model. Edges correspond to ln vi. Where ln vi < 0.5, and inclusion
significantly reduces visual clarity, nodes and edges are not shown. Grey nodes and edges in Figure 6 and 7 correspond to
flux solutions which fall below the threshold. Key:

Green Citric Acid Cycle
Purple Calibration candidates (Section 4.5)
Pink Glucose
Grey Nodes Metabolites of reactions falling below flux threshold
Grey Edges Fluxes clamped at minimum value for visual clarity (0.5)
Dark Blue Fluxes clamped at maximum value for visual clarity (10.0)
Orange Other Metabolites
Light Blue Other Reactions

Figure 6 shows the fluxes in the min model before any kcat calibration was applied. Figure 7 shows the fluxes after
calibrating the 8 most sensitive reactions via our flux control analysis. When visually comparing these two, it is clear that
kcat calibration of a relatively small number of reactions can have an effect on the whole metabolism of the organism.
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Figure 6. Metabolic Flux Visualisation: Enzyme-constrained solution, found with FBA for the min model.
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Figure 7. Metabolic Flux Visualisation: Enzyme-constrained solution, found with FBA for the min 8 clbr model.
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E. Proof of Equivalence of Flux Control Coefficient and Enzyme Cost
E.1. Introduction

In an enzyme-constrained metabolic model, we have:

• A total enzyme budget Etot that is distributed among different enzymes in the cell.

• Each reaction vj limited by the amount of its enzyme Ej times the enzyme turnover number/catalytic rate kcat, j. That
is,

vj ≤ kcat,jEj ,

often under simplifing assumptions such as saturating conditions.

• An objective function (commonly biomass production) that we seek to maximise subject to stoichiometric and enzyme
capacity constraints.

We want to prove that under optimal allocation of enzymes (i.e., at the solution maximising biomass flux vJ ),

CvJ
kcat,i

=
Ej

Etot
,

where Ej

Etot
is the fraction of total enzyme allocated to enzyme j (the enzyme cost of that enzyme).

E.2. Proof

E.2.1. DEFINING THE FLUX CONTROL COEFFICIENT

The flux control coefficient of reaction j with respect to kcat,j is :

CvJ
kcat,i

=
∂ ln vJ

∂ ln kcat,j
=

∂vJ
∂kcat,j

kcat, j

vJ
.

Here vJ is the biomass flux.

E.2.2. TOTAL ENZYME BUDGET CONSTRAINT

Suppose we have a constraint on total enzyme:

∑
i

Ej ≤ Etot,

and we want to maximise vJ . Because vj = kcat,jEj , we can express

vJ = max
{

biomass flux | stoichiometry, vj ≤ kcat,jEj ,
∑
j

Ej ≤ Etot

}
.

At the optimal solution, each active reaction satisfies vj = kcat,jEj .

E.2.3. LAGRANGE MULTIPLIERS

We introduce a Lagrange multiplier λ for the total enzyme constraint. At the optimum:

∂vJ
∂Ej

= λ for each active enzyme j.

This condition states that each actively used enzyme must have the same marginal benefit; otherwise, shifting enzyme to
higher-return enzymes could increase vJ .
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E.2.4. RELATIONSHIP BETWEEN ∂vJ/∂kcat,j AND ∂vJ/∂Ej

Observe

∂vJ
∂kcat,j

=
∂vJ
∂vj

∂vj
∂kcat,j

=
∂vJ
∂vj

Ej ,

Because vj = kcat,jEj =⇒ ∂vj

∂kcat,j
= Ej .

Also,
∂vJ
∂Ej

=
∂vJ
∂vj

∂vj
∂Ej

=
∂vJ
∂vj

kcat,j .

Given ∂vJ
∂Ej

= λ, we get

∂vJ
∂vj

=
λ

kcat,j
.

Hence,

∂vJ
∂kcat,j

= (
λ

kcat,j
)Ej = λ

Ej

kcat,j
.

E.2.5. EXPRESS CvJ
kcat,j

IN TERMS OF λ

Recall

CvJ
kcat,j

=
kcat,j
vJ

∂vJ
∂kcat,j

=
kcat,j
vJ

· λ Ej

kcat,j
= λ

Ej

vJ
.

So

CvJ
kcat,j

= λ
Ej

vJ
. (7)

E.2.6. SUMMATION THEOREM AND
∑

j Ej = Etot

Under typical control analysis assumptions (each kcat,j is an independent parameter), the sum of the control coefficients
CvJ

kcat,j
for all active j is 1: ∑

j

CvJ
kcat,j

= 1

Combined with equation 7:

∑
j

CvJ
kcat,j

=
∑
j

(λ
Ej

vJ
) =

λ

vJ

∑
j

Ej =
λ

vJ
etot.

Because this sum equals 1, we obtain

1 =
λ

vJ
Etot =⇒ λ =

vJ
Etot

.
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E.2.7. FINAL STEP: FRACTION OF TOTAL ENZYME = FLUX CONTROL COEFFICIENT

Substituting λ = vJ
Etot

back into equation 7,

CvJ
kcat,j

= λ
Ej

vJ
,

we get

CvJ
kcat,j

=
vJ
Etot

Ej

vJ
=

Ej

Etot
.

Hence,

CvJ
kcat,i

=
Ej

Etot
.

This completes the proof that, under an optimal solution (maximising flux with a fixed enzyme budget), the fraction of total
enzyme allocated to each enzyme (the enzyme cost) is numerically equal to its flux control coefficient with respect to kcat,j .
Equivalently,

enzyme cost ∝ control coefficient.

F. Enzyme abundances benchmarking
One of the benchmarks in our benchmarking process traces accuracy in enzyme abundances. Corrao et al. used polypeptide
abundances from Schmidt et al. (2016) to compute enzyme abundances for 290 enzymes in E. coli (Corrao et al., 2024). We
use their data for growth on glucose.

As the enzymes and reactions in their model have different names to ours, we matched our reactions to theirs by 1) finding
all the genes for each enzyme in their model by using their knowledge graph and 2) finding all reactions in our model that
use this specific set of genes. As some enzymes may catalyse multiple reactions, we first find the ‘abundance’ of each
enzyme-reaction pair:

Ar,i =
vr,iMWi

kcat,r,iσr,i
, (8)

where the subscripts r and i denote reaction r catalysed by enzyme i. MWi is the molecular weight of the enzyme. Ar,i, vr,i,
kcat,r,i, and σr,i are the abundance, flux, turnover number, and average saturation coefficient respectively. As mentioned
in Section 3.1, throughout this work we assume a constant value of σr,i = 1. If the flux vr,i was lower than the expected
floating point accuracy of the solver (generously set to 10−14), the abundance for that reaction was set to zero, as it would
be indiscriminately close to zero. To compute the total enzyme abundance for enzyme i, we then simply add the abundances
for all reactions that this enzyme catalyses:

Ai =
∑
r

Ar,i = MWi

∑
r

vr,i
kcat,r,i

(9)

We then compare these abundances to the measured values from (Corrao et al., 2024). To do so, we follow (Corrao et al.,
2024) in scaling the predicted abundances by a scale factor such that their sum is equal to the sum of all measured abundances∑

i Ai =
∑

i Ai,measured. We then compute the root mean squared logarithmic error (RMSLE; we use a logarithmic scale
as the abundance values cover a range of 10−12 to 10−1).
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G. Reference models
Here we present more detail about the reference models used in the benchmarking process in Section 4.2

• ECMpy ML is the ECMpy v1 model before doing any kcat correction rounds, i.e. iML1515 irr enz constraint.json,
produced by Mao et al. (2022) as per their GitHub on 25 Dec 2021.6 This model uses machine learning kcat values
from Heckmann et al. (2018).

• ECMpy expmnt is the ECMpy v2 model7 (Mao et al., 2024) before applying any kcat corrections. Unlike the
aforementioned ECMpy ML, which uses machine learning kcats, the values in this model are experimental values.
They are obtained from the BRENDA (Chang et al., 2021) and SABIO-RK (Wittig et al., 2018) databases using
AutoPACMEN (Bekiaris & Klamt, 2020), and an average value of kcat was chosen for reactions that were not in the
databases.

• ECMpy DLKcat is a model created via the DLKcat pipeline in ECMpy v2 8, which computes machine learning kcats
using the DLKcat method (Li et al., 2022). Unfortunately, the code in the ECMpy v2 GitHub produced NaN values for
15% of kcats. This is almost entirely due to the fact that the code in the notebook does not retrieve the correct SMILES
information for these reactions. We changed all NaN values to empty strings, so that these reactions were unconstrained.
It must therefore be noted that since DLKcat could not be applied effectively to all reactions, our benchmarking results
reflect the performance of the combined ECMpy+DLKcat pipeline rather than DLKcat alone.

• ECMpy ML calibrated is a model from ECMpy v1. This model, titled iML1515 irr enz constraint adj round1.json,
is produced by subjecting the uncalibrated model ECMpy ML to the first round of kcat calibration. There is also a
second correction round, which uses 13C fluxes, but we do not include this model as it uses additional experimental
information and is therefore not comparable to our calibrated models. The first calibration round adjusted kcats selected
by enzyme cost ( viMWi

σikcat,i
). kcats were updated for reactions that used more than 1% of total enzyme. The updated kcats

are pulled from the BRENDA and SABIO-RK databases. See Mao et al. (2022) for more details.

• ECMpy expmnt calibrated is the calibrated version of the ECMpy v2 model ECMpy expmt, which has been passed
through the v2 kcat calibration process. This process involved 50 rounds of iteratively adjusting kcat for those enzyme-
reaction pairs with the highest enzyme cost, and updating its value to the highest datapoint found in BRENDA and
SABIO-RK. See Mao et al. (2024) for more details.

6http://github.com/tibbdc/ECMpy/tree/433463a9b22994765351eae1ea1b74d133f7a483
7To be precise, we create this model by running the notebook “02.get ecModel using ECMpy.ipynb” on the saved state of the ECMpy

GitHub repository as it was on 15 Feb 2025 (https://github.com/tibbdc/ECMpy).
8As this model is not saved to their Github we had to generate it ourselves. We did this via the note-

book 01.get reactiion kcat using DLKcat [sic]. We also had to change line 4 in cell 6 to subbnumdf =
pd.read csv(gene subnum path, index col = 0); without this change the pipeline does not compute kcat/MW
correctly.
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H. kcat sensitivity through flux control coefficients
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Figure 8. kcat sensitivity plot, categorised and coloured by subsystem for the min model (subsystem annotations from the BiGG database
(King et al., 2015)). Flux control coefficient Cvt

kcat,i
= δvT

δk̄cat,i
· k̄kcat,i

vT
, rescaled k̄cat =

kcat
MW

, perturbation δk̄cat,i = 10−4, metabolic
target T : BIOMASS Ec iML1515 core 75p37M . Coloured subsystems are those present in the top 10 most sensitive reactions
under flux control coefficient analysis except the Citric Acid Cycle which is highlighted for reference. The band of Transport reactions at
k̄cat = 6012 h−1 is due to the heuristic described in Section 3.3. Not shown are reactions where Cvt

kcat,i
≤ 0 (due to log-scale plotting).
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I. Top 10 most sensitive reactions for min model by flux control coefficient

Table 4. Top 10 most sensitive reactions for the min model as measured by flux control coefficient, Cvt
kcat,i

. Red highlighting corresponds

to ECMpy v1 round 1 enzyme abundance corrections, Blue highlighting corresponds to ECMpy v1 round 2 13C corrections. EC Numbers
for each reaction were queried across BRENDA and SABIO-RK, and we retrieved the largest kcat across each search (including reactions
from different species to E. coli, and across different environmental conditions).

Reaction
(BiGG ID)

k̄cat in
min model

[h−1]

k̄cat after
calibrating

with BRENDA/
SABIO-RK [h−1]

Cvt
kcat,i

Description

ACCOAC 7.8 524.8 0.0294 Acetyl-CoA carboxylase
PDH 479.0 784.1 0.0120 Pyruvate dehydrogenase
FBA num2 830.0 9437.1 0.0040 Fructose-bisphosphate aldolase
ATPS4rpp num2 11.9 3661.1 0.0039 ATP synthase (four protons for one ATP) (periplasm)
CYTBDpp num1 1097.4 1097.41 0.0033 Cytochrome oxidase bd

(ubiquinol-8: 2 protons) (periplasm)
ENO 2171.1 9068.0 0.0029 Enolase
PFK num1 1685.6 113914.2 0.0020 Phosphofructokinase
PSERT 128.3 112.7 0.0013 Phospho-L-serine transport via diffusion

(extracellular to periplasm) reverse
PTAr num1 4571.4 46680.1 0.0012 Phosphotransacetylase
Htex reverse num1 6012.0 6012.01 0.0010 Proton transport via diffusion (extracellular to

periplasm) reverse
1 EC numbers for these reactions aren’t recorded in BiGG, so we couldn’t query BRENDA or SABIO-RK to retrieve in-vivo kcat. These
kkcats remain uncalibrated.
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J. Top 100 most sensitive reactions according to flux control coefficient
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Figure 9. Top 100 reactions in the min model ranked by flux control coefficient CVt
kcat,i

= δVT
δk̄cat,i

· k̄kcat,i

VT
, coloured by enzymatic

reaction type (heteromer, homomultimer, monomer). Non-enzymatic reactions are not shown.
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